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Abstract

In a drawing of a clustered graph vertices and edges are drawn as points and
curves, respectively, while clusters are represented by simple closed regions. A
drawing of a clustered graph is c-planar if it has no edge-edge, edge-region,
or region-region crossings. Determining the complexity of testing whether a
clustered graph admits a c-planar drawing is a long-standing open problem
in the Graph Drawing research area. An obvious necessary condition for c-
planarity is the planarity of the graph underlying the clustered graph. However,
this condition is not sufficient and the consequences on the problem due to the
requirement of not having edge-region and region-region crossings are not yet
fully understood.

In order to shed light on the c-planarity problem, we consider a relaxed
version of it, where some kinds of crossings (either edge-edge, edge-region, or
region-region) are allowed even if the underlying graph is planar. We investi-
gate the relationships among the minimum number of edge-edge, edge-region,
and region-region crossings for drawings of the same clustered graph. Also, we
consider drawings in which only crossings of one kind are admitted. In this
setting, we prove that drawings with only edge-edge or with only edge-region
crossings always exist, while drawings with only region-region crossings may
not. Further, we provide upper and lower bounds for the number of such cross-
ings. Finally, we give a polynomial-time algorithm to test whether a drawing
with only region-region crossings exists for biconnected graphs, hence identify-
ing a first non-trivial necessary condition for c-planarity that can be tested in
polynomial time for a noticeable class of graphs.
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1. Introduction

Clustered planarity is a classical Graph Drawing topic (see [6] for a survey).
A clustered graph C(G,T ) consists of a graph G and of a rooted tree T whose
leaves are the vertices of G. Such a structure is used to enrich the vertices of the
graph with hierarchical information. In fact, each internal node µ of T represents
the subset, called cluster, of the vertices of G that are the leaves of the subtree of
T rooted at µ. Tree T , which defines the inclusion relationships among clusters,
is called inclusion tree, while G is the underlying graph of C(G,T ).

In a drawing of a clustered graph C(G,T ) vertices and edges of G are drawn
as points and open curves, respectively, and each node µ of T is represented by
a simple closed region R(µ) containing exactly the vertices of µ. Also, if µ is a
descendant of a node ν, then R(ν) contains R(µ).

A drawing of C can have three types of crossings. Edge-edge crossings are
crossings between edges of G. Algorithms to produce drawings allowing edge-
edge crossings have already been proposed (see, for example, [11] and Fig. 2(a)).
Two kinds of crossings involve regions, instead. Consider an edge e of G and
a node µ of T . If e intersects the boundary of R(µ) only once, this is not
considered as a crossing since there is no way of connecting the endpoints of e
without intersecting the boundary of R(µ). On the contrary, if e intersects the
boundary of R(µ) more than once, we have edge-region crossings. An example
of this kind of crossings is provided by Fig. 2(b), where edge (u,w) traverses
R(µ) and edge (u, v) exits and enters R(ν). Finally, consider two nodes µ and
ν of T ; if the boundary of R(µ) intersects the boundary of R(ν), we have a
region-region crossing (see Fig. 2(c) for an example).

A drawing of a clustered graph is c-planar if it does not have any edge-edge,
edge-region, or region-region crossing. A clustered graph is c-planar if it admits
a c-planar drawing.

In the last decades c-planarity has been deeply studied. While the complex-
ity of deciding if a clustered graph is c-planar is still an open problem in the
general case, polynomial-time algorithms have been proposed to test c-planarity
and produce c-planar drawings under several kinds of restrictions, such as:

� Assuming that each cluster induces a small number of connected compo-
nents ([5, 7, 10, 16, 17, 21, 22, 24, 25]). In particular, the case in which
the graph is c-connected, that is, for each node ν of T the graph induced
by the vertices of ν is connected, has been deeply investigated.

� Considering only flat hierarchies, i.e., the height of T is two, namely no
cluster different from the root contains other clusters ([8, 9, 12]).

� Focusing on particular families of underlying graphs ([8, 9, 26]).

� Fixing the embedding of the underlying graph ([12, 24]).

This huge body of research can be read as a collection of polynomial-time
testable sufficient conditions for c-planarity.
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Figure 1: Examples of crossings in drawings of clustered graphs. (a) A drawing obtained with
the planarization algorithm described in [11] and containing three edge-edge crossings. (b) A
drawing with two edge-region crossings. (c) A drawing with a region-region crossing.

In contrast, the planarity of the underlying graph is the only polynomial-time
testable necessary condition that has been found so far for c-planarity in the
general case. Such a condition, however, is not sufficient and the consequences
on the problem due to the requirement of not having edge-region and region-
region crossings are not yet fully understood.

Other known necessary conditions are either trivial (i.e., satisfied by all
clustered graphs) or of unknown complexity as the original problem is. An
example of the first kind is the existence of a c-planar clustered graph obtained
by splitting some cluster into sibling clusters [2]. An example of the second
kind, which is also a sufficient condition, is the existence of a set of edges that,
if added to the underlying graph, make the clustered graph c-connected and
c-planar [16].

In this paper we study a relaxed model of c-planarity. Namely, we study
〈α, β, γ〉-drawings of clustered graphs. In an 〈α, β, γ〉-drawing the number of
edge-edge, edge-region, and region-region crossings is equal to α, β, and γ,
respectively. Figs. 2(a), 2(b), and 2(c) show examples of a 〈3, 0, 0〉-drawing, a
〈0, 2, 0〉-drawing, and a 〈0, 0, 1〉-drawing, respectively. Notice that this model
provides a generalization of c-planarity, as the traditional c-planar drawing is a
special case of an 〈α, β, γ〉-drawing where α = β = γ = 0. Hence, we can say
that the existence of an 〈α, β, γ〉-drawing, for some values of α, β, and γ, is a
necessary condition for c-planarity.

In our study we focus on clustered graphs whose underlying graph is planar.
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admits 〈0, 0,∞〉-drawing

admits 〈∞, 0, 0〉-drawing

Figure 2: Containment relationships among instances of clustered planarity. The existence of
a 〈0, 0,∞〉-drawing is a necessary condition for c-planarity. Note that any 〈0, 0,∞〉-drawing of
a c-connected clustered graph C(G, T ) can be suitably modified to obtain a c-planar drawing
of C(G, T ).

We mainly concentrate on the existence of drawings in which only one type of
crossings is allowed. We call these drawings 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and 〈0, 0,∞〉-
drawings, respectively. Our investigation uncovers that allowing different types
of crossings has a different impact on the existence of drawings of clustered
graphs (see Fig. 2). In particular, we prove that, while every clustered graph
admits an 〈∞, 0, 0〉-drawing (even if its underlying graph is not planar) and a
〈0,∞, 0〉-drawing (only if its underlying graph is planar), there exist clustered
graphs not admitting any 〈0, 0,∞〉-drawing. Further, we provide a polynomial-
time testing algorithm to decide whether a biconnected clustered graph admits
a 〈0, 0,∞〉-drawing. From this fact we conclude that the existence of such a
drawing is the first non-trivial necessary condition for the c-planarity of clustered
graphs that can be tested efficiently. This allows us to further restrict the search
for c-planar instances with respect to the obvious condition that the underlying
graph is planar.

Also, we investigate the relationships among the minimum number of edge-
edge, edge-region, and region-region crossings for drawings of the same clustered
graph, showing that, in most of the cases, the fact that a clustered graph admits
a drawing with few crossings of one type does not imply that such a clustered
graph admits a drawing with few crossings of another type.

Finally, we show that minimizing the sum α + β + γ in a 〈α, β, γ〉-drawing
of a clustered graph is an NP-complete problem. Since in our construction it is
possible to replace each crossing of any type with a crossing of a different type,
this implies that the problems of minimizing crossings in 〈∞, 0, 0〉-, 〈0,∞, 0〉-,
and 〈0, 0,∞〉-drawings are also NP-complete. However, for the first two types
of drawings we can prove NP-completeness even for simpler classes of clustered
graphs.

We remark that drawings of clustered graphs where a few intersections are
admitted may meet the requirements of many typical Graph Drawing appli-
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c-c flat
〈α, 0, 0〉 〈0, β, 0〉 〈0, 0, γ〉

α UB α LB β UB β LB γ UB γ LB

no no O(n2) Th.1 Ω(n2) O(n3) Th.2 Ω(n2) O(n3)z Th.5 Ω(n3) Th.12

no yes O(n2) Ω(n2) O(n2) Th.2 Ω(n2) Cor.1 O(n2)z Th.5 Ω(n2) Th.11

yes no O(n2) Ω(n2) O(n2) Th.3 Ω(n2) Th.9 0z [16] 0z [16]

yes yes O(n2) Ω(n2) Th.7 O(n) Th.3 Ω(n) Th.10 0z [16] 0z [16]

Table 1: Upper and lower bounds for the number of crossings in 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and
〈0, 0,∞〉-drawings of clustered graphs. Flags c-c and flat mean that the clustered graph is
c-connected and that the cluster hierarchy is flat, respectively. Results written in gray derive
from those in black, while a “z” means that there exist clustered graphs not admitting the
corresponding drawings. A “0” occurs if the clustered graph is c-planar.

cations, and that their employment is encouraged by the fact that the class
of c-planar instances might be too small to be relevant for some application
contexts.

More in detail, we present the following results (recall that we assume the
necessary condition that the underlying graph is planar to be always satisfied):

1. In Section 3 we provide algorithms to produce 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and
〈0, 0,∞〉-drawings of clustered graphs, if they exist. In particular, while
〈∞, 0, 0〉- and 〈0,∞, 0〉-drawings always exist, we show that some clustered
graphs do not admit any 〈0, 0,∞〉-drawing, and we present a polynomial-
time algorithm to test whether a biconnected clustered graph admits a
〈0, 0,∞〉-drawing, which is a necessary condition for c-planarity. The algo-
rithm, whose approach is reminiscent of [1], is based on a characterization
of the planar embeddings that lead to 〈0, 0,∞〉-drawings, and on a sub-
sequent structural characterization of the existence of a 〈0, 0,∞〉-drawing
for any biconnected clustered graph C(G,T ), based on the SPQR-tree
decomposition of G.

2. The above mentioned algorithms provide upper bounds on the number
of crossings for the three kinds of drawings. We show that the majority
of these upper bounds are tight by providing matching lower bounds in
Section 4. These results are summarized in Tab. 1.

3. In Section 5 we show that there are clustered graphs admitting drawings
with one crossing of a certain type but requiring many crossings in draw-
ings where only different types of crossings are allowed. For example,
there are clustered graphs that admit a 〈1, 0, 0〉-drawing and that require
β ∈ Ω(n2) in any 〈0, β, 0〉-drawing and γ ∈ Ω(n2) in any 〈0, 0, γ〉-drawing.
See Tab. 2 for a summary of these results.

4. In Section 6 we present several complexity results. Namely, we show that:

� minimizing α + β + γ in an 〈α, β, γ〉-drawing is NP-complete even if
the underlying graph is planar, namely a forest of star graphs;
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→ 〈α, 0, 0〉 〈0, β, 0〉 〈0, 0, γ〉

〈1, 0, 0〉 Ω(n2) Ω(n2)

〈0, 1, 0〉 Ω(n) Ω(n2)

〈0, 0, 1〉 Ω(n2) Ω(n)

Table 2: Relationships between types of drawings proved in Theorem 14.

� minimizing α in an 〈α, 0, 0〉-drawing is NP-complete even if the un-
derlying graph is a matching;

� minimizing β in a 〈0, β, 0〉-drawing is NP-complete (see also [18]) even
for c-connected flat clustered graphs in which the underlying graph
is a triconnected planar multigraph;

Section 2 gives definitions and preliminary lemmas, while Section 7 contains
conclusions and open problems.

2. Preliminaries

We remark that every clustered graph C(G,T ) that is considered in this
paper is such that G is planar.

Let C(G,T ) be a clustered graph. If µ is an internal node of T , we denote
by V (µ) the leaves of the subtree of T rooted at µ. The subgraph of G induced
by V (µ) is denoted by G(µ).

Some constraints are usually enforced on the crossings among the open curves
representing edges in a drawing of a graph. Namely: (C1) the intersections
among curves form a set of isolated points; (C2) no three curves intersect in the
same point; and (C3) two intersecting curves appear alternatingly in the circu-
lar order around their intersection point. Figure 3(a) shows a legal crossing,
while Figures 3(b)-(d) show crossings violating Constraints C1, C2, and C3, re-
spectively. These constraints naturally extend to encompass crossings involving
regions representing clusters, by considering, for each region, the closed curve
that forms its boundary.

Let Γ be a drawing of a clustered graph C(G,T ). First, we formally define
the types of crossings of Γ and how to count them.

e1

e2

(a)

e1 e2

(b)

e1

e2

e3

(c)

e1

e2

e1

e2

(d)

Figure 3: Allowed and forbidden crossings in a drawing of a graph. (a) A legal crossing. (b)
A crossing violating Constraint C1. (c) A crossing violating Constraint C2. (d) A crossing
violating Constraint C3.
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(a) (b) (c)

Figure 4: Examples of intersections between clusters generating (a) zero rr-crossings; (b) one
rr-crossing; and (c) two rr-crossings.

Edge-edge crossings. Each crossing between two edges of G is an edge-edge
crossing (or ee-crossing for short) of Γ.

Edge-region crossings. An edge-region crossing (er-crossing) is a crossing
involving an edge e of G and a region R(µ) representing a cluster µ of
T ; namely, if e crosses the boundary of R(µ) k times, the number of
er-crossings between e and R(µ) is ⌊k

2 ⌋. Note that, if e intersects the
boundary of R(µ) exactly once, then such an intersection does not count
as an er-crossing, as in the traditional c-planarity literature.

Region-region crossings. A region-region crossing (rr-crossing) is a crossing
involving two regions R(µ) and R(ν) representing clusters µ and ν of T ,
respectively, and such that µ is not an ancestor of ν and vice-versa. In fact,
if µ is an ancestor of ν, then R(ν) is contained into R(µ) by the definition
of drawing of a clustered graph. The number of rr-crossings between R(µ)
and R(ν) is equal to the number of the topologically connected regions
resulting from the relative complement of R(µ) in R(ν) (i.e., R(µ) \R(ν))
minus one. Observe that, due to Constraints C1, C2, and C3, the number of
rr-crossings between R(µ) and R(ν) is equal to the number of rr-crossings
between R(ν) and R(µ). Also, as region R(µ) contains all and only the
vertices of µ, intersections between regions cannot contain vertices of G.
Figure 4 provides examples of region-region crossings.

Definition 1. An 〈α, β, γ〉-drawing of a clustered graph is a drawing with α
ee-crossings, β er-crossings, and γ rr-crossings.

2.1. Connectivity and SPQR-trees

A graph is connected if every two vertices are joined by a path. A graph G
is biconnected (triconnected) if removing any vertex (any two vertices) leaves G
connected.

To handle the decomposition of a biconnected graph into its triconnected
components, we use SPQR-trees, a data structure introduced by Di Battista
and Tamassia (see, e.g., [13, 14]).

A graph is st-biconnectible if adding edge (s, t) to it yields a biconnected
graph. Let G be an st-biconnectible graph. A separation pair of G is a pair
of vertices whose removal disconnects the graph. A split pair of G is either a
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separation pair or a pair of adjacent vertices. A maximal split component of
G with respect to a split pair {u, v} (or, simply, a maximal split component
of {u, v}) is either an edge (u, v) or a maximal subgraph G′ of G such that G′

contains u and v, and {u, v} is not a split pair of G′. A vertex w 6= u, v belongs
to exactly one maximal split component of {u, v}. We call split component of
{u, v} the union of any number of maximal split components of {u, v}.

We consider SPQR-trees that are rooted at one edge of the graph, called the
reference edge.

The rooted SPQR-tree T of a biconnected graph G, with respect to a refer-
ence edge e, describes a recursive decomposition of G induced by its split pairs.
The nodes of T are of four types: S, P, Q, and R. Their connections are called
arcs, in order to distinguish them from the edges of G.

Each node τ of T has an associated st-biconnectible multigraph, called the
skeleton of τ and denoted by sk(τ). Skeleton sk(τ) shows how the children of
τ , represented by “virtual edges”, are arranged in τ . The virtual edge in sk(τ)
associated with a child node σ, is called the virtual edge of σ in sk(τ).

For each virtual edge ei of sk(τ), recursively replace ei with the skeleton
sk(τi) of its corresponding child τi. The subgraph of G that is obtained in this
way is the pertinent graph of τ and is denoted by pert(τ).

Given a biconnected graph G and a reference edge e = (u′, v′), tree T is
recursively defined as follows. At each step, a split component G∗, a pair of
vertices {u, v}, and a node σ in T are given. A node τ corresponding to G∗ is
introduced in T and attached to its parent σ. Vertices u and v are the poles
of τ and denoted by u(τ) and v(τ), respectively. The decomposition possibly
recurs on some split components of G∗. At the beginning of the decomposition
G∗ = G − {e}, {u, v} = {u′, v′}, and σ is a Q-node corresponding to e.

Base Case: If G∗ consists of exactly one edge between u and v, then τ is a
Q-node whose skeleton is G∗ itself.

Parallel Case: If G∗ is composed of at least two maximal split components
G1, . . . , Gk (k ≥ 2) of G with respect to {u, v}, then τ is a P-node. Graph
sk(τ) consists of k parallel virtual edges between u and v, denoted by
e1, . . . , ek and corresponding to G1, . . . , Gk, respectively. The decomposi-
tion recurs on G1, . . . , Gk, with {u, v} as pair of vertices for every graph,
and with τ as parent node.

Series Case: If G∗ is composed of exactly one maximal split component of
G with respect to {u, v} and if G∗ has cutvertices c1, . . . , ck−1 (k ≥ 2),
appearing in this order on a path from u to v, then τ is an S-node. Graph
sk(τ) is the path e1, . . . , ek, where virtual edge ei connects ci−1 with ci

(i = 2, . . . , k − 1), e1 connects u with c1, and ek connects ck−1 with v.
The decomposition recurs on the split components corresponding to each
of e1, e2, . . . , ek−1, ek with τ as parent node, and with {u, c1}, {c1, c2}, . . . ,
{ck−2, ck−1}, {ck−1, v} as pair of vertices, respectively.

Rigid Case: If none of the above cases applies, the purpose of the decompo-
sition step is that of partitioning G∗ into the minimum number of split
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components and recurring on each of them. We need some further defi-
nition. Given a maximal split component G′ of a split pair {s, t} of G∗,
a vertex w ∈ G′ properly belongs to G′ if w 6= s, t. Given a split pair
{s, t} of G∗, a maximal split component G′ of {s, t} is internal if neither
u nor v (the poles of G∗) properly belongs to G′, external otherwise. A
maximal split pair {s, t} of G∗ is a split pair of G∗ that is not contained
into an internal maximal split component of any other split pair {s′, t′}
of G∗. Let {u1, v1}, . . . , {uk, vk} be the maximal split pairs of G∗ (k ≥ 1)
and, for i = 1, . . . , k, let Gi be the union of all the internal maximal split
components of {ui, vi}. Observe that each vertex of G∗ either properly
belongs to exactly one Gi or belongs to some maximal split pair {ui, vi}.
Node τ is an R-node. Graph sk(τ) is the graph obtained from G∗ by re-
placing each subgraph Gi with the virtual edge ei between ui and vi. The
decomposition recurs on each Gi with µ as parent node and with {ui, vi}
as pair of vertices.

For each node τ of T , the construction of sk(τ) is completed by adding a
virtual edge (u, v) representing the rest of the graph.

In the reminder of the paper, even when not explicitly mentioned, we will
always assume the considered SPQR-trees to be rooted at an edge of the graph.

The SPQR-tree T of a graph G with n vertices and m edges has m Q-nodes
and O(n) S-, P-, and R-nodes. Also, the total number of vertices of the skeletons
stored at the nodes of T is O(n). Finally, SPQR-trees can be constructed and
handled efficiently. Namely, given a biconnected planar graph G, the SPQR-tree
T of G can be computed in linear time [13, 14, 23].

3. Drawings of Clustered Graphs with Crossings

The following three sections deal with 〈∞, 0, 0〉-, 〈0,∞, 0〉- and 〈0, 0,∞〉-
drawings, respectively.

3.1. Drawings with Edge-Edge Crossings

In this section, we show a simple algorithm to construct an 〈α, 0, 0〉-drawing
of any clustered graph, in which α is asymptotically optimal in the worst case,
as proved in Section 4.

Theorem 1. Let C(G,T ) be a clustered graph. There exists an algorithm to
compute an 〈α, 0, 0〉-drawing of C(G,T ) with α ∈ O(n2).

Proof: Let σ = v1, . . . , vn be an ordering of the vertices of G such that ver-
tices of the same cluster are consecutive in σ. A drawing of G can be constructed
as follows. Place the vertices of G along a convex curve in the order they appear
in σ. Draw the edges of G as straight-line segments. Since vertices belonging to
the same cluster are consecutive in σ, drawing each cluster as the convex hull
of the points assigned to its vertices yields a drawing without region-region and
edge-region crossings (see Fig. 5). Further, since G has O(n) edges, and since
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Figure 5: Illustration for Theorem 1.

edges are drawn as straight-line segments, such a construction produces O(n2)
edge-edge crossings. ¤

Observe that, using the same construction used in the proof of Theorem 1,
it can be proved that every clustered graph (even if its underlying graph is not
planar) admits an 〈α, 0, 0〉-drawing with α ∈ O(n4).

3.2. Drawings with Edge-Region Crossings

In this section, we show two algorithms for constructing a 〈0, β, 0〉-drawing
of any clustered graph C(G,T ), in which β is asymptotically optimal in the
worst case if C(G,T ) is c-connected or if it is flat, as proved in Section 4. If
C(G,T ) is a general clustered graph, then β is a linear factor apart from the
lower bound presented in Section 4.

The two algorithms handle the case in which C(G,T ) is not c-connected
(Theorem 2) and in which C(G,T ) is c-connected (Theorem 3), respectively.
Both algorithms have three steps:

1. A spanning tree T of the vertices of G is constructed in such a way that,
for each cluster µ ∈ T , the subgraph of T induced by the vertices of µ
is connected. The two algorithms construct T in two different ways; in
particular, T is a subgraph of G if C(G,T ) is c-connected, while it is not
necessarily a subgraph of G if C(G,T ) is not c-connected.

2. A simultaneous embedding of G and T is computed. A simultaneous
embedding of two graphs G1(V,E1) and G2(V,E2), on the same set V of
vertices, is a drawing of G(V,E1 ∪ E2) such that any crossing involves an
edge from E1 and an edge from E2 [4].

3. A 〈0, β, 0〉-drawing of C(G,T ) is constructed by drawing each cluster µ
as a region R(µ) slightly surrounding the edges of T (µ) and the regions
R(µ1), . . . , R(µk) representing the children µ1, . . . , µk of µ.

In the case in which C(G,T ) is not c-connected, we get the following:

Theorem 2. Let C(G,T ) be a clustered graph. Then, there exists an algorithm
to compute a 〈0, β, 0〉-drawing of C(G,T ) with β ∈ O(n3). If C(G,T ) is flat,
then β ∈ O(n2).
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Proof: In the first step, the tree T is constructed by means of a bottom-up
traversal of T . Whenever a node µ ∈ T is considered, a spanning tree T (µ)
of V (µ) is constructed as follows. Denote by µ1, . . . , µk the children of µ in T
(observe that, for each 1 ≤ i ≤ k, µi is either a cluster or a vertex). Assume
that spanning trees T (µ1), . . . , T (µk) of V (µ1), . . . , V (µk) have been already
computed. The spanning tree T (µ) of V (µ) is constructed by connecting a
vertex of µ1 to a vertex of each of T (µ2), . . . , T (µk). Tree T coincides with
T (ρ), where ρ is the root of T . Observe that some of the edges of T might not
belong to G.

In the second step, we apply the algorithm by Kammer [27] (see also [15])
to construct a simultaneous embedding of G and T in which each edge has at
most two bends, which implies that each pair of edges 〈e1 ∈ G, e2 ∈ T 〉 crosses
a constant number of times.

In the third step, each cluster µ is drawn as a region R(µ) slightly sur-
rounding the edges of T (µ) and the regions R(µ1), . . . , R(µk) representing the
children µ1, . . . , µk of µ. Hence, each crossing between an edge e1 ∈ G and
an edge e2 ∈ T determines two intersections (hence one edge-region crossing)
between e1 and the boundary of each cluster ν such that e2 ∈ T (ν). Further,
each edge (u, v) ∈ G such that (u, v) /∈ T and u and v belong to the same cluster
ν, has a er-crossing with the boundary of R(ν).

Note that, for each edge e2 ∈ T , there exist O(n) clusters ν such that
e2 ∈ T (ν); also there exist O(n2) pairs of edges 〈e1 ∈ G, e2 ∈ T 〉; further, there
exist O(n) edges not belonging to τ ; finally, for each edge e /∈ T there exists
O(n) clusters ν such that both endvertices of e belong to ν. Hence, the total
number of er-crossings is O(n3).

If C(G,T ) is flat, then for each edge e2 ∈ T there exists at most one cluster
ν different from the root such that e2 ∈ T (ν); also, for each edge e /∈ T there
exists at most one cluster ν different from the root such that both endvertices
of e belong to ν. Hence, the total number of er-crossings is O(n2). ¤

If C(G,T ) is c-connected, we can improve the bounds of Theorem 2 as
follows:

Theorem 3. Let C(G,T ) be a c-connected clustered graph. Then, there exists
an algorithm to compute a 〈0, β, 0〉-drawing of C(G,T ) with β ∈ O(n2). If
C(G,T ) is flat, β ∈ O(n).

Proof: In the first step, the tree T is constructed by means of a bottom-up
traversal of T . When a node µ ∈ T is considered, a spanning tree T (µ) of
V (µ) is constructed as follows. Denote by µ1, . . . , µk the children of µ in T
(note that, for each 1 ≤ i ≤ k, µi is either a cluster or a vertex). Assume
that spanning trees T (µ1), . . . , T (µk) of V (µ1), . . . , V (µk) have been already
computed so that T (µi) is a subgraph of G(µi), for i = 1, . . . , k. Tree T (µ)
contains all the edges in T (µ1), . . . , T (µk) plus a minimal set of edges of G(µ)
connecting T (µ1), . . . , T (µk). The latter set of edges always exists since G(µ)
is connected. Tree T coincides with T (ρ), where ρ is the root of T . Observe
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that, in contrast with the construction in the proof of Theorem 2, all edges of
T belong to G.

In the second step, since each edge of T is also an edge of G, any planar
drawing of G determines a simultaneous embedding of G and T in which no
edge of G properly crosses an edge of T .

In the third step, clusters are drawn in the same way as in the proof of
Theorem 2.

Note that the only edge-region crossings that may occur are those between
any edge of G not in T whose endvertices belong to the same cluster µ and the
boundary of R(µ). Since there exist O(n) edges not belonging to T and since
for each edge e /∈ T there exist O(n) clusters ν such that both endvertices of e
belong to ν, it follows that the total number of edge-region crossings is O(n2).

If C(G,T ) is flat, then for each edge e /∈ T there exists at most one cluster
ν different from the root such that both endvertices of e belong to ν, and hence
the total number of edge-region crossings is O(n). ¤

3.3. Drawings with Region-Region Crossings

In this section, we study 〈0, 0,∞〉-drawings of clustered graphs. First, we
prove that there are clustered graphs that do not admit any 〈0, 0,∞〉-drawings.
Second, we provide a polynomial-time algorithm for testing whether a clustered
graph C(G,T ) with G biconnected admits a 〈0, 0,∞〉-drawing and to compute
one if it exists. Third, we show an algorithm that constructs a 〈0, 0, γ〉-drawing
Γ of any clustered graph C(G,T ) that admits such a drawing (the input of
the algorithm is any 〈0, 0,∞〉-drawing Γ′ of C(G,T )) in which γ is worst-case
asymptotically optimal.

To show that there exist clustered graphs not admitting any 〈0, 0,∞〉-drawing,
we give two examples. Let C(G,T ) be a clustered graph such that G is tricon-
nected and has a cycle of vertices belonging to a cluster µ separating two vertices
not in µ (see Fig. 6(a)). Note that, even in the presence of rr-crossings, one
of the two vertices not in µ is enclosed by R(µ) in any 〈0, 0,∞〉-drawing of
C(G,T ). This example exploits the triconnectivity of the underlying graph.
Next we show that even clustered graphs with series-parallel underlying graph
may not admit any 〈0, 0,∞〉-drawing. Namely, let C(G,T ) be a clustered graph
such that G has eight vertices and is composed of parallel paths p1, p2, p3, and
p4. Tree T is such that cluster µ1 contains a vertex of p1 and a vertex of p2;
cluster µ2 contains a vertex of p2 and a vertex of p3; cluster µ3 contains a vertex
of p2 and a vertex of p4 (see Fig. 6(b)). Note that, in any 〈0, 0,∞〉-drawing of
C(G,T ), path p2 should be adjacent to all the other paths in the order around
the poles, and this is not possible by the planarity of the drawing of G.

Since some clustered graphs do not admit any 〈0, 0,∞〉-drawing, we study
the complexity of testing whether a clustered graph C(G,T ) admits one. In
order to do that, we first give a characterization of the planar embeddings of
G that allow for the realization of a 〈0, 0,∞〉-drawing of C(G,T ). Namely, let
C(G,T ) be a clustered graph and let Γ be a planar embedding of G. For each
cluster µ ∈ T consider an auxiliary graph H(µ) with the same vertices as G(µ)
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(a)

µ1µ2
µ3

p1

p2

p3

p4

(b)

Figure 6: Two clustered graphs not admitting any 〈0, 0,∞〉-drawing. The underlying graph of
(a) is a triconnected planar graph, while the underlying graph of (b) is a series-parallel graph.

and such that there is an edge between two vertices of H(µ) if and only if the
corresponding vertices of G are incident to the same face in Γ.

Lemma 1. Let C(G,T ) be a clustered graph and let Γ be a planar embedding
of G. Then, C(G,T ) admits a 〈0, 0,∞〉-drawing preserving Γ if and only if, for
each cluster µ ∈ T : (i) graph H(µ) is connected and (ii) there exists no cycle
of G whose vertices belong to µ and whose interior contains in Γ a vertex not
belonging to µ.

Proof: We first prove the necessity of the conditions. For the necessity of
Condition (i), suppose that H(µ) is not connected. Then, for any two distinct
connected components H1(µ) and H2(µ) of H(µ), there exists a cycle C in G
separating H1(µ) and H2(µ), as otherwise H1(µ) and H2(µ) would be incident
to a common face, hence they would not be distinct connected components of
H(µ). Therefore, the boundary of any region R(µ) representing µ intersects (at
least) one of the edges of C. For the necessity of Condition (ii), suppose that a
cycle C exists in Γ whose vertices belong to µ and whose interior contains in Γ
a vertex not belonging to µ. Then, in any drawing of R(µ) as a simple closed
region containing all and only the vertices in µ, the border of R(µ) intersects
(at least) one edge of C.

We next prove the sufficiency of the conditions. Suppose that Conditions
(i) and (ii) hold. Consider any subgraph H ′(µ) of H(µ) such that: (a) G(µ) ⊆
H ′(µ); (b) H ′(µ) is connected; and (c) for every cycle C in H ′(µ), if any, all the
edges of C belong to G. Observe that the fact that H(µ) satisfies conditions
(i) and (ii) implies the existence of a graph H ′(µ) satisfying (a), (b), and (c).
Draw each edge of H ′(µ) not in G inside the corresponding face. Represent µ
as a region slightly surrounding the (possibly non-simple) cycle delimiting the
outer face of H ′(µ). Denote by Γ′

C the resulting drawing and denote by ΓC

the drawing of C(G,T ) obtained from Γ′
C by removing the edges not in G. We

have that ΓC contains no ee-crossing, since Γ is a planar embedding. Also, it
contains no er-crossing, since the only edges crossing clusters in Γ′

C are those
belonging to H ′(µ) and not belonging to G(µ). ¤

Our next goal is to provide an algorithm that, given a clustered graph
C(G,T ) such that G is biconnected, tests whether G admits a planar embedding
allowing for a 〈0, 0,∞〉-drawing of C(G,T ).
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(a) (b) (c) (d) (e)

Figure 7: Examples of embeddings of Γ(pert(τ)): (a) µ-traversable; (b) µ-sided; (c) µ-bisided;
(d) µ-kernelized; (e) µ-infeasible. Dashed red edges belong to H(τ, µ). The five drawings
represent five embeddings Γ(pert(τ)) for five different graphs pert(τ).

We start by giving some definitions. Let C(G,T ) be a clustered graph such
that G is biconnected and consider the SPQR-tree T of G rooted at any Q-node
ρ. The choice of rooting T at ρ corresponds to only consider planar embeddings
of G in which the edge eρ of G corresponding to ρ is incident to the outer face.

Consider a node τ ∈ T , its pertinent graph pert(τ) (augmented with an edge
e between the poles of τ , representing the parent of τ), and a planar embedding
Γ(pert(τ)) with e on the outer face. Observe that assuming e to be incident to
the outer face of Γ(pert(τ)) is not a loss of generality, given that eρ is assumed
to be incident to the outer face of every considered planar embedding of G.
Namely, consider any planar embedding ΓG of G in which eρ is incident to the
outer face and let Γ−(pert(τ)) be the embedding of pert(τ) (except for edge e)
obtained by restricting ΓG to pert(τ). Then, the subgraph of G not in pert(τ)
(i.e., the “rest of the graph” with respect to τ) lies in ΓG in the outer face of
Γ−(pert(τ)), hence edge e can be inserted in the outer face of Γ−(pert(τ)), thus
obtaining a planar embedding Γ(pert(τ)) with e on the outer face.

Let f ′(τ) and f ′′(τ) be the two faces of Γ(pert(τ)) that are incident to e. For
each cluster µ ∈ T , we define an auxiliary graph H(τ, µ) as the graph containing
all the vertices of pert(τ) that belong to µ and such that two vertices of H(τ, µ)
are connected by an edge if and only if they are incident to the same face in
Γ(pert(τ)). Observe that H(ρ, µ) coincides with the above defined auxiliary
graph H(µ). Also, observe that no two connected components of H(τ, µ) exist
both containing a vertex incident to f ′(τ) or both containing a vertex incident
to f ′′(τ).

Next we introduce some classifications of the nodes of T and of the embed-
dings of their pertinent graphs that will be used to find an embedding of G such
that Conditions (i) and (ii) of Lemma 1 are satisfied for each cluster µ.

In order to keep track of the connectivity of H(µ) (Condition (i) of Lemma 1),
for each node τ ∈ T and for each cluster µ ∈ T , we say that Γ(pert(τ)) is:

µ-traversable: if H(τ, µ) is connected and contains at least one vertex incident
to f ′(τ) and one vertex incident to f ′′(τ) (see Fig. 8(a)).
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µ-sided : if H(τ, µ) is connected and contains at least one vertex incident to
f ′(τ) and no vertex incident to f ′′(τ), or vice versa (see Fig. 8(b)).

µ-bisided : if H(τ, µ) consists of two connected components, one containing
a vertex of f ′(τ) and the other one containing a vertex of f ′′(τ) (see
Fig. 8(c)).

µ-kernelized : if H(τ, µ) is connected and contains neither a vertex incident to
f ′(τ) nor a vertex incident to f ′′(τ) (see Fig. 8(d)).

µ-infeasible: if H(τ, µ) has at least two connected components of which one
has no vertex incident to f ′(τ) or f ′′(τ) (see Fig. 8(e)).

Note that, if τ contains at least one vertex of µ, then Γ(pert(τ)) is exactly
of one of the types of embedding defined above.

First, we derive an elementary condition that prevents an embedding from
being µ-traversable.

Lemma 2. Suppose that an embedding Γ(pert(τ)) of pert(τ) with e incident
to the outer face is neither µ-traversable nor µ-infeasible. Then, there exists a
path in pert(τ) that connects the poles of τ , that is different from e, and none
of whose vertices belongs to µ.

Proof: Suppose first that H(τ, µ) is connected in Γ(pert(τ)). Then, Γ(pert(τ))
is either µ-traversable, or µ-kernelized, or µ-sided, by definition. By assump-
tion, Γ(pert(τ)) is not µ-traversable, hence it is either µ-kernelized or µ-sided.
In both cases, the path of Γ(pert(τ)) delimiting f ′(τ), different from e, and
connecting the poles of τ , or the path of Γ(pert(τ)) delimiting f ′′(τ), different
from e, and connecting the poles of τ is such that none of its vertices belongs
to µ, and the statement follows.

Suppose next that H(τ, µ) is not connected in Γ(pert(τ)). Then, Γ(pert(τ))
is either µ-infeasible or µ-bisided, by definition. By assumption, Γ(pert(τ))
is not µ-infeasible, hence it is µ-bisided. By definition of H(τ, µ), the two
connected components H ′(τ, µ) and H ′′(τ, µ) of H(τ, µ) are not incident to
any common face. Thus, there exists a cycle C in Γ(pert(τ)) containing such
components on different sides and none of whose vertices belongs to µ. Cycle
C contains edge e, given that H ′(τ, µ) and H ′′(τ, µ) contain vertices incident to
f ′(τ) and f ′′(τ). It follows that the path obtained from C by removing edge e
connects the poles of τ , is different from edge e, and is such that none of its
vertices belongs to µ, thus proving the statement. ¤

While the fact that Γ(pert(τ)) is µ-sided, µ-bisided, µ-kernelized, or µ-
infeasible does not rule the possibility that a different planar embedding of
pert(τ) is of a different type, if Γ(pert(τ)) is µ-traversable then any other em-
bedding of pert(τ) is either µ-traversable or µ-infeasible, as proved in the fol-
lowing.

Lemma 3. Let Γ1(pert(τ)) and Γ2(pert(τ)) be two planar embeddings of pert(τ),
both having edge e incident to the outer face. If Γ1(pert(τ)) is µ-traversable,
then Γ2(pert(τ)) is either µ-traversable or µ-infeasible.
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(a) (b)

Figure 8: Examples of embeddings of Γ(pert(τ)): (a) µ-side-spined; (b) µ-central-spined.
Dashed red edges belong to H(τ, µ). The two drawings represent two embeddings Γ(pert(τ))
for two different graphs pert(τ).

Proof: Suppose, for a contradiction, that Γ2(pert(τ)) is neither µ-traversable
nor µ-infeasible. By Lemma 2, there exists a path in pert(τ) that connects
the poles of τ , that is different from e, and none of whose vertices belongs to
µ. It follows that the auxiliary graph H(τ, µ) associated with Γ2(pert(τ)) is
disconnected, or does not contain a vertex incident to f ′(τ), or does not contain
a vertex incident to f ′′(τ). ¤

By Lemma 3, if an embedding of pert(τ) is µ-traversable, then every em-
bedding of pert(τ) which is not µ-infeasible is µ-traversable. Hence, if a µ-
traversable embedding of pert(τ) exists, we say that τ and the virtual edge
representing τ in the skeleton of the parent of τ in T is µ-traversable.

Next, we introduce some definitions used to deal with Condition (ii) of
Lemma 1. Namely, for each node τ ∈ T and for each cluster µ ∈ T , we say that
τ (and the virtual edge representing τ in the skeleton of its parent) is:

µ-touched : if there exists a vertex in pert(τ) \ {u, v} that belongs to µ.

µ-full : if all the vertices in pert(τ) belong to µ.

µ-spined : if there exists in pert(τ) a path P between the poles of τ different
from e and containing only vertices of µ. Observe that, if τ is µ-spined
and pert(τ) is not a single edge, then τ is µ-touched.

Given a µ-spined node τ , an embedding Γ(pert(τ)) is µ-side-spined if at
least one of the two paths different from edge e, connecting the poles of τ , and
delimiting the outer face of Γ(pert(τ)) has only vertices in µ (see Fig 9(a)).
Otherwise, it is µ-central-spined (see Fig 9(b)).

Observe that, if τ is µ-spined, then it is also µ-traversable, since its poles
belong to µ.

We say that an embedding Γ(pert(τ)) of pert(τ) with e incident to the outer
face is extensible if the following condition holds: If C(G,T ) admits a 〈0, 0,∞〉-
drawing in which the edge eρ corresponding to ρ is incident to the outer face,
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(a) (b) (c)

Figure 9: Illustration for the statement of Lemma 4. (a) Embedding Γ1. (b) Embedding Γ2.
(c) Embedding Γ3.

then it admits a 〈0, 0,∞〉-drawing in which eρ is incident to the outer face and
in which the embedding of pert(τ) is Γ(pert(τ)). Observe that, if an embedding
Γ(pert(τ)) of pert(τ) is µ-infeasible, for some µ ∈ T , then Γ(pert(τ)) is not
extensible.

One key ingredient of our result is that if an embedding Γ(pert(τ)) of pert(τ)
is extensible, not only there exists a 〈0, 0,∞〉-drawing of C(G,T ) in which the
embedding of pert(τ) is Γ(pert(τ)), but for every 〈0, 0,∞〉-drawing Γ of C(G,T )
in which eρ is incident to the outer face, the embedding of pert(τ) in Γ can be
modified to be Γ(pert(τ)), without changing the rest of Γ, while maintaining
the property that Γ is a 〈0, 0,∞〉-drawing. In the following we formalize such a
claim.

Lemma 4. Let C(G,T ) be a clustered graph, with G biconnected, that admits a
〈0, 0,∞〉-drawing in which the edge eρ corresponding to the root ρ of SPQR-tree
T of G is incident to the outer face. Let Γ1 and Γ2 be two 〈0, 0,∞〉-drawings
of C(G,T ) in which eρ is incident to the outer face. Let τ be a P-node or an
R-node of T . Let Γi(pert(τ)) be the embedding of pert(τ) minus edge e in Γi,
for i = 1, 2. Let Γ3 be the drawing obtained from Γ2 by replacing Γ2(pert(τ))
with Γ1(pert(τ)), possibly after performing a flip of Γ1(pert(τ)) (see Fig. 10(c)).
Then, Γ3 is a 〈0, 0,∞〉-drawing of C(G,T ) in which eρ is incident to the outer
face.

In the following we prove Lemma 4. Namely, we prove that, after the re-
placement of Γ2(pert(τ)) with Γ1(pert(τ)) and, possibly, a flip of Γ1(pert(τ)),
the resulting embedding Γ3 of G satisfies the conditions of Lemma 1. Observe
that eρ is incident to the outer face of Γ3, given that it is incident to the outer
face of Γ2.

We introduce some terminology. The rest of the graph with respect to τ is
the graph G(τ) obtained from G by removing the vertices of pert(τ) different
from its poles and by inserting a dummy edge eτ between the poles of pert(τ).
In terms of SPQR-trees, the rest of the graph can be equivalently defined as
follows. Denote by τ ′ the parent of τ in T . Then, the rest of the graph is the
pertinent graph of τ ′ in any re-rooting of T in which τ ′ becomes a child of τ
plus an edge eτ between the poles of τ . Denote by f ′(τ) and f ′′(τ) the faces of
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G(τ) incident to eτ . Recall that f ′(τ) and f ′′(τ) also denote the faces incident
to e in the embeddings Γ1(pert(τ)) and Γ2(pert(τ)) of pert(τ) in which edge e
is added in the outer face. We further overload the notation f ′(τ) and f ′′(τ) to
let them represent the faces of Γi that are shared by Γi(pert(τ)) and Γi(G(τ)),
for i = 1, 2, 3. For any node µ of T , the auxiliary graph H(τ , µ) of G(τ) in Γi,
for any i = 1, 2, 3, is the graph containing all the vertices of G(τ) that belong
to µ and such that two vertices of H(τ , µ) are connected by an edge if and only
if they are incident to the same face in Γi. Let Γi(G(τ)) be the embedding of
G(τ) in Γi, for i = 1, 2, 3.

The definitions of µ-traversable, µ-sided, µ-bisided, µ-kernelized, µ-infeasible,
µ-touched, µ-full, and µ-spined apply to the rest of the graph with respect to τ
analogously as to the pertinent graph of τ . For example, G(τ) is µ-traversable
in Γi if H(τ , µ) is connected and contains at least one vertex incident to f ′(τ)
and one vertex incident to f ′′(τ).

For any i = 1, 2, if Γi is such that Γi(pert(τ)) is µ-sided or µ-side-spined,
then, we denote by p(Γi, τ, µ) the path that (i) connects the poles of τ , (ii)
belongs to pert(τ), (iii) delimits f ′(τ) or f ′′(τ) in Γi, and (iv) contains vertices of
µ (if Γi(pert(τ)) is µ-sided, see Fig. 11(a)), or entirely belongs to µ (if Γi(pert(τ))
is µ-side-spined, see Fig. 11(b)).

Similarly, for any i = 1, 2, suppose Γi is such that Γi(G(τ)) is µ-sided, or
is µ-side-spined, or is µ-full and both the poles of τ belong to the outer face
of Γi (refer to Figs. 11(c), 11(d), and 11(e) for examples of the three cases,
respectively). Then, we denote by p(Γi, τ , µ) the path that (i) connects the
poles of τ , (ii) belongs to G(τ), (iii) delimits f ′(τ) or f ′′(τ) in Γi, and (iv)
contains vertices of µ (if Γi(G(τ)) is µ-sided, see Fig. 11(c)), or entirely belongs
to µ (if Γi(G(τ)) is µ-side-spined, see Fig. 11(d)), or is not entirely incident to
the outer face of Γi (if Γi(G(τ)) is µ-full and both the poles of τ belong to the
outer face of Γi, see Fig. 11(e)).

We show a simple algorithm to determine a flip of Γ1(pert(τ)); observe that
the choice of such a flip completely determines Γ3, as the embedding of G(τ) in
Γ3 coincides with Γ2(G(τ)). Consider any cluster µ ∈ T such that one of the
following holds:

(a) (b) (c) (d) (e)

Figure 10: Illustration for the definition of paths p(Γi, τ, µ) and p(Γi, τ , µ) of Γi, with i = 1, 2.
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(a) (b) (c)

Figure 11: The three cases of the proof of Lemma 4. (a) Case 1. (b) Case 2. (c) Case 3.

Case 1: Γ1(pert(τ)) and Γ2(G(τ)) are both µ-sided (see Fig. 12(a)).

Case 2: Γ1(pert(τ)) and Γ2(G(τ)) are both µ-side-spined and not µ-full (see
Fig. 12(b)).

Case 3: G(τ) is µ-full, Γ1(pert(τ)) is µ-side-spined and not µ-full, and both the
poles of τ belong to the outer face of Γ2 (see Fig. 12(c)).

Then, flip Γ1(pert(τ)) so that p(Γ1, τ, µ) and p(Γ2, τ , µ) delimit a face in Γ3.
If no cluster µ ∈ T exists that determines the flip of Γ1(pert(τ)), that is, if

for all clusters of T none of the above cases applies, then arbitrarily choose a
flip for Γ1(pert(τ)). We will prove later that no two clusters µ 6= ν ∈ T exist
that determine different flips for Γ1(pert(τ)).

We now proceed with the proof of Lemma 4, showing that the embedding
Γ3 of G satisfies the conditions of Lemma 1.

Claim 1. Embedding Γ3 satisfies Condition (i) of Lemma 1.

Proof: Assume, for a contradiction, that Condition (i) of Lemma 1 is not
satisfied by Γ3. Consider any node µ ∈ T such that H(µ) is not connected in
Γ3.

If pert(τ) or G(τ) is not µ-touched, then the connectivity of H(µ) in Γ3

descends from the connectivity of H(µ) in Γ2 or in Γ1, respectively, a contra-
diction.

If Γ1(pert(τ)) is µ-infeasible, then Γ1 is not a 〈0, 0,∞〉-drawing, a contradic-
tion. Analogously, if Γ2(G(τ)) is µ-infeasible, then Γ2 is not a 〈0, 0,∞〉-drawing,
a contradiction.

If Γ1(pert(τ)) is µ-kernelized, then, since H(µ) is connected in Γ1, it follows
that G(τ) is not µ-touched, a case that has been already addressed. Analogous
considerations apply if Γ2(G(τ)) is µ-kernelized.

If Γ1(pert(τ)) is µ-traversable, then by Lemma 3 we have that Γ2(pert(τ)) is
either µ-infeasible or µ-traversable. In the former case, we have that Γ2 is not a
〈0, 0,∞〉-drawing, a contradiction. In the latter case, if H(µ) is not connected in
Γ3, then Γ2(G(τ)) is µ-kernelized or µ-infeasible, hence H(µ) is not connected in
Γ2, a contradiction. Analogous considerations apply if Γ2(G(τ)) is µ-traversable.
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If Γ1(pert(τ)) is µ-bisided, then Γ1(G(τ)) is µ-traversable. Then, by Lemma 3
we have that either Γ2(G(τ)) is either µ-infeasible or µ-traversable. In both
cases, we have already shown how to derive a contradiction. Analogous consid-
erations apply if Γ2(G(τ)) is µ-bisided.

Hence, the only case that remains to be considered is the one in which both
Γ1(pert(τ)) and Γ2(G(τ)) are µ-sided. Observe that Case 1 for the determina-
tion of the flip of Γ1(pert(τ)) applies, hence Γ1(pert(τ)) is flipped in such a way
that the connected component of H(µ) induced by the vertices in Γ1(pert(τ))
and the connected component of H(µ) induced by the vertices in Γ2(G(τ)) both
contain vertices incident to either f ′(τ) or f ′′(τ), hence they are connected in
Γ3. It follows that H(µ) is connected in Γ3, a contradiction. ¤

Claim 2. Embedding Γ3 satisfies Condition (ii) of Lemma 1.

Proof: Assume for a contradiction that Condition (ii) of Lemma 1 is not
satisfied by Γ3. Then, for some cluster µ ∈ T , we have that Γ3 contains a cycle
C whose vertices belong to µ and whose interior contains in Γ3 a vertex not
belonging to µ.

Suppose first that all the edges of C belong to G(τ). Since the embedding
Γ3(G(τ)) of G(τ) in Γ3 coincides with the embedding Γ2(G(τ)) of G(τ) in Γ2,
it follows that C contains a vertex not belonging to µ in its interior in Γ2. This
contradicts Lemma 1.

Suppose next that all the edges of C belong to pert(τ). Since the embedding
Γ3(pert(τ)) of pert(τ) in Γ3 coincides with the embedding Γ1(pert(τ)) of pert(τ)
in Γ1, up to a flip, it follows that C contains a vertex not belonging to µ in its
interior in Γ1. This contradicts Lemma 1.

We can hence assume that C contains both edges of pert(τ) and edges of
G(τ). That is, C is composed of a path q(τ, µ) in pert(τ) connecting the poles
of τ and of a path q(τ , µ) in G(τ)− eτ connecting the poles of τ . Thus, each of
Γ1(pert(τ)) and Γ2(G(τ)) is either µ-full, or µ-central-spined, or µ-side-spined
and not µ-full.

If Γ1(pert(τ)) is µ-central-spined, then there exist two vertices x and y that
belong to pert(τ), that do not belong to µ, and that lie on different sides of C
in Γ1. This contradicts Lemma 1. Analogously, if Γ2(G(τ)) is µ-central-spined,
then there exist two vertices x and y that belong to G(τ), that do not belong
to µ, and that lie on different sides of C in Γ2. This contradicts Lemma 1.

If G(τ) is µ-full and pert(τ) is µ-full, then C does not contain any vertex not
belonging to µ in its interior, a contradiction.

If pert(τ) is µ-full and Γ2(G(τ)) is µ-side-spined and not µ-full, then any
vertex not belonging to µ belongs to G(τ). Since the embedding Γ3(G(τ)) of
G(τ) in Γ3 coincides with the embedding Γ2(G(τ)) of G(τ) in Γ2, it follows that
C contains a vertex not belonging to µ in its interior in Γ2. This contradicts
Lemma 1.

If Γ1(pert(τ)) and Γ2(G(τ)) are both µ-side-spined and not µ-full, or if G(τ)
is µ-full, Γ1(pert(τ)) is µ-side-spined and not µ-full, and both the poles of τ
belong to the outer face of Γ2, then Case 2 or Case 3 for the determination of
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the flip of Γ1(pert(τ)) applies, respectively, hence Γ1(pert(τ)) is flipped in such
a way that p(Γ1, τ, µ) and p(Γ2, τ , µ) are both incident to either f ′(τ) or f ′′(τ) in
Γ3. Since Γ1 is a 〈0, 0,∞〉-drawing of C(G,T ), by Lemma 1 the cycle composed
of paths p(Γ1, τ, µ) and q(τ, µ) does not contain any vertex not belonging to µ
in its interior. Hence, C contains a vertex not belonging to µ in its interior if
and only if the cycle C′ composed of q(τ , µ) and p(Γ1, τ, µ) contains a vertex
not belonging to µ in its interior. Also, since p(Γ1, τ, µ) and p(Γ2, τ , µ) both
delimit a face of Γ3, we have that C′ contains a vertex not belonging to µ in its
interior if and only if the cycle C′′ composed of q(τ , µ) and p(Γ2, τ , µ) contains
a vertex not belonging to µ in its interior in Γ3. Observe that C′′ is a cycle in
G(τ). Hence, if C′′ contains a vertex not belonging to µ in its interior in Γ3,
then it contains a vertex not belonging to µ in its interior in Γ2, given that the
embedding Γ3(G(τ)) of G(τ) in Γ3 coincides with the embedding Γ2(G(τ)) of
G(τ) in Γ2. This contradicts Lemma 1.

Finally, if G(τ) is µ-full, pert(τ) is not µ-full, and at least one of the poles
of τ does not belong to the outer face of Γ2, then there exists a cycle C′ in
G(τ) that contains all the vertices of pert(τ), except possibly for its poles, in
its interior. All the vertices of C′ belong to µ; further, at least one vertex of
pert(τ) does not belong to µ. This contradicts Lemma 1. ¤

In order to conclude the proof of Lemma 4, it remains to prove that no two
clusters µ 6= ν ∈ T exist that determine different flips for Γ1(pert(τ)).

Claim 3. No two clusters µ 6= ν ∈ T exist that determine different flips for
Γ1(pert(τ)) when constructing Γ3.

Proof: Assume, for a contradiction, that two distinct clusters µ and ν deter-
mine different flips for Γ1(pert(τ)).

� Suppose that Case 2 or Case 3 applies to µ and that Case 2 or 3 applies
to ν to determine a different flip for Γ1(pert(τ)). Since the poles of τ are
both contained in µ and in ν, it follows that µ is an ancestor of ν or ν
is an ancestor of µ. Assume the former, the discussion for the latter case
being analogous.

– Assume first that p(Γ1, τ, µ) and p(Γ1, τ, ν) are distinct. Since µ is
an ancestor of ν, either all vertices of pert(τ) belong to µ, hence τ is
µ-full, thus contradicting the fact that Case 2 or Case 3 applies to µ,
or the cycle composed of p(Γ1, τ, µ) and p(Γ1, τ, ν) entirely belongs
to µ and contains in its interior a vertex not belonging to µ. This
contradicts Lemma 1.

– Assume next that p(Γ1, τ, µ) and p(Γ1, τ, ν) are the same path.

* If Case 2 applies to µ, then Case 2 applies to ν as well. In
fact, G(τ) is not ν-full, given that µ is an ancestor of ν and
given that G(τ) is not µ-full. If p(Γ2, τ , µ) and p(Γ2, τ , ν) are
distinct, then either all vertices of pert(τ) belong to µ, hence τ
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is µ-full, thus contradicting the fact that Case 2 applies to µ, or
the cycle composed of p(Γ2, τ , µ) and p(Γ2, τ , ν) entirely belongs
to µ and contains in its interior a vertex not belonging to µ.
This contradicts Lemma 1. Hence, p(Γ2, τ , µ) and p(Γ2, τ , ν)
are the same path. However, since p(Γ1, τ, µ) = p(Γ1, τ, ν) and
p(Γ2, τ , µ) = p(Γ2, τ , ν), clusters µ and ν determine the same flip
for Γ1(pert(τ)), a contradiction to the assumptions.

* If Case 3 applies to µ and Case 2 applies to ν, then we argue as
follows. If p(Γ2, τ , µ) and p(Γ2, τ , ν) are distinct, then p(Γ2, τ , ν)
delimits the outer face of Γ2, given that Case 3 applies to µ and
given that p(Γ2, τ , µ) does not delimit the outer face of Γ2. Thus,
the cycle C composed of p(Γ2, τ , ν) and of any path in pert(τ)
connecting the poles of τ and entirely belonging to ν (such a path
exists given that Γ1(pert(τ)) is ν-spined) contains in its interior
in Γ2 all the vertices of G(τ) not in p(Γ2, τ , ν). Since G(τ) is not
ν-full, C entirely belongs to ν and contains in its interior a vertex
not belonging to ν. This contradicts Lemma 1. If p(Γ2, τ , µ) and
p(Γ2, τ , ν) are the same path, then, since p(Γ1, τ, µ) = p(Γ1, τ, ν)
and p(Γ2, τ , µ) = p(Γ2, τ , ν), clusters µ and ν determine the same
flip for Γ1(pert(τ)), a contradiction to the assumptions.

* If Case 3 applies to both µ and ν, then p(Γ2, τ , µ) = p(Γ2, τ , ν) is
the path that connects the poles of τ , belongs to G(τ), and does
not delimit the outer face of Γ2. Since p(Γ1, τ, µ) = p(Γ1, τ, ν)
and p(Γ2, τ , µ) = p(Γ2, τ , ν), clusters µ and ν determine the same
flip for Γ1(pert(τ)), a contradiction to the assumptions.

� Suppose next that Case 1 applies both to µ and ν to determine a different
flip for Γ1(pert(τ)).

By assumption, Γ1(pert(τ)) and Γ2(G(τ)) are µ-sided. It follows that
Γ1(G(τ)) and Γ2(pert(τ)) are µ-sided, as well. In fact, they are not µ-
traversable by Lemma 3. Also, if they are µ-kernelized, or µ-infeasible,
or µ-bisided, then H(µ) would not be connected in Γ1 or in Γ2. This
contradicts Lemma 1. Analogously, Γ1(pert(τ)), Γ2(G(τ)), Γ1(G(τ)), and
Γ2(pert(τ)) are ν-sided.

Assume, w.l.o.g. up to renaming f ′(τ) with f ′′(τ) in Γi, that p(Γi, τ , ν) is
incident to f ′′(τ), for i = 1, 2.

Our strategy is to show that either p(Γ1, τ, µ) = p(Γ1, τ, ν) and p(Γ2, τ, µ) =
p(Γ2, τ, ν) (Condition A) or that p(Γ1, τ, µ) 6= p(Γ1, τ, ν) and p(Γ2, τ, µ) 6=
p(Γ2, τ, ν) (Condition B).

We first show that, if Condition A or Condition B holds, then the assump-
tion that ν and µ determine different flips for Γ1(pert(τ)) is contradicted.
Suppose first that Condition A holds. Then, p(Γ1, τ , µ) = p(Γ1, τ , ν) and
p(Γ2, τ , µ) = p(Γ2, τ , ν) and such paths are all incident to f ′′(τ), as oth-
erwise H(µ) or H(ν) would not be connected in Γ1 or in Γ2, which is a
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contradiction by Lemma 1. Hence, the flip determined for Γ1(pert(τ))
by µ and ν is the same, a contradiction. Suppose next that Condi-
tion B holds. Then, p(Γ1, τ , µ) 6= p(Γ1, τ , ν) and p(Γ2, τ , µ) 6= p(Γ2, τ , ν),
where p(Γ1, τ , µ) and p(Γ2, τ , µ) are incident to f ′(τ), while p(Γ1, τ , ν) and
p(Γ2, τ , ν) are incident to f ′′(τ), as otherwise H(µ) or H(ν) would not be
connected in Γ1 or in Γ2, which is a contradiction by Lemma 1. Hence, the
flip determined for Γ1(pert(τ)) by µ and ν is the same, a contradiction.

We now prove that either Condition A or Condition B holds. Namely,
we prove by contradiction that p(Γ1, τ, µ) = p(Γ1, τ, ν) and p(Γ2, τ, µ) 6=
p(Γ2, τ, ν) do not hold simultaneously. The proof that p(Γ1, τ, µ) 6= p(Γ1, τ, ν)
and p(Γ2, τ, µ) = p(Γ2, τ, ν) do not hold simultaneously is symmetri-
cal. Since p(Γi, τ , ν) is incident to f ′′(τ), for i = 1, 2, we have that
p(Γ1, τ, µ) = p(Γ1, τ, ν) is incident to f ′′(τ) in Γ1, as otherwise H(ν) would
not be connected in Γ1, that p(Γ1, τ , µ) is incident to f ′′(τ) in Γ1, as oth-
erwise H(µ) would not be connected in Γ1, that p(Γ2, τ, ν) is incident
to f ′′(τ) in Γ2, as otherwise H(ν) would not be connected in Γ2, that
p(Γ2, τ, µ) is incident to f ′(τ) in Γ1, since p(Γ2, τ, µ) 6= p(Γ2, τ, ν), and
that p(Γ2, τ , µ) is incident to f ′(τ) in Γ2, as otherwise H(µ) would not be
connected in Γ2.

We distinguish two cases.

Suppose that τ is an R-node. Denote by Vτ (µ) and by Vτ (ν) the set of
vertices in p(Γ1, τ, µ) = p(Γ1, τ, ν) belonging to µ and ν, respectively (see
Fig. 12(a)). Since p(Γ2, τ, µ) 6= p(Γ2, τ, ν) and since Γ2(pert(τ)) is µ-sided
and ν-sided, it follows that none of the vertices in Vτ (µ) is incident to
f ′′(τ) in Γ2 and none of the vertices in Vτ (ν) is incident to f ′(τ) in Γ2.
Since τ is an R-node, all the vertices in Vτ (µ) are incident to internal faces
of Γ2(pert(τ)) or all the vertices in Vτ (ν) are incident to internal faces of
Γ2(pert(τ)). Suppose that all the vertices in Vτ (µ) are incident to internal
faces of Γ2(pert(τ)), the other case being analogous (see Fig. 12(b)). Then,
in order for H(µ) to be connected and for Γ2(pert(τ)) to be µ-sided, a child
τi of τ in T that is incident to f ′(τ) is µ-traversable in Γ2. By Lemma 3,
we have that τi is either µ-infeasible or µ-traversable in Γ1. In the former
case, a contradiction to the fact that Γ1 is a 〈0, 0,∞〉-drawing of C(G,T ) is
obtained. In the latter case, since τi is incident to f ′(τ) in Γ1, Γ1(pert(τ))
is not µ-sided, a contradiction.

Next, suppose that τ is a P-node. Consider the sequence τ1, τ2, . . . , τp

of children of τ that have vertices belonging to ν as they appear in
Γ1(pert(τ)), where τ1 is incident to f ′′(τ). Since H(ν) is connected in
Γ1, it follows that τi is ν-traversable in Γ1, for i = 1, . . . , p − 1, and that
τp is either ν-traversable or ν-sided. Analogous considerations hold for
the sequence τ1, τ2, . . . , τq of children of τ that have vertices belonging to
µ. We distinguish two cases: Either p 6= q (see Fig. 13(a)) or p = q (see
Fig. 13(b)).

In the first case suppose, without loss of generality, that p > q. Then, for
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(a) (b)

Figure 12: Illustration for the proof that p(Γ1, τ, µ) = p(Γ1, τ, ν) and p(Γ2, τ, µ) 6= p(Γ2, τ, ν)
do not simultaneously hold if τ is an R-node. (a) Drawing Γ1 with p(Γ1, τ, µ) = p(Γ1, τ, ν).
(b) Drawing Γ2 with p(Γ2, τ, µ) 6= p(Γ2, τ, ν).

(a) (b)

Figure 13: Illustration for the proof that p(Γ1, τ, µ) = p(Γ1, τ, ν) and p(Γ2, τ, µ) 6= p(Γ2, τ, ν)
do not simultaneously hold if τ is a P-node. (a) The case p > q, with p = 4 and q = 3. (b)
The case p = q = 4.

every 1 ≤ i ≤ q, τi is ν-traversable in Γ1. By Lemma 3, the embedding
of pert(τi) in Γ2 is either ν-infeasible or ν-traversable. In the former case,
a contradiction to the fact that Γ2 is a 〈0, 0,∞〉-drawing of C(G,T ) is
obtained. In the latter case, the child of τ that is incident to f ′(τ) in Γ2

is ν-traversable, thus contradicting the assumption that Γ2(pert(τ)) is ν-
sided. Suppose next that p = q. If τp is not incident to f ′(τ) in Γ2, then the
child of τ that is incident to f ′(τ) in Γ2 is one of τ1, τ2, . . . , τp−1, hence,
by Lemma 3, it is either ν-infeasible in Γ2, thus contradicting the fact
that Γ2 is a 〈0, 0,∞〉-drawing of C(G,T ), or it is ν-traversable in Γ2, thus
contradicting the assumption that Γ2(pert(τ)) is ν-sided. Analogously, if
τp is not incident to f ′′(τ) in Γ2, then the child of τ that is incident to f ′′(τ)
is one of τ1, τ2, . . . , τq−1, hence, by Lemma 3, it is either µ-infeasible in Γ2,
thus contradicting the fact that Γ2 is a 〈0, 0,∞〉-drawing of C(G,T ), or it
is µ-traversable in Γ2, thus contradicting the assumption that Γ2(pert(τ))
is µ-sided. We have a contradiction as τp can not be at the same time
incident to both f ′(τ) and f ′′(τ).
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� Finally, suppose that Case 2 or Case 3 applies to µ and that Case 1 applies
to ν to determine a different flip for Γ1(pert(τ)).

We show how to restrict to the case in which µ is an ancestor of ν. First,
if ν is an ancestor of µ, then p(Γ1, τ, µ) entirely belongs to ν, hence τ is
ν-traversable, a contradiction to the fact that Case 1 applies to ν. Second,
since Case 2 or Case 3 applies to µ, it follows that p(Γ1, τ, µ) and p(Γ2, τ , µ)
are well-defined. Also, since Case 1 applies to ν, it follows that p(Γ1, τ, ν)
and p(Γ2, τ , ν) are also well-defined. Now suppose, for a contradiction,
that µ is not an ancestor of ν. Since ν is not an ancestor of µ, it follows
that µ and ν do not share vertices. Hence, p(Γ1, τ, µ) 6= p(Γ1, τ, ν) and
p(Γ2, τ , µ) 6= p(Γ2, τ , ν). However, this implies that µ and ν determine
the same flip for Γ1(pert(τ)), a contradiction to the assumptions. We can
hence assume that µ is an ancestor of ν.

Since Case 1 applies to ν, we have that Γ1(pert(τ)) is ν-sided. It follows
that Γ2(pert(τ)) is ν-sided, as well. Namely, it is not ν-traversable by
Lemma 3. Also, if it is ν-kernelized, or ν-infeasible, or ν-bisided, then H(ν)
would not be connected in Γ2, given that Γ2(G(τ)) is ν-sided and hence
not ν-traversable. This contradicts Lemma 1. An analogous argument
proves that Γ1(G(τ)) is ν-sided.

– Suppose that Case 2 applies to µ. Then, Γ1(pert(τ)) and Γ2(G(τ))
are both µ-side-spined and not µ-full. If Γ1(G(τ)) is µ-central-spined,
then Γ1 contains a cycle whose vertices belong to µ containing in
its interior a vertex in G(τ) not belonging to µ. This contradicts
Lemma 1. It follows that Γ1(G(τ)) is µ-side-spined and not µ-full.
An analogous argument proves that Γ2(pert(τ)) is µ-side-spined and
not µ-full.

Assume, without loss of generality up to renaming f ′(τ) with f ′′(τ)
that p(Γi, τ , µ) is incident to f ′′(τ) in Γi, for i = 1, 2. Then, for
i = 1, 2, path p(Γi, τ, µ) is incident to f ′′(τ) in Γi, as otherwise
p(Γi, τ , µ) together with p(Γi, τ, µ) forms a cycle that entirely belongs
to µ and that contains in its interior a vertex not belonging to µ,
which by Lemma 1 contradicts the assumption that Γi is a 〈0, 0,∞〉-
drawing of C(G,T ).

Our strategy is to show that either p(Γ1, τ, µ) = p(Γ1, τ, ν) and
p(Γ2, τ, µ) = p(Γ2, τ, ν) (Condition A) or that p(Γ1, τ, µ) 6= p(Γ1, τ, ν)
and p(Γ2, τ, µ) 6= p(Γ2, τ, ν) (Condition B).

We first show that, if Condition A or Condition B holds, then the
assumption that ν and µ determine different flips for Γ1(pert(τ))
is contradicted. Suppose first that Condition A holds. Then, for
i = 1, 2, we have that p(Γi, τ , µ) = p(Γi, τ , ν), as otherwise H(ν)
would not be connected in Γi, which is a contradiction by Lemma 1.
Hence, the flip determined for Γ1(pert(τ)) by µ and ν is the same,
a contradiction. Suppose next that Condition B holds. Then, for
i = 1, 2, we have that p(Γi, τ , µ) 6= p(Γi, τ , ν), as otherwise H(ν)
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would not be connected in Γi, which is a contradiction by Lemma 1.
Hence, the flip determined for Γ1(pert(τ)) by µ and ν is the same, a
contradiction.

We now prove that either Condition A or Condition B holds. Namely,
we prove by contradiction that p(Γ1, τ, µ) = p(Γ1, τ, ν) and p(Γ2, τ, µ) 6=
p(Γ2, τ, ν) do not simultaneously hold. The proof that p(Γ1, τ, µ) 6=
p(Γ1, τ, ν) and p(Γ2, τ, µ) = p(Γ2, τ, ν) do not simultaneously hold is
symmetrical. Hence, p(Γ1, τ, µ) = p(Γ1, τ, ν) is incident to f ′′(τ) in
Γ1, p(Γ1, τ , ν) is incident to f ′′(τ) in Γ1, as otherwise H(ν) would
not be connected in Γ1, p(Γ2, τ, ν) 6= p(Γ2, τ, µ) is incident to f ′(τ)
in Γ2, and p(Γ2, τ , ν) is incident to f ′(τ) in Γ2, as otherwise H(ν)
would not be connected in Γ2.

We distinguish two cases.

Suppose that τ is an R-node. Denote by Vτ (ν) the set of vertices in
p(Γ1, τ, µ) = p(Γ1, τ, ν) belonging to ν. Since p(Γ2, τ, µ) 6= p(Γ2, τ, ν)
and since Γ2(pert(τ)) is ν-sided, it follows that none of the vertices
in Vτ (ν) is incident to f ′′(τ) in Γ2. Hence, all the vertices in Vτ (ν)
are incident to internal faces of Γ2(pert(τ)). Then, in order for H(ν)
to be connected and for Γ2(pert(τ)) to be ν-sided, a child τi of τ
in T that is incident to f ′(τ) in Γ2 is ν-traversable. By Lemma 3,
we have that τi is either µ-infeasible or µ-traversable in Γ1. In the
former case, a contradiction to the fact that Γ1 is a 〈0, 0,∞〉-drawing
of C(G,T ) is obtained. In the latter case, since τ is an R-node, τi is
incident to f ′(τ) in Γ1. This contradicts the fact that Γ1(pert(τ)) is
ν-sided.

Next, suppose that τ is a P-node. Let k be the number of children
of τ in T . Consider the sequence τ1, τ2, . . . , τp of children of τ that
have vertices belonging to ν as they appear in Γ1(pert(τ)), where τ1

is incident to f ′′(τ). Since H(ν) is connected in Γ1, it follows that
τi is ν-traversable in Γ1, for i = 1, . . . , p − 1, and that τp is either
ν-traversable or ν-sided. Also, consider the sequence τ1, τ2, . . . , τq of
children of τ that are µ-spined, as they appear in Γ1(pert(τ)), where
τ1 is incident to f ′′(τ). Since Γ1(pert(τ)) is µ-side-spined, it follows
that τi is µ-full, for i = 1, . . . , q − 1, and that τq is either µ-full or
µ-side-spined. Observe that p, q ≥ 1, since Γ1(pert(τ)) is ν-sided and
µ-side-spined. Also observe that q < k or τq is not µ-full, as otherwise
τ would be µ-full, which contradicts the assumptions.

We distinguish some cases.

* Suppose first that p ≤ q < k. Since Γ2(pert(τ)) is µ-side-
spined and p(Γ2, τ, µ) is incident to f ′′(τ) in Γ2, it follows that
τ1, τ2, . . . , τq are the first q children of τ as they appear in Γ2(pert(τ)),
possibly in a different relative order with respect to their order
in Γ1(pert(τ)), where one of τ1, τ2, . . . , τq is incident to f ′′(τ).
Hence, the child of τ incident to f ′(τ) does not contain any vertex
belonging to ν, which contradicts either p(Γ2, τ, µ) 6= p(Γ2, τ, ν)
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or the fact that Γ2(pert(τ)) is ν-sided.

* Suppose next that p = q = k. Then, τq is not µ-full. Since
Γ2(pert(τ)) is µ-side-spined and p(Γ2, τ, µ) is incident to f ′′(τ)
in Γ2, it follows that τq is the child of τ incident to f ′(τ) in
Γ2. Thus, by Lemma 3, the child of τ incident to f ′′(τ) in Γ2

is either ν-infeasible, thus contradicting the fact that Γ2 is a
〈0, 0,∞〉-drawing of C(G,T ), or it is ν-traversable, which contra-
dicts either p(Γ2, τ, µ) 6= p(Γ2, τ, ν) or the fact that Γ2(pert(τ))
is ν-sided.

* Suppose next that p < q = k. Then, τq is not µ-full. Since
Γ2(pert(τ)) is µ-side-spined and p(Γ2, τ, µ) is incident to f ′′(τ)
in Γ2, it follows that τq is the child of τ incident to f ′(τ) in Γ2.
Hence, no vertex in ν is incident to f ′(τ) in Γ2, which contradicts
either p(Γ2, τ, µ) 6= p(Γ2, τ, ν) or the fact that Γ2(pert(τ)) is ν-
sided.

* Suppose finally that p > q. Then, all of τ1, τ2, . . . , τq are ν-
traversable. Since τ1, τ2, . . . , τq are the first q children of τ as
they appear in Γ2(pert(τ)), possibly in a different relative order,
where one of τ1, τ2, . . . , τq is incident to f ′′(τ), by Lemma 3 and
since no child of τ is ν-infeasible in Γ2, as otherwise Γ2 would
not be a 〈0, 0,∞〉-drawing of C(G,T ), it follows that Γ2(pert(τ))
has a vertex belonging to ν and incident to f ′′(τ), thus contra-
dicting the assumption that p(Γ1, τ, ν) is incident to f ′′(τ) or the
assumption that Γ1(pert(τ)) is ν-sided.

– Suppose that Case 3 applies to µ. Then, G(τ) is µ-full. By assump-
tion, Γ1(pert(τ)) is µ-side-spined and not µ-full. If at least one of
the poles of τ is not incident to the outer face of Γ1, then Γ1 contains
a cycle in G(τ) whose vertices belong to µ containing in its interior
a vertex in pert(τ) not belonging to µ. This contradicts Lemma 1.
Assume then that both poles of τ are incident to the outer face of Γ1.
If p(Γ1, τ, µ) delimits the outer face of Γ1, then p(Γ1, τ, µ) together
with p(Γ1, τ , µ) forms a cycle whose vertices belong to µ containing
in its interior a vertex in pert(τ) not belonging to µ, again contra-
dicting the assumption that Γ1 is a 〈0, 0,∞〉-drawing of C(G,T ), by
Lemma 1. Also, recall that, by assumption, both the poles of τ are
incident to the outer face of Γ2.

Assume, without loss of generality up to renaming f ′(τ) with f ′′(τ)
with that p(Γi, τ , µ) is incident to f ′′(τ) in Γi, for i = 1, 2. Hence,
f ′(τ) is the outer face of Γi, for i = 1, 2, and p(Γi, τ , µ) delimits f ′′(τ)
in Γi, for i = 1, 2, by definition.

The reminder of the proof is exactly the same as when Case 2 applies
to µ.

This concludes the proof of the claim. ¤
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By Claim 3, no two clusters µ 6= ν ∈ T exist that determine different flips for
Γ1(pert(τ)) when constructing Γ3. Then, by Claims 1 and 2, the constructed
embedding Γ3 of C(G,T ) satisfies Conditions (i) and (ii) of Lemma 1, for each
cluster µ, hence Γ3 is a 〈0, 0,∞〉-drawing. This concludes the proof of Lemma 4.

We now determine conditions for the nodes of the SPQR-tree T of G in
order for C(G,T ) to admit a 〈0, 0,∞〉-drawing.

We say that an embedding Γ(sk(τ)) of sk(τ) in which the edge e representing
the parent of τ is incident to the outer face is extensible if the following condition
holds: If C(G,T ) admits a 〈0, 0,∞〉-drawing in which eρ is incident to the outer
face, then it admits a 〈0, 0,∞〉-drawing in which eρ is incident to the outer face
and in which the embedding of sk(τ) is Γ(sk(τ)).

For an embedding Γ(sk(τ)) of sk(τ) and a cluster µ in T , we define an
auxiliary graph G′(τ, µ) as follows. Graph G′(τ, µ) has one vertex vf for each
face f of Γ(sk(τ)) containing a µ-traversable virtual edge on its boundary; two
vertices of G′(τ, µ) are connected by an edge if they share a µ-traversable virtual
edge. We are now ready to prove the following main lemma.

Lemma 5. Let C(G,T ) be a clustered graph, with G biconnected, that admits a
〈0, 0,∞〉-drawing in which the edge eρ representing the root ρ of the SPQR-tree
T of G is incident to the outer face. Then, an embedding Γ(sk(τ)) in which the
edge e representing the parent of τ is incident to the outer face is extensible if
and only if the following properties hold. For each cluster µ ∈ T :

(A) There exists no cycle in Γ(sk(τ)) that is composed of µ-spined virtual edges
e1, . . . , eh containing in its interior a virtual edge that is not µ-full;

(B) G′(τ, µ) is connected; and

(C) if G′(τ, µ) contains at least one vertex, then each virtual edge of sk(τ)
which is µ-touched and not µ-traversable shares a face with a µ-traversable
virtual edge in Γ(sk(τ)). Otherwise (that is, if G′(τ, µ) contains no ver-
tex), all the µ-touched virtual edges are incident to the same face of
Γ(sk(τ)).

In the following we prove Lemma 5. We first prove the necessity. Suppose
that an embedding Γ(sk(τ)) of sk(τ) is extensible. That is, C(G,T ) admits
a 〈0, 0,∞〉-drawing in which eρ is incident to the outer face and in which the
embedding of sk(τ) is Γ(sk(τ)). We prove that Γ(sk(τ)) satisfies Properties
(A), (B), and (C) by means of suitable claims.

Claim 4. Γ(sk(τ)) satisfies Property (A).

Proof: No cycle (e1, . . . , eh) in Γ(sk(τ)) such that virtual edges e1, . . . , eh are
µ-spined contains in its interior a virtual edge that is not µ-full, as otherwise, in
any drawing Γ of C(G,T ) in which eρ is incident to the outer face and in which
the embedding of sk(τ) is Γ(sk(τ)), there would exist a cycle whose vertices all
belong to µ enclosing a vertex not belonging to µ, thus implying that R(µ) is
not simple or that Γ contains an edge-region crossing. ¤
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Claim 5. Γ(sk(τ)) satisfies Property (B).

Proof: We have that G′(τ, µ) is connected, as otherwise, in any drawing Γ of
C(G,T ) in which eρ is incident to the outer face and in which the embedding of
sk(τ) is Γ(sk(τ)), there would exist a cycle C such that none of the vertices of
C belongs to µ and such that C separates vertices belonging to µ, thus implying
that R(µ) is not simple or that Γ contains an edge-region crossing. ¤

Claim 6. Γ(sk(τ)) satisfies Property (C).

Proof: We distinguish the case in which G′(τ, µ) contains at least one vertex
and the case in which G′(τ, µ) contains no vertex.

� Suppose that G′(τ, µ) contains at least one vertex. Refer to Fig. 15(a).
Then, we prove that each virtual edge of sk(τ) which is µ-touched and not
µ-traversable shares a face with a µ-traversable virtual edge in Γ(sk(τ)).

Suppose, for a contradiction, that there exists a virtual edge e of sk(τ)
that is µ-touched, that is not µ-traversable, and that does not share any
face with a µ-traversable virtual edge in Γ(sk(τ)). Consider the two faces
f1

e and f2
e of Γ(sk(τ)) incident to e. Denote by Cs the cycle of virtual

edges composed of the edges delimiting f1
e and f2

e , except for e.

By assumption, for each edge ei of Cs, the node τi of T corresponding to
ei is such that any embedding of pert(τi) is not µ-traversable. Also, in any
〈0, 0,∞〉-drawing of C(G,T ), the embedding of pert(τi) is not µ-infeasible.
Hence, by Lemma 2, there exists a path in pert(τi) that connects the poles
of τi, that is different from the edge connecting the poles of τi, and none
of whose vertices belongs to µ. Concatenating all such paths for all the
nodes of T corresponding to the edges of Cs results in a cycle C such that
none of the vertices of C belongs to µ and such that C passes through all
the vertices of Cs. Observe that C contains vertices of µ on both sides,
namely vertices of µ in pert(e) and vertices of µ in the pertinent graph
of a virtual edge e′ of sk(τ) which is µ-traversable; such an edge e′ exists
since G′(τ, µ) contains at least one vertex. Hence, in any drawing Γ of
C(G,T ) in which the embedding of sk(τ) is Γ(sk(τ)), there exists a cycle
C such that none of the vertices of C belongs to µ and such that C separates
vertices belonging to µ, thus implying that R(µ) is not simple or that Γ
contains an edge-region crossing, a contradiction.

� Suppose that G′(τ, µ) contains no vertex. Refer to Fig. 15(b). We prove
that all the µ-touched virtual edges are incident to the same face of
Γ(sk(τ)).

Suppose, for a contradiction, that there exists no face of Γ(sk(τ)) such
that all the µ-touched virtual edges of Γ(sk(τ)) are incident to such a
face. Consider the two faces f1

e and f2
e of Γ(sk(τ)) incident to any µ-

touched virtual edge e. Denote by C1
s and C2

s the cycles delimiting f1
e and

f2
e , respectively.
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By assumption, for each edge ei of C1
s (of C2

s ), the node τi of T corre-
sponding to ei is such that any embedding of pert(τi) is not µ-traversable.
Also, in any 〈0, 0,∞〉-drawing of C(G,T ), the embedding of pert(τi) is
not µ-infeasible. Hence, by Lemma 2, there exists a path in pert(τi) that
connects the poles of τi, that is different from the edge connecting the
poles of τi, and none of whose vertices belongs to µ. Concatenating all
such paths for all the nodes of T corresponding to the edges of C1

s (resp.
of C2

s ) results in a cycle C1 (resp. C2) such that none of the vertices of
C1 (resp. of C2) belongs to µ and such that C1 (resp. C2) passes through
all the vertices of C1

s (resp. C2
s ). Then, C1 or C2 contains vertices of µ

on both sides, namely vertices of µ in pert(e) and vertices of µ in the
pertinent graph of a virtual edge e′ of sk(τ) which is not incident to f1

e

or to f2
e , respectively; such an edge e′ exists since not all the µ-touched

virtual edges are incident to the same face of Γ(sk(τ)). This implies that
R(µ) is not simple or that Γ contains an edge-region crossing.

This concludes the proof of the claim. ¤

(a) (b)

Figure 14: Proof that Property (C) is satisfied when C(G, T ) admits a 〈0, 0,∞〉-drawing in
which eρ is incident to the outer face and in which the embedding of sk(τ) is Γ(sk(τ)). (a)
G′(τ, µ) contains at least one vertex and (b) G′(τ, µ) contains no vertex. In both figures, cycle
C is represented by a dashed curve.

We now prove the sufficiency. Namely, suppose that Properties (A), (B),
and (C) hold for an embedding Γ(sk(τ)) of sk(τ). We prove that Γ(sk(τ)) is
extensible, that is, we show that a 〈0, 0,∞〉-drawing of C(G,T ) exists in which
eρ is incident to the outer face and in which the embedding of sk(τ) is Γ(sk(τ)).

Let Γ′ be any 〈0, 0,∞〉-drawing of C(G,T ) in which eρ is incident to the
outer face (clustered graph C(G,T ) admits such a drawing by hypothesis). Let
Γ′(sk(τ)) be the embedding of sk(τ) in Γ′. If Γ′(sk(τ)) coincides with Γ(sk(τ)),
then there is nothing to prove. Otherwise, assume that the two embeddings of
sk(τ) do not coincide. Observe that this implies that τ is not an S-node, as the
skeleton of an S-node is a cycle, which has a unique embedding.

Next, suppose that τ is an R-node. Then, since sk(τ) has exactly two
embeddings, which are one the flip of the other, Γ(sk(τ)) is the flip of Γ′(sk(τ)).
Consider the drawing Γ of C(G,T ) obtained by flipping Γ′ around the poles of
the root ρ of T , that is, by reverting the adjacency list of every vertex of C(G,T ).
Observe that Γ is a 〈0, 0,∞〉-drawing since Γ′ is. Also, eρ is incident to the outer
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face of Γ since it is incident to the outer face of Γ′. Moreover, the embedding of
sk(τ) in Γ is the flip of the embedding Γ′(sk(τ)) of sk(τ) in Γ′, hence it coincides
with Γ(sk(τ)). Thus a 〈0, 0,∞〉-drawing Γ of C(G,T ) in which eρ is incident to
the outer face and in which the embedding of sk(τ) is Γ(sk(τ)) exists.

It remains to consider the case in which τ is a P-node. We show how to
construct a 〈0, 0,∞〉-drawing ΓC in which eρ is incident to the outer face and
in which the embedding of sk(τ) is Γ(sk(τ)). For every neighbor τ ′ of τ in T
(including its parent), denote by Γ1(pert(τ ′)) the embedding of pert(τ ′) in Γ′.
Moreover, denote by Γ2(pert(τ ′)) the embedding of pert(τ ′) obtained by flipping
Γ1(pert(τ ′)) around the poles of τ ′. Drawing ΓC is such that, for every neighbor
τ ′ of τ in T , the embedding of pert(τ ′) is either Γ1(pert(τ ′)) or Γ2(pert(τ ′)).

The remainder of the proof is devoted to the P-node case and is structured
into three parts as follows.

In the first part, we describe how to obtain ΓC . In particular, we show how
to choose the embedding of pert(τ ′) to be either Γ1(pert(τ ′)) or Γ2(pert(τ ′))
based on the constraints imposed by the clusters containing vertices of pert(τ ′).

In the second part, we show that the algorithm we describe in the first part
univocally determines the embedding of pert(τ ′) to be either Γ1(pert(τ ′)) or
Γ2(pert(τ ′)).

In the third part, we show that the performed choices actually lead to a
〈0, 0,∞〉-drawing of C(G,T ) in which eρ is incident to the outer face and in
which the embedding of sk(τ) is Γ(sk(τ)).

First part. We show an algorithm to determine ΓC . We fix the embedding
of sk(τ) to be Γ(sk(τ)) with an outer face that is any of the two faces incident
to the virtual edge of sk(τ) representing the parent of τ in T . Later, we will
possibly modify the choice of the outer face. We now show how to choose the
embedding of pert(τ ′). This is done according to rules that aim at satisfying
Conditions (i) and (ii) of Lemma 1. Namely, for each cluster µ ∈ T apply one
of the following rules.

� Rules to satisfy Condition (i) of Lemma 1.

Consider any neighbor τ ′ of τ in T such that Γ1(pert(τ ′)) is µ-sided.
Also, consider the neighbors τ ′′ and τ ′′′ of τ in T following and preceding
τ ′ in the circular order of the neighbors of τ determined by Γ(sk(τ)),
respectively. Without loss of generality assume that if the embedding of
pert(τ ′) is Γ1(pert(τ ′)), then a vertex in pert(τ ′) and in µ is incident to the
face of Γ(sk(τ)) to which τ ′′ is incident; and if the embedding of pert(τ ′)
is Γ2(pert(τ ′)), then a vertex in pert(τ ′) and in µ is incident to the face
of Γ(sk(τ)) to which τ ′′′ is incident.

– Rule RI-1 If τ ′′ is µ-traversable and τ ′′′ is not (if τ ′′′ is µ-traversable
and τ ′′ is not), then choose the embedding of pert(τ ′) to be Γ1(pert(τ ′))
(resp. Γ2(pert(τ ′))), see Fig. 16(a).

– Rule RI-2 If none of τ ′′ and τ ′′′ is µ-traversable, if τ ′′ is µ-sided and
τ ′′′ is not (if τ ′′′ is µ-sided and τ ′′ is not), then choose the embedding
of pert(τ ′) to be Γ1(pert(τ ′)) (resp. Γ2(pert(τ ′))), see Fig. 16(b).
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(a) (b) (c)

Figure 15: Choosing the embedding of pert(τ ′) in order to satisfy Conditions (i) and (ii) of
Lemma 1 when τ is a P-node. (a) If τ ′′ is µ-traversable and τ ′′′ is not, then the embedding
of pert(τ ′) is Γ1(pert(τ ′)); (b) if none of τ ′′ and τ ′′′ is µ-traversable and if τ ′′ is µ-sided,
then the embedding of pert(τ ′) is Γ1(pert(τ ′)); (c) if τ ′′ is µ-spined, then the embedding of
pert(τ ′) is Γ1(pert(τ ′)).

� Rules to satisfy Condition (ii) of Lemma 1.

Consider any neighbor τ ′ of τ in T such that Γ1(pert(τ ′)) is µ-side-spined
and not µ-full. Also, consider the neighbors τ ′′ and τ ′′′ of τ in T following
and preceding τ ′ in the circular order of the neighbors of τ determined
by Γ(sk(τ)), respectively. Without loss of generality assume that if the
embedding of pert(τ ′) is Γ1(pert(τ ′)), then the path P (µ) delimiting the
outer face of Γ1(pert(τ ′)) and composed only of vertices in µ is incident
to the face of Γ(sk(τ)) to which τ ′′ is incident; and if the embedding of
pert(τ ′) is Γ2(pert(τ ′)), then P (µ) is incident to the face of Γ(sk(τ)) to
which τ ′′′ is incident.

– Rule RII-1 If τ ′′ is µ-spined and τ ′′′ is not (resp. if τ ′′′ is µ-spined
and τ ′′ is not), and the face shared by τ ′ and τ ′′ in Γ(sk(τ)) (τ ′

and τ ′′′ in Γ(sk(τ))) is different from the outer face of Γ(sk(τ)), then
choose the embedding of pert(τ ′) to be Γ1(pert(τ ′)) (resp. Γ2(pert(τ ′))),
see Fig. 16(c).

� Suppose that the embedding of pert(τ ′), for some neighbor τ ′ of τ , has not
been determined by rules RI-1, RI-2, and RII-1 over all clusters µ ∈ T .

– Rule R0 If τ ′ is the parent of τ in T , then set the embedding of
pert(τ ′) to be Γ1(pert(τ ′)) or Γ2(pert(τ ′)) so that eρ is incident to
the outer face. Otherwise, arbitrarily set the embedding of pert(τ ′)
to be Γ1(pert(τ ′)) or Γ2(pert(τ ′)).

Denote by Γ the drawing constructed by the described algorithm. In order
to complete the construction of ΓC , we (possibly) modify the outer face of Γ.
Namely, if eρ is incident to the outer face of Γ, then we let ΓC = Γ. Otherwise,
we choose as outer face of ΓC the face of Γ that is incident to eρ and that is
delimited by paths belonging to the pertinent graphs of different neighbors of
τ in T . Observe that one of such neighbors is the parent of τ in T . Also, the
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choice of the outer face of ΓC does not alter the embedding Γ(sk(τ)) of sk(τ).
Namely, a different outer face is chosen as outer face in Γ(sk(τ)), however the
circular ordering of the virtual edges around the poles stays the same; moreover,
the virtual edge representing the parent of τ in T is still incident to the outer
face of Γ(sk(τ)) in ΓC .

Second part. We now prove that the embedding choices performed when
considering two distinct clusters do not conflict.

Claim 7. For any two clusters µ and ν (µ 6= ν), the application of the above
rules when µ is considered does not produce an embedding choice for pert(τ ′)
that is conflicting with the one that is produced when ν is considered.

Proof: The proof is independent of the modification of the outer face of Γ
to obtain ΓC , hence we will refer to drawing Γ rather than to ΓC . The proof
distinguishes several cases.

Case 1: Suppose that the embedding of pert(τ ′) has been determined to
be Γ1(pert(τ ′)) by Rule RI-1 because τ ′ is µ-sided, because τ ′′ is µ-traversable,
and because τ ′′′ is not µ-traversable, for some cluster µ ∈ T , or by Rule RI-2
because τ ′ is µ-sided, because τ ′′ is µ-sided, and because τ ′′′ is not µ-traversable
and not µ-sided.

Case 1A: Suppose, for a contradiction, that the embedding of pert(τ ′) has
been determined to be Γ2(pert(τ ′)) by Rule RI-1 because τ ′ is ν-sided, because
τ ′′′ is ν-traversable, and because τ ′′ is not ν-traversable, or by Rule RI-2 because
τ ′ is ν-sided, because τ ′′′ is ν-sided, and because τ ′′ is not ν-traversable and not
ν-sided, for some cluster ν ∈ T with ν 6= µ.

We have that Condition (i) of Lemma 1 is not satisfied by Γ′, a contradiction.
Namely, one of the two paths between the poles of τ ′ delimiting the outer face of
Γ1(pert(τ ′)), say P (µ, ν), contains vertices in µ and in ν, while the other path
does not. Hence, if Γ′ is such that τ ′′ is found before τ ′′′ when traversing the
neighbors of τ in T starting from τ ′ in the direction “defined by P (µ, ν)”, then
H(ν) is not connected, given that τ ′ and τ ′′ are not ν-traversable. Otherwise
H(µ) is not connected, given that τ ′ and τ ′′′ are not µ-traversable.

Case 1B: Suppose, for a contradiction, that the embedding of pert(τ ′) has
been determined by Rule RII-1 to be Γ2(pert(τ ′)) because τ ′ is ν-side-spined
and not ν-full, and because τ ′′′ is ν-spined and τ ′′ is not, for some cluster ν ∈ T
with ν 6= µ. Then one of the two paths between the poles of τ ′ delimiting the
outer face of Γ1(pert(τ ′)), say P (ν), entirely belongs to ν and the same path
also contains a vertex in µ.

This gives rise to a contradiction if µ is not a descendant of ν in T . Hence,
assume that µ is a descendant of ν in T . If Γ′ is such that τ ′′′ is found before
τ ′′ when traversing the neighbors of τ in T starting from τ ′ in the direction
“defined by P (ν)”, then H(µ) is not connected, given that τ ′ and τ ′′′ are not µ-
traversable, thus Condition (i) of Lemma 1 is not satisfied by Γ′, a contradiction.
Otherwise, there exists a cycle in Γ′ whose vertices belong to ν and whose interior
contains in Γ′ a vertex not belonging to ν, thus implying that Condition (ii)
of Lemma 1 is not satisfied by Γ′, a contradiction. Namely, such a cycle is
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composed of P (ν) and of any path belonging to ν and connecting the poles of
τ ′′′ in pert(τ ′′′); the vertex not in ν in the interior of this cycle is either a vertex
in pert(τ ′) not in ν (which exists since τ ′ is not ν-full), or a vertex in pert(τ ′′)
not in ν (which exists since τ ′′ is not ν-spined and hence not ν-full), depending
on the “position” of the outer face in Γ′.

Case 2: Suppose that the embedding of pert(τ ′) has been determined to
be Γ1(pert(τ ′)) by Rule RII-1 because τ ′ is µ-side-spined and not µ-full, and
because τ ′′ is µ-spined and τ ′′′ is not, for some cluster µ ∈ T .

Case 2A: Suppose that the embedding of pert(τ ′) has been determined to
be Γ2(pert(τ ′)) by Rule RI-1 (by Rule RI-2) because τ ′ is ν-sided, because τ ′′′

is ν-traversable (ν-sided, respectively), and because τ ′′ is not ν-traversable (not
ν-traversable and not ν-sided), for some cluster ν ∈ T with ν 6= µ. Such a case
can be discussed analogously to Case 1B.

Case 2B: Suppose that the embedding of pert(τ ′) has been determined to
be Γ2(pert(τ ′)) by Rule RII-1 because τ ′ is ν-side-spined and not ν-full, and
because τ ′′′ is ν-spined and τ ′′ is not, for some cluster ν ∈ T with ν 6= µ.
Observe that, since µ and ν share vertices, one of them is the ancestor of the
other one. Assume without loss of generality that µ is an ancestor of ν. Since
τ ′′′ is ν-spined, it is also µ-spined, a contradiction.

This concludes the proof of the claim. ¤

Third part. We now prove that the drawing ΓC resulting from the above
described algorithm is a 〈0, 0,∞〉-drawing of C(G,T ) by exploiting Lemma 1.
Observe that edge eρ is incident to the outer face of ΓC by construction.

Claim 8. Drawing ΓC satisfies Condition (i) of Lemma 1.

Proof: Consider any cluster µ. Observe that, by Lemma 1, H(µ) is connected
in Γ′ since Γ′ is a 〈0, 0,∞〉-drawing. We prove that H(µ) is connected in ΓC .
Observe that H(µ) is connected in ΓC if and only if it is connected in Γ. Hence,
we will refer to drawing Γ rather than to ΓC . Suppose, for a contradiction, that
H(µ) is not connected in Γ.

For any neighbor τ ′ of τ in T , we can assume that Γ1(pert(τ ′)) is neither
µ-infeasible, nor µ-kernelized, nor µ-bisided. Namely:

� If Γ1(pert(τ ′)) is µ-infeasible, we have that H(µ) is not connected in Γ′,
given that the embedding of pert(τ ′) in Γ′ is the same as in Γ, up to a
flip, thus leading to a contradiction.

� If Γ1(pert(τ ′)) is µ-kernelized, then either there exists a neighbor of τ in
T different from τ ′ containing a vertex in µ, thus implying that H(µ) is
not connected in Γ′, given that the embedding of pert(τ ′) in Γ′ is the same
as in Γ, up to a flip, or there exists no neighbor of τ in T different from
τ ′ containing a vertex in µ, thus implying that H(µ) is connected in Γ; in
both cases this leads to a contradiction.

� If Γ1(pert(τ ′)) is µ-bisided, then, in order for H(µ) to be connected in Γ′,
we have that Γ1(pert(τ ′′)) is µ-traversable for each neighbor τ ′′ of τ in T
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different from τ ′. Since the embedding of pert(τ ′′) in Γ′ is the same as in
Γ, up to a flip, it follows that τ ′′ is µ-traversable in Γ, as well, thus H(µ)
is connected in Γ, thus leading to a contradiction.

Hence, we can assume that, for each neighbor τ ′ of τ in T , Γ1(pert(τ ′)) (and
hence Γ2(pert(τ ′))) is either µ-sided, or µ-traversable, or it contains no vertex
of µ. Consider a maximal sequence τ1, τ2, . . . , τk of neighbors of τ in T , ordered
as in Γ(sk(τ)), such that τi contains a vertex in µ. We distinguish two cases.

� If there exists no neighbor τ ′ of τ in T such that Γ1(pert(τ ′)) is µ-
traversable, then, by Property (C) of Γ(sk(τ)), there exist at most two
neighbors τ1 and τ2 of τ in T such that Γ1(pert(τ1)) and Γ1(pert(τ2)) are
µ-sided, and moreover τ1 and τ2 are adjacent in Γ(sk(τ)). By construction,
the embedding of pert(τ1) is chosen to be Γ1(pert(τ1)) or Γ2(pert(τ1)) so
that a vertex in pert(τ1) and in µ is incident to the face of Γ(sk(τ)) to
which τ2 is incident. Analogously, the embedding of pert(τ2) is chosen to
be Γ1(pert(τ2)) or Γ2(pert(τ2)) so that a vertex in pert(τ2) and in µ is in-
cident to the face of Γ(sk(τ)) to which τ1 is incident. Hence, the subgraph
of H(µ) in Γ induced by the vertices in τ1 and the subgraph of H(µ) in
Γ induced by the vertices in τ2 are connected by an edge; moreover, both
such subgraphs are connected. It follows that H(µ) is connected in Γ, a
contradiction.

� If there exists at least one neighbor of τ in T whose embedding in Γ′ is
µ-traversable, then, by Properties (B) and (C) of Γ(sk(τ)), the order in
Γ(sk(τ)) of the neighbors of τ in T is τ1, τ2, . . . , τk, where τ2, . . . , τk−1 are
µ-traversable, where τ1 and τk are µ-sided (and they might not exist), and
where k ≥ 3. By construction, the embedding of pert(τ1), if τ1 exists, is
chosen to be Γ1(pert(τ1)) or Γ2(pert(τ1)) so that a vertex in pert(τ1) and in
µ is incident to the face of Γ(sk(τ)) to which τ2 is incident. Analogously,
the embedding of pert(τk), if τk exists, is chosen to be Γ1(pert(τk)) or
Γ2(pert(τk)) so that a vertex in pert(τk) and in µ is incident to the face
of Γ(sk(τ)) to which τk−1 is incident. Hence, the subgraph of H(µ) in Γ
induced by the vertices in τ1 is connected by an edge to the subgraph of
H(µ) in Γ induced by the vertices in τ2, . . . , τk−1; moreover, the subgraph
of H(µ) in Γ induced by the vertices in τk is connected by an edge to the
subgraph of H(µ) in Γ induced by the vertices in τ2, . . . , τk−1; furthermore,
these three subgraphs are connected. It follows that H(µ) is connected in
Γ, a contradiction.

This concludes the proof of the claim. ¤

Claim 9. Drawing ΓC satisfies Condition (ii) of Lemma 1.

Proof: We prove that ΓC contains no cycle whose vertices all belong to the
same cluster µ and whose interior contains a vertex v not in µ. We first prove
this statement for drawing Γ, and we will later show how modifying the outer
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face of Γ to obtain ΓC does not create a cycle whose vertices all belong to the
same cluster µ and whose interior contains a vertex not in µ.

Suppose, for a contradiction, that Γ contains a cycle C whose vertices all
belong to the same cluster µ and whose interior contains a vertex v not in µ.
First, we discuss the existence of a cycle C violating Condition (ii) of Lemma 1
in the drawing constructed before.

If C entirely belongs to pert(τ ′), for some neighbor τ ′ of τ in T , then C
contains v in its interior also in Γ′, given that the embedding of pert(τ ′) in Γ
is the same as in Γ′, up to a flip. However, by Lemma 1, this implies that Γ′ is
not a 〈0, 0,∞〉-drawing, a contradiction.

Otherwise, C is composed of two paths connecting the poles of τ , where
the first path Pµ(τ ′′) entirely belongs to pert(τ ′′) and the second path Pµ(τ ′′′)
entirely belongs to pert(τ ′′′), for two distinct neighbors τ ′′ and τ ′′′ of τ in T .
Hence, Γ1(pert(τ ′′)) and Γ1(pert(τ ′′′)) (and hence Γ2(pert(τ ′′)) and Γ2(pert(τ ′′′)))
are µ-spined. Moreover, they are both µ-side-spined (and possibly µ-full).
Namely, if one of them, say Γ1(pert(τ ′′)), is µ-central-spined, then C contains a
vertex not in µ in Γ′, thus implying that Γ′ does not satisfy Condition (ii) of
Lemma 1 and hence that Γ′ is not a 〈0, 0,∞〉-drawing, a contradiction.

Assume that Γ1(pert(τ ′′)) and Γ1(pert(τ ′′′)) (and hence Γ2(pert(τ ′′)) and
Γ2(pert(τ ′′′))) are both µ-side-spined (possibly µ-full). By Property (A) of
Γ(sk(τ)), all the virtual edges, if any, that lie inside the cycle composed of the
virtual edges representing τ ′′ and τ ′′′ in Γ(sk(τ)) are µ-full. It follows that, if C
contains a vertex not in µ in its interior, then such a vertex belongs to pert(τ ′′)
or to pert(τ ′′′). Suppose the former, the discussion for the latter case being
analogous. Observe that this implies that Γ1(pert(τ ′′)) is not µ-full. Then,
denote by Qµ(τ ′′) the path that is composed only of vertices of µ, that connects
the poles of τ , and that delimits the outer face of Γ1(pert(τ ′′)).

Consider the two neighbors σ1 and σ2 of τ in T such that the virtual edges
representing σ1 and σ2 are consecutive with the virtual edge representing τ ′′ in
Γ(sk(τ)). Assume, w.l.o.g., that the virtual edge representing σ1 is internal to
the cycle composed of the virtual edges representing τ ′′ and τ ′′′ in Γ(sk(τ)) (if
any virtual edge internal to such a cycle exists) or that σ1 coincides with τ ′′′

(otherwise).
If σ2 is not µ-spined, then by Rule RII-1, the embedding of pert(τ ′′) is chosen

in such a way that Qµ(τ ′′) is incident to the face of Γ(sk(τ)) the virtual edge
representing σ1 is incident to. However, this implies that C does not contain
any vertex not belonging to µ in its interior, a contradiction.

Otherwise, σ2 is µ-spined, and Rule RII-1 was applied to choose the embed-
ding of pert(τ ′′) in such a way that Qµ(τ ′′) is incident to the face of Γ(sk(τ))
the virtual edge representing σ2 is incident to.

It follows that the virtual edges representing σ2 and τ ′′ delimit the outer face
of Γ(sk(τ)). Namely, if that’s not the case, then the cycle that is composed of the
virtual edges representing σ2 and τ ′′′ would contain the virtual edge representing
τ ′′, which is not µ-full, in its interior in Γ(sk(τ)), thus contradicting the fact that
Γ(sk(τ)) satisfies Property (A). However, that the virtual edges representing σ2

and τ ′′ delimit the outer face of Γ(sk(τ)) contradicts the assumption that Rule
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RII-1 was applied to choose the embedding of pert(τ ′′) in such a way that
Qµ(τ ′′) is incident to the face of Γ(sk(τ)) the virtual edge representing σ2 is
incident to, thus obtaining a contradiction.

This completes the proof that Γ does not contain a cycle C whose vertices
all belong to the same cluster µ and whose interior contains a vertex v not in µ.

Now we deal with ΓC . If ΓC has the same outer face as Γ, then there is
nothing to prove. Otherwise, suppose, for a contradiction, that ΓC contains
a cycle C whose vertices all belong to the same cluster µ and whose interior
contains a vertex v not in µ. Since Γ and ΓC coincide when restricted to the
pertinent graphs of the children of τ in T , it follows that C is composed of a path
Pµ(σ) in the pertinent graph of the parent σ of τ in T and of a path Pµ(σ′)
in the pertinent graph of a neighbor σ′ 6= σ of τ in T . Also, since rule R0
sets the embedding of pert(σ) so that eρ is incident to the outer face, it follows
that either rule RI-1, or rule RI-2, or rule RII-1 was applied to determine the
embedding of pert(σ) to be either Γ1(pert(σ)) or Γ2(pert(σ)), so that eρ is not
incident to the outer face of Γ. We distinguish two cases based on which rule
was applied to determine the embedding of pert(σ).

Suppose first that rule RII-1 was applied to determine the embedding of
pert(σ). By the assumptions of rule RII-1, Γ1(pert(σ)) is ν-side-spined and
not ν-full, for some cluster ν ∈ T (possibly ν = µ), and the embedding of the
pertinent graph of a neighbor σ′ of σ in Γ(sk(τ)) is ν-spined. Also, since eρ is
not incident to the outer face of Γ, it follows that the path Pν(σ) in pert(σ)
that connects the poles of σ, that delimits the outer face of Γ1(pert(σ)), and
that entirely belongs to ν contains eρ. However, since the embedding of pert(σ)
in ΓC coincides with the embedding of pert(σ) in Γ′ and since eρ is incident
to the outer face of Γ′, it follows that the cycle C′ composed of Pν(σ) and of
any path in pert(σ′) that connects the poles of σ′ and that entirely belongs
to ν (such a path exists because σ′ is ν-spined) contains in its interior in Γ′ a
vertex not belonging to ν (namely any vertex in pert(σ) not in ν; such a vertex
exists because pert(σ) is not ν-full). Thus, Γ′ does not satisfy Condition (ii) of
Lemma 1, a contradiction.

Suppose next that rule RI-1 or rule RI-2 was applied to determine the em-
bedding of pert(σ). By the assumptions of rules RI-1 and RI-2, Γ1(pert(σ)) is
ν-sided, for some cluster ν ∈ T , and the embedding of the pertinent graph of a
neighbor σ′ of σ in Γ(sk(τ)) is ν-traversable or ν-sided.

� If Γ1(pert(σ)) is µ-central-spined, then Γ and Γ′ contain cycles that en-
tirely belong to µ and that contain in their interior vertices not belonging
to µ (namely vertices in pert(σ)), thus contradicting the fact that Γ and
Γ′ are 〈0, 0,∞〉-drawings of C(G,T ).

� If Γ1(pert(σ)) is µ-side-spined and the path that connects the poles of
σ, that delimits the outer face of Γ1(pert(σ)), and that entirely belongs
to µ contains eρ, then Γ′ contains a cycle that entirely belongs to µ and
that contains in its interior a vertex not belonging to µ (namely a vertex
in pert(σ)), thus contradicting the fact that Γ′ is a 〈0, 0,∞〉-drawing of
C(G,T ).
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� If Γ1(pert(σ)) is µ-side-spined and the path that connects the poles of σ,
that delimits the outer face of Γ1(pert(σ)), and that entirely belongs to µ
does not contain eρ, then Γ contains a cycle that entirely belongs to µ and
that contains in its interior a vertex not belonging to µ (namely a vertex
in pert(σ)), thus contradicting the fact that Γ is a 〈0, 0,∞〉-drawing of
C(G,T ).

We can hence assume that pert(σ) is µ-full. Denote by σ1, σ2, . . . , σl the
order of the children of τ as in Γ(sk(τ)), where σ1 is incident to the outer face
of Γ(sk(τ)) in ΓC , while σl is incident to the outer face of Γ(sk(τ)) in Γ.

If any µ-full child σj of τ in T exists, then all of σ1, σ2, . . . , σj are µ-full,
as otherwise Γ would not satisfy Condition (ii) of Lemma 1. Denote by f the
largest index such that σ1, σ2, . . . , σf are µ-full. Also, if any ν-traversable child
σj of τ in T exists, then all of σ1, σ2, . . . , σj are ν-traversable, as otherwise Γ
would not satisfy Condition (i) of Lemma 1. Denote by t the largest index such
that σ1, σ2, . . . , σt are ν-traversable.

� If t ≥ f > 0, then every µ-full child of τ is ν-traversable. All the µ-full
children of τ occur consecutively in Γ′(sk(τ)), as otherwise Γ′ does not
satisfy Condition (ii) of Lemma 1. Since f > 0, at least one µ-full and
ν-traversable child of τ exists, and it is next to σ in Γ′(sk(τ)). Hence, ei-
ther a child of τ that is not ν-traversable exists, thus implying that H(ν)
is not connected in Γ′ and hence that Γ′ does not satisfy Condition (i) of
Lemma 1, a contradiction, or every child of τ is ν-traversable, thus imply-
ing that rules RI-1 and RI-2 were not applied to determine the embedding
of pert(σ), a contradiction.

� If f ≥ t > 0, then every ν-traversable child of τ is µ-full. All the µ-full
children of τ occur consecutively in Γ′(sk(τ)), as otherwise Γ′ does not
satisfy Condition (ii) of Lemma 1. Since t > 0, at least one µ-full and ν-
traversable child of τ exists. Hence, either a child of τ exists that is not ν-
traversable and not µ-full exists, thus implying that H(ν) is not connected
in Γ′ and hence that Γ′ does not satisfy Condition (i) of Lemma 1, or every
child of τ is µ-full, thus contradicting the assumption that C contains a
vertex not in µ in its interior.

� If t = 0, then σ1 is ν-sided, as otherwise neither rule RI-1 nor rule RII-2
would be applied to determine the embedding of pert(σ). It follows that
σ1 is incident to the outer face of Γ′(sk(τ)). Thus, if σ1 is µ-spined, then
Γ′ does not satisfy Condition (ii) of Lemma 1, a contradiction, while if
σ1 is not µ-spined (and some other child of τ is), then Γ does not satisfy
Condition (ii) of Lemma 1, a contradiction.

� If f = 0, then there exists exactly one child of τ that is µ-spined. If
σ1 is not µ-spined, then Γ does not satisfy Condition (ii) of Lemma 1,
a contradiction. Otherwise σ1 is µ-spined. Hence, σ1 is next to σ in
Γ′(sk(τ)). Thus, if σ1 is ν-traversable, then either every child of τ is
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ν-traversable, thus implying that rules RI-1 and RI-2 were not applied
to determine the embedding of pert(σ), a contradiction, or a child of τ
that is not ν-traversable exists, thus implying that H(ν) is not connected
in Γ′ and hence that Γ′ does not satisfy Condition (i) of Lemma 1, a
contradiction. Finally, if σ1 is ν-sided, then H(ν) is not connected either
in Γ or in Γ′, a contradiction.

This concludes the proof of the claim. ¤

Claims 4–6 prove that Properties (A), (B), and (C) of Lemma 5 are necessary
in order for an embedding Γ(sk(τ)) in which the edge e representing the parent
of τ is incident to the outer face to be extensible. The sufficiency of Properties
(A), (B), and (C) of Lemma 5 is easily proved as described above if τ is an
S-node or an R-node; Claims 7–9 prove the sufficiency of Properties (A), (B),
and (C) of Lemma 5 if τ is a P-node. This completes the proof of Lemma 5.

We are now ready to give an algorithm for testing whether a given clustered
graph admits a 〈0, 0,∞〉-drawing.

Theorem 4. Let C(G,T ) be a clustered graph such that G is biconnected. There
exists a polynomial-time algorithm to test whether C(G,T ) admits a 〈0, 0,∞〉-
drawing.

Proof: Let T be the SPQR-tree of G. Consider any Q-node ρ of T and root T at
ρ. Such a choice corresponds to assuming that any considered planar embedding
of G has the edge eρ of G corresponding to ρ incident to the outer face. In the
following, we describe how to test whether C(G,T ) admits a 〈0, 0,∞〉-drawing
under the above assumption. The repetition of such a test for all possible choices
of ρ results in a test of whether C(G,T ) admits a 〈0, 0,∞〉-drawing.

First, we perform a preprocessing step to compute the following information.
For each node τ ∈ T and for each cluster µ ∈ T , we label τ (and the virtual

edge representing τ in the skeleton of the parent of τ) with flags stating whether
τ is (i) µ-touched, (ii) τ is µ-full, and (iii) τ is µ-spined.

Observe that such information can be easily computed in polynomial time
based on whether any vertex of pert(τ) different from its poles belongs to µ, on
whether all the vertices of pert(τ) belong to µ, and on whether there exists a path
in pert(τ) connecting the poles of τ and entirely belonging to µ, respectively. In
particular, such information does not change if the embedding of pert(τ) varies.

Also, for each node τ ∈ T and for each cluster µ ∈ T , we label τ (and the
virtual edge representing τ in the skeleton of the parent of τ) with a flag stating
whether τ is µ-traversable in any planar embedding that is not µ-infeasible.
Namely, by Lemma 3, if an embedding of pert(τ) is µ-traversable, then every
embedding of pert(τ) that is not µ-infeasible is µ-traversable. To compute this
information, we traverse T bottom-up while computing, for each encountered
node τ ′ of T , whether H(τ ′, µ) has a connected component that contains f ′(τ ′)
and f ′′(τ ′) in any planar embedding of pert(τ ′). In particular:

� If τ ′ is a Q-node, then we label τ ′ as µ-traversable if and only if one of
the poles of τ ′ belongs to µ;
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� if τ ′ is an S-node, then we label τ ′ as µ-traversable if and only if at least
one of the children of τ ′ is labeled as µ-traversable;

� if τ ′ is a P-node, then we label τ ′ as µ-traversable if and only if every child
of τ ′ is labeled as µ-traversable;

� if τ ′ is an R-node, then we label τ ′ as µ-traversable if and only if, in the
unique (up to a flip) planar embedding Γ(sk(τ ′)) of sk(τ ′), there exists a
sequence (τ1, τ2, . . . , τx) of children of τ such that: (1) τj is a child of τ
that is labeled as µ-traversable, for every 1 ≤ j ≤ x, (2) the virtual edges
representing τ1 and τx are incident to the two faces to which the virtual
edge representing the parent of τ is incident to, and (3) the virtual edges
representing τj and τj+1 are incident to a common face in Γ(sk(τ ′)), for
every 1 ≤ j ≤ x − 1.

Observe that, whether pert(τ) is µ-sided, µ-bisided, µ-kernelized, µ-infeasible,
µ-side-spined, or µ-central-spined depends on the actual embedding of pert(τ).

Second, we traverse T bottom-up. For every P-node and every R-node τ
of T , the visible nodes of τ are the children of τ that are not S-nodes plus the
children of each S-node that is a child of τ . At each step, we consider either a P-
node or an R-node τ with visible nodes τ1, . . . , τk. We inductively assume that,
for each visible node τi, with 1 ≤ i ≤ k, an extensible embedding Γ(pert(τi))
has been computed, together with the information whether Γ(pert(τi)) is µ-
traversable, µ-sided, µ-bisided, µ-kernelized, µ-infeasible, µ-side-spined, or µ-
central-spined, for each cluster µ in T .

We show how to test whether an extensible embedding Γ(pert(τ)) of pert(τ)
exists. Such a test consists of two phases. We first test whether sk(τ) admits
an extensible embedding Γ(sk(τ)). In the negative case, we can conclude that
C(G,T ) has no 〈0, 0,∞〉-drawing in which eρ is incident to the outer face. In
the positive case, we also test whether a flip of each Γ(pert(τi)) exists such that
the resulting embedding Γ(pert(τ)) is extensible.

Extensible embedding of the skeleton of τ .
Suppose that τ is an R-node. Then, sk(τ) has a unique embedding, up to

a flip. We hence test whether Properties (A), (B), and (C) of Lemma 5 are
satisfied. Observe that such a test can be easily performed in polynomial time,
based on the information on whether the visible nodes of µ (and hence the
children of τ) are µ-spined, µ-full, µ-touched, and µ-traversable.

Suppose that τ is a P-node. We check whether there exists an extensible
embedding Γ(sk(τ)) of sk(τ) as follows. We impose constraints on the ordering
of the virtual edges of τ .

A first set of constraints establishes that Γ(sk(τ)) satisfies Property (A) of
Lemma 5. Namely, for each cluster µ:

(a) We constrain all the µ-full virtual edges to be consecutive;

(b) if there exists no µ-full virtual edge, then we constrain each pair of µ-spined
virtual edges to be consecutive; and
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(c) if there exists at least one µ-full virtual edge, then, for each µ-spined vir-
tual edge, we constrain such an edge and all the µ-full virtual edges to be
consecutive.

A second set of constraints establishes that Γ(sk(τ)) satisfies Properties (B)
and (C) of Lemma 5. Namely, for each cluster µ:

(a) We constrain all the µ-traversable virtual edges to be consecutive;

(b) if there exists no µ-traversable virtual edge, then we constrain each pair of
µ-touched virtual edges to be consecutive; and

(c) if there exists at least one µ-traversable virtual edge, then, for each µ-
touched virtual edge, we constrain such an edge and all the µ-full virtual
edges to be consecutive.

We check whether an ordering of the virtual edges of sk(τ) that enforces
all these constraints exists by using the PQ-tree data structure [3]. If such an
ordering does not exist, we conclude that sk(τ) admits no extensible embedding.
Otherwise, we have an embedding Γ(sk(τ)) of sk(τ) which satisfies Properties
(A)–(C), hence it is extensible.

Extensible embedding of the pertinent graph of τ .
We now determine, for each node τ of T that is either an R- or a P-node,

an extensible embedding Γ(pert(τ)) of pert(τ), if one exists. This is done by
choosing the flip of the embedding Γ(pert(τi)) of each visible node τi of τ in such
a way that Γ(pert(τ)) satisfy Properties (i) and (ii) of Lemma 1. Observe that
the choice of the flip of the embedding Γ(pert(τi)) of each visible node τi of τ ,
together with the choice of the embedding of sk(τ) to be Γ(sk(τ)), completely
determines Γ(pert(τ)).

We will construct a 2-SAT formula F such that pert(τ) admits an extensible
embedding if and only if F is satisfiable. We initialize F = ∅. Then, for each
visible node τi of τ , we assign an arbitrary flip to τi and define a boolean variable
xi that is positive if τi has the assigned flip and negative otherwise.

We first add some clauses to F in order to ensure that Γ(pert(τ)) satisfies
Property (ii) of Lemma 1.

For each cluster µ, we consider the embedded subgraph Γµ(sk(τ)) of Γ(sk(τ))
containing all the µ-spined virtual edges. Note that, since Γ(sk(τ)) satisfies
Property (A) of Lemma 5, each edge of Γµ(sk(τ)) that is not incident to the
outer face of Γµ(sk(τ)) is µ-full. Hence, no flip choice has to be done for these
edges.

Consider any edge g in Γµ(sk(τ)) such that g is incident to the external face
and to an internal face fg of Γµ(sk(τ)). Consider each visible node τi of τ such
that: (i) either g corresponds to τi or g corresponds to the S-node which is the
parent of τi and (ii) Γ(pert(τi)) is either µ-side-spined or µ-central-spined.

Then, if Γ(pert(τi)) is µ-central-spined, then we conclude that pert(τ) has no
extensible embedding (with e incident to the outer face). Otherwise, Γ(pert(τi))
is µ-side-spined. In this case, add clause {xi} to F if the default flip of Γ(pert(τi))
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does not place any vertex not in µ on fg, and add clause {¬xi} to F if the default
flip of Γ(pert(τi)) places a vertex not in µ on fg.

We next add some clauses to F in order to ensure that Γ(pert(τ)) satisfy
Property (i) of Lemma 1.

Suppose that there exists a visible node τi of τ such that: (i) Γ(pert(τi)) is
µ-bisided; and (ii) if τi is child of an S-node σ, then no child of σ is µ-traversable.

Then, we check:

(a) Whether all the visible nodes of τ that are children of τ , except for τi, are
µ-traversable; and

(b) whether, for each S-node γ that is child of τ and that is not the parent of
τi, at least one child of γ is µ-traversable.

If one of the checks fails, we conclude that pert(τ) has no extensible embed-
ding (with e incident to the outer face), otherwise we do not add any clause to
F and we continue as follows.

Suppose that there exists a visible node τi of τ such that:
(i) Γ(pert(τi)) is µ-sided; (ii) if τi is child of an S-node σ, then no child of

σ is µ-traversable; and (iii) τi shares exactly one face with a µ-traversable or
µ-sided node τj .

Then, add clause {xi} to F if the default flip of Γ(pert(τi)) places the vertices
of pert(τi) belonging to µ on the face that τi shares with τj , and add clause {¬xi}
to F otherwise.

Suppose that there exists an S-node σ child of τ such that:
(i) no child of σ is µ-traversable; and (ii) no child of τ different from σ is

µ-touched.
Consider each pair of visible nodes τi and τj children of σ that are both

µ-sided.
Then, add clauses (xi ∨ ¬xj) and (¬xi ∨ xj) to F if the default flips of

Γ(pert(τi)) and of Γ(pert(τj)) place vertices of pert(τi) and vertices of pert(τj)
belonging to µ on the same face. Otherwise, add clauses (xi∨xj) and (¬xi∨¬xj)
to F .

Observe that all the described checks and embedding choices, and the con-
struction and solution of the 2-SAT formula can be easily performed in poly-
nomial time. Once an embedding Γ(pert(τ)) of pert(τ) has been computed,
by traversing Γ(pert(τ)) it can be determined in polynomial time whether such
an embedding is µ-sided, µ-bisided, µ-kernelized, µ-side-spined, or µ-central-
spined. By Lemma 4, if a 〈0, 0,∞〉-drawing of C(G,T ) exists, then there exists
a 〈0, 0,∞〉-drawing of C(G,T ) in which the embedding of pert(τ) is Γ(pert(τ))
or its flip. This allows the bottom-up visit of T to go through. The correctness
of the embedding choices performed in order to construct Γ(pert(τ)) follows
from Lemmata 1, 4, and 5. This concludes the proof of the theorem. ¤

We now turn our attention to establish bounds on the minimum value of γ
in a 〈0, 0, γ〉-drawing of a clustered graph.
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Theorem 5. Let C(G,T ) be a clustered graph. There exists an algorithm to
compute a 〈0, 0, γ〉-drawing of C(G,T ) with γ ∈ O(n3), if any such drawing
exists. If C(G,T ) is flat, then γ ∈ O(n2).

Proof: Suppose that C(G,T ) admits a 〈0, 0,∞〉-drawing. Then, consider the
drawing Γ of the underlying graph G in any such a drawing. For each cluster
µ, place a vertex uµ,f inside any face f of Γ that contains at least one vertex
belonging to µ, and connect uµ,f to all the vertices of µ incident to f . Note
that, the graph composed by the vertices of µ and by the added vertices uµ,fi

is connected. Then, construct a spanning tree of such a graph and draw R(µ)
slightly surrounding such a spanning tree. The cubic bound on γ comes from
the fact that each of the O(n) clusters crosses each of the O(n) other clusters a
linear number of times. On the other hand, if C(G,T ) is flat, then each of the
O(n) clusters crosses each of the O(n) other clusters just once. ¤

4. Lower bounds

In this section we give lower bounds on the number of ee-, er-, and rr-
crossings in 〈α, β, γ〉-drawings of clustered graphs.

First, we prove an auxiliary lemma concerning the crossing number in graphs
without a cluster hierarchy. Given a graph G, we define G(m) as the multigraph
obtained by replacing each edge of G with a set of m multiple edges. For each
pair (u, v) of vertices, we denote by S(u, v) the set of multiple edges connecting
u and v.

Lemma 6. Graph G(m) has crossing number cr(G(m)) ≥ m2 · cr(G).

Proof: Consider a drawing Γ of G(m) with the minimum number cr(G(m))
of crossings.

First, observe that in Γ no edge intersects itself, no two edges between the
same pair of vertices intersect, and each pair of edges crosses at most once.
Namely, if any of these conditions does not hold, it is easy to modify Γ to
obtain another drawing of G(m) with a smaller number of crossings, which is
not possible by hypothesis (see, e.g., [28]).

We show that there exists a drawing Γ′ of G(m) with cr(G(m)) crossings
in which, for each pair of vertices u and v, all the edges between u and v cross
the same set of edges in the same order. Let emin(u, v) be any edge with the
minimum number of crossings among the edges of S(u, v). Redraw all the edges
in S(u, v) \ emin(u, v) so that they intersect the same set of edges as emin(u, v),
in the same order as emin(u, v). Repeating this operation for each set S(u, v)
yields a drawing Γ′ with the required property.

Starting from Γ′, we construct a drawing ΓG of G. For each set of edges
S(u, v) remove all edges except for one edge e∗(u, v). The resulting drawing ΓG

of G has at least cr(G) crossings, by definition. For any two edges e∗(u, v) and
e∗(w, z) that cross in ΓG, we have that each edge in S(u, v) crosses each edge in
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Figure 16: Illustrations for the proof of Theorem 6. (a) Edges and clusters in M(u, v). (b)
Clustered graph C(G, T ).

S(w, z), by the properties of Γ′. Hence Γ′ contains at least m2 · cr(G) crossings.
¤

We prove a lower bound on the total number of crossings in an 〈α, β, γ〉-
drawing of a clustered graph when all the three types of crossings are admitted.

Theorem 6. There exists an n-vertex non-c-connected flat clustered graph C(G,T )
that admits 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and 〈0, 0,∞〉-drawings, and such that α + β +
γ ∈ Ω(n2) in every 〈α, β, γ〉-drawing of C(G,T ).

Proof: Clustered graph C(G,T ) is as follows. Initialize graph G with five
vertices a, b, c, d, e. For each two vertices u, v ∈ {a, b, c, d, e}, with u 6= v, and
for i = 1, . . . ,m, add to G vertices [uv]i, [vu]i, and edges (u, [uv]i) and (v, [vu]i),
and add to T a cluster µ(u, v)i = {[uv]i, [vu]i}. Vertices a, b, c, d, e belong to
clusters µa, µb, µc, µd, µe, respectively. See Fig. 16. We denote by M(u, v) =
{(u, [uv]i), (v, [vu]i), µ(u, v)i|i = 1, . . . ,m}.

First, we prove that C admits 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and 〈0, 0,∞〉-drawings.
Consider a drawing Γ∗ of K5 on vertices {a, b, c, d, e} with one crossing. Assume,
without loss of generality, that the crossing is on (a, b) and (c, d). For each pair
of vertices u, v ∈ {a, b, c, d, e}, with (u, v) /∈ {(a, b), (c, d)}, replace edge (u, v)
in Γ∗ with M(u, v) in such a way that the drawing of the edges and clusters in
M(u, v) is arbitrarily close to the drawing of (u, v). It remains to draw edges and
clusters in M(a, b) and M(c, d). This is done differently for 〈∞, 0, 0〉-, 〈0,∞, 0〉-,
and 〈0, 0,∞〉-drawings.

〈∞, 0, 0〉-drawing Replace (a, b) and (c, d) in Γ∗ with M(a, b) and M(c, d)
in such a way that the drawing of the edges and clusters in M(a, b) (in
M(c, d)) is arbitrarily close to the drawing of (a, b) (of (c, d)) and for each
1 ≤ i, j ≤ m, edge (a, [ab]i) crosses edge (c, [cd]j), while edges (b, [ba]i)
and (d, [dc]i), and regions R(µ(a, b)i) and R(µ(c, d)j) are not involved in
any crossing. See Fig. 18(a).
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Figure 17: (a) 〈∞, 0, 0〉-drawing of C. (b) 〈0,∞, 0〉-drawing of C. (c) 〈0, 0,∞〉-drawing of C.

〈0,∞, 0〉-drawing Replace (a, b) and (c, d) in Γ∗ with M(a, b) and M(c, d)
in such a way that the drawing of the edges and clusters in M(a, b) (in
M(c, d)) is arbitrarily close to the drawing of (a, b) (of (c, d)) and for
each 1 ≤ i, j ≤ m, edge (a, [ab]i) crosses region R(µ(c, d)j), while edges
(b, [ba]i), (c, [cd]i), and (d, [dc]j), and region R(µ(a, b)i) are not involved
in any crossing. See Fig. 18(b).

〈0, 0,∞〉-drawing Replace (a, b) and (c, d) in Γ∗ with M(a, b) and M(c, d)
in such a way that the drawing of the edges and clusters in M(a, b) (in
M(c, d)) is arbitrarily close to the drawing of (a, b) (of (c, d)) and for
each 1 ≤ i, j ≤ m, region R(µ(a, b)i) crosses region R(µ(c, d)j), while
edges (a, [ab]i), (b, [ba]i), (c, [cd]j), and (d, [dc]i) are not involved in any
crossing. See Fig. 18(c).

Second, we show that α+β+γ ∈ Ω(n2) in every 〈α, β, γ〉-drawing of C(G,T ).
Consider any such a drawing Γ. Starting from Γ, we obtain a drawing Γ′ of a
subdivision of K5(m) as follows. For each u, v ∈ {a, b, c, d, e}, with u 6= v, and
for each i = 1, . . . ,m, insert a drawing of edge ([uv]i, [vu]i) inside R(µ(u, v)i)
and remove region R(µ(u, v)i). Further, remove regions R(µa), R(µb), R(µc),
R(µd), and R(µe). The obtained graph is a subdivision of K5(m). Hence, by
Lemma 6, Γ′ has Ω(n2) crossings. Moreover, each crossing in Γ′ corresponds
either to an edge-edge crossing, or to an edge-region crossing, or to a region-
region crossing in Γ, thus proving the theorem. ¤

We now turn our attention to drawings in which only one type of crossings
is allowed. In this setting, we show that the majority of the upper bounds
presented in the previous section are tight by giving lower bounds on the number
of crossings of 〈∞, 0, 0〉-, 〈0,∞, 0〉-, and 〈0, 0,∞〉-drawings. As a corollary of
Theorem 6, there exists a clustered graph C(G,T ) such that α ∈ Ω(n2) in every
〈α, 0, 0〉-drawing of C(G,T ), such that β ∈ Ω(n2) in every 〈0, β, 0〉-drawing
of C(G,T ), and such that γ ∈ Ω(n2) in every 〈0, 0, γ〉-drawing of C(G,T ).
However, in the following we present quadratic lower bounds on restricted classes
of clustered graphs and a cubic lower bound for 〈0, 0,∞〉-drawings of clustered
graphs.

We first consider 〈∞, 0, 0〉-drawings. We give two lower bounds, which deal
with c-connected and non-c-connected clustered graphs, respectively.
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Theorem 7. There exists a c-connected flat clustered graph C(G,T ) such that
α ∈ Ω(n2) in every 〈α, 0, 0〉-drawing of C(G,T ).

Proof: We first describe C(G,T ). Graph G is a subdivision of K5(m), with
m = n−5

9 , where the set of edges S(d, e) has been removed. Tree T is such that
µ2 = {d}, µ3 = {e}, and all the other vertices belong to µ1. See Fig. 19(a).
Since, in any 〈∞, 0, 0〉-drawing Γ of C(G,T ), both d and e must be outside any
cycle composed of vertices of µ1 (as otherwise they would lie inside R(µ1), see
Fig. 19(b)), a set of m length-2 paths can be drawn in Γ between d and e without
creating other crossings, thus obtaining a drawing of a subdivision of K5(m) in
which the crossings are the same as in Γ (see Fig. 19(c)). Since cr(K5) = 1 and
since m = Ω(n), by Lemma 6, α ∈ Ω(n2). ¤
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Figure 18: Illustration for the proof of Theorem 7. Vertices in µ1 are black, vertices in
µ2 are white, and vertices in µ3 are gray. (a) Graph G. (b) Vertices d and e must be
outside all the cycles composed of vertices of µ1. (c) Graph G′′, where the length-2
paths connecting d and e are dashed.

Theorem 8. There exists a non-c-connected flat clustered graph C(G,T ), where
G is a matching, such that α ∈ Ω(n2) in every 〈α, 0, 0〉-drawing of C(G,T ).

Proof: Clustered graph C(G,T ) is constructed as follows. Tree T is a star graph
with five leaves µ1, . . . , µ5. For each i 6= j with 1 ≤ i, j ≤ 5, add n

20 vertices to
µi and to µj and construct a matching between these two sets of vertices.

Consider any 〈α, 0, 0〉-drawing Γ of C(G,T ) such that α is minimum. We
prove that Γ does not contain any edge-edge crossing inside the regions rep-
resenting clusters. This implies that, contracting the regions to single points
yields a drawing of a subdivision of K5(n/20), and Lemma 6 applies to obtain
the claimed lower bound for α.

Assume, for a contradiction, that a crossing between two edges e1 and e2

occurs inside the region R(µ) representing a cluster µ. Since Γ has no edge-
region crossings, both e1 and e2 connect a vertex in µ with a vertex not in µ.
Then, one might place the endvertex of e1 belonging to µ arbitrarily close to
the boundary of R(µ) in such a way that it does not cross e2 inside R(µ). Since
this operation reduces the number of crossings, we have a contradiction to the
fact that α is minimum.
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Then, we add a vertex to each cluster µi and connect it to all the vertices
of µi. Observe that, since no two edges cross inside the region representing a
cluster, such vertices and edges can be added without creating any new crossings.

Finally, removing from Γ the drawings of the regions representing the clusters
leads to a drawing of a subdivision of K5(n/20) with α crossings. By Lemma 6,
α ∈ Ω(n2). ¤

We now prove some lower bounds on the number of er-crossings in 〈0,∞, 0〉-
drawings of clustered graphs. In the case of non-c-connected flat clustered
graphs, a quadratic lower bound directly follows from Theorem 6, as stated
in the following.

Corollary 1. There exists a non-c-connected flat clustered graph C(G,T ) such
that β ∈ Ω(n2) in every 〈0, β, 0〉-drawing of C(G,T ).

Next, we deal with the c-connected case and present a quadratic and a linear
lower bound for non-flat and flat cluster hierarchies, respectively.

Theorem 9. There exists a c-connected non-flat clustered graph C(G,T ) such
that β ∈ Ω(n2) in every 〈0, β, 0〉-drawing of C(G,T ).

Proof: Let G be an (n + 2)-vertex triconnected planar graph such that for
i = 1, . . . , n

3 , G contains a 3-cycle Ci = (ai, bi, ci). Further, for i = 1, . . . , n
3 − 1,

G has edges (ai, ai+1), (bi, bi+1), (ci, ci+1). Finally, G contains two vertices va

and vb such that va is connected to a1, b1, c1 and vb is connected to an
3
, bn

3
, cn

3
.

Tree T is defined as follows: µ1 = {a1, b1, c1} and, for each i = 2, . . . , n
3 ,

µi = µi−1 ∪ {ai, bi, ci}; moreover µa = {va} and µb = {vb}. See Fig. 20(a).
Note that, in any planar embedding of G, there exists a set S of at least

n
6 nested 3-cycles, and all such cycles contain either va or vb, say vb, in their
interior. Let Ci be any of such cycles. For each cluster µ containing ai, bi, and ci,
not all the edges of Ci can be drawn entirely inside the region R(µ) representing
µ in any 〈0,∞, 0〉-drawing of C(G,T ), as otherwise R(µ) would enclose vb. This
implies that Ci intersects the border of R(µ) twice, hence creating an edge-
region crossing. Since there exist Ω(n) cycles in S, each of which is contained
in Ω(n) clusters, we have that any 〈0, β, 0〉-drawing of C(G,T ) has β = Ω(n2)
edge-region crossings. ¤

Theorem 10. There exists a c-connected flat clustered graph C(G,T ) such that
β ∈ Ω(n) in every 〈0, β, 0〉-drawing of C(G,T ).

Proof: The underlying graph G is defined as in the proof of Theorem 9. Tree T
is such that, for i = 1, . . . , n, there exists a cluster µi containing vertices ai, bi,
and ci; moreover, µa = {va} and µb = {vb}. See Fig. 20(b).

In any planar embedding of G there exists a set S of at least n
6 nested 3-

cycles, and all such cycles contain either va or vb, say vb, in their interior. Let
Ci be any of such cycles. Not all the edges of Ci can be drawn entirely inside the
region R(µi) representing µi in any 〈0,∞, 0〉-drawing of C(G,T ), as otherwise
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Figure 19: (a) Illustration for Theorem 9. (b) Illustration for Theorem 10.
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Figure 20: (a) Illustration for Theorem 11. (b) Illustration for Theorem 12.

R(µi) would enclose vb. This implies that Ci intersects the border of R(µi)
twice. Since there exist Ω(n) cycles in S, we have that any 〈0, β, 0〉-drawing of
C(G,T ) has β = Ω(n) edge-region crossings. ¤

Finally, we prove lower bounds on the number of rr-crossings in 〈0, 0,∞〉-
drawings of clustered graphs. We only consider non-c-connected clustered graphs,
since a c-connected clustered graph either does not admit any 〈0, 0,∞〉-drawing
or is c-planar. We distinguish two cases based on whether the considered clus-
tered graphs are flat or not.

Theorem 11. There exists a non-c-connected flat clustered graph C(G,T ), where
G is outerplanar, such that γ ∈ Ω(n2) in every 〈0, 0, γ〉-drawing of C(G,T ).

Proof: We first describe C(G,T ). Refer to Fig. 21(a). Consider a cycle C of
n vertices v1, . . . , vn, such that n is even. For i = 1, . . . , n, add to C a vertex
ui and connect it to vi and vi+1, where vn+1 = v1. Denote by G the resulting
outerplanar graph. Tree T is such that vertices v1, . . . , vn belong to the same
cluster µ∗ and, for i = 1, . . . , n/2, vertices ui and un/2+i belong to µi.

Since all vertices u1, . . . , un have to lie outside region R(µ∗) in any 〈0, 0,∞〉-
drawing of C(G,T ), the embedding of G is outerplanar. Hence, for any i 6= j ∈
{1, . . . , n/2}, cluster µi intersects cluster µj , thus proving the theorem. ¤

Theorem 12. There exists a non-c-connected non-flat clustered graph C(G,T ),
where G is outerplanar, such that γ ∈ Ω(n3) in every 〈0, 0, γ〉-drawing of C(G,T ).
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Proof: We first describe C(G,T ). Refer to Fig. 21(b). Graph G is an outerplanar
graph constructed as in the proof of Theorem 11, such that n is a multiple of
4. Tree T is defined as follows. Set µ1 = {u1} and µ2 = {u2}. Then, for each
i = 3, 4, . . . , n, set µi = µi−2 ∪ {ui}. Finally, set µ∗ = {v1, . . . , vn}.

Since all vertices u1, . . . , un have to lie outside region R(µ∗), in any 〈0, 0,∞〉-
drawing of C(G,T ) the embedding of G is outerplanar.

We claim that, for each i ∈ {n
2 , n

2 +2, . . . , n} and j ∈ {n
2 +1, n

2 +3, . . . , n−1},
the border of region R(µi) intersects Ω(n) times the border of region R(µj).
Observe that the claim implies the theorem.

We prove the claim. Consider the border B(µi) of R(µi), for any i ∈ {n
2 , n

2 +
2, . . . , n}. First, for each 2 ≤ k ≤ n

2 such that k is even, B(µi) properly crosses
edge (vk, uk) in a point pk and edge (vk+1, uk) in a point p′k, given that µi

contains uk and does not contain vk and vk+1. Second, for each 1 ≤ h ≤ n
2

such that h is odd, B(µi) does not cross edges (vh, uh), given that µi contains
neither uh, nor vh, nor vk+1. Third, the intersection point of B(µi) with G
that comes after pk and p′k is pk+2, as otherwise B(µi) would not be a simple
curve or an er-crossing would occur. Analogous considerations hold for each
j ∈ {n

2 + 1, n
2 + 3, . . . , n − 1}. Hence, the part of B(µi) between p′k and pk+2

not containing pk intersects the part of B(µj) between p′k+1 and pk+3. This
concludes the proof of the theorem. ¤

5. Relationships between α, β and γ

In this section we discuss the interplay between ee-, er-, and rr-crossings for
the realizability of 〈α, β, γ〉-drawings of clustered graphs.

As a first observation in this direction, we note that the result proved in
Theorem 6 shows that there exist c-graphs for which allowing ee-, er-, and rr-
crossing at the same time does not reduce the total number of crossings with
respect to allowing only one type of crossings.

Next, we study the following question: suppose that a clustered graph
C(G,T ) admits a 〈1, 0, 0〉-drawing (resp. a 〈0, 1, 0〉-drawing, resp. a 〈0, 0, 1〉-
drawing); does this imply that C(G,T ) admits a 〈0, β, 0〉-drawing and a 〈0, 0, γ〉-
drawing (resp. an 〈α, 0, 0〉-drawing and a 〈0, 0, γ〉-drawing, resp. an 〈α, 0, 0〉-
drawing and a 〈0, β, 0〉-drawing) with small number of crossings?

In the following, we prove that the answer to this question is often negative,
as we can only prove (Theorem 13) that every graph admitting a drawing with
one single er-crossing also admits a drawing with O(n) ee-crossings, while in
many other cases we can prove (Theorem 14) the existence of graphs that,
even admitting a drawing with one single crossing of one type, require up to a
quadratic number of crossings of a different type.

We first present Theorem 13. Observe that this theorem gives a stronger
result than the one needed to answer the above question, as it proves that
every 〈α, β, γ〉-drawing of a clustered graph can be transformed into a 〈α + β ·
O(n), 0, γ〉-drawing.
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Theorem 13. Any n-vertex clustered graph admitting a 〈0, β, 0〉-drawing also
admits an 〈α, 0, 0〉-drawing with α ∈ O(βn).

Proof: Let Γ be a 〈0, β, 0〉-drawing of a clustered graph C(G,T ). We construct
an 〈α, 0, 0〉-drawing of C(G,T ) with α ∈ O(βn) by modifying Γ as follows. For
each cluster µ ∈ T , consider the set of edges that cross the boundary of R(µ)
at least twice. Partition this set into two sets Ein and Eout as follows. Each
edge whose endvertices both belong to µ is in Ein; each edge none of whose
endvertices belongs to µ is in Eout; all the other edges are arbitrarily placed
either in Ein or in Eout. Fig. 22(a) represents a cluster µ and the corresponding
set Eout. We describe the construction for Eout. For each edge e ∈ Eout

consider the set of curves obtained as e ∩ R(µ), except for the curves having
the endvertices of e as endpoints. Consider the set S that is the union of the
sets of curves obtained from all the edges of Eout. Starting from any point of
the boundary of R(µ), follow such a boundary in clockwise direction and assign
increasing integer labels to the endpoints of all the curves in S. See Fig. 22(b).
Consider a curve ζ ∈ S such that there exists no other curve ζ ′ ∈ S whose
both endpoints have a label that is between the labels of the two endpoints of
ζ. Then, consider the edge e such that ζ is a portion of e. Consider two points
p1 and p2 of e arbitrarily close to the two endpoints of ζ, respectively, and not
contained into R(µ). Redraw the portion of e between p1 and p2 as a curve
outside R(µ) following clockwise the boundary B(ζ, µ) of R(µ) between the
smallest and the largest endpoint of ζ, and arbitrarily close to B(ζ, µ) in such
a way that it crosses only the edges that cross B(ζ, µ) and the edges that used
to cross the portion of e between p1 and p2 before redrawing it. See Fig. 22(c),
where the curve ζ between 6 and 8 is redrawn. Remove ζ from S and repeat
this procedure until S is empty. Fig. 22(d) shows the final drawing obtained by
applying the described procedure to the drawing in Fig. 22(a).

The construction for Ein is analogous, with the portion of e being redrawn
inside R(µ). Observe that, every time the portion of an edge e between p1 and
p2, corresponding to a curve ζ ∈ S, is redrawn, an er-crossing is removed from
the drawing and at most O(n) ee-crossings between e and the edges crossing
B(ζ, µ) are added to the drawing. This concludes the proof of the theorem. ¤

In Theorem 14 we prove that there exist graphs that, even admitting a
drawing with one single crossing of one type, require up to a quadratic number
of crossings of a different type.

Theorem 14. There exist clustered graphs C1, C2, and C3 such that:

(i) C1 admits a 〈1, 0, 0〉-drawing, β ∈ Ω(n2) in every 〈0, β, 0〉-drawing of C1,
and γ ∈ Ω(n2) in every 〈0, 0, γ〉-drawing of C1;

(ii) C2 admits a 〈0, 1, 0〉-drawing, α ∈ Ω(n) in every 〈α, 0, 0〉-drawing of C2,
and γ ∈ Ω(n2) in every 〈0, 0, γ〉-drawing of C2;

(iii) C3 admits 〈0, 0, 1〉-drawing, α ∈ Ω(n2) in every 〈α, 0, 0〉-drawing, and β ∈
Ω(n) in every 〈0, β, 0〉-drawing of C3.
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Figure 21: Illustration for Theorem 13. (a) A cluster µ with a set of edges crossing R(µ) at
least twice and belonging to Eout. (b) The curves belonging to S are represented by dashed
curve segments, while the other portions of the edges are represented by solid curve segments.
The intersection points between curves in S and R(µ) are labeled with increasing integers.
(c) The curve ζ between intersection points 6 and 8 that is a portion of edge e = (u, v) is
selected, since there exists no curve ζ′ ∈ S whose both endpoints have a label that is between
6 and 8. The old drawing of curve ζ is represented by a dotted curve segment, while the new
drawing of ζ is represented by a fat solid curve. Note that the new drawing of ζ crosses all
the edges that cross the boundary of R(µ) between 6 and 8. (d) The final drawing obtained
by applying the described procedure to all the curves in S.

Proof: We start by describing a clustered graph C∗(G∗, T ∗), that will be used
as a template for the graphs in the proof. Graph G∗ is obtained as follows.Refer
to Fig. 23(a). Initialize G∗ = K5(n) on vertices {a, b, c, d, e}. First, for each
u, v ∈ {a, b, c, d, e}, with u 6= v, replace the set of n multiple edges S(u, v) with
a set S′(u, v) of n length-2 paths between u and v. Then, remove from G∗

sets S′(a, d), S′(c, e), S′(a, e), and S′(c, d). Finally, for i = 1, . . . , n, add to G∗

vertices [ae]i, [ea]i, [cd]i, [dc]i, and edges (a, [ae]i), (e, [ea]i), (c, [cd]i), (d, [dc]i).
For i = 1, . . . ,m, T ∗ contains clusters µ(a, e)i = {[ae]i, [ea]i} and µ(c, d)i =
{[cd]i, [dc]i}. Denote by M(a, e) = {(a, [ae]i), (e, [ea]i), µ(a, e)i|i = 1, . . . , n}
and M(c, d) = {(c, [cd]i), (d, [dc]i), µ(c, d)i|i = 1, . . . , n}.

Clustered graph C1(G1, T1) is obtained by adding edges (a, d) and (c, e) to
G∗ and by setting T1 = T ∗. A 〈1, 0, 0〉-drawing of C1 is depicted in Fig. 23(b),
where edges (a, d) and (c, e) cross.

Clustered graph C2(G2, T2) is obtained by adding edge (c, e) to G∗ and by
adding a cluster µ(a, d) = {a, d} to T ∗. A 〈0, 1, 0〉-drawing of C2 is depicted in
Fig. 23(c), where edge (c, e) and region R(µ(a, d)) cross.

Clustered graph C3(G3, T3) is obtained by setting G3 = G∗ and by adding
clusters µ(a, d) = {a, d} and µ(c, e) = {c, e} to T ∗. A 〈0, 0, 1〉-drawing of C3 is
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(a) (b) (c) (d)

Figure 22: Illustration for the proof of Theorem 14. (a) C-graph C∗: Dotted lines are
placeholders for gadgets. (b) A 〈1, 0, 0〉-drawing of C1, (c) a 〈0, 1, 0〉-drawing of C2, and
(d) a 〈0, 0, 1〉-drawing of C3.

depicted in Fig. 23(d), where regions R(µ(a, d)) and R(µ(c, e)) cross.
The lower bounds claimed in the theorem can be obtained with arguments

analogous to those used in the proof of Theorem 6.
For example, consider any 〈0, β, 0〉-drawing Γβ of C1 which minimizes β.

For i = 1, . . . , n, draw an edge ([ae]i, [eai]) inside region R(µ(a, e)i) and an edge
([cd]i, [dci]) inside region R(µ(c, d)i), and remove such regions. Then, remove
edges (a, d) and (c, e) and draw two sets S(a, d) and S(c, e) of n multiple edges
arbitrarily close to the drawings of (a, d) and (c, e). The obtained drawing
Γ′

β is a drawing of a subdivision of K5(n), and hence contain Ω(n2) crossings.
Since Γβ is a 〈0,∞, 0〉-drawing, each crossing in Γ′

β involves exactly one edge in
{([ae]i, [eai]), ([cd]i, [dci])}. Also, since Γβ minimizes β, edges in {(a, d), (c, e)}
are not involved in any crossing in Γ′

β , since both such edges are adjacent to
an edge belonging to M(a, e) and to an edge belonging to M(c, d) (recall that
adjacent edges do not cross in any drawing of a graph whose number of crossings
is minimum). Thus, each crossing in Γ′

β corresponds to an er-crossing in Γβ ,

which implies that β ∈ Ω(n2).
This concludes the proof of the theorem. ¤

6. Complexity

In this section we study the problem of minimizing the number of crossings
in 〈α, β, γ〉-drawings.

We define the problem (α, β, γ)-ClusterCrossingNumber ((α, β, γ)-CCN)
as follows. Given a clustered graph C(G,T ) and an integer k > 0, problem
(α, β, γ)-CCN asks whether C(G,T ) admits a 〈α, β, γ〉-drawing with α+β+γ ≤
k.

First, we prove that problem (α, β, γ)-CCN belongs to class NP.

Lemma 7. Problem (α, β, γ)-CCN is in NP.

Proof: Similarly to the proof that the CrossingNumber problem is in NP [20],
we need to “guess” a drawing of C(G,T ) with α ee-crossings, with β er-crossings,
and with γ rr-crossings, for each choices of α, β, and γ satisfying α+β +γ ≤ k.
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This is done as follows. Let m be the number of edge-cluster pairs 〈e, µ〉 such
that one end-vertex of e is in µ and the other one is not. Let 0 ≤ p ≤ γ be a
guess on the number of pairs of clusters that intersect each other. Let E be a
guess on the rotation schemes of the vertices of G. Arbitrarily orient each edge
in G; also, arbitrarily fix a “starting point” on the boundary of each cluster in
T and orient such a boundary in any way.

For each edge e, guess a sequence of crossings x1, x2, . . . , xk(e) occurring
along e while traversing it according to its orientation. Each of such crossings
xi is associated with: (1) the edge e′ that crosses e in xi or the cluster µ′ such
that the boundary of R(µ′) crosses e in xi; and (2) a boolean value b(xi) stating
whether e′ (resp. the boundary of R(µ′)) crosses e from left to right according
to the orientations of e and e′ (resp. of e and the boundary of R(µ′)).

Analogously, for each cluster µ, guess a sequence of crossings x1, x2, . . . , xk(µ)

occurring along the boundary of R(µ) while traversing it from its starting point
according to its orientation. Again, each of such crossings xi is associated with:
(1) the edge e′ that crosses the boundary of R(µ) in xi or the cluster µ′ such
that the boundary of R(µ′) crosses the boundary of R(µ) in xi; and (2) a
boolean value b(xi) stating whether e′ (resp. the boundary of R(µ′)) crosses
the boundary of R(µ) from left to right according to the orientations of the
boundary of R(µ) and e′ (resp. of the boundary of R(µ) and the boundary of
R(µ′)). Observe that the guessed crossings respect constraints C1, C2, and C3.

Crossings are guessed in such a way that there is a total number of α crossings
between edge-edge pairs, a total number of 2β + 2m crossings between edge-
cluster pairs, and a total number of 2γ + 2p crossings between cluster-cluster
pairs, so that p pairs of clusters have a crossing.

We construct a graph G∗ with a fixed rotation scheme around each vertex as
follows. Start with G∗ having the same vertex set of G and containing no edge.
For each edge e in G, add to G∗ a path starting at one end-vertex of e, ending at
the other end-vertex of e, and containing a vertex for each crossing associated
with e. For each cluster µ in T , add to G∗ a cycle containing a vertex for each
crossing associated with µ. This is done in such a way that one single vertex is
introduced in G∗ for each guessed crossing. The rotation scheme of each vertex
in G∗ that is also a vertex in G is the one in E . The rotation scheme of each
vertex in G∗ corresponding to a crossing xi is determined according to b(xi).

Check in linear time whether the constructed graph G∗ with a fixed rotation
scheme around each vertex is planar. For each cluster µ, check in linear time
whether the cycle representing the boundary of R(µ) contains in its interior all
and only the vertices of G and the clusters in T (that is, all the vertices of the
cycles representing such clusters) it has to contain. Observe that, if the checks
succeed and a planar drawing of G∗ with the a fixed rotation scheme around
each vertex can be constructed, the corresponding drawing of C(G,T ) is an
〈α, β, γ〉-drawing. ¤

Second, we prove that (α, β, γ)-CCN is NP-complete, even if the underlying
graph is planar, namely a forest of star graphs, by means of a reduction from
the CrossingNumber problem.
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Theorem 15. Problem (α, β, γ)-CCN is NP-complete, even in the case in which
the underlying graph is a forest of star graphs.

Proof: The membership in NP is proved in Lemma 7.
The NP-hardness is proved by means of a polynomial-time reduction from

the CrossingNumber problem, which has been proved to be NP-complete
by Garey and Johnson [20]. Given a graph G∗ and an integer k∗ > 0, the
CrossingNumber problem consists of deciding whether G∗ admits a drawing
with at most k∗ crossings.

We describe how to construct an instance 〈C(G,T ), k〉 of (α, β, γ)-CCN start-
ing from an instance 〈G∗, k∗〉 of CrossingNumber.

(a) (b)

Figure 23: Illustration for the proof of Theorem 15: A part of graph G∗ (a) and the corre-
sponding part of C(G, T ) (b).

Initialize G = G∗ and T = ρ. For each edge (ui, uj) of G∗, subdivide (ui, uj)
with two subdivision vertices u′

i and u′
j , add a cluster µi,j to T containing u′

i

and u′
j as a child of ρ, and remove edge (u′

i, u
′
j) from G and from G∗. See

Fig.23. Further, set k = k∗. Note that, graph G is a forest of star graphs. Also,
instance 〈C(G,T) , k〉 can be constructed in polynomial time.

We show that instance 〈C(G,T ), k〉 has a solution if and only if instance
〈G∗, k∗〉 has a solution. Both directions of the proof use techniques similar to
those used in Section 4.

Suppose that 〈G∗, k∗〉 admits a solution, that is, G∗ has a drawing Γ∗ with
at most k∗ crossings. An 〈α, β, γ〉-drawing Γ of C(G,T ) with α+β + γ ≤ k can
be constructed by subdividing twice each edge (ui, uj) of G∗ and by replacing
the central edge (u′

i, u
′
j) of each length-3 path representing an edge (ui, uj) of

G∗ with a cluster whose drawing is arbitrarily close to the drawing of (u′
i, u

′
j).

By construction, each crossing between two edges in Γ∗ corresponds to either
an ee-crossing, or to an er-crossing, or to a rr-crossing in Γ. Hence, drawing Γ
contains the same number of crossings as Γ∗, that is, at most k∗ = k.

Suppose that 〈C(G,T ), k〉 admits a solution, that is, C(G,T ) has an 〈α, β, γ〉-
drawing Γ with α + β + γ ≤ k. A drawing Γ∗ of G∗ with at most k∗ crossings
can be constructed by replacing each cluster µi,j = {u′

i, u
′
j} with an edge be-

tween u′
i and u′

j inside R(µi,j) and by replacing each length-3 path P (i, j) =
(ui, u

′
i, u

′
j , uj) with an edge (ui, uj) whose drawing is the same as the drawing

of P (i, j) in Γ. By construction, each crossing (that is either an ee-crossing, or
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an er-crossing, or an rr-crossing) in Γ corresponds to a crossing between two
edges in Γ∗. Hence, drawing Γ∗ contains the same number of crossings as Γ,
that is, at most k = k∗.

This concludes the proof of the theorem. ¤

As for the problems considered in the previous sections, it is interesting to
study the (α, β, γ)-CCN problem when only one out of α, β, and γ is allowed
to be different from 0. We call α-CCN, β-CCN, and γ-CCN the corresponding
decision problems.

We observe that the proof of Theorem 15 can be easily modified to show
that all of α-CCN, β-CCN, and γ-CCN are NP-complete, even in the case in
which the underlying graph is a forest of star graphs.

In the following we prove that stronger results can be found for α-CCN
and β-CCN, by giving NP-hardness proofs for more restricted clustered graph
classes.

Theorem 16. Problem α-CCN is NP-complete even in the case in which the
underlying graph is a matching.

Proof: The membership in NP follows from Lemma 7.
The NP-hardness is proved by means of a polynomial-time reduction from

the known CrossingNumber problem [20].
We describe how to construct an instance 〈C(G,T) , k〉 of α-CCN starting

from an instance 〈G∗, k∗〉 of CrossingNumber. See Figs. 25(a)-(b).
Initialize G = G∗ and T = ρ. Subdivide each edge of G with two subdivision

vertices. For each vertex vi of G, add a cluster µi to T as a child of ρ containing
all the neighbors of vi, and remove from G vertex vi and its incident edges.

Further, set k = k∗. Note that graph G is a matching. Also, instance
〈C(G,T ), k〉 can be constructed in polynomial time.

v1

v2

v3

v4

v5

v6

v7

(a) (b)

Figure 24: (a) Graph G∗ in the proof of Theorem 16. (b) The clustered graph C(G, T )
corresponding to G∗.

We show that instance 〈C(G,T ), k〉 has a solution if and only if instance
〈G∗, k∗〉 has a solution.
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Suppose that 〈G∗, k∗〉 admits a solution, that is, G∗ has a drawing Γ∗ with
at most k∗ crossings. An 〈α, 0, 0〉-drawing Γ of C(G,T ) with α ≤ k can be
constructed as follows. Initialize Γ = Γ∗. For each vertex vi of G∗, draw a
small disk di around it, and, for each edge e incident to vi, place a vertex v′

i

on the intersection between e and the boundary of di. Then, replace each edge
e = (vi, vj) in Γ with edge (v′

i, v
′
j). Finally, remove each vertex vi of G∗ from Γ

and represent each cluster µi in Γ as a region slightly surrounding disk di. Since
each edge in Γ is represented as a Jordan curve that is a subset of the Jordan
curve representing an edge in Γ∗, drawing Γ contains at most the same number
of crossings as Γ∗.

Suppose that 〈C(G,T ), k〉 admits a solution, that is, C(G,T ) has an 〈α, 0, 0〉-
drawing Γ with α ≤ k. A drawing Γ∗ of G∗ with at most k∗ crossings can be
constructed as follows. Place vertex vi on any interior point of region R(µi). For
each intersection point p between the boundary of R(µi) and an edge incident
to µi, draw a curve connecting vi to p so that such curves do not cross each
other. Remove each vertex v′

i and, for each edge e incident to v′
i, the part of e

which lies inside R(µi). Also, remove all the regions representing clusters of T .
The crossings in the resulting drawing Γ∗ of G∗ are a subset of the ee-crossings
in Γ. Namely, the curves that exist in Γ∗ and do not exist in Γ do not cross any
edge of G∗, given that Γ has no er-crossing. This concludes the proof of the
theorem. ¤

Theorem 17. Problem β-CCN is NP-complete even for c-connected flat clus-
tered graphs in which the underlying graph is a triconnected planar multigraph.

Proof: The membership in NP follows from Lemma 7.
The NP-hardness is proved by means of a polynomial-time reduction from

the NP-complete problem SteinerTreePlanarGraphs (STPG) [19], which
is defined as follows: Given a planar graph G(V,E) whose edges have weights
w : E → N, given a set S ⊂ V of terminals, and given an integer k, does a
tree T ∗(V ∗, E∗) exist such that (1) V ∗ ⊆ V , (2) E∗ ⊆ E, (3) S ⊆ V ∗, and (4)∑

e∈E∗ w(e) ≤ k? The edge weights in w are bounded by a polynomial function
p(n) (see [19]). We are going to use the variant of STPG in which (A) G is a
subdivision of a triconnected planar graph, where each subdivision vertex is not
a terminal, and (B) all the edge weights are equal to 1.

In the following we sketch a reduction from STPG to STPG with the de-
scribed properties. Let G be any edge-weighted planar graph. Augment G to
any triconnected planar graph G′(V ′, E′) by adding dummy edges and by as-
signing weight w(e) = n · p(n) to each dummy edge e. Then, replace each edge
e of G′ with a path P (e) with w(e) edges, each with weight 1, hence obtaining
a planar graph G′′(V ′′, E′′). Let the terminals of G′′ be the same terminals of
G. Note that, by construction, G′′ satisfies Properties (A) and (B). Also, since
|V ′′| ∈ O(n2 · p(n)), the described reduction is polynomial.

We prove that 〈G,S, k〉 is a positive instance of STPG if and only if 〈G′′, S, k〉
is a positive instance of the considered variant of STPG.
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Suppose that 〈G,S, k〉 is a positive instance of STPG. Starting from the
solution T ∗ of 〈G,S, k〉, we construct a solution T ⋄ of 〈G′′, S, k〉 by replacing
each edge e with path P (e). By construction,

∑
e∈T⋄ w(e) =

∑
e∈T∗ w(e) ≤ k.

Suppose that 〈G′′, S, k〉 is a positive instance of the variant of STPG. Let
T ⋄(V ⋄, E⋄) be the solution of 〈G′′, S, k〉. Assume that T ⋄ is the optimal solution
to 〈G′′, S, k〉, i.e., there exists no tree T ♯(V ♯, E♯) such that T ♯(V ♯, E♯) is a
solution to 〈G′′, S, k〉 and

∑
e∈E♯ w(e) <

∑
e∈E⋄ w(e). Observe that, if an edge

of a path P (e) belongs to E⋄, then all the edges of P (e) belong to E⋄. Moreover,
no edge of a path P (e) such that e is a dummy edge belongs to E⋄, since the
total weight of the edges of each path P (e) such that e is a dummy edge is
n · p(n). Starting from T ⋄, we construct a solution T ∗ of 〈G,S, k〉 by replacing
all the edges of each path P (e) with an edge e. By construction,

∑
e∈T∗ w(e) =∑

e∈T⋄ w(e) ≤ k.
Next we show a polynomial-time reduction from the variant of STPG in

which all the instances satisfy Properties (A) and (B) to β-CCN. Refer to
Fig. 25. Let 〈G,S, k〉 be an instance of the variant of STPG. Since G is a
subdivision of a triconnected planar graph, it admits a unique planar embedding,
up to a flip and to the choice of the outer face. Construct a planar embedding
ΓG of G. Construct the dual graph H of ΓG. Note that, since G is a subdivision
of a triconnected planar graph, its dual H is a planar triconnected multigraph.
For each terminal s ∈ S, consider the set EG(s) of the edges incident to s in G
and consider the face fs of H composed of the edges that are dual to the edges
in EG(s); add s to the vertex set of H, embed it inside fs, and connect it to the
vertices incident to fs. Define the inclusion tree T as follows. For each vertex
si ∈ S, with 1 ≤ i ≤ |S|, T has a cluster µi = {si}; all the other vertices in the
vertex set of H belong to the same cluster ν. Then, the instance of β-CCN is
〈C(H,T ), k〉.

s
∗

Figure 25: Illustration for the proof of Theorem 17. Solid (black) lines are edges of
G; dashed (red) and dotted (blue) lines are edges of H; green edges are the edges
of T ∗; black circles and white squares are non-terminal vertices and terminals in G,
respectively; finally, red circles and white squares are vertices in H.

We show that 〈C(H,T ), k〉 admits a solution if and only if 〈G,S, k〉 does.
Suppose that 〈G,S, k〉 admits a solution T ∗. Consider a terminal vertex

s∗ ∈ S and construct a planar embedding of H such that s∗ is incident to
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the outer face. Construct a drawing of cluster ν as a simple region R(ν) that
entirely encloses H, except for a small region surrounding T ∗ (observe that such
a simple region R(ν) exists since s∗ is incident to the outer face and s∗ ∈ T ∗).
Draw each cluster µi as a region R(µi) surrounding si sufficiently small so that
it does not intersect R(ν). Observe that the resulting drawing of C(H,T ) is
a 〈0,∞, 0〉-drawing. Moreover, R(ν) intersects all and only the edges dual to
edges in T ∗, hence there are at most k edge-region crossings, that is, C(H,T )
is a 〈0, β, 0〉-drawing with β ≤ k.

Suppose that C(H,T ) admits a 〈0, β, 0〉-drawing Γ with β ≤ k edge-region
crossings and assume that Γ is optimal (that is, there is no 〈0,∞, 0〉-drawing
with fewer er-crossings). Consider the graph T ∗ composed of the edges that are
dual to the edges of H participating in some edge-region crossing. We claim that
T ∗ has at least one edge incident to each terminal in S and that T ∗ is connected.
The claim implies that T ∗ is a solution to the instance 〈G,S, k〉 of STPG, since
T ∗ has at most k edges and since Γ is optimal. Consider any terminal s ∈ S. If
none of the edges incident to s in G belongs to T ∗, it follows that none of the
edges of H incident to face fs has a crossing with the region R(ν) representing
ν in Γ. Observe that, since Γ is optimal, there exists a terminal s∗ incident to
the outer face of Γ. If s 6= s∗, then since all the vertices incident to fs have
to lie inside R(ν), either R(ν) is not a simple region or it contains s, in both
cases contradicting the assumption that Γ is a 〈0,∞, 0〉-drawing. Also, if s = s∗,
then either R(ν) is not a simple region or it contains all the vertices of H, and
hence also vertices not in ν, in both cases contradicting the assumption that
Γ is a 〈0,∞, 0〉-drawing. Suppose that T ∗ contains (at least) two connected
components T ∗

1 and T ∗
2 . At least one of them, say T ∗

2 , does not contain any
edge that is dual to an edge incident to the outer face of Γ. Therefore, R(ν) is
not a simple region, a contradiction. This concludes the proof of the theorem.

¤

7. Open Problems

Given a clustered graph whose underlying graph is planar we defined and
studied its 〈α, β, γ〉-drawings, where the number of ee-, er-, and rr-crossings is
equal to α, β, and γ, respectively.

This paper opens several problems. First, some of them are identified by
non-tight bounds in the tables of the Introduction. Second, in order to study
how allowing different types of crossings impacts the features of the drawings,
we concentrated most of the attention on 〈α, β, γ〉-drawings where two out of α,
β, and γ are equal to zero. It would be interesting to study classes of clustered
graphs that have drawings where the values of α, β, and γ are balanced in some
way. Third, we have seen that not all clustered graphs whose underlying graph
is planar admit 〈0, 0,∞〉-drawings. It would be interesting to characterize the
class of clustered graphs that admit one and to extend our testing algorithm to
simply-connected clustered graphs.
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