CrossMark

Irreducibility and components rigid in moduli of the Hilbert scheme of smooth curves

Changho Keem¹ · Yun-Hwan Kim¹ · Angelo Felice Lopez²

Received: 4 December 2016 / Accepted: 20 July 2018 / Published online: 7 August 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

Denote by $\mathcal{H}_{d,g,r}$ the Hilbert scheme of smooth curves, that is the union of components whose general point corresponds to a smooth irreducible and non-degenerate curve of degree d and genus g in \mathbb{P}^r . A component of $\mathcal{H}_{d,g,r}$ is rigid in moduli if its image under the natural map $\pi : \mathcal{H}_{d,g,r} \dashrightarrow \mathcal{M}_g$ is a one point set. In this note, we provide a proof of the fact that $\mathcal{H}_{d,g,r}$ has no components rigid in moduli for g > 0 and r = 3, from which it follows that the only smooth projective curves embedded in \mathbb{P}^3 whose only deformations are given by projective transformations are the twisted cubic curves. In case $r \ge 4$, we also prove the non-existence of a component of $\mathcal{H}_{d,g,r}$ rigid in moduli in a certain restricted range of d, g > 0 and r. In the course of the proofs, we establish the irreducibility of $\mathcal{H}_{d,g,3}$ beyond the range which has been known before.

Keywords Hilbert scheme · Algebraic curves · Linear series · Gonality

Mathematics Subject Classification Primary 14C05 · 14C20

1 Basic set up, terminologies and preliminary results

Given non-negative integers d, g and r, let $H_{d,g,r}$ be the Hilbert scheme parametrizing curves of degree d and genus g in \mathbb{P}^r and let $\mathcal{H}_{d,g,r}$ be the Hilbert scheme of smooth curves, that is

Changho Keem: Supported in part by NRF(South Korea) Grant # 2017R1D1A1B031763. Angelo Felice Lopez: Supported in part by the MIUR national project "Geometria delle varietà algebriche" PRIN 2010–2011.

Yun-Hwan Kim yunttang@snu.ac.kr

Angelo Felice Lopez lopez@mat.uniroma3.it

¹ Department of Mathematics, Seoul National University, Seoul 151-742, South Korea

Changho Keem ckeem1@gmail.com

² Dipartimento di Matematica e Fisica, Università di Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, Italy

the union of components of $H_{d,g,r}$ whose general point corresponds to a smooth irreducible and non-degenerate curve of degree d and genus g in \mathbb{P}^r . Let \mathcal{M}_g be the moduli space of smooth curves of genus g and consider the natural rational map

$$\pi:\mathcal{H}_{d,g,r}\dashrightarrow\mathcal{M}_g$$

which sends each point $c \in \mathcal{H}_{d,g,r}$ representing a smooth irreducible non-degenerate curve C in \mathbb{P}^r to the corresponding isomorphism class $[C] \in \mathcal{M}_g$.

In this article, we concern ourselves with the question regarding the existence of an irreducible component \mathcal{Z} of $\mathcal{H}_{d,g,r}$ whose image under the map π is just a one point set in \mathcal{M}_g , which we call a **component rigid in moduli**.

It is a folklore conjecture that such components should not exist, except when g = 0. It is also expected [9, 1.47] that there are no rigid curves in \mathbb{P}^r , that is curves that admit no deformations other than those given by projectivities of \mathbb{P}^r , except for rational normal curves.

In the next two sections, we provide a proof of the fact that $\mathcal{H}_{g+1,g,3}$ is irreducible and $\mathcal{H}_{d,g,3}$ does not have a component rigid in moduli if g > 0. This in turn implies that there are no rigid curves in \mathbb{P}^3 except for twisted cubic curves. In the subsequent section we also prove that, for $r \ge 4$, $\mathcal{H}_{d,g,r}$ does not carry any component rigid in moduli in a certain restricted range with respect to d, g > 0 and r. In proving the results, we utilize several classical theorems including the so-called Accola–Griffiths–Harris' bound on the dimension of a component consisting of birationally very ample linear series in the variety of special linear series on a smooth algebraic curve. We work over the field of complex numbers.

For notation and conventions, we usually follow those in [2]; e.g. $\pi(d, r)$ is the maximal possible arithmetic genus of an irreducible and non-degenerate curve of degree d in \mathbb{P}^r . Before proceeding, we recall several related results that are rather well known; cf. [1].

For any given isomorphism class $[C] \in \mathcal{M}_g$ corresponding to a smooth irreducible curve C, there exist a neighborhood $U \subset \mathcal{M}_g$ of [C] and a smooth connected variety \mathcal{M} which is a finite ramified covering $h : \mathcal{M} \to U$, together with varieties C, \mathcal{W}_d^r and \mathcal{G}_d^r which are proper over \mathcal{M} with the following properties:

- (1) $\xi : C \to \mathcal{M}$ is a universal curve, that is for every $p \in \mathcal{M}, \xi^{-1}(p)$ is a smooth curve of genus g whose isomorphism class is h(p),
- (2) \mathcal{W}_d^r parametrizes pairs (p, L), where L is a line bundle of degree d with $h^0(L) \ge r+1$,
- (3) \mathcal{G}_d^r parametrizes couples (p, \mathcal{D}) , where \mathcal{D} is possibly an incomplete linear series of degree d and of dimension r, which is denoted by g_d^r , on $\xi^{-1}(p)$.

Let \mathcal{G} be the union of components of \mathcal{G}_d^r whose general element (p, \mathcal{D}) corresponds to a very ample linear series \mathcal{D} on the curve $C = \xi^{-1}(p)$. Note that the open subset of $\mathcal{H}_{d,g,r}$ consisting of points corresponding to smooth curves is a $\mathbb{P}GL(r+1)$ -bundle over an open subset of \mathcal{G} .

We also make a note of the following fact which is basic in the theory; cf. [1] or [8, Chapter 2].

Proposition 1.1 There exists a unique component \mathcal{G}_0 of \mathcal{G} which dominates $\mathcal{M}(or \mathcal{M}_g)$ if the Brill–Noether number $\rho(d, g, r) := g - (r + 1)(g - d + r)$ is non-negative. Furthermore in this case, for any possible component \mathcal{G}' of \mathcal{G} other than \mathcal{G}_0 , a general element (p, \mathcal{D}) of \mathcal{G}' is such that \mathcal{D} is a special linear system on $C = \xi^{-1}(p)$.

Remark 1.2 In the Brill–Noether range, that is $\rho(d, g, r) \ge 0$, the unique component \mathcal{G}_0 of \mathcal{G} (and the corresponding component \mathcal{H}_0 of $\mathcal{H}_{d,g,r}$ as well) which dominates \mathcal{M} or \mathcal{M}_g is called the "principal component". We call the other possible components "exceptional components".

We recall the following well-known fact on the dimension of a component of the Hilbert scheme $\mathcal{H}_{d,g,r}$; cf. [8, Chapter 2.a] or [9, 1.E].

Theorem 1.3 Let $c \in \mathcal{H}_{d,g,r}$ be a point representing a curve C in \mathbb{P}^r . The tangent space of $\mathcal{H}_{d,g,r}$ at c can be identified as

$$T_c \mathcal{H}_{d,g,r} = H^0\left(C, N_{C/\mathbb{P}^r}\right),$$

where N_{C/\mathbb{P}^r} is the normal sheaf of C in \mathbb{P}^r . Moreover, if C is a locally complete intersection, in particular if C is smooth, then

$$\chi(N_{C/\mathbb{P}^r}) \leq \dim_c \mathcal{H}_{d,g,r} \leq h^0(C, N_{C/\mathbb{P}^r}),$$

where $\chi(N_{C/\mathbb{P}^r}) = h^0(C, N_{C/\mathbb{P}^r}) - h^1(C, N_{C/\mathbb{P}^r}).$

For a locally complete intersection $c \in \mathcal{H}_{d,g,r}$, we have

$$\chi(N_{C/\mathbb{P}^r}) = (r+1)d - (r-3)(g-1)$$

which is denoted by $\lambda(d, g, r)$.

The following bound on the dimension of the variety of special linear series on a fixed smooth algebraic curve shall become useful in subsequent sections.

Theorem 1.4 (Accola–Griffiths–Harris Theorem; [8, p.73]). Let *C* be a curve of genus *g*, |D| a birationally very ample special g_d^r , that is a special linear system of dimension *r* and degree *d* inducing a birational morphism from *C* onto a curve of degree *d* in \mathbb{P}^r . Then in a neighborhood of |D| on J(C), either dim $W_d^r(C) = 0$ or

$$\dim W_d^r(C) \le h^0(\mathcal{O}_C(2D)) - 3r \le \begin{cases} d - 3r + 1 & \text{if } d \le g \\ 2d - 3r - g + 1 & \text{if } d \ge g \end{cases}$$

where J(C) denotes the Jacobian variety of C.

We will also use the following lemmas that are a simple application of the dimension estimate of multiples of the hyperplane linear system on a curve of degree d in \mathbb{P}^r ; cf. [2, p.115] or [8, Chapter 3.a].

Lemma 1.5 Let $r \ge 3$ and let C be a smooth irreducible non-degenerate curve of degree d and genus g in \mathbb{P}^r . Then

$$r \le \begin{cases} \frac{d+1}{3} & \text{if } d \le g \\ \frac{1}{3}(2d-g+1) & \text{if } d \ge g \end{cases}$$

Proof Set $m = \lfloor \frac{d-1}{r-1} \rfloor$. Suppose $d \le g$ and assume that $r > \frac{d+1}{3}$, so that $1 \le m \le 3$. If m = 1 we have $g \le \pi(d, r) = d - r \le g - r$, a contradiction. If m = 2 we get $g \le \pi(d, r) = 2d - 3r + 1 < d \le g$, a contradiction. Then m = 3 and $g \le \pi(d, r) = 3d - 6r + 3 \le d - 1 < g$, again a contradiction. Therefore $r \le \frac{d+1}{3}$ when $d \le g$.

Suppose now $d \ge g$, so that 2d > 2g - 2 and $H^1(\mathcal{O}_C(2)) = 0$. By [2, p.115] we have $h^0(\mathcal{O}_C(2)) \ge 3r$, whence, by Riemann–Roch, $2d - g + 1 \ge 3r$, that is $r \le \frac{1}{3}(2d - g + 1)$.

In the next result we will use the second and third Castelnuovo bounds $\pi_1(d, r)$ and $\pi_2(d, r)$.

Lemma 1.6 Let $r \ge 4$ and let C be a smooth irreducible non-degenerate curve of degree d and genus $g \ge 2$ in \mathbb{P}^r . Assume that either

- (i) $d \ge 2r + 1$ and $g > \pi_1(d, r)$ or
- (ii) *C* is linearly normal, $r \ge 8$, $d \ge 2r + 3$ and either $g > \pi_2(d, r)$ or $g = \pi_1(d, r)$.

Then C admits a degeneration $\{C_t \subset \mathbb{P}^r\}_{t \in \mathbb{P}^1}$ to a singular stable curve.

Proof Under hypothesis (i) it follows by [8, Theorem 3.15] that *C* lies on a surface of degree r - 1 in \mathbb{P}^r . Under hypothesis (ii) it follows by [17, Theorem 2.10] or [8, Theorem 3.15] respectively, that *C* lies on a surface of degree r - 1 or r in \mathbb{P}^r .

To do the case of the surface of degree r - 1, we recall the following notation (see [10, Sect. 5.2]). Let $e \ge 0$ be an integer and let $\mathcal{E} = \mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(-e)$. On the ruled surface $X_e = \mathbb{P}\mathcal{E}$, let C_0 be a section in $|\mathcal{O}_{\mathbb{P}\mathcal{E}}(1)|$ and let f be a fiber. Then any curve $D \sim aC_0 + bf$ has arithmetic genus $\frac{1}{2}(a-1)(2b-ae-2)$. Write r-1 = 2n-e for some $n \ge e$ and let $S_{n,e}$ be the image of X_e under the linear system $|C_0 + nf|$. This linear system embeds X_e when n > e, while, when n = e, it contracts C_0 to a point and is an isomorphism elsewhere, thus $S_{e,e}$ is a cone. As is well-known (see for example [8, Proposition 3.10]), every irreducible surface of degree r - 1 in \mathbb{P}^r is either the Veronese surface $v_2(\mathbb{P}^2) \subset \mathbb{P}^5$ or an $S_{n,e}$.

If $C \subset v_2(\mathbb{P}^2)$ then $C \sim aQ$ where Q is a conic and $d = 2a \ge 11$, so that $a \ge 6$. Let C_1 be general in |(a-1)Q| and let C_2 be general in |Q|. Now C_1 and C_2 are smooth irreducible, $C_1 \cdot C_2 = a - 1 \ge 5$ and they intersect transversally. Therefore C specializes to the singular stable curve $C_1 \cup C_2$.

Now suppose that $C \subset S_{n,e}$.

We deal first with the case n > e.

We have $C \sim aC_0 + bf$ for some integers a, b such that $a \ge 2$ (because $g \ge 2$) and, as C is smooth irreducible, we get by [10, Corollary V.2.18(b)] that either $e = 0, b \ge 2$ (if b = 1 then g = 0) or $e > 0, b \ge ae$. Consider first the case $a \ge 3$. If e = 0 or if e > 0and b > ae, let C_1 be general in |C - f| and C_2 be a general fiber. As above C_1 and C_2 are smooth irreducible, intersect transversally and $C_1 \cdot C_2 = a \ge 3$. Therefore $C_1 \cup C_2$ is a singular stable curve and C specializes to it. If e > 0 and b = ae let C_1 be general in $|C_0 + ef|$ and C_2 be general in $|(a - 1)(C_0 + ef)|$. As above both C_1 and C_2 are smooth irreducible, intersect transversally and $C_1 \cdot C_2 = e(a - 1) \ge 3$ unless a = 3, e = 1, b = 3, which is not possible since then g = 1. Therefore $C_1 \cup C_2$ is a singular stable curve and Cspecializes to it. Now suppose that a = 2. Then $g = b - e - 1 \ge 2$ and therefore $b \ge e + 3$. Let $C_1 = C_0$ and let C_2 be general in $|C_0 + bf|$. As above C_1 and C_2 are smooth irreducible, intersect transversally and $C_1 \cdot C_2 = b - e \ge 3$. Therefore $C_1 \cup C_2$ is a singular stable curve and C specializes to it. This concludes the case n > e.

If n = e let \widetilde{C} be the strict transform of C on X_e . Then $C \cong \widetilde{C} \sim aC_0 + bf$ for some integers a, b. We get $d = \widetilde{C} \cdot (C_0 + ef) = b$ and, as C is smooth, $d - ae = \widetilde{C} \cdot C_0 = 0$, 1. Since e = r - 1, setting $\eta = 0$, 1 we get $d = a(r - 1) + \eta$. Note that if $a \le 2$ we have $d \le 2r - 1$, a contradiction. Hence $a \ge 3$. If $\eta = 1$ let \widetilde{C}_1 be general in $|\widetilde{C} - f|$ and \widetilde{C}_2 be a general fiber. As above \widetilde{C}_1 and \widetilde{C}_2 are smooth irreducible, intersect transversally and $\widetilde{C}_1 \cdot \widetilde{C}_2 = a \ge 3$. Therefore $\widetilde{C}_1 \cup \widetilde{C}_2$ is a singular stable curve and \widetilde{C} specializes to it. On the other hand $\widetilde{C}, \widetilde{C}_1$ and \widetilde{C}_2 get mapped isomorphically in \mathbb{P}^r , therefore also C specializes to a singular stable curve. If $\eta = 0$ let \widetilde{C}_1 be general in $|C_0 + ef|$ and \widetilde{C}_2 be general in $|(a - 1)(C_0 + ef)|$. Again \widetilde{C}_1 and \widetilde{C}_2 are smooth irreducible, intersect transversally, $\widetilde{C}_1 \cdot \widetilde{C}_2 = (a - 1)(r - 1) \ge 6$ and they get mapped isomorphically in \mathbb{P}^r , therefore C specializes to a singular stable curve image of $\widetilde{C}_1 \cup \widetilde{C}_2$. This concludes the case of the surface of degree r - 1.

We now consider the case $r \ge 8$, $d \ge 2r + 3$, C is linearly normal and lies on a surface of degree r in \mathbb{P}^r . By a classical theorem of del Pezzo and Nagata (see [16, Thorem 8]) we have that such a surface is either a cone over an elliptic normal curve in \mathbb{P}^{r-1} or the 3-Veronese surface $v_3(\mathbb{P}^2) \subset \mathbb{P}^9$ or the image of X_e , e = 0, 1, 2 with the linear system $|2C_0 + 2f|$, $|2C_0 + 3f|$ or $|2C_0 + 4f|$ respectively. The case $v_3(\mathbb{P}^2)$ is done exactly as the case $v_2(\mathbb{P}^2)$ above, while the cases e = 0, 1 are done exactly as the case $S_{n,e}$, n > e above, since the linear systems $|2C_0 + 2f|$, $|2C_0 + 3f|$ are very ample and therefore a degeneration on X_e gives a degeneration in \mathbb{P}^8 . In the case e = 2 let \widetilde{C} be the strict transform of C on X_2 . Then $C \cong \widetilde{C} \sim aC_0 + bf$ for some integers a, b. We get $d = \widetilde{C} \cdot (2C_0 + 4f) = 2b$ and, as C is smooth, $b - 2a = \widetilde{C} \cdot C_0 = \eta$. Also if $a \le 2$ we have $d \le 10$, a contradiction. Hence $a \ge 3$. Now exactly as in the case n = e above we conclude that C specializes to a singular stable curve.

It remains to do the case when *C* is contained in the cone over an elliptic normal curve in \mathbb{P}^{r-1} . Let $E \subset \mathbb{P}^{r-1}$ be a linearly normal smooth irreducible elliptic curve of degree *r*, set $\mathcal{E} = \mathcal{O}_E \oplus \mathcal{O}_E(-1)$ and let $\pi : \mathbb{P}\mathcal{E} \to E$ be the standard map. By [10, Example V.2.11.4] the cone is the image of $\mathbb{P}\mathcal{E}$ under the linear system $|C_0 + \pi^*\mathcal{O}_E(1)|$, which contracts C_0 to the vertex and is an isomorphism elsewhere. In particular it follows that $C_0 + \pi^*\mathcal{O}_E(1)$ is big and base-point-free. Let \widetilde{C} be the strict transform of *C* on $\mathbb{P}\mathcal{E}$, so that $C \cong \widetilde{C} \sim aC_0 + \pi^*M$ for some integer *a* and some line bundle *M* on *E* of degree *b*. As before we have $d = \widetilde{C} \cdot (C_0 + rf) = b$ and, as *C* is smooth, $d - ar = \widetilde{C} \cdot C_0 = \eta$, so that $a \ge 3$.

Assume that $\eta = 0$. We claim that $M \cong \mathcal{O}_E(a)$. In fact if $M \ncong \mathcal{O}_E(a)$ we compute

$$h^{0}(\mathbb{P}\mathcal{E}, aC_{0} + \pi^{*}M) = h^{0}(E, \pi_{*}(aC_{0} + \pi^{*}M))$$
$$= h^{0}((\operatorname{Sym}^{a}\mathcal{E}) \otimes M) = h^{0}\left(\bigoplus_{i=0}^{a}M(-i)\right) = \sum_{i=0}^{a-1}(a-i)r$$

while

$$h^0(\mathbb{P}\mathcal{E}, (a-1)C_0 + \pi^*M) = h^0\left(\bigoplus_{i=0}^{a-1} M(-i)\right) = \sum_{i=0}^{a-1} (a-i)r$$

and therefore the linear system $|aC_0 + \pi^*M|$ has C_0 as base component. But \widetilde{C} is irreducible and $\widetilde{C} \neq C_0$, whence a contradiction. Hence $M \cong \mathcal{O}_E(a)$ and $\widetilde{C} \sim a(C_0 + \pi^*\mathcal{O}_E(1))$. Let \widetilde{C}_1 be general in $|C_0 + \pi^*\mathcal{O}_E(1)|$ and let \widetilde{C}_2 be general in $|(a-1)(C_0 + \pi^*\mathcal{O}_E(1))|$. Now \widetilde{C}_1 and \widetilde{C}_2 are smooth irreducible by Bertini's theorem, intersect transversally and $\widetilde{C}_1 \cdot \widetilde{C}_2 = (a-1)r \geq 16$. Therefore $\widetilde{C}_1 \cup \widetilde{C}_2$ is a singular stable curve and \widetilde{C} specializes to it. On the other hand $\widetilde{C}, \widetilde{C}_1$ and \widetilde{C}_2 get mapped isomorphically in \mathbb{P}^r , therefore also Cspecializes to a singular stable curve.

Finally let us do the case $\eta = 1$. Then M(-a) has degree 1 and thefore there is a point $P \in E$ such that $M \cong \mathcal{O}_E(a)(P)$. Let $F = \pi^*(P)$ be a fiber and let \widetilde{C}_1 be general in $|\widetilde{C} - F|$. Note that $\widetilde{C} - F \sim a(C_0 + \pi^*\mathcal{O}_E(1))$ and therefore \widetilde{C}_1 is smooth irreducible. Again \widetilde{C}_1 and \widetilde{C}_2 intersect transversally and $\widetilde{C}_1 \cdot \widetilde{C}_2 = a \ge 3$. Hence $\widetilde{C}_1 \cup \widetilde{C}_2$ is a singular stable curve and \widetilde{C} specializes to it. Also $\widetilde{C}, \widetilde{C}_1$ and \widetilde{C}_2 get mapped isomorphically in \mathbb{P}^r , therefore also C specializes to a singular stable curve.

2 Irreducibility of $\mathcal{H}_{g+1,g,3}$ for small genus g

The irreducibility of $\mathcal{H}_{g+1,g,3}$ has been known for $g \ge 9$; cf. [11, Theorem 2.6 and Theorem 2.7]. In this section we prove that any non-empty $\mathcal{H}_{g+1,g,3}$ is irreducible of expected dimension for $g \le 8$, whence for all g without any restriction on the genus g.

Proposition 2.1 $\mathcal{H}_{g+1,g,3}$ *is irreducible of expected dimension* 4(g + 1) *if* $g \ge 6$ *and is empty if* $g \le 5$. *Moreover,* dim $\pi(\mathcal{H}_{g+1,g,3}) = 3g - 3$ *if* $g \ge 8$, dim $\pi(\mathcal{H}_{8,7,3}) = 17$ *and* dim $\pi(\mathcal{H}_{7,6,3}) = 13$.

Proof By the Castelnuovo genus bound, one can easily see that there is no smooth nondegenerate curve in \mathbb{P}^3 of degree g + 1 and genus g if $g \leq 5$. Hence $\mathcal{H}_{g+1,g,3}$ is empty for $g \leq 5$. We now treat separately the other cases.

(i) g = 6: A smooth curve *C* of genus 6 with a very ample g_7^3 is trigonal; $|K - g_7^3| = g_3^1$. Furthermore, *C* has a unique trigonal pencil by Castelnuovo–Severi inequality and the g_7^3 is unique as well. Conversely a trigonal curve of genus 6 has a unique trigonal pencil and the residual series $g_7^3 = |K - g_3^1|$ is very ample which is the unique g_7^3 . Hence $\mathcal{G} \subset \mathcal{G}_7^3$ is birationally equivalent to the irreducible locus of trigonal curves $\mathcal{M}_{g,3}^1$. Therefore it follows that $\mathcal{H}_{7,6,3}$ is irreducible which is a $\mathbb{P}GL(4)$ -bundle over the irreducible locus $\mathcal{M}_{g,3}^1$ and dim $\mathcal{H}_{7,6,3} = \dim \mathcal{M}_{g,3}^1 + \dim \mathbb{P}GL(4) = (2g + 1) + 15 = 28$.

(ii) g = 7: First we note that a smooth curve C of degree 8 in \mathbb{P}^3 of genus 7 does not lie on a quadric surface; there is no integer solution to the equation a + b = 8, $(a - b) = 10^{-10}$ 1(b-1) = 7 assuming C is of type (a, b) on a quadric surface. We then claim that C is residual to a line in a complete intersection of two cubic surfaces; from the exact sequence $0 \to \mathcal{I}_C(3) \to \mathcal{O}_{\mathbb{P}^3}(3) \to \mathcal{O}_C(3) \to 0$, one sees that $h^0(\mathbb{P}^3, \mathcal{I}_C(3)) \ge 2$ and hence C lies on two irreducible cubics. Note that deg $C = g + 1 = 8 = 3 \cdot 3 - 1$ and therefore C is a curve residual to a line in a complete intersection of two cubics, that is $C \cup L = X$ where L is a line and X is a complete intersection of two cubics. Upon fixing a line $L \subset \mathbb{P}^3$, we consider the linear system $\mathcal{D} = \mathbb{P}(H^0(\mathbb{P}^3, \mathcal{I}_L(3)))$ consisting of cubics containing the line L. Note that any 4 given points on L impose independent conditions on cubics and hence dim $\mathcal{D} = \dim \mathbb{P}(H^0(\mathbb{P}^3, \mathcal{O}(3))) - 4 = 19 - 4 = 15$. Since our curve C is completely determined by a pencil of cubics containing a line $L \subset \mathbb{P}^3$, we see that $\mathcal{H}_{8,7,3}$ is a $\mathbb{G}(1, 15)$ bundle over $\mathbb{G}(1, 3)$, the space of lines in \mathbb{P}^3 . Hence $\mathcal{H}_{8,7,3}$ is irreducible of dimension dim $\mathbb{G}(1, 15)$ + dim $\mathbb{G}(1, 3) = 28 + 4 = 32 = 4 \cdot 8$. By taking the residual series $|K_C - g_8^3| = g_4^1$ of a very ample g_8^3 , we see that $\mathcal{H}_{8,7,3}$ maps into the irreducible closed locus $\mathcal{M}_{g,4}^1$ consisting 4-gonal curves, which is of dimension 2g + 3. We also note that dim $W_8^3(C) = \dim W_4^1(C) = 0$. For if dim $W_4^1(C) \ge 1$, then C is either trigonal, bielliptic or a smooth plane quintic by Mumford's theorem; cf. [2, p.193]. Because g = 7, C cannot be a smooth plane quintic. If *C* is trigonal with the trigonal pencil g_3^1 , one may deduce that $|g_3^1 + g_5^1|$ is our very ample g_8^3 by the base-point-free pencil trick [2, p.126]; ker $\nu \cong H^0(C, \mathcal{F} \otimes \mathcal{L}^{-1})$ where $\nu : H^0(C, \mathcal{F}) \otimes H^0(C, \mathcal{L}) \to H^0(C, \mathcal{F} \otimes \mathcal{L})$ is the natural cup-product map with $\mathcal{F} = g_8^3$, $\mathcal{L} = g_3^1$ and $\mathcal{F} \otimes \mathcal{L}^{-1}$ turns out to be a g_5^1 . Therefore it follows that *C* is a smooth curve of type (3, 5) on a smooth quadric in \mathbb{P}^3 . However, we have already ruled out the possibility for C lying on a quadric. If C is bi-elliptic with a two sheeted map $\phi : C \to E$ onto an elliptic curve E, one sees that $|K - g_8^3| = g_4^1 = |\phi^*(p+q)|$ by Castelnuovo–Severi inequality and hence $g_8^3 = |K - \phi^*(p+q)|$ where $p, q \in E$. Therefore for any $r \in E$, we have $|g_8^3 - \phi^*(r)| = |K - \phi^*(p+q+r)| = |K - g_6^2| = g_6^2$ whereas g_8^3 is very ample, a contradiction. Furthermore we see that $\mathcal{H}_{8,7,3}$ dominates the locus $\mathcal{M}_{g,4}^1$, for otherwise the inequality dim $\pi(\mathcal{H}_{8,7,3}) < \dim \mathcal{M}_{4,g}^1 = 2g + 3$ which would lead to the inequality

 $\dim \mathcal{H}_{8,7,3} = 32 \le \dim \mathbb{P}GL(4) + \dim W_8^3(C) + \dim \pi(\mathcal{H}_{8,7,3}) < 15 + 17,$

which is an absurdity.

(iii) g = 8: Since we have the non-negative Brill–Noether number $\rho(d, g, 3) = \rho(9, 8, 3) = 0$, there exists the principal component of $\mathcal{H}_{9,8,3}$ dominating \mathcal{M}_8 by Proposition 1.1. Because almost the same argument as in the proof of [11, Theorem 2.6] works for this case, we provide only the essential ingredient and important issue adopted for our case g = 8. Indeed, the crucial step in the proof of [11, Theorem 2.6] was [11, Lemma 2.4] (for a given $g \ge 9$) in which the author used a rather strong result [11, Lemma 2.3]; e.g. if dim $W_5^1(C) = 1$ on a fixed curve *C* of genus g = 9 then dim $W_4^1(C) = 0$. However a similar statement for g = 8 was not known at that time. In other words, it was not clear at all that the condition dim $W_5^1(C) = 1$ would imply dim $W_4^1(C) = 0$ for a curve *C* of genus g = 8. However by the results of Mukai [15] and Ballico et al. [3, Theorem 1] it has been shown that the above statement holds for a curve of genus 8. Therefore the same proof as in [11, Lemma 2.4, Theorem 2.6] works (even without changing any paragraphs or notation therein). The authors apologize for not being kind enough to provide a full proof; otherwise this article may become unnecessarily lengthy and tedious.

3 Non-existence of components of $\mathcal{H}_{d,q,3}$ rigid in moduli

In this section, we give a strictly positive lower bound for the dimension of the image $\pi(\mathcal{Z})$ of an irreducible component \mathcal{Z} of the Hilbert scheme $\mathcal{H}_{d,g,3}$ under the natural map π : $\mathcal{H}_{d,g,r} \dashrightarrow \mathcal{M}_g$, which will in turn imply that $\mathcal{H}_{d,g,3}$ has no components rigid in moduli. The non-existence of a such component of $\mathcal{H}_{d,g,3}$ has certainly been known to some people (e.g. cf. [14, p.3487]). However the authors could not find an adequate source of a proof in any literature.

We start with the following fact about the irreducibility of $\mathcal{H}_{d,g,3}$ which has been proved by Ein [7, Theorem 4] and Keem and Kim [12, Theorems 1.5 and 2.6].

Theorem 3.1 $\mathcal{H}_{d,g,3}$ is irreducible for $d \ge g + 3$ and for $d = g + 2, g \ge 5$.

Using Proposition 1.1 and Theorem 3.1, one can prove the following rather elementary facts, well known to experts and included for self-containedness, when the genus or the degree of the curves under consideration is relatively low.

Proposition 3.2 For $1 \leq g \leq 4$, every non-empty $\mathcal{H}_{d,g,3}$ is irreducible of dimension $\lambda(d, g, 3) = 4d$. Moreover, $\mathcal{H}_{d,g,3}$ dominates \mathcal{M}_g .

Proof For $d \ge g + 3$, we have $\rho(d, g, 3) = g - 4(g - d + 3) \ge 0$ and hence there exists a principal component \mathcal{H}_0 which dominates \mathcal{M}_g by Proposition 1.1. Since $\mathcal{H}_{d,g,3}$ is irreducible for $d \ge g + 3$ by Theorem 3.1, it follows that $\mathcal{H}_{d,g,3} = \mathcal{H}_0$ dominates \mathcal{M}_g . Therefore it suffices to prove the statement when $d \le g + 2$.

If $1 \le g \le 3$, one has $\pi(d, 3) < g$ for $d \le g + 2$ and hence $\mathcal{H}_{d,g,3} = \emptyset$.

If g = 4 we have $d \le 6$. Since $\pi(d, 3) \le 2$ for $d \le 5$, one has $\mathcal{H}_{d,4,3} = \emptyset$ for $d \le 5$ and hence we just need to consider $\mathcal{H}_{6,4,3}$. We note that a smooth curve in \mathbb{P}^3 of degree 6 and genus 4 is a canonical curve, that is a curve embedded by the canonical linear series and vice versa. Hence $\mathcal{G} \subset \mathcal{G}_6^3$ is birationally equivalent to the irreducible variety \mathcal{M}_4 and it follows that $\mathcal{H}_{6,4,3}$ is irreducible which is a $\mathbb{P}GL(4)$ -bundle over an open subset of \mathcal{M}_4 or \mathcal{G} . \Box **Proposition 3.3** *The Hilbert schemes* $\mathcal{H}_{8,8,3}$, $\mathcal{H}_{8,9,3}$ and $\mathcal{H}_{9,g,3}$ for g = 9, 12 are irreducible, while $\mathcal{H}_{9,11,3}$ is empty and $\mathcal{H}_{9,10,3}$ has two irreducible components.

Moreover, under the natural map $\pi : \mathcal{H}_{d,g,3} \dashrightarrow \mathcal{M}_g$, we have

- (i) $\dim \pi(\mathcal{H}_{8,8,3}) = 17;$
- (ii) $\dim \pi(\mathcal{H}_{8,9,3}) = 18;$
- (iii) dim $\pi(Z) = 21$ both when $Z = \mathcal{H}_{9,9,3}$ and when Z is one of the two irreducible components of $\mathcal{H}_{9,10,3}$;
- (iv) $\dim \pi(\mathcal{H}_{9,12,3}) = 23.$

Proof To see that $\mathcal{H}_{9,11,3} = \emptyset$ we use [8, Corollary 3.14]. In fact note that there is no pair of integers $a \ge b \ge 0$ such that a + b = 9, (a - 1)(b - 1) = 11. Since the second Castelnuovo bound $\pi_1(9, 3) = 10$ and $\pi(9, 3) = 12$, it follows that $\mathcal{H}_{9,11,3} = \emptyset$.

As for the other cases, we start with a few general remarks. We will first prove that the Hilbert schemes $\mathcal{H}_{d,g,3}$ or the components $\mathcal{Z} \subset \mathcal{H}_{d,g,3}$ to be considered are irreducible, generically smooth and that their general point represents a smooth irreducible non-degenerate linearly normal curve $C \subset \mathbb{P}^3$. Moreover we will show that the standard multiplication map

$$\mu_0: H^0(\mathcal{O}_C(1)) \otimes H^0(\omega_C(-1)) \to H^0(\omega_C)$$

is surjective. From the above it will then follow, by well-known facts about the Kodaira-Spencer map (see e.g. [18, Proof of Proposition 3.3], [13, Proof of Theorem 1.2], that if N_C is the normal bundle of *C*, then

$$\dim \pi(\mathcal{Z}) = 3g - 3 + \rho + h^1(N_C) = 4d - 15 + h^1(N_C)$$
(3.1)

and this will give the results in (i)–(iv).

In general, given a smooth surface $S \subset \mathbb{P}^3$ containing *C*, we have the commutative diagram

so that μ_0 is surjective when ν is.

Now consider a smooth irreducible curve *C* of type (a, b), with $a \ge b \ge 3$, on a smooth quadric surface $Q \subset \mathbb{P}^3$. In the exact sequence

$$0 \rightarrow N_{C/Q} \rightarrow N_C \rightarrow N_{Q|C} \rightarrow 0$$

we have that $H^1(N_{C/Q}) = 0$ since $C^2 = 2g - 2 + 2d > 2g - 2$ and $N_{Q|C} \cong \mathcal{O}_C(2)$, so that

$$h^1(N_C) = h^1(\mathcal{O}_C(2)).$$
 (3.3)

Moreover we claim that

C is linearly normal and
$$\mu_0$$
 is surjective. (3.4)

In fact from the exact sequence

$$0 \to \mathcal{O}_O(1-a, 1-b) \to \mathcal{O}_O(1) \to \mathcal{O}_C(1) \to 0$$

and the fact that $H^i(\mathcal{O}_Q(1-a, 1-b)) = 0$ for i = 0, 1, we see that $h^0(\mathcal{O}_C(1)) = h^0(\mathcal{O}_Q(1)) = 4$. Setting S = Q in (3.2) we find that ν is the surjective multiplication map of bihomogeneous polynomials

$$H^{0}(\mathcal{O}_{Q}(1,1)) \otimes H^{0}(\mathcal{O}_{Q}(a-3,b-3)) \to H^{0}(\mathcal{O}_{Q}(a-2,b-2))$$

on $\mathbb{P}^1 \times \mathbb{P}^1$. This proves (3.4).

To see (i) note that, since $\pi_1(8, 3) = 7$ and $\pi(8, 3) = 9$, it follows by [8, Corollary 3.14] that $\mathcal{H}_{8,8,3}$ is irreducible of dimension 32 and its general point represents a curve of type (5, 3) on a smooth quadric. Moreover $H^1(\mathcal{O}_C(2)) = 0$ since 2d = 16 > 2g - 2 = 14 and therefore $H^1(N_C) = 0$ by (3.3) and $\mathcal{H}_{8,8,3}$ is smooth at the point representing *C*. Now (3.4) and (3.1) give (i).

To see (ii) observe that, by [5, Example (10.4)], $\mathcal{H}_{8,9,3}$ is smooth irreducible of dimension 33 and its general point represents a curve of type (4, 4) on a smooth quadric. Moreover $h^1(\mathcal{O}_C(2)) = h^1(\omega_C) = 1$ and therefore $h^1(N_C) = 1$ by (3.3). Hence (3.4) and (3.1) give (ii).

Finally, to prove (iii) and (iv), consider $\mathcal{H}_{9,g,3}$ for g = 9, 10 or 12.

By [6, Theorem 5.2.1] we know that $\mathcal{H}_{9,9,3}$ is irreducible of dimension 36 and its general point represents a curve *C* residual of a twisted cubic *D* in the complete intersection of a smooth cubic *S* and a quartic *T*. In the exact sequence

$$0 \rightarrow N_{C/S} \rightarrow N_C \rightarrow N_{S|C} \rightarrow 0$$

we have that $H^1(N_{C/S}) = 0$ since $C^2 = 25 > 2g-2 = 16$ and $N_{S|C} \cong \mathcal{O}_C(3)$ that has degree 27, so that again $H^1(N_{S|C}) = 0$ and therefore also $H^1(N_C) = 0$. Hence $\mathcal{H}_{9,9,3}$ is smooth at the point representing *C*. Moreover, as *D* is projectively normal, *C* is also projectively normal. It remains to prove that μ_0 is surjective, whence, by (3.2), that ν is surjective. To this end observe that, if *H* is the hyperplane divisor of *S*, then $K_S + C - H \sim 2H - D$. A general element $D' \in |2H - D|$ is again a twisted cubic and we get the commutative diagram

Deringer

from which we see that ν is surjective since ν_1 is and so is τ , being the standard multiplication map

$$H^0(\mathcal{O}_{\mathbb{P}^1}(3)) \otimes H^0(\mathcal{O}_{\mathbb{P}^1}(1)) \to H^0(\mathcal{O}_{\mathbb{P}^1}(4)).$$

Now (3.1) gives (iii) for g = 9.

In the case g = 10 it follows by [5, Example (10.4)], that $\mathcal{H}_{9,10,3}$ has two generically smooth irreducible components \mathcal{Z}_1 and \mathcal{Z}_2 , both of dimension 36, and their general point represents a curve *C* of type (6, 3) on a smooth quadric for \mathcal{Z}_1 and a complete intersection of two cubics for \mathcal{Z}_2 . In the first case, from the exact sequence

$$0 \to \mathcal{O}_Q(-4, -1) \to \mathcal{O}_Q(2) \to \mathcal{O}_C(2) \to 0$$

and the fact that $H^1(\mathcal{O}_Q(2)) = H^2(\mathcal{O}_Q(-4, -1)) = 0$, we get $h^1(\mathcal{O}_C(2)) = 0$ and therefore $h^1(N_C) = 0$ by (3.3). Then (3.4) and (3.1) give (iii) for \mathcal{Z}_1 . As for \mathcal{Z}_2 , we have that $N_C \cong \mathcal{O}_C(3)^{\oplus 2}$ and $\omega_C \cong \mathcal{O}_C(2)$, whence $H^1(N_C) = 0$. Moreover, if S is one of the two cubics containing C, we have the diagram

As is well known both α and ν_1 are surjective, whence so is ν and then μ_0 by (3.2). Therefore (3.1) gives (iii) for \mathbb{Z}_2 .

Finally, since $\pi(9, 3) = 12$, it follows by [8, Corollary 3.14] that $\mathcal{H}_{9,12,3}$ is irreducible of dimension 38 and its general point represents a curve of type (5, 4) on a smooth quadric. Moreover, from the exact sequence

$$0 \rightarrow \mathcal{O}_Q(-3, -2) \rightarrow \mathcal{O}_Q(2) \rightarrow \mathcal{O}_C(2) \rightarrow 0$$

and the fact that $H^i(\mathcal{O}_Q(2)) = 0$ for i = 1, 2, we get $h^1(\mathcal{O}_C(2)) = h^2(\mathcal{O}_Q(-3, -2)) = h^0(\mathcal{O}_Q(1, 0)) = 2$ and therefore $h^1(N_C) = 2$ by (3.3). Hence $h^0(N_C) = 38$ and $\mathcal{H}_{9,12,3}$ is smooth at the point representing *C*. Now (3.4) and (3.1) give (iv).

We can now prove our result for r = 3.

Theorem 3.4 Let \mathcal{Z} be an irreducible component of $\mathcal{H}_{d,g,3}$ and $g \geq 5$. Then, under the natural map $\pi : \mathcal{H}_{d,g,3} \dashrightarrow \mathcal{M}_g$, the following possibilities occur:

- (i) \mathcal{Z} dominates \mathcal{M}_g ;
- (ii) $Z = H_{7,6,3}$ and dim $\pi(Z) = 13$;
- (iii) $Z = H_{8,7,3}$ or $H_{8,8,3}$ and dim $\pi(Z) = 17$;
- (iv) $\mathcal{Z} = \mathcal{H}_{8,9,3}$ and dim $\pi(\mathcal{Z}) = 18$;
- (v) $\mathcal{Z} = \mathcal{H}_{9,9,3}$ or $\mathcal{Z} \subset \mathcal{H}_{9,10,3}$ and dim $\pi(\mathcal{Z}) = 21$;
- (vi) dim $\pi(\mathcal{Z}) \geq 23$.

Proof We first make the following general remark, which will also be used in the proof of Theorem 4.1.

Let $r \ge 3$, let \mathcal{Z} be an irreducible component of $\mathcal{H}_{d,g,r}$ not dominating \mathcal{M}_g and let C be a smooth irreducible non-degenerate curve of degree d and genus g in \mathbb{P}^r corresponding to a general point $c \in \mathcal{Z}$. We claim that $\mathcal{O}_C(1)$ is special.

In fact \mathcal{Z} is a $\mathbb{P}GL(r+1)$ -bundle over an open subset of a component \mathcal{G}_1 of \mathcal{G} . If $\mathcal{O}_C(1)$ is non-special then, by Riemann-Roch, $d \ge g + r$ and \mathcal{G}_1 must coincide with \mathcal{G}_0 of Proposition 1.1. But \mathcal{G}_0 dominates \mathcal{M}_g , so that also \mathcal{Z} does, a contradiction.

Therefore $\mathcal{O}_C(1)$ is special. Set $\alpha = \dim |\mathcal{O}_C(1)|$, so that $\alpha \ge r$.

We now specialize to the case r = 3.

First we notice that, in cases (ii)–(v), using Propositions 2.1 and 3.3, $\mathcal{H}_{d,g,3}$ is irreducible, except for $\mathcal{H}_{9,10,3}$, and the dimension of the image under π of each component is as listed. Also we have $d \ge 7$, for if $d \le 6$ then $g \le \pi(6, 3) = 4$.

Assume that \mathcal{Z} is not as in (i), (ii) or the first case of (iii) and that dim $\pi(\mathcal{Z}) \leq 22$. By Theorem 3.1, Proposition 2.1 and Remark 1.2, we can assume that $d \leq g$.

For any component $\mathcal{G}_1 \subseteq \mathcal{G} \subseteq \mathcal{G}_d^3$, there exists a component \mathcal{W} of \mathcal{W}_d^{α} and a closed subset $\mathcal{W}_1 \subseteq \mathcal{W} \subseteq \mathcal{W}_d^{\alpha}$ such that \mathcal{G}_1 is a Grassmannian $\mathbb{G}(3, \alpha)$ -bundle over a non-empty open subset of \mathcal{W}_1 . Thus we have

$$\lambda(d, g, 3) = 4d$$

$$\leq \dim \mathcal{Z}$$

$$\leq \dim \pi(\mathcal{Z}) + \dim W_d^{\alpha}(C) + \dim \mathbb{G}(3, \alpha) + \dim \mathbb{P}GL(4)$$

$$\leq \dim W_d^{\alpha}(C) + 4\alpha + 25. \tag{3.5}$$

By Lemma 1.5 we have $\alpha \leq \frac{d+1}{3}$. If dim $W_d^{\alpha}(C) = 0$, (3.5) gives

$$4d \le \frac{4}{3}(d+1) + 25$$

therefore $d \leq 9$.

If dim $W_d^{\alpha}(C) \ge 1$ then Theorem 1.4 implies $\alpha \le \frac{d}{3}$. By (3.5) and Theorem 1.4 again, we find

$$4d \le d + \alpha + 26 \le \frac{4d + 78}{3}$$

that is again $d \leq 9$.

If d = 7 we find the contradiction $7 \le g \le \pi(7, 3) = 6$. If d = 8 it follows that $8 \le g \le \pi(8, 3) = 9$ and we get that \mathcal{Z} is as in the second case of (iii) or as in case (iv). If d = 9 we find that $9 \le g \le \pi(9, 3) = 12$. Since, by Proposition 3.3, $\mathcal{H}_{9,11,3}$ is empty and dim $\pi(\mathcal{H}_{9,12,3}) = 23$, we get case (v).

- **Remark 3.5** (i) There are no reasons to believe that our estimate on the lower bound of dim $\pi(\mathcal{Z})$ is sharp. On the other hand, it would be interesting to have a better estimate (hopefully sharp) on the lower bound of dim $\pi(\mathcal{Z})$ and come up with (irreducible or reducible) examples of Hilbert scheme $\mathcal{H}_{d,g,3}$ with a component \mathcal{Z} achieving the bound.
- (ii) If $d \le g^{\frac{2}{3}}$ there is a better lower bound for the dimension of components \mathcal{Z} of $\mathcal{H}_{d,g,3}$ in [4, Theorem 1.3]. This leads, in this case, to a better lower bound of dim $\pi(\mathcal{Z})$.

Theorem 3.4 and Proposition 3.2 yield the following immediate corollary.

Corollary 3.6 (i) $\mathcal{H}_{d,g,3}$ has no component that is rigid in moduli if g > 0.

(ii) Let $C \subset \mathbb{P}^r$ be a smooth irreducible and non-degenerate curve of genus g whose only deformations are given by projective transformations. If g = 0 or $r \leq 3$ then C is a rational normal curve.

Proof Since (i) is immediate from Theorem 3.4 and Proposition 3.2 and since (ii) is trivial for r = 2, we only need to check (ii) for g = 0 and $r \ge 3$. Now *C* belongs to a unique component \mathcal{H} of the Hilbert scheme $\mathcal{H}_{d,0,r}$ with dim $\mathcal{H} \le (r+1)^2 - 1$. On the other hand dim $\mathcal{H} \ge \lambda(d, 0, r) = (r+1)d + r - 3$, hence $(r+1)^2 - 1 \ge (r+1)d + r - 3$ giving that d < r + 1. Therefore d = r and *C* is the rational normal curve.

4 Non-existence of components of $\mathcal{H}_{d,q,r}$ rigid in moduli with $r \geq 4$

In this section, we prove the non-existence of a component of $\mathcal{H}_{d,g,r}$ rigid in moduli in a certain restricted range of d, g > 0 and $r \ge 4$.

Theorem 4.1 $\mathcal{H}_{d,g,r}$ has no components rigid in moduli if g > 0 and

 $\begin{array}{ll} (\mathrm{i}) \ d > \min\{\frac{17g+72}{64}, \frac{4g+15}{15}, \max\{\frac{g+18}{4}, \frac{17g+44}{64}\}\} & if r = 4; \\ (\mathrm{ii}) \ d > \min\{\frac{9g+20}{20}, \frac{10g+17}{22}, \max\{\frac{2g+25}{5}, \frac{9g+10}{20}\}\} and \ d > \frac{g+22}{3} \ for \ 101 \le g \le 113, \quad if r = 5; \\ (\mathrm{iii}) \ d > \min\{\frac{13g+20}{22}, \frac{3g+3}{5}, \max\{\frac{g+10}{2}, \frac{13g+10}{22}\}, \max\{\frac{g+10}{2}, \frac{3g-1}{5}\}\} & if r = 6; \\ (\mathrm{iv}) \ d > \min\{\frac{19g+24}{27}, \max\{\frac{4g+39}{7}, \frac{76g+71}{108}\}\} & if r = 7; \\ (\mathrm{v}) \ d > \min\{\frac{4g+1}{5}, \frac{5g-4}{6}\} & if r = 8; \\ (\mathrm{vi}) \ d > \min\{\frac{9g-5}{10}, \frac{29g+3}{33}\} and \ (d, g) \ne (30, 34) & if r = 9; \\ (\mathrm{vii}) \ d > \min\{\frac{21g-4}{22}, \frac{17g+12}{18}\} & if r = 10; \\ (\mathrm{viii}) \ d > g & if r = 11; \\ (\mathrm{ix}) \ d > \frac{2(r-5)g-r+14}{r+1} & if r \ge 12. \end{array}$

Proof Suppose that there is a component \mathcal{Z} of $\mathcal{H}_{d,g,r}$ rigid in moduli and let C be a smooth irreducible non-degenerate curve of degree d and genus g in \mathbb{P}^r corresponding to a general point $c \in \mathcal{Z}$.

Let $\alpha = \dim |\mathcal{O}_C(1)|$, so that $\alpha \ge r$ and note that, as in the proof of Theorem 3.4, using Proposition 1.1, we have that $\mathcal{O}_C(1)$ is special. In particular $d \le 2g - 2$ and $g \ge 2$.

Moreover we claim that *C* does not admit a degeneration $\{C_t \subset \mathbb{P}^{\alpha}\}_{t \in \mathbb{P}^1}$ to a singular stable curve. In fact such a degeneration gives a rational map $\mathbb{P}^1 \dashrightarrow \overline{\mathcal{M}_g}$ whose image contains two distinct points, namely the points representing *C* and the singular stable curve. Hence the image must be a curve and therefore the curves in the pencil $\{C_t \subset \mathbb{P}^{\alpha}\}_{t \in \mathbb{P}^1}$ cannot be all isomorphic. Now we have a projection $p : \mathbb{P}^{\alpha} \dashrightarrow \mathbb{P}^r$ that sends $C \subset \mathbb{P}^{\alpha}$ isomorphically to $p(C) = C \subset \mathbb{P}^r$. Thus the pencil gets projected and gives rise to a deformation $p(C_t) \subset \mathbb{P}^r$ of *C* in \mathcal{Z} (recall that *C* represents a general point of \mathcal{Z}). For general *t* we have that $p(C_t)$ is therefore smooth, whence $p(C_t) \cong C_t$. Since \mathcal{Z} is rigid in moduli we get the contradiction $C \cong C_t$ for general *t*. This proves the claim and now, by Lemma 1.6, we can and will assume that $g \le \pi_1(d, \alpha)$ when $d \ge 2\alpha + 1$ and that $g \le \pi_2(d, \alpha), g < \pi_1(d, \alpha)$ when $\alpha \ge 8$ and $d \ge 2\alpha + 3$.

Recall again that for any component $\mathcal{G}_1 \subseteq \mathcal{G} \subseteq \mathcal{G}_d^r$, there exists a component \mathcal{W} of \mathcal{W}_d^α and a closed subset $\mathcal{W}_1 \subseteq \mathcal{W} \subseteq \mathcal{W}_d^\alpha$ such that \mathcal{G}_1 is a Grassmannian $\mathbb{G}(r, \alpha)$ -bundle over a non-empty open subset of \mathcal{W}_1 . By noting that \mathcal{W}_1 is a sub-locus inside $W_d^\alpha(C)$ in our current situation, we come up with an inequality similar to (3.5):

$$\lambda(d, g, r) = (r+1)d - (r-3)(g-1)$$

$$\leq \dim \mathcal{Z}$$

$$\leq \dim \mathcal{W}_1 + \dim \mathbb{G}(r, \alpha) + \dim \mathbb{P}GL(r+1)$$

Deringer

$$= \dim \mathcal{W}_{1} + (r+1)(\alpha - r) + r^{2} + 2r$$

$$\leq \dim W_{1}^{\alpha}(C) + (r+1)\alpha + r.$$
(4.1)

This leads to the following four cases.

CASE 1: d < g and dim $W_d^{\alpha}(C) = 0$.

We have $\alpha \leq (d+1)/3$ by Lemma 1.5 and (4.1) gives

$$d < g, \alpha \le (d+1)/3 \text{ and } (r+1)(d-\alpha) - 3 \le (r-3)g.$$
 (4.2)

CASE 2: d < g and dim $W_d^{\alpha}(C) \ge 1$.

By Theorem 1.4 we get $\alpha \le d/3$. By (4.1) and Theorem 1.4 again, we find

$$d < g, \alpha \le d/3 \text{ and } rd - (r-2)\alpha - 4 \le (r-3)g.$$
 (4.3)

CASE 3: $d \ge g$ and dim $W_d^{\alpha}(C) = 0$.

We have $\alpha \le (2d - g + 1)/3$ by Lemma 1.5 whence, in particular, $d \ge (g + 3r - 1)/2$. Now (4.1) gives

$$d \ge g, \alpha \le (2d - g + 1)/3 \text{ and } (r + 1)(d - \alpha) - 3 \le (r - 3)g.$$
 (4.4)

CASE 4: $d \ge g$ and dim $W_d^{\alpha}(C) \ge 1$.

By Theorem 1.4 we have $\alpha \le (2d - g)/3$ whence, in particular, $d \ge (g + 3r)/2$. By (4.1) and Theorem 1.4 again, we find

$$d \ge g, \alpha \le (2d - g)/3 \text{ and } (r - 1)d - (r - 2)\alpha - 4 \le (r - 4)g.$$
 (4.5)

The plan is to show that, given the hypotheses, the inequalities (4.2)–(4.5) contradict $g \le \pi_1(d, \alpha)$ when $d \ge 2\alpha + 1$ or $g \le \pi_2(d, \alpha)$, $g < \pi_1(d, \alpha)$ when $\alpha \ge 8$ and $d \ge 2\alpha + 3$.

To this end let us observe that $d \ge 2\alpha + 3$ in cases (4.2)–(4.5): In fact this is obvious in cases (4.2) and (4.3), while in cases (4.4) and (4.5), using $g \le 2d - 3\alpha + 1$ and $g \le 2d - 3\alpha$ respectively, if $d \le 2\alpha + 2$, we get $4\alpha \le 3r - 14$ and $4\alpha \le 2r - 10$, both contradicting $\alpha \ge r$. Therefore in the sequel we will always have that $g \le \pi_1(d, \alpha)$ and that either $\alpha \le 7$ or $\alpha \ge 8$ and $g \le \pi_2(d, \alpha)$, $g < \pi_1(d, \alpha)$.

We now recall the notation. Set

$$m_1 = \lfloor \frac{d-1}{\alpha} \rfloor, m_2 = \lfloor \frac{d-1}{\alpha+1} \rfloor, \varepsilon_1 = d - m_1\alpha - 1, \varepsilon_2 = d - m_2(\alpha+1) - 1$$

and

$$\mu_1 = \begin{cases} 1 & \text{if } \varepsilon_1 = \alpha - 1 \\ 0 & \text{if } 0 \le \varepsilon_1 \le \alpha - 2 \end{cases}, \ \mu_2 = \begin{cases} 2 & \text{if } \varepsilon_2 = \alpha \\ 1 & \text{if } \alpha - 2 \le \varepsilon_2 \le \alpha - 1 \\ 0 & \text{if } 0 \le \varepsilon_2 \le \alpha - 3 \end{cases}$$

so that

$$\pi_1(d,\alpha) = \binom{m_1}{2}\alpha + m_1(\varepsilon_1 + 1) + \mu_1, \\ \pi_2(d,\alpha) = \binom{m_2}{2}(\alpha + 1) + m_2(\varepsilon_2 + 2) + \mu_2.$$

We now deal with the case $r \ge 11$ (and hence $\alpha \ge 11$).

We start with (4.2). If $\alpha \ge d/3$ then either $\alpha = (d+1)/3$ or $\alpha = d/3$. Then $m_2 = 2$, $\mu_2 = 0$ and $\pi_2(d, \alpha) \le d < g$. Therefore $\alpha \le (d-1)/3$ and (4.2) gives $d \le \frac{3(r-3)g-r+8}{2(r+1)}$, contradicting (viii)–(ix).

Similarly, in (4.3), if $\alpha = d/3$ then $m_2 = 2$, $\mu_2 = 0$ and $\pi_2(d, \alpha) = d-1 < g$. Therefore $\alpha \le (d-1)/3$ and (4.3) gives $d \le \frac{3(r-3)g-r+14}{2(r+1)}$, contradicting (viii)–(ix).

Deringer

Now in (4.4), if $\alpha \ge (2d - g)/3$ then either $\alpha = (2d - g)/3$ or $\alpha = (2d - g + 1)/3$. We find $m_2 = 2$, $\mu_2 = 0$ and $\pi_2(d, \alpha) \le g - 1$. Therefore $\alpha \le (2d - g - 1)/3$ and (4.4) gives $d \le \frac{2(r-5)g-r+8}{r+1}$, contradicting (viii)–(ix).

Instead in (4.5), if $\alpha = (2d - g)/3$ we find $m_2 = 2$, $\mu_2 = 0$ and $\pi_2(d, \alpha) = g - 1$. Therefore $\alpha \le (2d - g - 1)/3$ and (4.5) gives $d \le \frac{2(r-5)g-r+14}{r+1}$, contradicting (viii)–(ix). This concludes the case $r \ge 11$.

Assume now that $4 \le r \le 10$.

We first claim that (4.4) and (4.5) do not occur. In fact note that we have

 $d \ge \max\{r+2, g, (g+3r-1)/2\}$ in (4.4) and $d \ge \max\{r+2, g, (g+3r)/2\}$ in (4.5). (4.6)

Plugging in $\alpha \le (2d - g + 1)/3$ in (4.4) and $\alpha \le (2d - g)/3$ in (4.5) we get

$$d \le \frac{2(r-5)g+r+10}{r+1}$$
 in case (4.4) and $d \le \frac{2(r-5)g+12}{r+1}$ in case (4.5)

and it is easily seen that these contradict (4.6).

Therefore, in the sequel, we consider only (4.2) and (4.3).

If $\alpha \leq 7$ (whence $r \leq 7$), we see that (4.2) gives

$$d \le \frac{(r-3)g + 7r + 10}{r+1} \tag{4.7}$$

and (4.3) gives

$$d \le \frac{(r-3)g + 7r - 10}{r}.$$
(4.8)

Now assume $\alpha \ge 8$, so that $g \le \pi_2(d, \alpha)$, $g < \pi_1(d, \alpha)$. Set $i = d + 1 - 3\alpha$ and $j = d - 3\alpha$. Then (4.2) implies $d < g, i \ge 0$,

$$\alpha(m_1 - 1)\left[\frac{r - 3}{2}m_1 - r - 1\right] + (\varepsilon_1 + 1)\left[(r - 3)m_1 - r - 1\right] + 3 + \mu_1(r - 3) > 0 \quad (4.9)$$

and

$$(\alpha+1)(m_2-1)[\frac{r-3}{2}m_2-r-1]+(\varepsilon_2+1)[(r-3)m_2-r-1]-r+2+(m_2+\mu_2)(r-3) \ge 0.$$
(4.10)

On the other hand (4.3) implies $d < g, j \ge 0$,

$$\alpha[(r-3)\binom{m_1}{2} - m_1r + r - 2] + (\varepsilon_1 + 1)[(r-3)m_1 - r] + 4 + \mu_1(r-3) > 0 \quad (4.11)$$

and

$$(\alpha+1)[(r-3)\binom{m_2}{2}-m_2r+r-2]+(\varepsilon_2+1)[(r-3)m_2-r]-r+6+(m_2+\mu_2)(r-3) \ge 0.$$
(4.12)

Suppose now r = 4. It is easily seen that (4.9) implies $m_1 \ge 9$ and $i \ge 7\alpha + 1$, so that $\alpha \le \frac{d}{10}$. Plugging in (4.2) we contradict (i). On the other hand (4.11) implies $m_1 \ge 8$, so that $\alpha \le \frac{d-1}{8}$, and also $j \ge \frac{11\alpha-2}{2}$, so that $\alpha \le \frac{2d+2}{17}$. Moreover (4.12) implies $m_2 \ge 8$, so that $\alpha \le \frac{d-9}{8}$, and also $j \ge \frac{11\alpha+12}{2}$, so that $\alpha \le \frac{2d-12}{17}$. Plugging in (4.3) and using (4.7) and (4.8) we contradict (i) and the case r = 4 is concluded.

If r = 5 it is easily seen that (4.9) implies $m_1 \ge 5$ and $i > 3\alpha + 1$, so that $\alpha < \frac{d}{6}$. Also (4.10) implies $m_2 \ge 5$, so that $i \ge 3\alpha + 5$, hence $\alpha \le \frac{d-4}{6}$. Plugging in (4.2) we contradict (ii). On the other hand (4.11) implies $m_1 \ge 5$, so that $\alpha \le \frac{d-1}{5}$, and also $j \ge \frac{12\alpha - 4}{5}$, so

that $\alpha \leq \frac{5d+4}{27}$. Moreover (4.12) implies $m_2 \geq 5$ and also $j \geq \frac{12\alpha+16}{5}$, so that $\alpha \leq \frac{5d-16}{27}$. Plugging in (4.3) and using (4.7) and (4.8) we contradict (ii) and the case r = 5 is done.

When r = 6 we see that (4.9) implies $m_1 \ge 4$ and $\alpha \le \frac{d-1}{4}$, but also $i > \frac{8\alpha+2}{5}$, so that $\alpha < \frac{5d+3}{23}$. Also (4.10) implies $m_2 \ge 4$, so that $i \ge \frac{8\alpha+20}{5}$, hence $\alpha \le \frac{5d-15}{23}$. Plugging in (4.2) we contradict (iii). On the other hand (4.11) implies $m_1 \ge 4$, so that $\alpha < \frac{d-1}{4}$, and also $j > \frac{4\alpha-2}{3}$, so that $\alpha < \frac{3d+2}{13}$. Moreover (4.12) implies $m_2 \ge 4$ so that $\alpha \le \frac{d-5}{4}$, and also $j \ge \frac{4\alpha+7}{3}$, so that $\alpha < \frac{3d-7}{13}$. Plugging in (4.3) and using (4.7) and (4.8) we contradict (iii) and we have finished the case r = 6.

Now assume that r = 7. We have that (4.9) implies $m_1 \ge 3$ and $i \ge \alpha + 1$, so that $\alpha \le \frac{4}{4}$. Plugging in (4.2) we contradict (iv). On the other hand (4.11) implies $m_1 \ge 3$ and $j > \frac{4\alpha-4}{5}$, so that $\alpha < \frac{5d+4}{19}$. Moreover (4.12) implies $m_2 \ge 3$ and $j \ge \frac{4\alpha+1}{5}$, so that $\alpha \le \frac{5d-4}{19}$. Plugging in (4.3) and using (4.7) and (4.8) we contradict (iv). This concludes the case r = 7.

If r = 8 we find from (4.10) that $m_2 \ge 3$ and $i \ge \frac{\alpha+6}{2}$, so that $\alpha \le \frac{2d-4}{7}$. Plugging in (4.2) we contradict (v). On the other hand (4.12) implies $m_2 \ge 3$ so that $\alpha \le \frac{d-4}{3}$ and also $j \ge \frac{3\alpha+11}{7}$, so that $\alpha \le \frac{7d-11}{24}$. Plugging in (4.3) we contradict (v) and the case r = 8 is proved.

Now let r = 9. Then (4.10) gives $m_2 \ge 3$ and $i \ge \frac{2\alpha+23}{8}$, so that $\alpha \le \frac{8d-15}{26}$. Plugging in (4.2) we contradict (vi). On the other hand (4.12) gives $m_2 \ge 2$ and $j \ge 3$, so that $\alpha \le \frac{d-3}{3}$. We also get $m_2 = 2$ if and only if (d, g) = (30, 33), (30, 34). Then, if (d, g) =(30, 33), (30, 34), we see that (4.12) implies $m_2 \ge 3$ and $j \ge \frac{2\alpha+14}{9}$, so that $\alpha \le \frac{9d-14}{29}$. Plugging in (4.3) we contradict (vi) and we are done with the case r = 9.

Finally let us do the case r = 10. We see that (4.10) gives $m_2 \ge 2$ and $i \ge 4$, so that $\alpha \le \frac{d-3}{3}$. Plugging in (4.2) we contradict (vii). On the other hand (4.11) gives $m_1 \ge 3$ and $j \ge \frac{\alpha-4}{11}$, so that $\alpha < \frac{11d+4}{34}$. Also (4.12) implies $m_2 \ge 2$ and $j \ge 2$, so that $\alpha \le \frac{d-2}{3}$. Plugging in (4.3) we contradict (vii) and we are done with the case r = 10.

Acknowledgements We would like to thank the referee for suggesting that we could add (ii) of Corollary 3.6.

References

- Arbarello, E., Cornalba, M.: A few remarks about the variety of irreducible plane curves of given degree and genus. Ann. Sci. École Norm. Sup. (4) 16, 467–483 (1983)
- Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Geometry of Algebraic Curves, vol. I. Springer, Berlin (1985)
- 3. Ballico, E., Keem, C., Martens, G., Ohbuchi, A.: On curves of genus eight. Math. Z. 227, 543-554 (1998)
- 4. Chen, D.: On the dimension of the Hilbert scheme of curves. Math. Res. Lett. 16(6), 941–954 (2009)
- Ciliberto, C., Sernesi, E.: Families of Varieties and the Hilbert Scheme, Lectures on Riemann Surfaces (Trieste, 1987), 428–499. World Scientific, Teaneck (1989)
- Dasaratha, K.: The Reducibility and Dimension of Hilbert Schemes of Complex Projective Curves. Undergraduate thesis, Harvard University, Department of Mathematics. http://www.math.harvard.edu/ theses/senior/dasaratha/dasaratha.pdf. Accessed 12 May 2013
- 7. Ein, L.: Hilbert scheme of smooth space curves. Ann. Sci. École Norm. Sup. (4) 19(4), 469–478 (1986)
- 8. Harris, J.: Curves in projective space. In: Sem. Math. Sup.. Press Univ. Montréal, Montréal (1982)
- 9. Harris, J., Morrison, I.: Moduli of Curves. Springer, Berlin (1998)
- 10. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)
- Keem, C.: A remark on the Hilbert scheme of smooth complex space curves. Manuscr. Math. 71, 307–316 (1991)
- Keem, C., Kim, S.: Irreducibility of a subscheme of the Hilbert scheme of complex space curves. J. Algebra 145(1), 240–248 (1992)

- Lopez, A.F.: On the existence of components of the Hilbert scheme with the expected number of moduli. Math. Ann. 289(3), 517–528 (1991)
- Lopez, A.F.: On the existence of components of the Hilbert scheme with the expected number of moduli II. Commun. Algebra 27(7), 3485–3493 (1999)
- Mukai, S.: Curves and Grassmannians. In: Yang, J.-H. (ed.) Algebraic Geometry and Related Topics, Inchoen, Korea, 1992, pp. 19–40. International Press, Boston (1993)
- Nagata, M.: On rational surfaces. I. Irreducible curves of arithmetic genus 0 or 1. Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 32, 351–370 (1960)
- 17. Petrakiev, I.: Castelnuovo theory via Gröbner bases. J. Reine Angew. Math. 619, 49-73 (2008)
- 18. Sernesi, E.: On the existence of certain families of curves. Invent. Math. 75(1), 25-57 (1984)