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Abstract
Denote by Hd,g,r the Hilbert scheme of smooth curves, that is the union of components
whose general point corresponds to a smooth irreducible and non-degenerate curve of degree
d and genus g in P

r . A component ofHd,g,r is rigid in moduli if its image under the natural
map π : Hd,g,r ��� Mg is a one point set. In this note, we provide a proof of the fact that
Hd,g,r has no components rigid in moduli for g > 0 and r = 3, from which it follows that
the only smooth projective curves embedded in P

3 whose only deformations are given by
projective transformations are the twisted cubic curves. In case r ≥ 4, we also prove the
non-existence of a component of Hd,g,r rigid in moduli in a certain restricted range of d ,
g > 0 and r . In the course of the proofs, we establish the irreducibility ofHd,g,3 beyond the
range which has been known before.
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1 Basic set up, terminologies and preliminary results

Given non-negative integers d , g and r , let Hd,g,r be the Hilbert scheme parametrizing curves
of degree d and genus g in P

r and letHd,g,r be the Hilbert scheme of smooth curves, that is
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the union of components of Hd,g,r whose general point corresponds to a smooth irreducible
and non-degenerate curve of degree d and genus g in P

r . Let Mg be the moduli space of
smooth curves of genus g and consider the natural rational map

π : Hd,g,r ��� Mg

which sends each point c ∈ Hd,g,r representing a smooth irreducible non-degenerate curve
C in P

r to the corresponding isomorphism class [C] ∈ Mg .
In this article, we concern ourselves with the question regarding the existence of an

irreducible component Z of Hd,g,r whose image under the map π is just a one point set in
Mg , which we call a component rigid in moduli.

It is a folklore conjecture that such components should not exist, except when g = 0. It
is also expected [9, 1.47] that there are no rigid curves in P

r , that is curves that admit no
deformations other than those given by projectivities of P

r , except for rational normal curves.
In the next two sections, we provide a proof of the fact that Hg+1,g,3 is irreducible and

Hd,g,3 does not have a component rigid in moduli if g > 0. This in turn implies that there
are no rigid curves in P

3 except for twisted cubic curves. In the subsequent section we also
prove that, for r ≥ 4, Hd,g,r does not carry any component rigid in moduli in a certain
restricted range with respect to d, g > 0 and r . In proving the results, we utilize several
classical theorems including the so-called Accola–Griffiths–Harris’ bound on the dimension
of a component consisting of birationally very ample linear series in the variety of special
linear series on a smooth algebraic curve. We work over the field of complex numbers.

For notation and conventions, we usually follow those in [2]; e.g. π(d, r) is the maximal
possible arithmetic genus of an irreducible and non-degenerate curve of degree d in P

r .
Before proceeding, we recall several related results that are rather well known; cf. [1].

For any given isomorphism class [C] ∈ Mg corresponding to a smooth irreducible curve
C , there exist a neighborhood U ⊂ Mg of [C] and a smooth connected variety M which
is a finite ramified covering h : M → U , together with varieties C, Wr

d and Gr
d which are

proper over M with the following properties:

(1) ξ : C → M is a universal curve, that is for every p ∈ M, ξ−1(p) is a smooth curve of
genus g whose isomorphism class is h(p),

(2) Wr
d parametrizes pairs (p, L), where L is a line bundle of degree d with h0(L) ≥ r +1,

(3) Gr
d parametrizes couples (p,D), where D is possibly an incomplete linear series of

degree d and of dimension r , which is denoted by gr
d , on ξ−1(p).

Let G be the union of components of Gr
d whose general element (p,D) corresponds to a

very ample linear series D on the curve C = ξ−1(p). Note that the open subset of Hd,g,r

consisting of points corresponding to smooth curves is a PGL(r + 1)-bundle over an open
subset of G.

We alsomake a note of the following fact which is basic in the theory; cf. [1] or [8, Chapter
2].

Proposition 1.1 There exists a unique component G0 of G which dominates M (or Mg) if the
Brill–Noether number ρ(d, g, r) := g − (r + 1)(g − d + r) is non-negative. Furthermore
in this case, for any possible component G′ of G other than G0, a general element (p,D) of
G′ is such that D is a special linear system on C = ξ−1(p).

Remark 1.2 In the Brill–Noether range, that is ρ(d, g, r) ≥ 0, the unique component G0 of
G (and the corresponding component H0 of Hd,g,r as well) which dominates M or Mg

is called the “principal component”. We call the other possible components “exceptional
components”.
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We recall the following well-known fact on the dimension of a component of the Hilbert
scheme Hd,g,r ; cf. [8, Chapter 2.a] or [9, 1.E].

Theorem 1.3 Let c ∈ Hd,g,r be a point representing a curve C in P
r . The tangent space of

Hd,g,r at c can be identified as

TcHd,g,r = H0 (
C, NC/Pr

)
,

where NC/Pr is the normal sheaf of C in P
r . Moreover, if C is a locally complete intersection,

in particular if C is smooth, then

χ(NC/Pr ) ≤ dimc Hd,g,r ≤ h0 (
C, NC/Pr

)
,

where χ(NC/Pr ) = h0
(
C, NC/Pr

) − h1
(
C, NC/Pr

)
.

For a locally complete intersection c ∈ Hd,g,r , we have

χ(NC/Pr ) = (r + 1)d − (r − 3)(g − 1)

which is denoted by λ(d, g, r).
The following bound on the dimension of the variety of special linear series on a fixed

smooth algebraic curve shall become useful in subsequent sections.

Theorem 1.4 (Accola–Griffiths–Harris Theorem; [8, p.73]). Let C be a curve of genus g,
|D| a birationally very ample special gr

d , that is a special linear system of dimension r and
degree d inducing a birational morphism from C onto a curve of degree d in P

r . Then in a
neighborhood of |D| on J (C), either dim W r

d (C) = 0 or

dim W r
d (C) ≤ h0(OC (2D)) − 3r ≤

{
d − 3r + 1 if d ≤ g

2d − 3r − g + 1 if d ≥ g
.

where J (C) denotes the Jacobian variety of C.

We will also use the following lemmas that are a simple application of the dimension
estimate of multiples of the hyperplane linear system on a curve of degree d in P

r ; cf. [2,
p.115] or [8, Chapter 3.a].

Lemma 1.5 Let r ≥ 3 and let C be a smooth irreducible non-degenerate curve of degree d
and genus g in P

r . Then

r ≤
{

d+1
3 if d ≤ g

1
3 (2d − g + 1) if d ≥ g

.

Proof Set m = � d−1
r−1 	. Suppose d ≤ g and assume that r > d+1

3 , so that 1 ≤ m ≤ 3.
If m = 1 we have g ≤ π(d, r) = d − r ≤ g − r , a contradiction. If m = 2 we get
g ≤ π(d, r) = 2d − 3r + 1 < d ≤ g, a contradiction. Then m = 3 and g ≤ π(d, r) =
3d − 6r + 3 ≤ d − 1 < g, again a contradiction. Therefore r ≤ d+1

3 when d ≤ g.
Suppose now d ≥ g, so that 2d > 2g − 2 and H1(OC (2)) = 0. By [2, p.115] we have

h0(OC (2)) ≥ 3r , whence, by Riemann–Roch, 2d − g + 1 ≥ 3r , that is r ≤ 1
3 (2d − g + 1).


�
In the next result we will use the second and third Castelnuovo bounds π1(d, r) and

π2(d, r).
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Lemma 1.6 Let r ≥ 4 and let C be a smooth irreducible non-degenerate curve of degree d
and genus g ≥ 2 in P

r . Assume that either

(i) d ≥ 2r + 1 and g > π1(d, r)

or
(ii) C is linearly normal, r ≥ 8, d ≥ 2r + 3 and either g > π2(d, r) or g = π1(d, r).

Then C admits a degeneration {Ct ⊂ P
r }t∈P1 to a singular stable curve.

Proof Under hypothesis (i) it follows by [8, Theorem 3.15] that C lies on a surface of degree
r − 1 in P

r . Under hypothesis (ii) it follows by [17, Theorem 2.10] or [8, Theorem 3.15]
respectively, that C lies on a surface of degree r − 1 or r in P

r .
To do the case of the surface of degree r − 1, we recall the following notation (see [10,

Sect. 5.2]). Let e ≥ 0 be an integer and let E = OP1 ⊕ OP1(−e). On the ruled surface
Xe = PE , let C0 be a section in |OPE (1)| and let f be a fiber. Then any curve D ∼ aC0 +b f
has arithmetic genus 1

2 (a −1)(2b−ae−2). Write r −1 = 2n −e for some n ≥ e and let Sn,e

be the image of Xe under the linear system |C0 + n f |. This linear system embeds Xe when
n > e, while, when n = e, it contracts C0 to a point and is an isomorphism elsewhere, thus
Se,e is a cone. As is well-known (see for example [8, Proposition 3.10]), every irreducible
surface of degree r − 1 in P

r is either the Veronese surface v2(P
2) ⊂ P

5 or an Sn,e.
If C ⊂ v2(P

2) then C ∼ aQ where Q is a conic and d = 2a ≥ 11, so that a ≥ 6. Let C1

be general in |(a −1)Q| and let C2 be general in |Q|. Now C1 and C2 are smooth irreducible,
C1 · C2 = a − 1 ≥ 5 and they intersect transversally. Therefore C specializes to the singular
stable curve C1 ∪ C2.

Now suppose that C ⊂ Sn,e.
We deal first with the case n > e.
We have C ∼ aC0 + b f for some integers a, b such that a ≥ 2 (because g ≥ 2) and,

as C is smooth irreducible, we get by [10, Corollary V.2.18(b)] that either e = 0, b ≥ 2 (if
b = 1 then g = 0) or e > 0, b ≥ ae. Consider first the case a ≥ 3. If e = 0 or if e > 0
and b > ae, let C1 be general in |C − f | and C2 be a general fiber. As above C1 and C2

are smooth irreducible, intersect transversally and C1 · C2 = a ≥ 3. Therefore C1 ∪ C2 is
a singular stable curve and C specializes to it. If e > 0 and b = ae let C1 be general in
|C0 + e f | and C2 be general in |(a − 1)(C0 + e f )|. As above both C1 and C2 are smooth
irreducible, intersect transversally and C1 · C2 = e(a − 1) ≥ 3 unless a = 3, e = 1, b = 3,
which is not possible since then g = 1. Therefore C1 ∪ C2 is a singular stable curve and C
specializes to it. Now suppose that a = 2. Then g = b − e − 1 ≥ 2 and therefore b ≥ e + 3.
Let C1 = C0 and let C2 be general in |C0 +b f |. As above C1 and C2 are smooth irreducible,
intersect transversally and C1 · C2 = b − e ≥ 3. Therefore C1 ∪ C2 is a singular stable curve
and C specializes to it. This concludes the case n > e.

If n = e let C̃ be the strict transform of C on Xe. Then C ∼= C̃ ∼ aC0 + b f for some
integers a, b.We get d = C̃ ·(C0+e f ) = b and, asC is smooth, d−ae = C̃ ·C0 = 0, 1. Since
e = r − 1, setting η = 0, 1 we get d = a(r − 1)+ η. Note that if a ≤ 2 we have d ≤ 2r − 1,
a contradiction. Hence a ≥ 3. If η = 1 let C̃1 be general in |C̃ − f | and C̃2 be a general fiber.
As above C̃1 and C̃2 are smooth irreducible, intersect transversally and C̃1 · C̃2 = a ≥ 3.
Therefore C̃1 ∪ C̃2 is a singular stable curve and C̃ specializes to it. On the other hand C̃, C̃1

and C̃2 get mapped isomorphically in P
r , therefore also C specializes to a singular stable

curve. If η = 0 let C̃1 be general in |C0 + e f | and C̃2 be general in |(a −1)(C0 + e f )|. Again
C̃1 and C̃2 are smooth irreducible, intersect transversally, C̃1 · C̃2 = (a − 1)(r − 1) ≥ 6
and they get mapped isomorphically in P

r , therefore C specializes to a singular stable curve
image of C̃1 ∪ C̃2.
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This concludes the case of the surface of degree r − 1.
We now consider the case r ≥ 8, d ≥ 2r + 3, C is linearly normal and lies on a surface

of degree r in P
r . By a classical theorem of del Pezzo and Nagata (see [16, Thorem 8])

we have that such a surface is either a cone over an elliptic normal curve in P
r−1 or the

3-Veronese surface v3(P
2) ⊂ P

9 or the image of Xe, e = 0, 1, 2 with the linear system
|2C0 + 2 f |, |2C0 + 3 f | or |2C0 + 4 f | respectively. The case v3(P

2) is done exactly as the
case v2(P

2) above, while the cases e = 0, 1 are done exactly as the case Sn,e, n > e above,
since the linear systems |2C0 +2 f |, |2C0 +3 f | are very ample and therefore a degeneration
on Xe gives a degeneration in P

8. In the case e = 2 let C̃ be the strict transform of C on X2.
Then C ∼= C̃ ∼ aC0 + b f for some integers a, b. We get d = C̃ · (2C0 + 4 f ) = 2b and, as
C is smooth, b − 2a = C̃ · C0 = η. Also if a ≤ 2 we have d ≤ 10, a contradiction. Hence
a ≥ 3. Now exactly as in the case n = e above we conclude that C specializes to a singular
stable curve.

It remains to do the case when C is contained in the cone over an elliptic normal curve
in P

r−1. Let E ⊂ P
r−1 be a linearly normal smooth irreducible elliptic curve of degree

r , set E = OE ⊕ OE (−1) and let π : PE → E be the standard map. By [10, Example
V.2.11.4] the cone is the image of PE under the linear system |C0 + π∗OE (1)|, which
contracts C0 to the vertex and is an isomorphism elsewhere. In particular it follows that
C0 + π∗OE (1) is big and base-point-free. Let C̃ be the strict transform of C on PE , so that
C ∼= C̃ ∼ aC0 + π∗M for some integer a and some line bundle M on E of degree b. As
before we have d = C̃ · (C0 + r f ) = b and, as C is smooth, d − ar = C̃ · C0 = η, so that
a ≥ 3.

Assume that η = 0. We claim that M ∼= OE (a). In fact if M � OE (a) we compute

h0(PE, aC0 + π∗M) = h0(E, π∗(aC0 + π∗M))

= h0((Syma E) ⊗ M) = h0

(
a⊕

i=0

M(−i)

)

=
a−1∑

i=0

(a − i)r

while

h0(PE, (a − 1)C0 + π∗M) = h0

(
a−1⊕

i=0

M(−i)

)

=
a−1∑

i=0

(a − i)r

and therefore the linear system |aC0 +π∗M | has C0 as base component. But C̃ is irreducible
and C̃ �= C0, whence a contradiction. Hence M ∼= OE (a) and C̃ ∼ a(C0 + π∗OE (1)).
Let C̃1 be general in |C0 + π∗OE (1)| and let C̃2 be general in |(a − 1)(C0 + π∗OE (1))|.
Now C̃1 and C̃2 are smooth irreducible by Bertini’s theorem, intersect transversally and
C̃1 · C̃2 = (a − 1)r ≥ 16. Therefore C̃1 ∪ C̃2 is a singular stable curve and C̃ specializes
to it. On the other hand C̃, C̃1 and C̃2 get mapped isomorphically in P

r , therefore also C
specializes to a singular stable curve.

Finally let us do the case η = 1. Then M(−a) has degree 1 and thefore there is a point
P ∈ E such that M ∼= OE (a)(P). Let F = π∗(P) be a fiber and let C̃1 be general in |C̃ − F |.
Note that C̃ − F ∼ a(C0 +π∗OE (1)) and therefore C̃1 is smooth irreducible. Again C̃1 and
C̃2 intersect transversally and C̃1 · C̃2 = a ≥ 3. Hence C̃1 ∪ C̃2 is a singular stable curve
and C̃ specializes to it. Also C̃, C̃1 and C̃2 get mapped isomorphically in P

r , therefore also
C specializes to a singular stable curve. 
�

123



1212 C. Keem et al.

2 Irreducibility ofHg+1,g,3 for small genus g

The irreducibility of Hg+1,g,3 has been known for g ≥ 9; cf. [11, Theorem 2.6 and Theo-
rem 2.7]. In this section we prove that any non-empty Hg+1,g,3 is irreducible of expected
dimension for g ≤ 8, whence for all g without any restriction on the genus g.

Proposition 2.1 Hg+1,g,3 is irreducible of expected dimension 4(g + 1) if g ≥ 6 and is
empty if g ≤ 5. Moreover, dim π(Hg+1,g,3) = 3g − 3 if g ≥ 8, dim π(H8,7,3) = 17 and
dim π(H7,6,3) = 13.

Proof By the Castelnuovo genus bound, one can easily see that there is no smooth non-
degenerate curve in P

3 of degree g + 1 and genus g if g ≤ 5. Hence Hg+1,g,3 is empty for
g ≤ 5. We now treat separately the other cases.
(i) g = 6: A smooth curve C of genus 6 with a very ample g3

7 is trigonal; |K − g3
7 | = g1

3.
Furthermore, C has a unique trigonal pencil by Castelnuovo–Severi inequality and the g3

7
is unique as well. Conversely a trigonal curve of genus 6 has a unique trigonal pencil and
the residual series g3

7 = |K − g1
3 | is very ample which is the unique g3

7. Hence G ⊂ G3
7 is

birationally equivalent to the irreducible locus of trigonal curvesM1
g,3. Therefore it follows

that H7,6,3 is irreducible which is a PGL(4)-bundle over the irreducible locus M1
g,3 and

dimH7,6,3 = dimM1
g,3 + dim PGL(4) = (2g + 1) + 15 = 28 .

(ii) g = 7: First we note that a smooth curve C of degree 8 in P
3 of genus 7 does not

lie on a quadric surface; there is no integer solution to the equation a + b = 8, (a −
1)(b − 1) = 7 assuming C is of type (a, b) on a quadric surface. We then claim that
C is residual to a line in a complete intersection of two cubic surfaces; from the exact
sequence 0 → IC (3) → OP3(3) → OC (3) → 0, one sees that h0(P3, IC (3)) ≥ 2 and
hence C lies on two irreducible cubics. Note that degC = g + 1 = 8 = 3 · 3 − 1 and
therefore C is a curve residual to a line in a complete intersection of two cubics, that is
C ∪ L = X where L is a line and X is a complete intersection of two cubics. Upon fixing
a line L ⊂ P

3, we consider the linear system D = P(H0(P3, IL(3))) consisting of cubics
containing the line L . Note that any 4 given points on L impose independent conditions on
cubics and hence dimD = dim P(H0(P3,O(3))) − 4 = 19 − 4 = 15. Since our curve C
is completely determined by a pencil of cubics containing a line L ⊂ P

3, we see that H8,7,3

is a G(1, 15) bundle over G(1, 3), the space of lines in P
3. Hence H8,7,3 is irreducible of

dimension dimG(1, 15) + dimG(1, 3) = 28+ 4 = 32 = 4 · 8. By taking the residual series
|KC − g3

8 | = g1
4 of a very ample g3

8, we see that H8,7,3 maps into the irreducible closed
locus M1

g,4 consisting 4-gonal curves, which is of dimension 2g + 3. We also note that

dim W 3
8 (C) = dim W 1

4 (C) = 0. For if dim W 1
4 (C) ≥ 1, then C is either trigonal, bielliptic

or a smooth plane quintic byMumford’s theorem; cf. [2, p.193]. Because g = 7,C cannot be a
smooth plane quintic. IfC is trigonalwith the trigonal pencil g1

3, onemay deduce that |g1
3+g1

5 |
is our very ample g3

8 by the base-point-free pencil trick [2, p.126]; ker ν
∼= H0(C,F ⊗L−1)

where ν : H0(C,F) ⊗ H0(C,L) → H0(C,F ⊗ L) is the natural cup-product map with
F = g3

8, L = g1
3 and F ⊗ L−1 turns out to be a g1

5. Therefore it follows that C is a smooth
curve of type (3, 5) on a smooth quadric in P

3. However, we have already ruled out the
possibility for C lying on a quadric. If C is bi-elliptic with a two sheeted map φ : C → E
onto an elliptic curve E , one sees that |K − g3

8 | = g1
4 = |φ∗(p + q)| by Castelnuovo–Severi

inequality and hence g3
8 = |K − φ∗(p + q)| where p, q ∈ E . Therefore for any r ∈ E , we

have |g3
8 − φ∗(r)| = |K − φ∗(p + q + r)| = |K − g2

6 | = g2
6 whereas g3

8 is very ample, a
contradiction. Furthermore we see that H8,7,3 dominates the locus M1

g,4, for otherwise the

inequality dim π(H8,7,3) < dimM1
4,g = 2g + 3 which would lead to the inequality

123
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dimH8,7,3 = 32 ≤ dim PGL(4) + dim W 3
8 (C) + dim π(H8,7,3) < 15 + 17,

which is an absurdity.
(iii) g = 8: Since we have the non-negative Brill–Noether number ρ(d, g, 3) = ρ(9, 8, 3) =
0, there exists the principal component ofH9,8,3 dominatingM8 by Proposition 1.1. Because
almost the same argument as in the proof of [11, Theorem 2.6 ] works for this case, we pro-
vide only the essential ingredient and important issue adopted for our case g = 8. Indeed,
the crucial step in the proof of [11, Theorem 2.6 ] was [11, Lemma 2.4 ] (for a given g ≥ 9)
in which the author used a rather strong result [11, Lemma 2.3 ]; e.g. if dim W 1

5 (C) = 1
on a fixed curve C of genus g = 9 then dim W 1

4 (C) = 0. However a similar statement for
g = 8 was not known at that time. In other words, it was not clear at all that the condition
dim W 1

5 (C) = 1 would imply dim W 1
4 (C) = 0 for a curve C of genus g = 8. However

by the results of Mukai [15] and Ballico et al. [3, Theorem 1] it has been shown that the
above statement holds for a curve of genus 8. Therefore the same proof as in [11, Lemma
2.4, Theorem 2.6] works (even without changing any paragraphs or notation therein). The
authors apologize for not being kind enough to provide a full proof; otherwise this article
may become unnecessarily lengthy and tedious. 
�

3 Non-existence of components ofHd,g,3 rigid in moduli

In this section, we give a strictly positive lower bound for the dimension of the image π(Z)

of an irreducible component Z of the Hilbert scheme Hd,g,3 under the natural map π :
Hd,g,r ��� Mg , which will in turn imply that Hd,g,3 has no components rigid in moduli.
The non-existence of a such component of Hd,g,3 has certainly been known to some people
(e.g. cf. [14, p.3487]). However the authors could not find an adequate source of a proof in
any literature.

We start with the following fact about the irreducibility of Hd,g,3 which has been proved
by Ein [7, Theorem 4] and Keem and Kim [12, Theorems 1.5 and 2.6].

Theorem 3.1 Hd,g,3 is irreducible for d ≥ g + 3 and for d = g + 2, g ≥ 5.

Using Proposition 1.1 and Theorem 3.1, one can prove the following rather elementary
facts, well known to experts and included for self-containedness, when the genus or the
degree of the curves under consideration is relatively low.

Proposition 3.2 For 1 ≤ g ≤ 4, every non-empty Hd,g,3 is irreducible of dimension
λ(d, g, 3) = 4d. Moreover, Hd,g,3 dominates Mg.

Proof For d ≥ g + 3, we have ρ(d, g, 3) = g − 4(g − d + 3) ≥ 0 and hence there exists a
principal componentH0 which dominatesMg by Proposition 1.1. SinceHd,g,3 is irreducible
for d ≥ g + 3 by Theorem 3.1, it follows that Hd,g,3 = H0 dominates Mg . Therefore it
suffices to prove the statement when d ≤ g + 2.

If 1 ≤ g ≤ 3, one has π(d, 3) < g for d ≤ g + 2 and hence Hd,g,3 = ∅.
If g = 4 we have d ≤ 6. Since π(d, 3) ≤ 2 for d ≤ 5, one has Hd,4,3 = ∅ for d ≤ 5 and

hence we just need to consider H6,4,3. We note that a smooth curve in P
3 of degree 6 and

genus 4 is a canonical curve, that is a curve embedded by the canonical linear series and vice
versa. Hence G ⊂ G3

6 is birationally equivalent to the irreducible variety M4 and it follows
that H6,4,3 is irreducible which is a PGL(4)-bundle over an open subset of M4 or G. 
�
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Proposition 3.3 The Hilbert schemesH8,8,3,H8,9,3 andH9,g,3 for g = 9, 12 are irreducible,
while H9,11,3 is empty and H9,10,3 has two irreducible components.

Moreover, under the natural map π : Hd,g,3 ��� Mg, we have

(i) dim π(H8,8,3) = 17;
(ii) dim π(H8,9,3) = 18;
(iii) dim π(Z) = 21 both when Z = H9,9,3 and when Z is one of the two irreducible

components of H9,10,3;
(iv) dim π(H9,12,3) = 23.

Proof To see thatH9,11,3 = ∅ we use [8, Corollary 3.14]. In fact note that there is no pair of
integers a ≥ b ≥ 0 such that a + b = 9, (a − 1)(b − 1) = 11. Since the second Castelnuovo
bound π1(9, 3) = 10 and π(9, 3) = 12, it follows that H9,11,3 = ∅.

As for the other cases, we start with a few general remarks. We will first prove that
the Hilbert schemes Hd,g,3 or the components Z ⊂ Hd,g,3 to be considered are irre-
ducible, generically smooth and that their general point represents a smooth irreducible
non-degenerate linearly normal curve C ⊂ P

3. Moreover we will show that the standard
multiplication map

μ0 : H0(OC (1)) ⊗ H0(ωC (−1)) → H0(ωC )

is surjective. From the above it will then follow, by well-known facts about the Kodaira-
Spencer map (see e.g. [18, Proof of Proposition 3.3], [13, Proof of Theorem 1.2], that if NC

is the normal bundle of C , then

dim π(Z) = 3g − 3 + ρ + h1(NC ) = 4d − 15 + h1(NC ) (3.1)

and this will give the results in (i)–(iv).
In general, given a smooth surface S ⊂ P

3 containingC , we have the commutative diagram

H0(OS(1)) ⊗ H0(ωS(C)(−1))
ν

H0(ωS(C))

H0(OC (1)) ⊗ H0(ωC (−1))
μ0

H0(ωC )

H1(ωS) = 0

(3.2)

so that μ0 is surjective when ν is.
Now consider a smooth irreducible curve C of type (a, b), with a ≥ b ≥ 3, on a smooth

quadric surface Q ⊂ P
3. In the exact sequence

0 → NC/Q → NC → NQ|C → 0

we have that H1(NC/Q) = 0 since C2 = 2g − 2+ 2d > 2g − 2 and NQ|C ∼= OC (2), so that

h1(NC ) = h1(OC (2)). (3.3)

Moreover we claim that

C is linearly normal and μ0 is surjective. (3.4)
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In fact from the exact sequence

0 → OQ(1 − a, 1 − b) → OQ(1) → OC (1) → 0

and the fact that Hi (OQ(1 − a, 1 − b)) = 0 for i = 0, 1, we see that h0(OC (1)) =
h0(OQ(1)) = 4. Setting S = Q in (3.2) we find that ν is the surjective multiplication map
of bihomogeneous polynomials

H0(OQ(1, 1)) ⊗ H0(OQ(a − 3, b − 3)) → H0(OQ(a − 2, b − 2))

on P
1 × P

1. This proves (3.4).
To see (i) note that, since π1(8, 3) = 7 and π(8, 3) = 9, it follows by [8, Corollary 3.14]

that H8,8,3 is irreducible of dimension 32 and its general point represents a curve of type
(5, 3) on a smooth quadric. Moreover H1(OC (2)) = 0 since 2d = 16 > 2g − 2 = 14 and
therefore H1(NC ) = 0 by (3.3) andH8,8,3 is smooth at the point representing C . Now (3.4)
and (3.1) give (i).

To see (ii) observe that, by [5, Example (10.4)],H8,9,3 is smooth irreducible of dimension
33 and its general point represents a curve of type (4, 4) on a smooth quadric. Moreover
h1(OC (2)) = h1(ωC ) = 1 and therefore h1(NC ) = 1 by (3.3). Hence (3.4) and (3.1) give
(ii).

Finally, to prove (iii) and (iv), consider H9,g,3 for g = 9, 10 or 12.
By [6, Theorem 5.2.1] we know thatH9,9,3 is irreducible of dimension 36 and its general

point represents a curve C residual of a twisted cubic D in the complete intersection of a
smooth cubic S and a quartic T . In the exact sequence

0 → NC/S → NC → NS|C → 0

wehave that H1(NC/S) = 0 sinceC2 = 25 > 2g−2 = 16 and NS|C ∼= OC (3) that has degree
27, so that again H1(NS|C ) = 0 and therefore also H1(NC ) = 0. Hence H9,9,3 is smooth
at the point representing C . Moreover, as D is projectively normal, C is also projectively
normal. It remains to prove that μ0 is surjective, whence, by (3.2), that ν is surjective. To this
end observe that, if H is the hyperplane divisor of S, then KS +C − H ∼ 2H − D. A general
element D′ ∈ |2H − D| is again a twisted cubic and we get the commutative diagram

0 0

H0(OS(H)) ⊗ H0(OS)
ν1

H0(OS(H))

H0(OS(H)) ⊗ H0(OS(D′)) ν
H0(OS(H + D′))

H0(OD′(H)) ⊗ H0(OD′(D′)) τ
H0(OD′(H + D′))

H0(OS(H)) ⊗ H1(OS) = 0 H1(OS(H)) = 0
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fromwhich we see that ν is surjective since ν1 is and so is τ , being the standardmultiplication
map

H0(OP1(3)) ⊗ H0(OP1(1)) → H0(OP1(4)).

Now (3.1) gives (iii) for g = 9.
In the case g = 10 it follows by [5, Example (10.4)], that H9,10,3 has two generically

smooth irreducible components Z1 and Z2, both of dimension 36, and their general point
represents a curve C of type (6, 3) on a smooth quadric for Z1 and a complete intersection
of two cubics for Z2. In the first case, from the exact sequence

0 → OQ(−4,−1) → OQ(2) → OC (2) → 0

and the fact that H1(OQ(2)) = H2(OQ(−4,−1)) = 0, we get h1(OC (2)) = 0 and therefore
h1(NC ) = 0 by (3.3). Then (3.4) and (3.1) give (iii) for Z1. As for Z2, we have that NC ∼=
OC (3)⊕2 and ωC ∼= OC (2), whence H1(NC ) = 0. Moreover, if S is one of the two cubics
containing C , we have the diagram

H0(OP3(1)) ⊗ H0(OP3(1))
ν1

H0(OP3(2))

α

H0(OS(1)) ⊗ H0(OS(1))
ν

H0(OS(2)).

As is well known both α and ν1 are surjective, whence so is ν and thenμ0 by (3.2). Therefore
(3.1) gives (iii) for Z2.

Finally, since π(9, 3) = 12, it follows by [8, Corollary 3.14] that H9,12,3 is irreducible
of dimension 38 and its general point represents a curve of type (5, 4) on a smooth quadric.
Moreover, from the exact sequence

0 → OQ(−3,−2) → OQ(2) → OC (2) → 0

and the fact that Hi (OQ(2)) = 0 for i = 1, 2, we get h1(OC (2)) = h2(OQ(−3,−2)) =
h0(OQ(1, 0)) = 2 and therefore h1(NC ) = 2 by (3.3). Hence h0(NC ) = 38 and H9,12,3 is
smooth at the point representing C . Now (3.4) and (3.1) give (iv). 
�

We can now prove our result for r = 3.

Theorem 3.4 Let Z be an irreducible component of Hd,g,3 and g ≥ 5. Then, under the
natural map π : Hd,g,3 ��� Mg, the following possibilities occur:

(i) Z dominates Mg;
(ii) Z = H7,6,3 and dim π(Z) = 13;
(iii) Z = H8,7,3 or H8,8,3 and dim π(Z) = 17;
(iv) Z = H8,9,3 and dim π(Z) = 18;
(v) Z = H9,9,3 or Z ⊂ H9,10,3 and dim π(Z) = 21;
(vi) dim π(Z) ≥ 23.

Proof We first make the following general remark, which will also be used in the proof of
Theorem 4.1.

Let r ≥ 3, let Z be an irreducible component of Hd,g,r not dominating Mg and let C be
a smooth irreducible non-degenerate curve of degree d and genus g in P

r corresponding to
a general point c ∈ Z. We claim that OC (1) is special.
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In fact Z is a PGL(r + 1)-bundle over an open subset of a component G1 of G. If OC (1)
is non-special then, by Riemann-Roch, d ≥ g + r and G1 must coincide with G0 of Proposi-
tion 1.1. But G0 dominates Mg , so that also Z does, a contradiction.

Therefore OC (1) is special. Set α = dim |OC (1)|, so that α ≥ r .
We now specialize to the case r = 3.
First we notice that, in cases (ii)–(v), using Propositions 2.1 and 3.3,Hd,g,3 is irreducible,

except for H9,10,3, and the dimension of the image under π of each component is as listed.
Also we have d ≥ 7, for if d ≤ 6 then g ≤ π(6, 3) = 4.

Assume that Z is not as in (i), (ii) or the first case of (iii) and that dim π(Z) ≤ 22. By
Theorem 3.1, Proposition 2.1 and Remark 1.2, we can assume that d ≤ g.

For any component G1 ⊆ G ⊆ G3
d , there exists a componentW ofWα

d and a closed subset
W1 ⊆ W ⊆ Wα

d such that G1 is a Grassmannian G(3, α)-bundle over a non-empty open
subset of W1. Thus we have

λ(d, g, 3) = 4d

≤ dimZ
≤ dim π(Z) + dim W α

d (C) + dimG(3, α) + dim PGL(4)

≤ dim W α
d (C) + 4α + 25. (3.5)

By Lemma 1.5 we have α ≤ d+1
3 .

If dim W α
d (C) = 0, (3.5) gives

4d ≤ 4

3
(d + 1) + 25

therefore d ≤ 9.
If dim W α

d (C) ≥ 1 then Theorem 1.4 implies α ≤ d
3 . By (3.5) and Theorem 1.4 again,

we find

4d ≤ d + α + 26 ≤ 4d + 78

3

that is again d ≤ 9.
If d = 7 we find the contradiction 7 ≤ g ≤ π(7, 3) = 6. If d = 8 it follows that

8 ≤ g ≤ π(8, 3) = 9 and we get that Z is as in the second case of (iii) or as in case (iv). If
d = 9 we find that 9 ≤ g ≤ π(9, 3) = 12. Since, by Proposition 3.3, H9,11,3 is empty and
dim π(H9,12,3) = 23, we get case (v). 
�
Remark 3.5 (i) There are no reasons to believe that our estimate on the lower bound of

dim π(Z) is sharp. On the other hand, it would be interesting to have a better estimate
(hopefully sharp) on the lower bound of dim π(Z) and come up with (irreducible or
reducible) examples ofHilbert schemeHd,g,3 with a componentZ achieving the bound.

(ii) If d ≤ g
2
3 there is a better lower bound for the dimension of components Z of Hd,g,3

in [4, Theorem 1.3]. This leads, in this case, to a better lower bound of dim π(Z).

Theorem 3.4 and Proposition 3.2 yield the following immediate corollary.

Corollary 3.6 (i) Hd,g,3 has no component that is rigid in moduli if g > 0.
(ii) Let C ⊂ P

r be a smooth irreducible and non-degenerate curve of genus g whose only
deformations are given by projective transformations. If g = 0 or r ≤ 3 then C is a
rational normal curve.
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Proof Since (i) is immediate from Theorem 3.4 and Proposition 3.2 and since (ii) is trivial
for r = 2, we only need to check (ii) for g = 0 and r ≥ 3. Now C belongs to a unique
component H of the Hilbert scheme Hd,0,r with dimH ≤ (r + 1)2 − 1. On the other hand
dimH ≥ λ(d, 0, r) = (r + 1)d + r − 3, hence (r + 1)2 − 1 ≥ (r + 1)d + r − 3 giving that
d < r + 1. Therefore d = r and C is the rational normal curve. 
�

4 Non-existence of components ofHd,g,r rigid in moduli with r ≥ 4

In this section, we prove the non-existence of a component of Hd,g,r rigid in moduli in a
certain restricted range of d , g > 0 and r ≥ 4.

Theorem 4.1 Hd,g,r has no components rigid in moduli if g > 0 and

(i) d > min{ 17g+72
64 ,

4g+15
15 ,max{ g+18

4 ,
17g+44

64 }} if r = 4;

(ii) d > min{ 9g+20
20 ,

10g+17
22 ,max{ 2g+25

5 ,
9g+10
20 }} and d >

g+22
3 for 101 ≤ g ≤ 113, if

r = 5;
(iii) d > min{ 13g+20

22 ,
3g+3
5 ,max{ g+10

2 ,
13g+10

22 },max{ g+10
2 ,

3g−1
5 }} if r = 6;

(iv) d > min{ 19g+24
27 ,max{ 4g+39

7 ,
76g+71
108 }} if r = 7;

(v) d > min{ 4g+1
5 ,

5g−4
6 } if r = 8;

(vi) d > min{ 9g−5
10 ,

29g+3
33 } and (d, g) �= (30, 34) if r = 9;

(vii) d > min{ 21g−4
22 ,

17g+12
18 } if r = 10;

(viii) d > g if r = 11;
(ix) d >

2(r−5)g−r+14
r+1 if r ≥ 12.

Proof Suppose that there is a component Z of Hd,g,r rigid in moduli and let C be a smooth
irreducible non-degenerate curve of degree d and genus g in P

r corresponding to a general
point c ∈ Z.

Let α = dim |OC (1)|, so that α ≥ r and note that, as in the proof of Theorem 3.4, using
Proposition 1.1, we have that OC (1) is special. In particular d ≤ 2g − 2 and g ≥ 2.

Moreoverwe claim thatC does not admit a degeneration {Ct ⊂ P
α}t∈P1 to a singular stable

curve. In fact such a degeneration gives a rational map P
1 ��� Mg whose image contains

two distinct points, namely the points representing C and the singular stable curve. Hence
the image must be a curve and therefore the curves in the pencil {Ct ⊂ P

α}t∈P1 cannot be all
isomorphic. Now we have a projection p : P

α ��� P
r that sends C ⊂ P

α isomorphically to
p(C) = C ⊂ P

r . Thus the pencil gets projected and gives rise to a deformation p(Ct ) ⊂ P
r

of C in Z (recall that C represents a general point of Z). For general t we have that p(Ct ) is
therefore smooth, whence p(Ct ) ∼= Ct . Since Z is rigid in moduli we get the contradiction
C ∼= Ct for general t . This proves the claim and now, by Lemma 1.6, we can and will assume
that g ≤ π1(d, α) when d ≥ 2α + 1 and that g ≤ π2(d, α), g < π1(d, α) when α ≥ 8 and
d ≥ 2α + 3.

Recall again that for any component G1 ⊆ G ⊆ Gr
d , there exists a component W of Wα

d
and a closed subset W1 ⊆ W ⊆ Wα

d such that G1 is a Grassmannian G(r , α)-bundle over a
non-empty open subset ofW1. By noting thatW1 is a sub-locus inside W α

d (C) in our current
situation, we come up with an inequality similar to (3.5):

λ(d, g, r) = (r + 1)d − (r − 3)(g − 1)

≤ dimZ
≤ dimW1 + dimG(r , α) + dim PGL(r + 1)
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= dimW1 + (r + 1)(α − r) + r2 + 2r (4.1)

≤ dim W α
d (C) + (r + 1)α + r .

This leads to the following four cases.
CASE 1: d < g and dim W α

d (C) = 0.
We have α ≤ (d + 1)/3 by Lemma 1.5 and (4.1) gives

d < g, α ≤ (d + 1)/3 and (r + 1)(d − α) − 3 ≤ (r − 3)g. (4.2)

CASE 2: d < g and dim W α
d (C) ≥ 1.

By Theorem 1.4 we get α ≤ d/3. By (4.1) and Theorem 1.4 again, we find

d < g, α ≤ d/3 and rd − (r − 2)α − 4 ≤ (r − 3)g. (4.3)

CASE 3: d ≥ g and dim W α
d (C) = 0.

We have α ≤ (2d − g + 1)/3 by Lemma 1.5 whence, in particular, d ≥ (g + 3r − 1)/2.
Now (4.1) gives

d ≥ g, α ≤ (2d − g + 1)/3 and (r + 1)(d − α) − 3 ≤ (r − 3)g. (4.4)

CASE 4: d ≥ g and dim W α
d (C) ≥ 1.

By Theorem 1.4 we have α ≤ (2d − g)/3 whence, in particular, d ≥ (g +3r)/2. By (4.1)
and Theorem 1.4 again, we find

d ≥ g, α ≤ (2d − g)/3 and (r − 1)d − (r − 2)α − 4 ≤ (r − 4)g. (4.5)

The plan is to show that, given the hypotheses, the inequalities (4.2)–(4.5) contradict g ≤
π1(d, α) when d ≥ 2α + 1 or g ≤ π2(d, α), g < π1(d, α) when α ≥ 8 and d ≥ 2α + 3.

To this end let us observe that d ≥ 2α + 3 in cases (4.2)–(4.5): In fact this is obvious in
cases (4.2) and (4.3), while in cases (4.4) and (4.5), using g ≤ 2d −3α +1 and g ≤ 2d −3α
respectively, if d ≤ 2α + 2, we get 4α ≤ 3r − 14 and 4α ≤ 2r − 10, both contradicting
α ≥ r . Therefore in the sequel we will always have that g ≤ π1(d, α) and that either α ≤ 7
or α ≥ 8 and g ≤ π2(d, α), g < π1(d, α).

We now recall the notation. Set

m1 = �d − 1

α
	, m2 = �d − 1

α + 1
	, ε1 = d − m1α − 1, ε2 = d − m2(α + 1) − 1

and

μ1 =
{
1 if ε1 = α − 1

0 if 0 ≤ ε1 ≤ α − 2
, μ2 =

⎧
⎪⎨

⎪⎩

2 if ε2 = α

1 if α − 2 ≤ ε2 ≤ α − 1

0 if 0 ≤ ε2 ≤ α − 3

so that

π1(d, α) =
(

m1

2

)
α + m1(ε1 + 1) + μ1, π2(d, α) =

(
m2

2

)
(α + 1) + m2(ε2 + 2) + μ2.

We now deal with the case r ≥ 11 (and hence α ≥ 11).
We start with (4.2). If α ≥ d/3 then either α = (d + 1)/3 or α = d/3. Then m2 =

2, μ2 = 0 and π2(d, α) ≤ d < g. Therefore α ≤ (d −1)/3 and (4.2) gives d ≤ 3(r−3)g−r+8
2(r+1) ,

contradicting (viii)–(ix).
Similarly, in (4.3), if α = d/3 then m2 = 2, μ2 = 0 and π2(d, α) = d −1 < g. Therefore

α ≤ (d − 1)/3 and (4.3) gives d ≤ 3(r−3)g−r+14
2(r+1) , contradicting (viii)–(ix).
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Now in (4.4), if α ≥ (2d − g)/3 then either α = (2d − g)/3 or α = (2d − g + 1)/3. We
find m2 = 2, μ2 = 0 and π2(d, α) ≤ g − 1. Therefore α ≤ (2d − g − 1)/3 and (4.4) gives
d ≤ 2(r−5)g−r+8

r+1 , contradicting (viii)–(ix).
Instead in (4.5), if α = (2d − g)/3 we find m2 = 2, μ2 = 0 and π2(d, α) = g − 1.

Therefore α ≤ (2d − g − 1)/3 and (4.5) gives d ≤ 2(r−5)g−r+14
r+1 , contradicting (viii)–(ix).

This concludes the case r ≥ 11.
Assume now that 4 ≤ r ≤ 10.
We first claim that (4.4) and (4.5) do not occur. In fact note that we have

d ≥ max{r +2, g, (g+3r −1)/2} in (4.4) and d ≥ max{r +2, g, (g+3r)/2} in (4.5). (4.6)

Plugging in α ≤ (2d − g + 1)/3 in (4.4) and α ≤ (2d − g)/3 in (4.5) we get

d ≤ 2(r − 5)g + r + 10

r + 1
in case (4.4) and d ≤ 2(r − 5)g + 12

r + 1
in case (4.5)

and it is easily seen that these contradict (4.6).
Therefore, in the sequel, we consider only (4.2) and (4.3).
If α ≤ 7 (whence r ≤ 7), we see that (4.2) gives

d ≤ (r − 3)g + 7r + 10

r + 1
(4.7)

and (4.3) gives

d ≤ (r − 3)g + 7r − 10

r
. (4.8)

Now assume α ≥ 8, so that g ≤ π2(d, α), g < π1(d, α). Set i = d +1−3α and j = d −3α.
Then (4.2) implies d < g, i ≥ 0,

α(m1 − 1)[r − 3

2
m1 − r − 1] + (ε1 + 1)[(r − 3)m1 − r − 1] + 3 + μ1(r − 3) > 0 (4.9)

and

(α+1)(m2−1)[r − 3

2
m2−r −1]+(ε2+1)[(r −3)m2−r −1]−r +2+(m2+μ2)(r −3) ≥ 0.

(4.10)
On the other hand (4.3) implies d < g, j ≥ 0,

α[(r − 3)

(
m1

2

)
− m1r + r − 2] + (ε1 + 1)[(r − 3)m1 − r ] + 4 + μ1(r − 3) > 0 (4.11)

and

(α+1)[(r −3)

(
m2

2

)
−m2r +r −2]+(ε2+1)[(r −3)m2−r ]−r +6+(m2+μ2)(r −3) ≥ 0.

(4.12)
Suppose now r = 4. It is easily seen that (4.9) implies m1 ≥ 9 and i ≥ 7α + 1, so that
α ≤ d

10 . Plugging in (4.2) we contradict (i). On the other hand (4.11) implies m1 ≥ 8, so that
α ≤ d−1

8 , and also j ≥ 11α−2
2 , so that α ≤ 2d+2

17 . Moreover (4.12) implies m2 ≥ 8, so that
α ≤ d−9

8 , and also j ≥ 11α+12
2 , so that α ≤ 2d−12

17 . Plugging in (4.3) and using (4.7) and
(4.8) we contradict (i) and the case r = 4 is concluded.

If r = 5 it is easily seen that (4.9) implies m1 ≥ 5 and i > 3α + 1, so that α < d
6 . Also

(4.10) implies m2 ≥ 5, so that i ≥ 3α + 5, hence α ≤ d−4
6 . Plugging in (4.2) we contradict

(ii). On the other hand (4.11) implies m1 ≥ 5, so that α ≤ d−1
5 , and also j ≥ 12α−4

5 , so
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that α ≤ 5d+4
27 . Moreover (4.12) implies m2 ≥ 5 and also j ≥ 12α+16

5 , so that α ≤ 5d−16
27 .

Plugging in (4.3) and using (4.7) and (4.8) we contradict (ii) and the case r = 5 is done.
When r = 6 we see that (4.9) implies m1 ≥ 4 and α ≤ d−1

4 , but also i > 8α+2
5 , so that

α < 5d+3
23 . Also (4.10) implies m2 ≥ 4, so that i ≥ 8α+20

5 , hence α ≤ 5d−15
23 . Plugging in

(4.2) we contradict (iii). On the other hand (4.11) implies m1 ≥ 4, so that α < d−1
4 , and also

j > 4α−2
3 , so that α < 3d+2

13 . Moreover (4.12) implies m2 ≥ 4 so that α ≤ d−5
4 , and also

j ≥ 4α+7
3 , so that α ≤ 3d−7

13 . Plugging in (4.3) and using (4.7) and (4.8) we contradict (iii)
and we have finished the case r = 6.

Now assume that r = 7. We have that (4.9) implies m1 ≥ 3 and i ≥ α + 1, so that α ≤ d
4 .

Plugging in (4.2) we contradict (iv). On the other hand (4.11) implies m1 ≥ 3 and j > 4α−4
5 ,

so that α < 5d+4
19 . Moreover (4.12) implies m2 ≥ 3 and j ≥ 4α+1

5 , so that α ≤ 5d−1
19 .

Plugging in (4.3) and using (4.7) and (4.8) we contradict (iv). This concludes the case r = 7.
If r = 8 we find from (4.10) that m2 ≥ 3 and i ≥ α+6

2 , so that α ≤ 2d−4
7 . Plugging in

(4.2) we contradict (v). On the other hand (4.12) implies m2 ≥ 3 so that α ≤ d−4
3 and also

j ≥ 3α+11
7 , so that α ≤ 7d−11

24 . Plugging in (4.3) we contradict (v) and the case r = 8 is
proved.

Now let r = 9. Then (4.10) gives m2 ≥ 3 and i ≥ 2α+23
8 , so that α ≤ 8d−15

26 . Plugging
in (4.2) we contradict (vi). On the other hand (4.12) gives m2 ≥ 2 and j ≥ 3, so that
α ≤ d−3

3 . We also get m2 = 2 if and only if (d, g) = (30, 33), (30, 34). Then, if (d, g) =
(30, 33), (30, 34), we see that (4.12) implies m2 ≥ 3 and j ≥ 2α+14

9 , so that α ≤ 9d−14
29 .

Plugging in (4.3) we contradict (vi) and we are done with the case r = 9.
Finally let us do the case r = 10. We see that (4.10) gives m2 ≥ 2 and i ≥ 4, so that

α ≤ d−3
3 . Plugging in (4.2) we contradict (vii). On the other hand (4.11) gives m1 ≥ 3 and

j > α−4
11 , so that α < 11d+4

34 . Also (4.12) implies m2 ≥ 2 and j ≥ 2, so that α ≤ d−2
3 .

Plugging in (4.3) we contradict (vii) and we are done with the case r = 10. 
�
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