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Abstract

From KAM Theory it follows that the measure of phase points which do not lie on Diophantine,
Lagrangian, “primary” tori in a nearly–integrable, real–analytic Hamiltonian system is Op?

εq, if
ε is the size of the perturbation. In this paper we discuss how the constant in front of

?
ε depends

on the unperturbed system and in particular on the phase–space domain.
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A The standard quantitative Inverse Function Theorem 20

1 Introduction

According to classical KAM theory, the majority of the Lagrangian, non–resonant invariant tori of
a “general” completely integrable Hamiltonian system persists under the effect of a small enough
perturbations ([17], [1], [19]; see, also, [2, §6.3] for a review and [15] for a divulgative exposition).

Indeed, in bounded regions of the phase space Rn ˆTn (action–angle) such tori – which are also called
“primari” tori – form a set of positive Liouville (Lebesgue) measure, whose complement has a measure
proportional to

?
ε, if ε measures the size of the perturbing function, [20] and [21].

The square root behavior, in such measure estimates, is optimal in the sense that, in general, at simple
resonances, for ε ‰ 0, there appear regions of size proportional to

?
ε free of primary invariant tori as

trivially shows the example of the simple pendulum with gravity1 ε.

It is therefore natural to look for explicit evaluations of the constant in front of
?
ε in the KAM

measure estimates of the complement of invariant primary tori.

In [20] and [21] such constant, which depends on analytic properties of the integrable limit, is left
implicit, and, somewhat surprisingly, to the best of our knowledge, there are no explicit evaluations of
it in the vast literature on classical KAM theory. On the other hand, KAM is a constructive technique
and discussions about “KAM constants” are clearly relevant, as also testified by the large literature
on them; compare, e.g., [12], [16], [9], [5], [13], [18], [6], [14], [7], [10], [11], [8].

We also point out that an explicit dependence upon the domain in the above measure estimate is
crucial in investigating the more complicate problem of the existence and abundance of secondary
tori, i.e., of those tori which arise by effect of the perturbation around simple resonances. In [2] it is
conjectured that “in a generic system with three or more degrees of freedom the measure of the non–
torus set has order ε”, while in [4] it is given a sketchy proof2 that the union of primary and secondary
tori leave out (for general mechanical systems) a region of measure ε| log ε|a (for a suitable a ą 0).
To achieve such result one needs to control simultaneously a large number of regions around simple
resonances and to apply KAM measure estimates taking into account different (local) phase–space
domains, including neighborhoods of separatrices: To carry out such strategy simple explicit measure
estimates – such as the above – are necessary.

In this paper we compute explicitly the constant in front of
?
ε up to a constant depending only on

n (the number of degrees of freedom) and τ ą n ´ 1 (the uniform “Diophantine exponent”).

More precisely, we consider a real–analytic, nearly–integrable Hamiltonian

H : pp, qq P D ˆ T
n ÞÑ Hpp, qq “ hppq ` fpp, qq P R

where D is an arbitrary bounded domain in Rn and Tn is the standard flat n–torus (with periods 2π);
f is a small perturbation function and the integrable limit h is Kolmogorov non–degenerate on D, i.e.,
its hessian is invertible on D.

The main result – Theorem 1 below – will be formulated in terms of a few (five) parameters, which
we now describe briefly (precise definitions will be given in § 2 below):

1Just look at the phase portrait of the simple pendulum 1
2
p2 ` ε cos q, pp, qq P R ˆ T, and observe that the region

enclosed by the separatrix 1
2
p2 ` ε cos q “ ε has measure 4

?
2 ¨ ?

ε.
2A complete proof will appear elsewhere.
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‚ The Hamiltonian H is assumed to be real–analytic on D ˆ Tn: therefore there exists r0 ą 0 and
0 ă s ď 1 such that H is holomorphic on a complex r0–neighborhood of D and a s–complex
neighborhood of Tn.

‚ The smallness of the perturbation f will be measured by ǫ :“ ε

Mr20
where: ε “ }f}r0,s denotes

the sup–norm on the above complex neighborhood of f and M :“ }hpp}r0 the sup norm of the
Hessian matrix of h.

‚ The “torsion” associated to h will be measured by µ :“ inf D | dethpp|
Mn

; note that 0 ă µ ď 1

(compare (5) below).

‚ Last “independent parameter” will be the number λ :“ L M, where L denotes a suitable uniform
Lipschitz constant of the local complex inverse of the “frequency map” p ÞÑ ω “ hpppq (compare
(9)); indeed one can show that 1 ď λ ď 2 ¨ n!µ´1 (see (14) below).

Notice that the parameters ǫ, µ and λ are dimensionless parameters (i.e., do not have physical dimen-
sions).

Then, fixed ν :“ τ ` 1 ą n, we will show that there exist a positive constants c ă 1 depending only
on n and ν such that if the perturbation is so small that

ǫ ď c
µ6

λ2
s4ν ,

then one can construct a family Tα of H–invariant primary tori. Such tori live in Dr0 ˆTn (where Dr0
is a real r0–neighborhood of D) and the H–flow on them is analytically conjugated to the Kronecker
flow x P Tn ÞÑ x ` ωt for a frequency ω P Rn which is pα, τq–Diophantine3 with τ “ ν ´ 1 and α

proportional to
?
ǫ:

α :“ λ

ĉ µ s3ν
p Mr0q

?
ǫ ,

where ĉ ă 1 is a suitable constant depending only on n and ν.

The upshot is, then, the following measure estimate (where “meas ” denotes outer Lebesgue measure):

meas
`

p D ˆ T
nq z Tα

˘

ď C
?
ǫ

where the constant C is given by

C :“ κ
`

max
 

µ2r0 , diam D
(˘n ¨ λn`2

µ3 s3ν
,

where κ ą 0 is a suitable constant depending only on n and ν.

Remarks (i) In fact, we shall prove a stronger statement, which is non trivial even in case of D of
measure zero or even finite (compare (19) below).

(ii) Of course, more refined estimates are possible if one adds extra hypotheses on the domain D (e.g.,
smooth boundary) and it would be interesting to give bounds which take into account geometrical
properties of D.

3I.e., |ω ¨ k| ě α{|k|τ
1
for all k P Zn z t0u; compare (1) below.
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(iii) We do not compute explicitly the dependence upon n (and ν): Indeed it is well known that in
such generality explicit bounds on c tend to be quite “pessimistic”, however, in concrete example,
such as a forced pendulum, the standard map or particular three body problems computer–assisted
(rigorous) upper bounds on ε are in excellent agreement with experimental data (see, e.g., [5], [13],
[6], [8] and references therein).

2 Notations and set up

Given r ą 0, p0 a point of Rn or Cn and D a subset of Rn or Cn, we denote:

Brpp0q :“ tp P Rn
ˇ

ˇ |p ´ p0| ă ru , pp0 P R
nq ,

Brpp0q :“ tp P Cn
ˇ

ˇ |p ´ p0| ă ru , pp0 P C
nq ,

BrpDq :“ Ť

p0PD Brpp0q , pD Ď R
nq ,

BrpDq :“
Ť

p0PD Brpp0q , pD Ď C
nq ,

where in Rn and Cn, |x| “ |px1, ..., xnq| will denote the sup–norm maxi |xi|.
For a matrix (or a tensor) A, }A} denotes the standard operator norm sup|x|“1 |Ax|.
The standard flat n–torus Rn{p2πZnq is denoted by Tn and, for s ą 0, Tn

s denotes its complex
neighbourhood of points q with norm of the imaginary part | Im q| “ |p Im q1, ..., Im qnq| ă s:

T
n
s :“ ty P C

n
ˇ

ˇ | Im q| ă su{p2πZnq .

If D is an arbitrary bounded set in Rn and h, respectively, f , a real–analytic function (with values in
Rm or in matrix spaces) with bounded holomorphic extension on BrpDq for some r ą 0, respectively,
on BrpDq ˆ Tn

s for some r, s ą 0, we define its analytic sup–norm as, respectively,

}h}D,r :“ sup
yP BrpDq

|hppq| , }f}D,r,s :“ sup
pp,qqP BrpDqˆTn

s

|fpp, qq| .

The Lipschitz semi–norm of a function f : Ω Ñ Rm, will be denoted by

|f |Lip,Ω :“ sup
ω1,ω2PΩ, ω1‰ω2

|fpω1q ´ fpω2q|
|ω1 ´ ω2| .

If D is an open set and H : D ˆ Tn Ñ R is a C2 function, φt
H denotes its Hamiltonian flow, namely,

`

pptq, qptq
˘

“ φt
Hpp, qq solves the standard Hamilton equations4

$

’

’

’

&

’

’

’

%

9pptq :“ dp

dt
ptq “ ´BqHppptq, qptqq

9qptq :“ dq

dt
ptq “ BpHppptq, qptqq

, ppp0q, qp0qq “ pp, qq .

For example, if Hpp, qq “ hppq, then the flow φt
h is linear with frequency ω :“ Bphppq, namely,

φt
hpp, qq “ pp, q ` ωtq.
4Equivalently, φt

H
denotes the Hamiltonian associated to the standard symplectic form dp ^ dq “ řn

i“1 dpi ^ dqi.
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Given α, τ ą 0, a vector ω P Rn is said to be pα, τq–Diophantine if

|ω ¨ k| :“
ˇ

ˇ

n
ÿ

j“1

ωjkj
ˇ

ˇ ě α

|k|τ
1

, @ k P Z
n z t0u , (1)

where |k|
1
:“ ř |kj | denotes the 1–norm. It is well know that, fixed τ ą n´ 1, almost all (in the sense

of Lebegue measure) ω P Rn are pα, τq–Diophantine for some α ą 0. Indeed such statement follows
immediately observing that5

meas
 

ω P BRp0q
ˇ

ˇ ω is not pα, τq D́iophantine
(

ď cRn´1α ,

with a constant c depending only on n and τ .

Finally, given a 2n–vector py, xq, π1 and π2 denote, respectively, the projectionst on the first and
second n components:

π1py, xq “ y and π2py, xq “ x . (2)

3 Assumptions

Fix n ě 2 and τ ą n ´ 1. Let D be any non–empty, bounded subset of Rn. Let

H :“ h ` f

with h and f real–analytic functions with holomorphic extensions on, respectively, Br0p Dq and Br0p Dqˆ
T
n
s for some r0 ą 0 and 0 ă s ď 1, and having finite norms:

M :“ }hpp} D,r0 , ε :“ }f} D,r0,s . (3)

Assume that the frequency map p P D Ñ ω “ hp is a local diffeomorphism, namely, assume:

d :“ inf
D

| dethpp| ą 0 . (4)

4 The local frequency map

Under assumption (4) the frequency map is a local real–analytic diffeomorphism in the neighbourhood
of any point of D. More precisely, the following lemma holds. Define6

µ :“ d

Mn
ď 1 . (5)

Lemma 1 Let

c0 “ 1

8n ¨ n!2 , ĉ0 “ 1

4n ¨ n! . (6)

5“meas” stands for Lebesgue measure, or, in general, for outer Lebesgue measure.
6Since any eigenvalue of hpp is bounded in absolute value by }hpp} ď M, d ď sup D |det hpp| ď Mn.
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and define

r‹ :“ ĉ0µ r0 , ρ‹ :“ c0µ
2
M r0 . (7)

Then, for every p0 P D the frequency map p Ñ ω “ hp has a real–analytic inverse map, ω Ñ ppω; p0q,
defined in a neighborhood of ω0 :“ hppp0q

p “ h´1
p : ω P Bρ‹ pω0q ÞÑ ppω; p0q P Br‹ pp0q , (8)

with uniform Lipschitz constant7

L :“ sup
p0P D

| pp¨; p0q|Lip,Bρ‹ pω0q “ sup
p0P D

sup
Bρ‹ pω0q

} pωp¨; p0q} (9)

satisfying

L ď M´1

2n ĉ0 µ
, (10)

and

sup
p0P D

sup
B 3

4
ρ‹

pω0q

} pωωp¨; p0q} ď L
c0
4 µ

2 Mr0
. (11)

Proof Writing out the inverse of the matrix hpp (Cramer’s rule), by Leibniz formula for the ji–minor
of hpp, one has, uniformly on8 D:

|ph´1
pp qij | ď 1

d
pn ´ 1q! Mn´1 ,

which implies

sup
D

}phppq´1} ď n!

µ
M

´1 . (12)

Let T :“ h´1
pp pp0q. Then, by standard Cauchy estimates9, it follows that for any p P Cn such that

|p ´ p0| ď r‹ one has

}I ´ Thppppq} ď }T } }hppppq ´ hpppp0q} ď }T }n M

r0 ´ r‹
r‹

p12q
ď n ¨ n!

µ

r‹

r0 ´ r‹

p6q
ď 1

2
.

Thus, by the standard Inverse Function Theorem (see Appendix A, Eqn’s (74), (75), (76)) and Cauchy

estimates, relations (8), (9), (10) and (11) follow immediately with the constants in (6).

For later use, we point out that10

λ :“ L M ě 1 , (13)

and that, by (10),

λ ď 1

2nĉ0

1

µ
“ 2 ¨ n! 1

µ
. (14)

7 Notice that on convex domains the Lipschitz semi–norm of a differentiable function coincides with the sup–norm
of its Jacobian.

8Note that supi,j supD |hpipj | ď M :“ supD supi
ř

j |hpipj |.
9If f : BrpDq Ñ Cm is holomorphic, Bα is a partial derivative of order k “ α1 ` ¨ ¨ ¨ ` αn and 0 ă r1 ă r, then

sup
Br1 pDq

|Bαf | ď
sup

BrpDq |f |
pr ´ r1qk .

10Indeed: 1 “ }I} “ }hppppqh´1
pp ppq} “ }hppppq pωphpppqq} ď }hppppq} } pωphpppqq} ď M L.
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5 The classical analytic KAM Theorem

Theorem 1 Let the assumptions in § 3 hold and let λ, µ and c0 be as in § 4 and let ν “ τ ` 1.
There exist positive constants c‹ ă 1{p8 ¨ n!q and κ, depending only on n and τ , such that, if

c :“ c2‹
217 ¨ n2 pn!q6 , ĉ :“ c‹

24
, (15)

and if ε is such that

ǫ :“ ε

Mr20
ď c

µ6

λ2
s4ν , (16)

then the following holds. Define

α :“ λ

ĉ µ s3ν
p Mr0q

?
ǫ , r̂ :“ c0

2
µ2r0 , rǫ :“

λ

c‹

?
ǫ r0 . (17)

Then, there exists a positive measure set Tα Ď B2r̂p Dq ˆ Tn formed by “primary” Kolmogorov’s tori;

more precisely, for any point pp, qq P Tα, φ
t
Hpp, qq covers densely an H–invariant, analytic, Lagrangian

torus, with H–flow analytically conjugated to a linear flow with pα, τq–Diophantine frequencies ω “
hppp0q, for a suitable p0 P D; each of such tori is a graph over Tn rǫ–close to the unperturbed trivial

graph tpp, θq “ pp0, θq| θ P T
nu.

Finally, the Lebesgue outer measure of p D ˆ Tnq z Tα is bounded by:

meas
`

p D ˆ T
nq z Tα

˘

ď C
?
ǫ (18)

with

C :“ κ
`

max
 

µ2r0 , diam D
(˘n ¨ λn`2

µ3 s3ν
;

indeed, there exist N and, for 1 ď i ď N , pi P D, such that D Ď ŤN

i“1 Br̂ppiq and

meas
´

`

N
ď

i“1

Br̂ppiq ˆ T
n
˘

z Tα
¯

ď C
?
ǫ . (19)

6 Remarks

(i) The constant c‹ is, essentially, the “smallness” constant appearing in a local KAM normal form
(see Theorem 2 below). The constant κ is given in (73).

(ii) Estimate (19) implies at once (18) and notice that (19) is meaningful also in the case of sets D

of measure zero (such as a singleton).

6 Proof of KAM Theorem 1

The proof of Theorem 1 is divided in six steps.
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6.1 Local reduction

The first step consists in covering D with N balls centered at points of D (with an explicit upper
bound on N), thus reducing the Theorem to the special case in which the domain is a ball. Indeed,
the following simple result holds.

Lemma 2 (Covering Lemma) Let E Ď Rn be a non–empty set of finite diameter. Then, for any

r ą 0 there exists an integer N , with11

1 ď N ď
´”diamE

r

ı

` 1
¯n

, (20)

and N points pi P E such that

E Ď
N
ď

i“1

Brppiq . (21)

Proof Let δ :“ diamE and let zi “ inftxi| x P Eu. Then E Ď K :“ z ` r0, δsn. Let 0 ă r1 ă r close
enough to r so that rδ{r1s “ rδ{rs `1 “: M . Then, one can cover K with Mn closed, contiguous cubes
Kj, 1 ď j ď Mn, with edge of length r1. Let ji be the indices such that Kji X E ‰ H and pick a
pi P Kji X E; let 1 ď N ď Mn be the number of such cubes. Observe that, since we have chosen the

sup–norm in Rn, one has Kji Ď Brppiq and, therefore, (21) follows with N as in (20).

We now apply the Lemma with E “ D and r “ r̂ defined by12

r̂ :“ ρ‹

2 M
“ c0

2
µ2r0 ď r0

128
ă r0

2
. (22)

Thus, Lemma 2 yields that:

For suitable N points pi P D, one has

D Ď
N
ď

i“1

Br̂ppiq , 1 ď N ď
´”diam D

c0
2 µ

2r0

ı

` 1
¯n

. (23)

Notice that, by (22), H is holomorphic and bounded on Br0{2

`

Br̂ppiq
˘

ˆ Tn
s , for every i ď N .

Next we shall prove a “local” version of Theorem 1

6.2 A KAM local normal form après [22]

Fix one of the balls Br̂ppiq in the covering (23). We first prove Theorem 1 with D and r0 replaced,
respectively, by

Di :“ Br̂ppiq and
r0

2
.

We shall use a “KAM normal form with parameters”; more specifically, we shall use Theorem B of
[22], whose statement we recall here for convenience of the reader.

11rxs denotes the integer–part (or “floor”) function maxtn P Z| n ď xu, while rxs denote the “ceiling function”
mintn P Z| n ě xu.

12Recall (7), (5) and (6).
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Let r, α, h ą 0, 0 ă s ď 1, τ ą n ´ 1 and let Ω Ă Rn be a bounded open set with piecewise smooth
boundary; let

Ωα :“
 

ω P Ω, s.t. distpω, BΩq ě α and ω is pα, τq ´Diophantine
(

;

let ω Ñ epωq and pI, θ, ωq Ñ P pI, θ, ωq be real–analytic functions with holomorphic extension on,
respectively, B hpΩαq and Brp0q ˆ T

n
s ˆ B hpΩαq. Finally, if a ą 0, we define the “action rescaling

map”:
RapI, θq :“ pI{a, θq . (24)

Consider the Hamiltonian function, parametrized by ω,

HpI, θ, ωq :“ NpI, ωq ` P pI, θ, ωq , where N :“ epωq ` ω ¨ I ,

with respect to the standard symplectic form dI ^ dθ; in particular, the integrable flow φt
N is given

by φt
N pI, θq “ pI, θ ` ωtq.

In [22] the following result is proven.

Theorem 2 Under the above definitions and assumptions, there exist constants

0 ă c‹ ă ĉ‹

4 ¨ n! ă 1

8 ¨ n! , (25)

depending only on n and τ , such that if

|P |r,s, h :“ sup
Brp0qˆTn

s ˆ B hpΩαq

|P | ď c‹αrs
ν , αsν ď h , pν :“ τ ` 1q , (26)

then, there exist a Lipschitz homeomorphism ϕ : Ω ý and a family of torus embeddings

Φ : Tn ˆ Ω Ñ Brp0q ˆ T
n Ď R

n ˆ T
n

such the following holds. For every ω P Ωα, ΦpTn, ωq is an invariant torus for H |ϕpωq :“ HpI, θ, ϕpωqq
and

pφt
H|ϕpωq

˝ Φqpθ, ωq “ Φpθ ` ωt, ωq .

Moreover, for each ω P Ω, θ Ñ Φpθ, ωq is real–analytic on Tn
s{2 and if

pθ, ωq Ñ Φ0pθ, ωq :“ p0, θq

denotes the trivial torus embedding, one has, uniformly on, respectively, Tn
s{2 ˆΩ and Ω, the following

estimates:

|RrpΦ ´ Φ0q| , αsν |RrpΦ ´ Φ0q|Lip,Ω ď |P |
ĉ‹αrsν

, (27)

|ϕ ´ id| , αsν |ϕ ´ id|Lip,Ω ď |P |
ĉ‹r

. (28)
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Remarks

(i) The constants c‹ and ĉ‹ can be taken equal to, respectively, γ{2 and 1{c where γ and c are the
constants appearing in Theorem A of [22], where are not explicitly evaluated.

In [3] an infinite dimensional KAM Theorem13 (implying Theorem 2) is proved, substituting
(26) with the stronger (for s small) condition |P |r,s, h ď καr, where κ “ κps, n, τq :“ κ

´cκ˚
˚ with

κ˚ “ pn ` τq lnppn ` τq{sq and where c ą 0 is an absolute constant.

The numerical relations between c‹ and ĉ‹ in (25) are assumed for later convenience (and,
obviously, are compatible with [22]).

(ii) For simplicity – and because it would play no rôle – in (27) we reported slightly weaker estimates
with respect to those appearing in Theorem A, where in place of Rr there appears the rescaling
W pI, θq :“ pI{r, θ{sq (which means that the estimates on the angle components in [22] are better
by a factor s ă 1 than those in (27)).

(iii) Actually, the above Theorem is a synthesis of Theorem A and Theorem B in [22]. In particular,
the final measure estimate in Theorem B is not reported since the constant (and its dependence
upon Ω) is left implicit.

(iv) We point out that from the estimates (27) does not follows that Φ is Lipschitz close to the trivial
embedding Φ0. Indeed, if π2 denotes the projection over the θ–component, taking into account
that α “ Op?

ǫq (compare (17)) , from (26) and (27) it follows that

|π2 ˝ Φ ´ π2 ˝ Φ0|Lip ď c‹

ĉ‹
¨ 1

αsν
“ O

´ 1?
ǫ

¯

.

To overcome this fact one needs suitable asymmetric rescalings of action and angle variables.

(v) As well known ([21], [12]), maps constructed via KAM methods are smooth in the sense of
Whitney, or, what is the same, have C8 extensions: Indeed, ϕ and Φ are C8pΩq.

6.3 Applying the KAM normal form to H|Br̂ppiqˆTn

We now apply Theorem 2 to H restricted to

Di ˆ T
n :“ Br̂ppiq ˆ T

n

where r̂ is defined in (22) and pi is one of the points introduced in Lemma 2. Recall that, by (22),
r̂ ă r0{2 so that H has holomorphic extension to Br0{2pDiq ˆ Tn

s .

Let

Ωpiq :“ hppDiq “ hp

`

Br̂ppiq
˘

, h :“ ρ‹

4
“ Mr̂

2
, (29)

and notice that, by (22),

Ωpiq Ď B Mr̂phpppiqq Ď Bρ‹{2phpppiqq “ B2hphpppiqq ùñ B hpΩpiqq Ď B 3

4
ρ‹

phpppiqq ,

13More precisely Theorem 5.1, case (H3) on page 755 and Remark 5.3 on page 758.
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which, by Lemma 1, shows that hp has an inverse14 p “ h´1
p with holomorphic extension

p “ pp¨; piq : B hpΩpiqq Ñ Br‹ppiq . (30)

Following [22], we introduce ω P B hpΩpiqq as parameter, and let15

p “ ppωq ` I , with ω P B hpΩpiqq , |I| ă r :“
c

ε

M
“

?
ǫ ¨ r0 ă r0

4
, (31)

and define
$

’

’

&

’

’

%

NpI, ωq :“ epωq ` ω ¨ I :“ hp ppωqq ` ω ¨ I

P pI, θ, ωq :“
ż 1

0

p1 ´ tqhppp ppωq ` tIqI ¨ Idt ` f
`

ppωq ` I, θq ,

(32)

so that

Hp ppωq ` I, θq “ hp ppωq ` Iq ` fp ppωq ` I, θq “ NpI, ωq ` P pI, θ, ωq “: HpI, θ, ωq .

By (30), (31), (7), (6), one has that if ω P B hpΩpiqq and I P Brp0q, then

| ppωq ` I ´ pi| ď | ppωq ´ pi| ` |I| ă r‹ ` r “ ĉ0µr0 `
?
ǫr0 ă r0

4
` r0

4
“ r0

2
, (33)

so that ppωq`I P Br0{2ppiq. Thus, by (3), (31) and (32),H is real–analytic with holomorphic extension

to Brp0q ˆ Tn
s ˆ B hpΩpiqq with

|P |r,s, h ď 2ε . (34)

Thus, if α is as in (17) and r as in (31), then,

|P |r,s, h
c‹αrsν

ď 2ε

c‹αrsν
“ 2ĉ

c‹

µs2ν

λ

p15q“ 1

8

µs2ν

λ
ď 1

8
, (35)

and the first condition in (26) is satisfied. Observe that,

αsν “ λ

ĉµs2ν
p Mr0q

?
ǫ

p16q
ď

?
c

ĉ
µ2 Mr0 ,

and, if h is as in (29), one has, in view of (15),

αsν

h

p16q
ď 4

?
c

ĉ c0
ď 1 .

Thus, also the second condition in (26) is satisfied and we can apply Theorem 2, obtaining the family
of torus embedding16

Φ : Tn ˆ Ωpiq Ñ Brp0q ˆ T
n pr “

?
ǫ r0q

as described in Theorem 2.
14Recall that p “ pp¨; piq and therefore depends upon i; however for ease of notation we do not indicate explicitly

the dependence upon i.
15In general, I is complex. Notice that by (16), (13), (5) (and the assumption s ď 1), ǫ ă 1{16 since c ă 1{16.
16Obviously, also Φ depends on i but, as above (compare footnote 14), for ease of notation we do not indicate explicitly

the dependence upon i.
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6.4 Kolmogorv’s tori: The sets T
piq
α and Tα

The tori we obtained in the preceding section live in the “local” phase space tpI, θq| pI, θq P Brp0qˆTnu.
To translate the invariant tori into the original phase space tpp, qq| pp, qq P Br0{2pDiq ˆTnu, we define
the ω–family of torus embeddings17

θ ÞÑ Ψpθ, ωq :“
`

p ˝ ϕpωq, 0
˘

` Φpθ, ωq , ω P Ωpiq , (36)

which, as function of θ, is real–analytic on Tn
s{2. Then, from § 6.3 it follows that for ω P Ω

piq
α the torus

ΨpTn, ωq is invariant for the flow of H and, furthermore:

pφt
H ˝ Ψqpθ, ωq “ Ψpθ ` ωt, ωq .

We therefore obtain the following family of “Kolmogorov’s tori” (recall, (22), that r̂ ă r0{2):

T piq
α :“ ΨpTn ˆ Ωpiq

α q Ď Br0{2pDiq ˆ T
n , Tα :“

N
ď

i“1

T piq
α Ď Br0p Dq ˆ T

n ,

Below, we shall show that actually Tα lives in a smaller neighborhood of D.

Analytic quantitative properties of the torus embedding Ψ, and hence of the family of Kolmogorov’s
tori, will be described in detailed in the following section.

6.5 Properties of the torus embedding

Lemma 3 Let Ψ be defined as in (36) and let Ψ0 denote the “trivial embedding”

Ψ0 : pθ, ωq P T
n
s ˆ B hpΩpiqq ÞÑ p ppωq, θq P Br‹ ppiq ˆ T

n
s . (37)

Then18,

sup
Ωpiq

sup
Tn

|π1

`

Ψ ´ Ψ0

˘

| ď rǫ
p17q
:“ λ

?
ǫ

c‹
r0 , (38)

and, hence,

T piq
α Ď BrǫpDiq ˆ T

n “ Br̂`rǫppiq ˆ T
n , (39)

Tα Ď
N
ď

i“1

Br̂`rǫppiq ˆ T
n Ď B2r̂p Dq ˆ T

n . (40)

Proof By the definitions (36) and (37), one has

Ψ “ Ψ0 `
`

p ˝ ϕ ´ p, 0
˘

` Φ ´ Φ0 . (41)

Notice that, since h “ ρ‹{4, from (9) and (11), one has

sup
B hpΩpiqq

} pω} ď L , sup
B hpΩpiqq

} pωω} ď 4

c0

L

µ2 Mr0
. (42)

17Recall (33) and footnote 16.
18Recall, (2), that π1 denotes projection onto the first n components.
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Thus, (42), (28), (34), one gets

sup
Ωpiq

| p ˝ ϕ ´ p| ď L
2ε

ĉ‹r

p31q“ 2

ĉ‹
λr . (43)

Then, by (27), (35), (25) and (15), one gets (38).

Since (recall (37))

Ψ0pTn ˆ Ωpiq
α q “ ppΩpiq

α q ˆ T
n Ď Di ˆ T

n “ Br̂ppiq ˆ T
n ,

(39) follows from (38); (40) follows since rǫ ď r̂.

To control Lipschitz norm we introduce suitable partial rescalings. Let

1 ă β :“ λ

čµsν
, with č :“ nĉ0ĉ‹

16
“ ĉ‹

26 ¨ n! . (44)

Define, for any a ą 0, the following rescaling

Sa : pθ, xq P T
n ˆ R

n ÞÑ pθ, ωq :“ pθ, axq .

Now, recall (24) and let
$

&

%

Φ̃ :“ Rβr ˝ Φ ˝ Sα

Φ̃0 :“ Rβr ˝ Φ0 ˝ Sα

,

$

&

%

Ψ̃ :“ Rβr ˝ Ψ ˝ Sα

Ψ̃0 :“ Rβr ˝ Ψ0 ˝ Sα

(45)

which are defined on the domain Tn
s{2 ˆ 1

α
Ωpiq. The rescaled version of (41), then becomes:

Ψ̃ ´ Ψ̃0 “
´ 1

βr
p p ˝ ϕ ´ pq ˝ Sα, 0

¯

` Φ̃ ´ Φ̃0 . (46)

Finally, let
Ψ˚ :“ pΨ̃ ´ Ψ̃0q ˝ Ψ̃´1

0 , (47)

which is defined on 1
βr
Di ˆ Tn

s{2.

The above rescaled embeddings may, now, be shown to be close, in Lipschitz norm, to the unperturbed
rescaled embeddings:

Lemma 4 The following bounds hold:

sup
T
n
s{2

ˆ 1

α
Ωpiq

|Φ̃ ´ Φ̃0| ď sν

8
, sup

T
n
s{2

|Φ̃ ´ Φ̃0|Lip, 1

α
Ωpiq ď sν

8
, (48)

sup
T
n
s{2

ˆ 1

α
Ωpiq

|Ψ̃ ´ Ψ̃0| ď sν

4
, sup

T
n
s{2

|Ψ̃ ´ Ψ̃0|Lip, 1

α
Ωpiq ď 1

4
, (49)

sup
1

βr
DiˆT

n
s{2

|Ψ˚| ď sν

4
, sup

T
n
s{2

|Ψ˚|Lip, 1

βr
Di

ď 1

4
, (50)

sup
1

βr
DiˆTn

}BθΨ˚} ď sν´1

2
. (51)
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Proof Since β ą 1, by (27) and (35) we have that

sup
T
n
s{2

ˆ 1

α
Ωpiq

|Φ̃ ´ Φ̃0| ď sup
T
n
s{2

ˆ 1

α
Ωpiq

|R´1
β pΦ̃ ´ Φ̃0q| “ sup

T
n
s{2

ˆΩpiq

|RrpΦ ´ Φ0q| ď 2ĉ

ĉ‹

µs2ν

λ
ď sν

8
, (52)

last inequality holding because of the definition of ĉ in (15).

Analogously, (by (27), (35) and the definition of ĉ) we have that19

sup
T
n
s{2

|Φ̃ ´ Φ̃0|Lip, 1

α
Ωpiq ď sup

T
n
s{2

|R´1
β pΦ̃ ´ Φ̃0q|Lip, 1

α
Ωpiq “ α sup

T
n
s{2

|RrpΦ ´ Φ0q|Lip,Ωpiq ď 2ĉ

ĉ‹

µsν

λ
ď sν

8
,

which, together with (52), proves (48).
Now, by (43), (31), (44), we get

sup
T
n
s{2

ˆ 1

α
Ωpiq

ˇ

ˇ

ˇ

´ 1

βr
p p ˝ ϕ ´ pq ˝ Sα, 0

¯ˇ

ˇ

ˇ
“ 1

βr

piq
sup
Ω

| p ˝ ϕ ´ p| ď 2λ

ĉ‹β

p44q“ µsν

25n!
ă sν

8
. (53)

The first estimate in (49) now follows at once in view of (46), the first inequality in (48) and (53).

In order to prove the second estimate in (49), in view of (46), we need to estimate the Lipschitz semi–
norm of p p ˝ ϕ ´ pq. Fix ω, ω1 P Ωpiq and set p “ ppωq and p1 “ ppω1q. Let also γptq :“ pp1 ´ pqt ` p,

for t P r0, 1s and20 γ̃ :“ hp ˝ γ. Then21,
ˇ

ˇ

ˇ
p
`

ϕpω1q
˘

´ ppω1q ´ p
`

ϕpωq
˘

` ppωq
ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ

ˇ

„
ż 1

0

´

pω
`

ϕ
`

γ̃ptq
˘˘

ϕω

`

γ̃ptq
˘

´ pω
`

γ̃ptq
˘

¯

hpppγptqq dt


pp1 ´ pq
ˇ

ˇ

ˇ

ˇ

ď M|p1 ´ p|
ż 1

0

ˇ

ˇ pω
`

ϕ
`

γ̃ptq
˘˘

ϕω

`

γ̃ptq
˘

´ pω
`

γ̃ptq
˘ˇ

ˇ dt

“ M|p1 ´ p|
ż 1

0

ˇ

ˇ

ˇ
pω

`

ϕ
`

γ̃ptq
˘˘`

Bωpϕ ´ idq
ˇ

ˇ

γ̃ptq

˘

` pω
`

ϕ
`

γ̃ptq
˘˘

´ pω
`

γ̃ptq
˘

ˇ

ˇ

ˇ
dt

p42q
ď λ|ω1 ´ ω|

´

L|ϕ ´ id|Lip ` 4 L

c0µ2 Mr0
|ϕ ´ id|

¯

p28q,p34q
ď λ|ω1 ´ ω|

´

L
2ε

ĉ‹αrsν
` 4 L

c0µ2 Mr0

2ε

ĉ‹r

¯

p16q,p31q“ |ω1 ´ ω|2λ
2r

ĉ‹

´ 1

αsν
` 4

c0µ2 Mr0

¯

.

Now, observe that, by (17), (16), (15) and (6) (which implies that c ă ĉ2c20{4), one has

4

c0µ2 Mr0
ă 1

αsν
.

19 If f is a Lipschitz map defined on Ωpiq, then f ˝ Sa is Lipchitz on 1
a
Ωpiq and |f ˝ Sa|

Lip, 1
a
Ωpiq “ a|f |

Lip,Ωpiq .
20 The introduction of the lifted curve γ̃ Ď Ωpiq to join ω and ω1 is due to the fact that, in general, Ωpiq is not convex.
21 By Remark (v) in 7.2, ϕ is differentiable; the differentiability of ϕ almost everywhere also follows, independently,

from Rademacher’s Theorem. Notice also that, if f is a function differentiable (a.e.) on Ωpiq, then sup
piq
Ω

|∇f | ď |f |
Lip,Ωpiq

(a.e.), the equality holding if Ωpiq is convex.
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Thus,

| p ˝ ϕ ´ p|Lip,Ωpiq ă 4λ2r

ĉ‹αsν
,

and, therefore (recalling footnote 19),

1

βr
|p p ˝ ϕ ´ pq ˝ Sα|Lip, 1

α
Ωpiq “ α

βr
| p ˝ ϕ ´ p|Lip,Ωpiq

ă 4λ2

βĉ‹sν

p14q
ď 2λ

nĉ0µ ĉ‹sν
1

β

p44q,p15q“ 1

8
,

which, together with the second estimate in (48), in view of (46), yields also the second bound in (49).

To estimate Ψ˚ (defined in (47)), observe that

Ψ̃´1
0 py, θq “

`

θ, α´1hppβryq
˘

, Ψ̃´1
0 :

1

βr
Di ˆ T

n
s{2

ontoÑ T
n
s{2 ˆ 1

α
Ωpiq .

Thus, the first estimate in (50) follows immediately from the first bound in (49). As for the Lipschitz
semi–norm of Ψ˚, by (44), (17), (31), (15) and (25) we have, for all θ P Tn

s{2, that
22

|Ψ̃´1
0 |Lip, 1

βr
Di

“ 1

α
|hppβr¨q|Lip, 1

βr
Di

“ βr

α
|hp|Lip,Di

ď βr M

α
“ ĉs2ν

č
“ c‹

ĉ‹
4 ¨ n!s2ν ă s2ν .

Thus, in view of the second estimate in (49), we have, for all θ P Tn
s{2,

|Ψ˚|Lip, 1

βr
Di

ď |Ψ̃ ´ Ψ̃0|Lip, 1

α
Ωpiq |Ψ̃´1

0 |Lip, 1

βr
Di

ă s3ν

4
.

By (50) and Cauchy estimates we get (51).

We shall also need the following

Lemma 5 Let23

ρ :“ βsν

4
r . (54)

Then,

Ψ̃ ˝ Ψ̃´1
0

´ 1

βr
Di ˆ T

n
¯

:“ Ψ̃ ˝ Ψ̃´1
0

´ 1

βr
Br̂ppiq ˆ T

n
¯

Ě 1

βr
Br̂´ρppiq ˆ T

n . (55)

22|hppβr¨q|
Lip, 1

βr
Di

denotes the Lipschitz norm of the function y Ñ hppβryq on the rescaled domain pβrq´1Di.

23Recall that r “ ?
ǫ r0 is defined in (31).
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Proof Since24

1

βr
Br̂´ρppiq “ B r̂´ρ

βr

´ pi

βr

¯

p54q“ B r̂
βr

´ sν

4

´ pi

βr

¯

,

one sees that (55) will hold if, for any given py0, θ0q P 1
βr
Br̂´ρppiq ˆ Tn, there exists a point25

py1, θ1q P Bsν{4p0q ˆ T
n

such that

py0, θ0q “ Ψ̃ ˝ Ψ̃´1
0 py0 ` y1, θ0 ` θ1q p47q“ py0 ` y1, θ0 ` θ1q ` Ψ˚py0 ` y1, θ0 ` θ1q .

Such relation is, in turn, equivalent to the fixed point equation

py1, θ1q “ ´Ψ˚py0 ` y1, θ0 ` θ1q . (56)

We shall solve (56) in two steps: (i), we prove that there exists a unique function y˚pθq such that26

y˚pθq “ ´π1Ψ˚py0 ` y˚pθq, θ0 ` θq , @ θ P T
n , (57)

and, (ii), we show that the map

θ P T
n ÞÑ θ ` π2Ψ˚py0 ` y˚pθq, θ0 ` θq P T

n , (58)

is onto, guaranteeing that there exists a θ1 P Tn so that θ1 ` π2Ψ˚py0 ` y˚pθ1q, θ0 ` θ1q “ 0. These
two facts will show that y1 :“ y˚pθ1q and θ1 are solutions of (56), proving the claim.

Proof of (i): Let

X :“ tθ ÞÑ ypθq P CpTn,Rnq| sup
Tn

|y| ď sν{4u , F pyqpθq :“ ´π1Ψ˚

`

y0 ` ypθq, θ0 ` θ
˘

.

Then, by the first inequality in (50), F : X Ñ X , and the second inequality in (50) shows that F is a
contraction fromX intoX . Hence, there exists a unique fixed point y˚ P X satisfing (57). Furthermore,
since Ψ˚ is real–analytic, so is y˚ and, in particular, its Jacobian Bθy˚ satisfies the equation

´

id ` π1ByΨ˚

`

y0 ` ypθq, θ0 ` θ
˘

¯

Bθy˚ “ ´π1BθΨ˚

`

y0 ` ypθq, θ0 ` θ
˘

,

which, by Neumann series, by the second inequality27 in (50) and by (51), yields

sup
Tn

}Bθy˚} ď 1

1 ´ 1
4

sν´1

2
“ 2

3
sν´1 . (59)

24Notice that it is r̂ ´ ρ ą 0: Indeed, by (44) and (31), we see that ρ “ λ
?
ǫr0{p4čµq, so that (recalling the definition

of r̂ in (22)) ρ ă r̂ is seen to be equivalent to ǫ ă 4 č2 c20 µ
6{λ2 p44q,p6q“ ĉ2‹µ

6{p216n2n!6λ2q, which is guaranteed by (16),
observing that, by (15), c ă ĉ2‹{p216n2n!6q.

25As standard, the overline denotes closure and observe that y0 ` y1 P 1
βr

Br̂ppiq.
26Recall, (2), that πi denotes projection: π1py, θq “ y and π2py, θq “ θ.
27Recall the second remark in footnote 7.
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Proof of (ii): Observe that from the standard Contraction Lemma it follows easily that28:

If g is a C1pTn,Tnq map such that λ :“ sup
Tn }Bθg} ă 1, then, the map G : θ P Tn ÞÑ θ ` gpθq P Tn

has a unique inverse G̃ : θ P Tn ÞÑ θ ` g̃pθq P Tn with g̃ P C1pTn,Tnq and sup
Tn }Bθg̃} ď λ{p1 ´ λq.

Now, recalling (58), to finish the proof is enough to check that the Jacobian of the map

θ ÞÑ π2Ψ˚py0 ` y˚pθq, θ0 ` θq

has (operator) norm strictly smaller than one. But, by the second inequality in (50), (59) and (51),
one has, for any θ P Tn,
›

›Bθπ2Ψ˚

`

y0 ` y˚pθq, θ0 ` θ
˘›

› ď
›

›ByΨ˚

`

y0 ` y˚pθq, θ0 ` θ
˘›

›

›

›Bθy˚pθq
›

› `
›

›BθΨ˚

`

y0 ` y˚pθq, θ0 ` θ
˘›

›

ď 1

4
¨ 2
3
sν´1 ` sν´1

2
“ 2

3
sν´1 ă 1 .

6.6 Measure estimates

We first provide measure estimates on pDi ˆ Tnq z T piq
α “ pDi ˆ Tnq zΨpTn ˆ Ω

piq
α q.

Clearly29,
pDi ˆ T

nq z T piq
α Ď

`

pDi ˆ T
nqzΨpTn ˆ Ωpiqq

˘

9Y Ψ
`

T
n ˆ pΩpiqzΩpiq

α q
˘

. (60)

Now, the following estimates hold.

Lemma 6 (Measure estimates) Recall (6), (15) and (44) and define the following constants:

κ1 :“ p2πqn ncn´1
0

2č
, κ2 :“

´5π

2

¯n

; (61)

κ1
3 :“ 2 n

n´1

2

´

ÿ

k‰0

1

|k|τ`1
1

¯cn´1
0

ĉ
, κ2

3 :“ 2ncn´1
0

ĉ
, κ3 :“ κ1

3 ` κ2
3 . (62)

Then, one has

meas
`

pDi ˆ T
nqzΨpTn ˆ Ωpiqq

˘

ď κ1 µ
2n´3rn0

?
ǫ , (63)

meas
`

ΨpTn ˆ ΩpiqzΩpiq
α q

˘

ď κ2 L
n meas pΩpiqzΩpiq

α q , (64)

meas pΩpiqzΩpiq
α q ď κ3

µ2n´3λ2

s3ν
p Mr0qn

?
ǫ . (65)

Proof Observe that by (45)
Rβr ˝ Ψ “ Ψ̃ ˝ Ψ̃´1

0 ˝ Rβr ˝ Ψ0 . (66)

Thus, since Ψ0pTn ˆ Ωpiqq “ Di ˆ Tn, we have

Rβr ˝ ΨpTn ˆ Ωpiqq “ Ψ̃ ˝ Ψ̃´1
0

´ 1

βr
Di ˆ T

n
¯

. (67)

28Indeed, G ˝ G̃ “ id is equivalent to the fixed point equation g̃ “ ´g ˝ pid ` g̃q and if we let X denote CpTn,Tnq
endowed with the standard metric dph1, h2q :“ supTn d

Tn

`

h1pθq, h2pθq
˘

(where d
Tn

denotes the standard flat metric on
Tn), one sees immediately that the assumption implies that the map h P X ÞÑ ´g ˝ pid ` hq P X is a contraction from
X to X, whose unique fixed point yields g̃. Furthermore, since g is C1, so is g̃ and the inequality on the Jacobian of g̃
follows by Neumann series after having differentiated the identity g̃ “ ´g ˝ pid ` g̃q.

29The dot over union denotes “disjoint union”.

17



Therefore30,

meas
´

pDi ˆ T
nqzΨpTn ˆ Ωpiqq

¯

“ pβrqn meas
´

Rβr

`

pDi ˆ T
nq
˘

zRβr ˝ ΨpTn ˆ Ωpiqq
¯

p67q“ pβrqn meas
´

` 1

βr
Di ˆ T

n
˘

zΨ̃ ˝ Ψ̃´1
0

` 1

βr
Di ˆ T

n
˘

¯

(55)

ď pβrqn meas
´

` 1

βr
Di ˆ T

n
˘

z
` 1

βr
Br̂´ρppiq ˆ T

n
˘

¯

“ meas
´

`

DizBr̂´ρppiq
˘

ˆ T
n
¯

“ p2πqn
´

p2r̂qn ´
`

2pr̂ ´ ρq
˘n
¯

ď p2πqnn2nr̂n´1ρ

p61q“ κ1λµ
2n´3rn0

?
ǫ ,

proving (63).

To prove (64), observe that if A Ď Ωpiq, from (66) and the identity (recall (37))

Rβr ˝ Ψ0pTn ˆ Aq “ 1

βr
ppAq ˆ T

n ,

there follows, by (45),

ΨpTn ˆ Aq “ R´1
βr ˝ Ψ̃ ˝ Ψ̃´1

0

´ 1

βr
ppAq ˆ T

n
¯

. (68)

Observe also that, since31

Ψ̃ ˝ Ψ̃´1
0 “ id ` Ψ˚ ,

from (50) there follows
|Ψ̃ ˝ Ψ̃´1

0 |Lip, 1

βr
DiˆTn ď 5{4 .

Now, for every measurable set A Ď Ωpiq, one has32

meas
`

ΨpTn ˆ Aq
˘ p68q“ pβrqnmeas

´

Ψ̃ ˝ Ψ̃´1
0

` 1

βr
ppAq ˆ T

n
˘

¯

ď p2πqn
`

|Ψ̃ ˝ Ψ̃´1
0 |Lip, 1

βr
DiˆTn

˘n
L
n measpAq

ď κ2 L
n meas pAq ,

and (64) follows.

To prove (65), observe that

Ωpiq zΩpiq
α Ď tω P Ωpiq| ω is not pα, τq´Diophantineu Y Ωpiqpαq (69)

30Recall that Di “ Br̂ppiq; in the last inequality use that for every 0 ă x ă 1 and for every integer n ą 1, one has
1 ´ p1 ´ xqn ă nx and for the last equality recall (22), (54), (44), (31).

31Recall the definition of Ψ˚ in (47).
32In the first inequality, we use (twice) the following fact: If A Ď is a measurable set and f : A Ñ Rn is a Lipschitz

map, then meas fpAq ď |f |n
Lip,A

measA.
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where
Ωpiqpαq :“

!

ω P Ωpiq, s.t. distpω, BΩpiqq ă α
)

.

Let us begin with estimating the measure of the first set in the r.h.s. of (69) keeping track of constants.
Notice that, if Ω̂piq denotes the euclidean ball of center hpppiq and radius

?
n Mr̂, then

Ωpiq “ hp

`

Br̂ppiq
˘

Ď Ω̂piq .

Thus, denoting by } ¨ } the euclidean norm in Rn, we have

meas tω P Ωpiq| ω not pα, τq´Dioph.u ď meas
!

ω P Ω̂piq| D k P Z
n, k ‰ 0 : |ω ¨ k| ă α

|k|τ
1

)

ď 2n
ÿ

k‰0

p
?
n Mr̂qn´1 α

|k|τ`1
1

p22q,p17q“ κ1
3

Mnλµp2n´3q

s3ν
rn0

?
ǫ . (70)

As for the measure of the second set in (69), we observe that either r̂ ď Lα or r̂ ą Lα. In the first
case we have

measpΩpiqpαqq ď measpΩpiqq ď M
nmeaspBr̂ppiqq “ 2n Mnr̂n ď 2n Mn Lr̂n´1α .

In the second case, let
ř :“ r̂ ´ Lα ą 0 .

We claim that
hp

`

Br̂ppiqzBřppiq
˘

Ě Ωpiqpαq . (71)

Indeed, by contradiction, assume that there exist ω “ hpppq P Ωpiqpαq, ω˚ “ hppp˚q P BΩpiq (namely
|p˚ ´ pi| “ r̂) with |p ´ pi| ă ř, and |ω ´ ω˚| ă α. Then

Lα “ r̂ ´ ř ă |p˚ ´ p| ď L|ω˚ ´ ω| ă Lα ,

proving (71). Thus33,

measpΩpiqpαqq ď meas
´

hp

`

Br̂ppiqzBřppiq
˘

¯

ď Mnmeas
`

Br̂ppiqzBřppiq
˘

“ 2n Mnpr̂n ´ řnq

ă p2 Mqn nr̂n´1 Lα

Thus, in either case, by (22) and (17), we have

measΩpiqpαq ď p2 Mqn nr̂n´1 Lα “ κ2
3

Mnλ2µp2n´3q

s3ν
rn0

?
ǫ (72)

By (69), (70) and (72), we have

meas pΩpiq zΩpiq
α q ď κ3

Mnλ2µp2n´3q

s3ν
rn0

?
ǫ .

33Recall footnote 30.
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Lemma 6 is proved.

From (60) and Lemma 6 there follows

meas
´

pDi ˆ T
nq z T piq

α

¯

ď pκ1 ` κ2κ3q µ2n rn0
λn`2

µ3s3ν

?
ǫ .

Now, since it is

p D ˆ T
nq z Tα “ p D ˆ T

nq z
N
ď

i“1

T piq
α

Ď
N
ď

i“1

pDi ˆ T
nq z

N
ď

i“1

T piq
α

Ď
N
ď

i“1

pDi ˆ T
nq z T piq

α

“
N
ď

i“1

pBr̂ppiq ˆ T
nq z T piq

α .

Now, in view of (23), one obtains (19) with

κ :“ 22n

cn0
pκ1 ` κ2κ3q , (73)

and (18) follows at once.

A The standard quantitative Inverse Function Theorem

The following is a standard Inverse Function Theorem in Cn; the bar over sets denotes closure.

Proposition Let f : Brpp0q Ñ Cn be a holomorphic function with invertible Jacobian fppp0q and
with r such that

sup
Brpp0q

}I ´ f´1
p pp0qfpppq} ď δ ă 1 . (74)

Then, there exists a unique holomorphic inverse g of f such that

g : Bρpω0q Ñ Brpp0q , with ρ :“ p1 ´ δq r

}f´1
p pp0q}

, ω0 :“ fpp0q . (75)

Furthermore,

sup
Bρpω0q

}gω} ď 1

1 ´ δ
}f´1

p pp0q} . (76)

If f is real–analytic, so is g.
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The elementary proof follows by checking that the map h ÞÑ Φphq :“ h`f´1
p pp0q

`

f˝h´id
˘

is a contrac-

tion on the space of continuous functions from Bρpω0q in Brpp0q. Then, by the Contraction Lemma,
g “ limΦnpp0q, which also shows, by Weierstrass Theorem on the uniform limit of holomorphic func-
tions, that g is holomorphic (and real–analytic, if so is f). The bound (76) is a general fact following
from Neumann series: Indeed, if A and B are pnˆnq matrices and }I´AB} ď δ ă 1, then, by Neumann

series, AB is invertible and so are A and B, furthermore }B´1} ď }pABq´1} }A} ď p1´ δq´1}A}.
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