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Abstract

We study the integration of train scheduling and rolling stock circulation planning under time-

varying passenger demand for an urban rail transit line, where the practical train operation

constraints, e.g., the capacity of trains, the number of available rolling stocks, and the enter-

ing/exiting depot operations, are considered. Three solution approaches are proposed to solve

the resulting multi-objective mixed-integer nonlinear programming (MINLP) problem to deliver

both an irregular train schedule (i.e., departure and arrival times of all train services) and a rolling

stock circulation plan (including entering/exiting depot operations of rolling stocks and connec-

tions between train services) simultaneously. We first present an iterative nonlinear programming

(INP) approach, where the solutions of the original MINLP problem are obtained by solving a

nonlinear programming problem and a mixed integer linear programming (MILP) problem itera-

tively. Moreover, an equivalent MILP formulation of the original MINLP model is developed and

an approximated MILP approach is proposed to reduce the number of constraints introduced by

passenger demand. A case study is conducted based on the practical data of the Beijing Yizhuang

line, where the three proposed approaches are compared with a state-of-the-art approach and a

practical method used by the traffic planners. This comparison shows the effectiveness and effi-

ciency of the three proposed approaches.

Keywords: urban rail transit, train scheduling, rolling stock circulation, iterative nonlinear

programming, MILP

1. Introduction

Urban rail transit systems are of crucial importance for the stability, sustainability, and effi-

ciency of public transportation systems. The number of passengers commuting with urban rail

transit systems is more than 10 million per day in big cities, such as Beijing, Shanghai, and

Tokyo. During the morning and evening peak hours, especially during workdays, the departure

headway between two consecutive services has been recently reduced to 2 minutes for some busy

urban rail transit lines. With the increasing of passenger demand and the saturated operations of
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Figure 1: The hierarchical planning process for urban rail transit lines

trains in urban rail transit lines, the planning process is attracting more and more attention, be-

cause the operating costs of rail operators and the passenger satisfactions are hugely influenced

by the quality of the planning process.

Traditionally, the planning process for urban rail transit lines is a sequential planning pro-

cess (Ghoseiri et al., 2004; Bussieck et al., 1997), as given in Figure 1, which consists of net-

work planning, demand analysis, line planning, train scheduling, rolling stock scheduling (or

circulation planning), and crew scheduling. In general, the results of previous planning process

are used as inputs or constraints for the following process, which may lead the railway system

to be operated in an suboptimal way (Schöbel, 2017). The line planning determines lines, stop

patterns, and frequencies of train services to satisfy passenger demand and infrastructure con-

straints (Caprara et al., 2005). The train schedules are determined based on the results of the line

planning process, where the frequencies could be adjusted in a certain time interval to obtain a

feasible train schedule. The rolling stock circulation plan is then calculated based on the feasible

train schedule obtained in the train scheduling process. The rolling stock circulation planning

may also need to adapt the departure/arrival times of train services or even need to cancel some

train services, in order to satisfy the constraints proposed by the rolling stock circulation. The

drawbacks of the sequential process are as follows: (1) the operating costs, such as the number

of rolling stocks required, are considered only in the late stage of the process; (2) the adjusted

line plan and train schedule may not be optimal for rail operators and passengers any more or

even they may not satisfy the passenger demand.

We focus on the integrated optimization of train schedules and rolling stock circulation plans

for an urban rail transit line. In most urban rail transit systems, the lines are generally separated

with each other. Rolling stocks are not operated across different lines but they only belong to

a particular line. In our optimization problems, we make the following assumptions: (1) trains

do not meet and overtake each other due to the station layout (without siding tracks); (2) each

platform of a station can only accommodate one train at a time; (3) there is only one depot which

is connected with the start station; (4) all the train services are full-length services, i.e., trains

go from the start station to the end station, turn around at the end station, go towards the start

station, and stop at all the stations; (5) the decomposition and composition of rolling stocks (or
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EMUs) are not included in the rolling stock circulation planning; (6) the available rolling stocks

can operate during the whole operating period, i.e., the maximum number of services that a

rolling stock can perform is not limited; (7) the passenger demand is considered as the number

of passengers traveling between two consecutive stations for a certain time period (e.g., 30, 15, or

5 minutes), while the origin and destination of passengers are not considered; (8) the number of

passengers is approximated by real numbers instead of integers. Detailed explanations regarding

these assumptions will be given in Section 3.2.

In this paper, we propose an integrated optimization of the train scheduling and rolling stock

circulation planning for an urban rail transit line, where the headways between train services,

the departure/arrival times of train services, and the rolling stock circulation plan are optimized

simultaneously. A multi-objective mixed integer nonlinear programming (MINLP) model is

formulated, where the time-varying passenger demand, the turnaround operations, the connection

of train services, and the entering/exiting depot operations are included in the model formulation.

An iterative nonlinear programming (INP) approach and two mixed integer linear programming

(MILP) approaches are then proposed to solve the resulting integrated optimization problem. The

proposed three solution approaches will be compared with a state-of-the-art approach (i.e., the

two-stage approach presented in Wang et al. (2017a)) and the current practical solution generated

by traffic planners based on the practical data of the Beijing Yizhuang line.

The remainder of this paper is organized as follows. Section 2 provides a literature review

on the passenger demand oriented train scheduling and on the integration of train scheduling and

rolling stock circulation planning. In Section 3, a detailed problem statement and the assump-

tions for the model formulation are presented. In Section 4, the integrated optimization problem

for passenger demand oriented train scheduling and rolling stock circulation planning is formu-

lated. In Section 5, the INP approach is presented to solve the resulting MINLP problem. In

Section 6, two MILP approaches, i.e., the accurate MILP and approximated MILP approaches,

are introduced to solve the integrated MINLP problem, by transforming the nonlinear terms via

mixed logical dynamic constraints. In Section 7, the proposed mathematical model and solution

approaches are evaluated by real-world operation data taken from the Beijing Yizhuang line.

Finally, the conclusions and future works are presented in Section 8.

2. Literature review

In this section, we review the state of the art in two directions: 1) passenger demand oriented

train scheduling; 2) integration of train scheduling and rolling stock circulation planning.

2.1. Passenger demand oriented train scheduling

The passenger demand oriented train scheduling problem has attracted much attention for the

past years. The research on this problem can be split into two streams based on the characteristics

of the obtained train schedules: (1) periodic (or regular) train schedules and (2) non-periodic (or

irregular) train schedules. Recently, Robenek et al. (2017) examined the benefits of combining

the regularity of periodic train schedules and the flexibility of the non-periodic ones.

For the regular train schedules, genetic algorithms were adopted by Nachtigall and Voget

(1996) for the regular train schedule optimization with the objective of minimizing the passen-

ger waiting times. Chierici et al. (2004) proposed a demand-dependent optimization approach

to maximize the total demand captured by the trains, where a branch-and-bound method and

heuristic algorithms were used to solve the resulting mixed integer nonlinear problem. Ceder
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(2009) proposed a methodological framework to determine the departure times of train services

with even headways and provided smooth transitions between different time periods. Liebchen

(2006, 2008) formulated the train scheduling problem as a periodic event-scheduling problem

based on a well-established graph model and applied integer programming methods to optimize

the train schedule for Berlin subway system. Cordone and Redaelli (2011) presented a mixed

integer nonlinear programming model to capture the feedback mechanism between transport of-

fer and passenger demand, where a branch-and-bound algorithm and a heuristic algorithm were

developed to optimize the regular train schedule for a regional network in Italy. Kaspi and Raviv

(2012) proposed a service-oriented line planning and train scheduling model with the objec-

tive of minimizing both the user inconvenience and the operational costs, where the problem

was solved by a cross-entropy metaheuristic algorithm. In addition, regular train schedules of

urban rail transit systems are also optimized with consideration of energy consumption (includ-

ing/excluding regenerative energy), e.g., in Su et al. (2013) and Li and Lo (2014), where the

speed profiles of the trains are managed simultaneously. Moreover, Yin et al. (2017) integrated

the energy efficiency into the passenger oriented train scheduling, where the train schedules and

the speed profiles are collaboratively optimized by solving a mixed integer linear programming

problem.

Irregular train scheduling is more appropriate when considering time-varying passenger de-

mand since a regular train schedule may lead to longer waiting times and ineffective rolling

stock utilization. Cury et al. (1980) presented a hierarchical methodology to generate optimal

train schedules for urban rail transit lines based on a train movement model and a passenger

behavior model. Based on the model proposed in Cury et al. (1980), Assis and Milani (2004)

proposed a model predictive control approach based on linear programming to efficiently gen-

erate train schedules for a whole day. A two-level approach is proposed in Albrecht (2009)

to generate the demand oriented train schedule, where the optimal frequency and capacity of

trains are computed by a branch-and-bound algorithm first and a genetic algorithm is then used

to determine the departure times of trains at stations. Niu and Zhou (2013) developed an op-

timization model for constructing demand-responsive and congestion-sensitive timetables for a

heavily congested urban rail transit line. A customized genetic algorithm is designed to solve

the resulting integer programming model with the objective of minimizing the number of wait-

ing passengers and weighted remaining passengers. Niu et al. (2015) proposed nonlinear mixed

integer optimization models for the train scheduling problem with the objective of minimizing

the total passenger waiting time at stations under time-dependent passenger demand and prede-

termined stop-skipping patterns. A bi-level approach was proposed in Wang et al. (2014) to

obtain the optimal train schedule for an urban rail transit line with consideration of time-varying

passenger demand and stop-skipping strategy. Furthermore, the passenger demand oriented train

scheduling for an urban rail transit network is considered in Wang et al. (2015b), where the train

schedules of two lines are optimized simultaneously to satisfy the passenger demand, while the

transfer between different lines is included in the problem formulation. Sun et al. (2014) pro-

posed three models to design demand sensitive train schedules based on the concept of equivalent

time (interval) and assessed the performance of these three models based on the data of a metro

line in Singapore. It is concluded that the dynamic timetable with capacity constraints is the

most advantageous. Canca et al. (2014) developed a nonlinear integer programming model to

optimize the departure/arrival times of train services under a dynamic passenger demand, where

a test case was performed based on the C5 line of Madrid rapid transit system. Barrena et al.

(2014) proposed three formulations for the train scheduling problem with the aim of minimiz-

ing the passenger waiting time and a branch-and-cut algorithm to design train schedules under a
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dynamic demand environment. Zhu et al. (2017) proposed a bi-level model for designing a train

timetable on an urban rail line, where the passenger demand and the carrying capacity of rolling

stocks are jointly considered in the train timetabling stage. However, in the above-cited studies,

the turnaround operations and the rolling stock circulation plan are not directly considered due to

the complexity of the problem formulation. The turnaround operations are usually the bottleneck

of the urban rail transit line and the constraints proposed by the rolling stock circulation plan are

also critical for the train scheduling process.

2.2. Integration of train scheduling and rolling stock circulation planning

An integer programming model based on a transition graph is proposed by Alfieri et al. (2006)

to determine the rolling stock circulation plan with coupling and decoupling constraints at the

stations on a single line for daily operations, where the objective is the minimization of the num-

ber of train units required. Fioole et al. (2006) assigned the rolling stocks to train services based

on the given departure/arrival times and the expected number of passengers, where the objective

criteria involved operational costs, service quality and reliability of railway systems. Moreover,

Peeters and Kroon (2008) proposed a circulation planning model to allocate the rolling stocks

according to the given timetable and the passengers’ seat demand, where a branch-and-price al-

gorithm was applied to find the best trade-off between the passenger satisfaction, the robustness,

and the cost of the circulation plan. Cadarso and Marı́n (2010) presented an integer programming

model to shunt the rolling stocks efficiently. In addition, a mixed integer optimization model is

proposed in Cadarso and Marı́n (2011) to explore the robustness of the rolling stock assignment,

where the objective is to minimize the costs, including service trips, empty train movements,

and composition changes. Overall, the papers mentioned above address the railway planning

process in a sequential way, where the train schedules and the passenger volumes on each train

are assumed to be known for the rolling stock circulation problem.

Since the adjustments of departure/arrival times or the cancellation of train services in the

rolling stock circulation planning process may result in less optimal train operations, some re-

searchers have recently proposed to optimize the train schedule and the rolling stock circulation

plan collaboratively. Based on the periodic train scheduling model in Liebchen (2006, 2008), the

rolling stock circulation is integrated into the periodic train scheduling by Liebchen and Möhring

(2007) with the objective of minimizing the number of rolling stocks required to perform the op-

erations. An integrated train scheduling and rolling stock planning model is proposed by Cadarso

et al. (2012) for urban rapid transit networks, where the maximum and minimum frequencies for

the scheduled train services are predefined by the line planning process. Based on their previous

study, Cadarso et al. (2013) studied the recovery measures in presence of disruptions for urban

rail transit networks. Recently, Chang et al. (2015) presented an integrated optimization model

for train scheduling and rolling stock circulation planning, where they assume that there exists

an ideal train schedule and the difference between the ideal and optimized train schedules is

minimized. A path-indexed nonlinear formulation was proposed by Hassannayebi et al. (2016)

to minimize the average waiting time of passengers, where a Lagrangian relaxation approach

was introduced to relax some rolling stock circulation constraints. Yue et al. (2017) proposed

a bi-level programming model, where the upper level model is used for the train scheduling

with the objective of minimizing the trade-off between the number of waiting passengers and the

number of train services and the low level model is used to schedule the rolling stocks based on

the given train schedule with the aim of minimizing the number of infeasible train paths. The

train schedule obtained by the upper level is the input for the lower level model and the solution

process is iterated until a sufficiently good solution is found. Wang et al. (2017a) presented a

5



two-stage optimization approach to optimize the train schedule and the rolling stock circulation

plan sequentially, where the rolling stock circulation plan is obtained by adjusting the depar-

ture and arrival times in the demand oriented train schedule. Wang et al. (2017b) integrated the

train scheduling and the rolling stock circulation planning problems for an urban rail transit line,

where the integrated problem is not directly based on the time-varying passenger demand, but

it is based on the service patterns generated by the demand analysis and line planning, i.e., the

headways in the peak and off-peak hours.

2.3. Paper contributions

Table 1 summarizes some relevant studies on the passenger demand oriented train scheduling

and the integration with the rolling stock circulation planning, in terms of problem description

(i.e., integration, infrastructure, travel demand, train capacity, available trains), mathematical

formulations (i.e., objectives, constraints, model structure), and solution algorithms. For the

summary of Table 1, studies tend to integrate more and more attributes in the train scheduling

process to search for a global optimal solution. In particular, the integration of passenger demand

oriented train scheduling and rolling stock circulation planning is one of these trends.

Nevertheless, the integrated optimization of train schedules and rolling stock circulation

plans under time-varying passenger demand increases the modeling difficulty and computational

complexity. Most of the existing studies are typically devoted to these two problems separately.

For example, in rolling stock circulation models, the departure frequencies of trains are usually

pre-given as constant values, while the demand oriented train scheduling models typical neglect

or simplify the rolling stock circulation constraints. Papers on passenger demand oriented train

scheduling and rolling stock circulation planning either solve the integrated optimization prob-

lem in a sequential way (e.g., the two-stage approach in Wang et al. (2017a)) or in an iterative

way (e.g., the simulated annealing approach in Yue et al. (2017)).

Our paper focuses on the mathematical modeling and algorithmic designs required to com-

pute optimal train schedules and rolling stock circulation plans simultaneously under the time-

varying passenger demand for urban rail transit lines. This paper proposes the following contri-

butions to the literature:

• This work combines train scheduling and rolling stock circulation planning under time-

varying passenger demand and formulates the integrated optimization problem as a multi-

objective mixed-integer nonlinear programming (MINLP) model. Our model rigorously

considers the practical train operating constraints and passenger demand constraints, which

can be used to simultaneously generate an irregular train schedule according to the pas-

senger demand as well as the corresponding rolling stock circulation plan. The objectives

of the MINLP model are to minimize the load factor variation and the headway variation

of trains, in order to provide better passenger services, and to minimize the number of

entering/existing depot operations, in order to reduce the operational complexity and costs

from the perspective of rail operators.

• To capture the computational complexity arising from this integrated multi-objective MINLP

model, we introduce three solution approaches, which involve an iterative nonlinear pro-

gramming (INP) approach, an accurate mixed-integer linear programming (MILP-acc)

approach and an approximated mixed-integer linear programming (MILP-app) approach.

The INP and MILP-app approaches are developed by relaxing and approximating some

constraints and by imposing additional penalties to the original model, while the MILP-acc
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Table 1: Summary of relevant studies on passenger demand oriented train scheduling and its integration with rolling stock circulation

planning for urban rail transit systems∗

Publi- Inte- Infra- Travel Train Trains Objective(s) Model Solution

cations gration structure demand capacity available structure algorithms

Cadarso et al.

(2012)

TS,RCP network dynamic yes yes operating costs and

passenger dissatisfac-

tion penalty

MILP CPLEX

Niu and Zhou

(2013)

LP,TS bi-direc dynamic yes no total waiting time nonlinear GA

Barrena et al.

(2014)

LP, TS uni-direc dynamic no no average waiting time MILP branch and

cut

Barrena et al.

(2014)

LP, TS uni-direc dynamic no no average waiting time nonlinear ALNS

Canca et al.

(2014)

LP, TS uni-direc dynamic yes no average waiting time

and average load fac-

tor

MINLP GAMS

Wang et al.

(2014)

TS,SP uni-direc static yes no total traveling time

and energy consump-

tion

MINLP bi-level

approach

Li and Lo

(2014)

TS,SP bi-direc – no no net energy consump-

tion

nonlinear GA

Niu et al.

(2015)

LP,TS uni-direc dynamic yes no total waiting time MINLP GAMS

Wang et al.

(2015b)

TS,SP small net-

work

dynamic yes no total traveling time

and energy consump-

tion

nonlinear SQP,GA

Chang et al.

(2015)

TS,RCP bi-direc – no yes deviations from the

expected timetable

and fleet size

MILP CPLEX

Hassannayebi

et al. (2016)

TS, RCP bi-direc static yes yes average waiting time

per passengers

NLP Lagrangian

relaxation

Yin et al.

(2017)

TS,SP bi-direc dynamic yes no energy consumption

and total waiting time

MILP CPLEX and

heuristic

algorithm

Yue et al.

(2017)

TS, RCP bi-direc dynamic yes yes numbers of waiting

passengers, train ser-

vices, infeasible train

paths

Simulated

annealing

Wang et al.

(2017b)

TS,RCP bi-direc – no yes headway deviations

from the given service

pattern and required

trains

MINLP CPLEX

Wang et al.

(2017a)

TS, RCP1 bi-direc dynamic yes yes operation cost,trains

required, headway

variations

MINLP SQP, CPLEX

This paper TS,RCP bi-direc dynamic yes yes headway variations,

load factor variations,

number of depot

operations

MINLP iterative

approach,

CPLEX

* Symbols description for Table 1: line planning (LP); train scheduling (TS); Rolling stock circulation planning (RCP); Speed profile

(SP); bi-direction single line (bi-direc); Uni-direction single line(Uni-direc); mixed integer linear programming (MILP); mixed integer

nonlinear programming (MINLP); Cplex solver (CPLEX);Gams software (GAMS); genetic algorithm (GA); adaptive large neighborhood

search (ALNS); sequential quadratic programming (SQP).
1 In Wang et al. (2017), the passenger demand oriented train schedule is optimized first. Based on the optimal train schedule, the rolling

stock circulation plan is then calculated by adjusting the departure and arrival times of train services.
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Figure 2: The layout of an urban rail transit line

approach is based on equivalent reformulations from the original multi-objective MINLP

problem. The latter approach can return better solutions and can serve as benchmark for

the other two approaches.

• The performance of the proposed integrated model and solution approaches is evaluated by

using the practical data obtained from the Beijing Yizhuang line. The solutions obtained

by the new approaches are compared with those generated by the state-of-the-art approach

(i.e., the two-stage approach in Wang et al. (2017a)) and the approach used by traffic

planners in practice, in terms of headway variations, maximum load factor violations, and

required depot operations. We also perform a multi-objective study and investigate the

scalability of the fastest solution approach.

3. Problem statement and formulation assumptions

3.1. Problem statements

We consider a double-track urban rail transit line with the layout given in Figure 2, where the

depot is connected with station 1. The total number of stations is J and the turnaround operations

occur at station 1 and station J. We define the operating direction from station 1 to J as the up

direction and the operating direction from station J to 1 as the down direction. The operations of

the rolling stocks in the up and down directions are connected via turnaround operations.

When considering daily train scheduling problem for urban rail transit lines, the headway in

the regular train schedule changes several times; because the passenger demand in the peak hours

is significantly higher than that in the off-peak hours. For example, the number of passengers

traveling between two stations in Beijing Yizhuang line is shown in Figure 3, where the passenger

demand has different patterns for weekdays and weekends. There are several settings of the

headways in regular train schedules to satisfy the passenger demand, as illustrated by the black

line of Figure 4. In irregular train schedules, the headways between train services (as it is shown

by the red dashed-line in Figure 4) can be adjusted to satisfy the passenger demand better than

when using the regular train schedules. Here, we consider irregular train schedules in this paper.

Passenger demand oriented train scheduling usually optimizes the departure and arrival times

of train services without consideration of the rolling stock circulation plan. In particular, some

studies only consider one operating direction of the urban rail transit line. Furthermore, the

turnaround operation of trains at station J and the passenger demand on the other direction are

not considered. However, if we solve the train scheduling problem without consideration of the

rolling stock circulation constraints, then there could be no feasible rolling stock circulation plan
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for the train schedules, e.g., the available rolling stocks are not enough. For this reason, the train

schedules need to be adjusted in the rolling circulation planning phase, where the departure and

arrival times of the train services should be changed and some of the train services even need

to be canceled. Hence, we propose to integrate train scheduling and rolling stock circulation

planning with consideration of passenger demand and to obtain train schedules and rolling stock

circulation plans simultaneously.

A small example is presented in Figure 5, showing the train schedule for 18 train services

and the circulation plan for 6 rolling stocks. In Figure 5, this urban rail transit line has 4 stations

and a depot is connected to station 1. The rolling stocks performing train services 1-6 come

out from the depot directly. After completing a train service, a rolling stock can turnaround at

station 1 or go back to the depot. We take rolling stock 1 as an example. After performing train

service 1, rolling stock 1 turns around at station 1 and operates service 7. Later on, rolling stock

1 performs service 13 and goes back to the depot. We observe that the turnaround operation

of rolling stocks at station 1 and the operations related with the depot are not included in the

definition of train services. Even for this small example, we can observe that the train schedule

and the rolling stock circulation plan are strongly interrelated and the integrated optimization

approaches generate benefits both for the rail operators and the passengers.
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Figure 5: Small example of a train schedule and the corresponding rolling stock circulation plan

3.2. Assumptions

The assumptions for the integrated train scheduling and rolling stock circulation planning

problem have already been introduced in Section 1. Here, we give more detailed descriptions

regarding those assumptions:

(1) The overtaking or meeting of trains does not occur in normal operations of urban rail transit

lines, where trains usually run in a first-in first-out order from station 1 to J or from station

J to 1 (see Figure 2).

(2) The station layout for urban rail transit lines is simple and normally consists of two plat-

forms. Each platform is used for an operating direction, as shown in Figure 2. Each

platform can only accommodate one train at a time.

(3) There are different topology structures for the urban rail transit lines, where a line may have

a single depot or multiple depots (Yue et al., 2017). Here, we only consider the topology

with one depot that is connected with station 1. However, the model formulations and

solution approaches proposed in this paper can be extended to other topology structures.

(4) The stop patterns for urban rail transit lines involve full-length services (i.e., services that

start from station 1, go to station J, turnaround at station J, go back to station 1, and stop

at all the stations), short-turning services (i.e., services that turnaround at the intermediate

stations other than station J), and stop-skipping services (i.e., services that skip some sta-

tions). However, most of the urban rail transit lines are only operated with full-length train

services. Here, we only consider the full-length train services.

(5) The rolling stocks used in urban rail transit lines are electrical multiple units (EMUs),

which consist of motor cars and trailer cars. No separated locomotives are needed for

the operations of EMUs. In theory, the composition of the EMUs can change according

to the passenger demand to reduce the operational costs and to enhance the passenger
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satisfaction. The rolling stocks consist of more cars during peak hours and less cars during

off-peak hours. However, in order to simplify the practical operations, the composition of

rolling stocks does not change in the daily operations of urban rail transit lines, such as the

Beijing Yizhuang line. Therefore, the decomposition and composition of rolling stocks are

not included in the rolling stock circulation planning.

(6) In urban rail transit lines, the available rolling stocks can operate from the early morning

to the late evening, i.e., the whole operating period of a day. For this reason, we do not

consider the maximum number of train services (or the maximum working times) that a

rolling stock can operate. However, the capacity of the EMUs, i.e., the maximum number

of on-board passengers, is indeed considered in the integrated optimization problem. The

operation of rolling stocks inside the depot is out of the scope of this paper, since this type

of operation is normally scheduled when the train schedule and the rolling stock circulation

plan are fixed (Flamini and Pacciarelli, 2008).

(7) Urban rail transit lines focus on the number of passengers traveling between two consec-

utive stations (Yue et al.,2017), e.g., the number of passengers traveling between Songji-

azhuang and Xiaocun for a weekday and a weekend day is shown in Figure 3. We thus

optimize the train schedule and rolling stock circulation plan based on a sectional passen-

ger demand without consideration of the origin and destination of passengers.

(8) Since the number of passengers that are on board of the trains is a large integer value, the

approximation error, caused by treating this number as a real-valued variable, is small.

4. Mathematical formulation

The mathematical model is presented in this section to simultaneously optimize the train

schedule and rolling stock circulation plan. First, the notations and decision variables are in-

troduced. Then, the constraints and objective functions of the passenger demand oriented train

scheduling and rolling stock circulation planning are formulated.

4.1. Notations and decision variables

Table 2 lists all the parameters and subscripts used in the model formulation. Moreover,

Table 3 gives the decision variables of the integrated passenger oriented train scheduling and

rolling stock circulation planning model. Since the integrated model is built on the basis of train

services, the departure and arrival times at stations, the running times and dwell times, and the

load factors of train services are important elements for the train scheduling model. Moreover,

the behaviors of rolling stocks are important for the circulation plan. Specifically, the considered

behaviors include (1) whether the rolling stock directly comes from the depot or not, (2) whether

the rolling stock enters the depot or not immediately after a train service is executed, and (3)

whether the rolling stock serves other train services afterwards or not.

4.2. Systematic constraints

In this subsection, systematic constraints will be formulated to make the train schedule satis-

fying the passenger demand and guaranteeing the feasibility of the rolling stock circulation plan

simultaneously. The constraints are next described in detail.
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Table 2: Parameters and subscripts for the model formulation

Notations Definition

J set of stations

I set of train services

i, i′ index of train services, i, i′ ∈ I

j, j′ index of stations, j, j′ ∈ J

J total number of stations

I total number of train services

up the up operating direction

dn the down operating direction

r
up
j,min minimal running time from station j to j+1, j ∈ J/{J}

r
up
j,max maximal running time from station j to j+1, j ∈ J/{J}

rdn
j,min minimal running time from station j to j−1, j ∈ J/{1}

rdn
j,max maximal running time from station j to j−1, j ∈ J/{1}

rturn
J,min minimal turnaround time at station J

rturn
J,max maximal turnaround time at station J

rturn
1,min minimal turnaround time at station 1

rturn
1,max maximal turnaround time at station 1

τ j,min minimal dwell time at station j

τ j,max maximal dwell time at station j

hmin minimal headway between two consecutive train services

hmax maximal headway between two consecutive train services

tstart start time of the operating period, tstart = t0
tend end time of the operating period, tend = tK
κ

up
j,k number of passengers traveling between stations j and j+1 in time interval [tk−1, tk) in

the up direction, j ∈ J/{J}, k ∈ {1,2, . . . ,K}

κdn
j,k number of passengers traveling between stations j and j−1 in time interval [tk−1, tk) in

the down direction, j ∈ J/{1}, k ∈ {1,2, . . . ,K}
λ

up
j,k passenger traveling rates between stations j and j+1 in time interval [tk−1, tk) in the up

direction, j ∈ J/{J}, k ∈ {1,2, . . . ,K}

λ dn
j,k passenger traveling rates between stations j and j− 1 in time interval [tk−1, tk) in the

down direction, j ∈ J/{1}, k ∈ {1,2, . . . ,K}

λ̃
up
j passenger traveling rates between stations j and j+1 in the up direction, j ∈ J/{J}

λ̃ dn
j passenger traveling rates between stations j and j−1 in the down direction, j ∈ J/{1}

tenter entry time from station 1 to the depot

texit exit time from the depot to station 1

σmax maximum allowable load factor

Ctrain capacity of trains in terms of the maximum number of on-board passengers

Nrs number of available rolling stocks

M a sufficiently large number

ε a small positive number

γ1,γ2,γ3 positive weights in the objective function

12



Table 3: Variables for the model formulation

Notations Definition

ddn
i, j departure time of train service i at station j in the down direction

d
up
i, j departure time of train service i at station j in the up direction

adn
i, j arrival time of train service i at station j in the down direction

a
up
i, j arrival time of train service i at station j in the up direction

r
up
i, j running time of train service i from station j to j+1

rdn
i, j running time of train service i from station j to j−1

τdn
i, j dwell time at station j in the down direction for train service i

τ
up
i, j dwell time at station j in the up direction for train service i

σ
up
i, j load factor of train service i between stations j and j+1 in the up direction

σdn
i, j load factor for train service i between stations j and j−1 in the down direction

ξi 0-1 binary variable, if the rolling stock for train service i does not come from the depot,

ξi = 1; otherwise, ξi = 0

δi 0-1 binary variable, if the rolling stock for train service i does not enter the depot, δi = 1;

otherwise, δi = 0

βi,i′ 0-1 binary variable, if train services i is connected with service i′ with i < i′, βi,i′ = 1;

otherwise, βi,i′ = 0

yi,i′ 0-1 binary variable, if the rolling stock for train service i that enters the depot can be

used for service i′ with i < i′, yi,i′ = 1; otherwise, yi,i′ = 0

4.2.1. Departure and arrival constraints of train services

The integrated train scheduling and circulation planning problem determines the departure

and arrival times of train services with consideration of the passenger demand. The departure

and arrival times in the up direction should satisfy

d
up
i, j = a

up
i, j + τ

up
i, j ,

a
up
i, j+1 = d

up
i, j + r

up
i, j ,

(1)

for i ∈ I and j ∈ J/{J}, where r
up
i, j is the running time from station j to j+ 1 for train service i.

Furthermore, the departure and arrival times in the down direction can be expressed as

ddn
i, j = adn

i, j + τdn
i, j ,

adn
i, j−1 = ddn

i, j + rdn
i, j ,

(2)

for i ∈ I and j ∈ J/{1},where rdn
i, j is the running time from station j to j− 1 for train service i.

Moreover, the running times and dwell times should satisfy the following constraints

r
up
j,min ≤ r

up
i, j ≤ r

up
j,max, rdn

j,min ≤ rdn
i, j ≤ rdn

j,max,

τ j,min ≤ τ
up
i, j ≤ τ j,max, τ j,min ≤ τdn

i, j ≤ τ j,max,
(3)

for i ∈ I and j ∈ J.

Remark. For the real-valued variables in Table 3, if we choose the departure and arrival times

(i.e., ddn
i, j , d

up
i, j , adn

i, j, and a
up
i, j) at stations as independent variables, then the running times (i.e., r

up
i, j

and rdn
i, j), dwell times (i.e., τ

up
i, j and τdn

i, j ) will become dependent variables.
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Figure 6: The two types of layouts for turnaround stations

4.2.2. Headway constraints

In order to guarantee the safety of train operations, minimum headways between train ser-

vices are calculated based on the infrastructure data and the train characteristics. In addition, a

maximum headway between two consecutive trains is introduced for urban rail transit systems to

ensure a certain level of services. Since the indices of train services increase with the departure

time at station 1 in the up direction and there is no overtaking anywhere on the urban rail transit

line, according to Assumption (1), the order of train services holds the same for all the stations.

Hence, the headway constraints between train services i and i+ 1 can be formulated as

hmin ≤ d
up
i+1, j− d

up
i, j ≤ hmax,

hmin ≤ ddn
i+1, j− ddn

i, j ≤ hmax,
(4)

for i ∈ I/{I} and j ∈ J.

4.2.3. Turnaround constraints

The turnaround operations allow trains to change from the up/down direction to the down/up

direction. Since we only consider full-length train services, the turnaround operations can only

occur at stations 1 and J. The turnaround operations are usually the bottleneck of urban rail

transit systems and mainly determine the maximum capacity of the line. To ensure the safe

operation of the trains, the turnaround constraints must be satisfied, which depend on the layout

of the turnaround station and on the route settings for the turnaround operations. For urban rail

transit systems, the layouts of turnaround stations are different from each other, especially for

the stations that are connected with depots. In general, there are two types of layouts, as given

in Figure 6. Figure 6(a) illustrates the case that the double crossovers are behind the station,

so each train stops at the station and all passengers alight from the train. Then, the train starts

the turnaround operations as shown in Figure 6(a). In this case, the train uses switch (1,4) to

arrive at the stop track, changes its operating direction, and runs to the next station in the other

operating direction. Figure 6(b) illustrates the case that the double crossovers are before the
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Figure 7: The turnaround operation at station 1 and the connection between train services

station, so the train will pass the crossover (1,4) before arriving at the station, to let passengers

get off. Moreover, the train changes the operating direction while dwelling at the station. After

the boarding process of passengers, the train can depart from the station. However, Figure 6

only illustrates one possibility for the turnaround operation, while there are other turnaround

possibilities, such as using switch (2,3) if the headways between trains are relatively small.

In this paper, we only consider the case of the backward double crossover and only one

crossover is used for turnaround operations. For all the services, trains need to turnaround at

station J, where the operating direction changes from up to down. For service i∈ I, its turnaround

operation at station J should satisfy

rturn
J,min ≤ adn

i,J− d
up
i,J ≤ rturn

J,max, (5)

where d
up
i,J is the departure time of service i at station J in the up direction, adn

i,J is the arrival time

of service i at station J in the down direction, rturn
J,min and rturn

J,max are the minimal and maximal

turnaround times at station J. Furthermore, the departure and arrival times of two consecutive

train services should satisfy the following constraints for the turnaround operation at station J

d
up
i+1,J− adn

i,J ≥ 0,∀i ∈ I/{I}, (6)

which means that service i+ 1 can start the turnaround operation only when service i is arrived

at station J in the down direction.

Furthermore, the rolling stocks could go back to the depot or turnaround at station 1 to serve

other services, as shown in Figure 7. If services i and i′ are connected with each other, i.e., they

are served by the same rolling stock and connected by the turnaround operation at station 1, then

the arrival and departure times of train services i and i′ should satisfy the turnaround constraints.

However, if services i and i′ are not connected, i.e., βi,i′ = 0, then there is no constraint regarding

these two train services. By introducing a sufficiently large positive number M, the turnaround

constraints for the train services at station 1 can be formulated as

a
up

i′,1− ddn
i,1 ≥ rturn

1,min−M(1−βi,i′),

a
up

i′,1− ddn
i,1 ≤ rturn

1,max +M(1−βi,i′),
(7)

where rturn
1,min and rturn

1,max are the minimal and maximal turnaround times at station 1. When βi,i′ = 0,

i.e., train service i does not need to connect with train service i′, the turnaround constraints (7)

become a
up

i′,1 − ddn
i,1 ≥ rturn

1,min −M and a
up

i′,1 − ddn
i,1 ≤ rturn

1,max +M. These values will be satisfied

automatically due to the big M value. When βi,i′ = 1, i.e., train service i is connected with

train service i′, the turnaround constraints (7) become a
up

i′,1−ddn
i,1 ≥ rturn

1,min and a
up

i′,1−ddn
i,1 ≤ rturn

1,max,

which mean that the turnaround operations at station 1 must satisfy the minimal and maximal

turnaround time constraints.
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4.2.4. Passenger demand constraints

Passenger demand is a significant factor for train scheduling, since the number of train ser-

vices and the headways between train services highly depend on this factor. The passenger

demand estimation heavily relies on manual data collection, such as passenger surveys to es-

timate the origin-destination (OD) matrix (Zhao et al., 2007). However, with the introduction

of automatic fare collection systems and automatic passenger counting systems, more accurate

passenger demand information can be obtained by the urban rail operators.

Due to the complexity of train scheduling models and to historical reasons, there are two

ways to describe the passenger demand in the literature: OD-independent passenger demand

and OD-dependent passenger demand. For the OD-independent passenger demand, the origin

and destination of each passenger are not considered, while the number of passengers and the

passenger arrival rate at stations are used (Elberlein et al., 2001; Wang et al., 2015a; Niu and

Zhou, 2013; Barrena et al., 2014). For the OD-dependent passenger demand, the origin and

destination of each passenger are taken into account during train scheduling (Niu et al., 2015;

Wang et al., 2014, 2015b; Corman et al., 2017).

For the simplicity of the train scheduling model and for the easy usage of the practical pas-

senger demand data, we adopt the OD-independent passenger demand. As mentioned in Yue

et al. (2017), the number of passengers that travel between two consecutive stations is an impor-

tant factor for urban rail transit systems. In practice, the passenger volume between two adjacent

stations (also called sectional passenger demand because the segment between two consecutive

stations is usually defined as a section) is counted for a certain time period, such as 30 minutes,

15 minutes or 5 minutes. In this paper, we also adopt the sectional passenger demand, as in Yue

et al. (2017) and Sun et al. (2014). Figure 3 gives the sectional passenger demand between two

consecutive stations, i.e., Songjiazhuang and Xiaocun in Beijing Yizhuang line, where the num-

ber of passengers traveling between these two stations is given every 30 minutes. Moreover, the

passenger traveling rates on sections are introduced to describe the passenger demand (Wang

et al., 2016). The passenger traveling rates for the up direction can be written as

λ̃
up
j (t) =































λ
up
j,1, if t ∈ [t0, t1)

λ
up
j,2, if t ∈ [t1, t2)

. . . . . .
λ

up
j,k, if t ∈ [tk−1, tk)

. . . . . .
λ

up
j,K , if t ∈ [tK−1, tK)

,∀ j ∈ J/{J}. (8)

with

λ
up
j,k = κ

up
j,k/(tk− tk−1),∀k ∈ {1,2, . . . ,K}, (9)

where κ
up
j,k is the number of passengers traveling between stations j and j + 1 in time interval

[tk−1, tk). Note that the operating time period [tstart, tend] is split into K time slots with the splitting

time instants t1, t2, . . . , and tK−1, while we have t0 = tstart and tK = tend. Similarly, the passenger

traveling rates λ̃ dn
j (·) for the down direction can be formulated.

The passenger satisfaction for the urban rail transit systems is affected by the crowdedness of

train services, which is normally represented by the load factor. This factor is defined as the ratio

between the number of on-board passengers and the capacity of trains (including the number

of seats and the allowable standing passengers). According to the operating practice, the load

factors of trains are larger than 1, and even reach 1.2 in some extreme cases, for most of the
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Beijing urban rail transit lines. These values are caused, e.g., by the huge passenger demand,

the limited number of available trains, the minimal headway between trains, and the non-optimal

train schedules. In order to guarantee the passenger satisfaction, we include the following load

factor constraints in our formulation

σ
up
i, j ≤ σmax,σ

dn
i, j ≤ σmax,∀i ∈ I, j ∈ J, (10)

where σmax is the maximal allowable load factor determined by the rail operator. Here, we

only give the equations for the calculation of the load factor σ
up
i, j . The load factor σdn

i, j can be

computed in a similar way. As we mentioned before, the load factor is the ratio between the

number of onboard passengers and the capacity of the circulating trains, i.e.,

σ
up
i, j =

p
up
i, j

Ctrain

,∀i ∈ I, j ∈ J, (11)

where Ctrain is the train capacity and p
up
i, j is the number of passengers on board train service i

between stations j and j+ 1. The latter can be calculated as follows:

p
up
i, j =

∫ d
up
i, j

d
up
i−1, j

λ̃
up
j (t)dt,∀i ∈ I/{1}, j ∈ J. (12)

We note that for the first train service, i.e., i = 1, the number of onboard passengers p
up
1, j should

be computed by

p
up
1, j =

∫ d
up
1, j

tstart

λ̃
up
j (t)dt,∀ j ∈ J. (13)

4.2.5. Rolling stock circulation constraints

The rolling stock circulation plan is characterized by binary variables ξi, δi, and βi,i′ for

i, i′ ∈ I. For the small example of train schedule and rolling stock circulation plan of Figure

??, we have ξi = 0 for i ∈ {1,2, . . . ,6} and ξi = 1 for i ∈ {7,8, . . . ,18}, which means that the

rolling stocks for train services 1, 2, . . . , and 6 come out from the depot. In addition, we have

δi = 1 for i ∈ {1,2, . . . ,12} and δi = 0 for i ∈ {13,14, . . . ,18}, which means that the rolling

stocks for train services 13, 14, . . . , and 18 go back to the depot after completing these train

services. Furthermore, we have β1,7 = 1 and β7,13 = 1 for rolling stock 1, which means that

train services 1, 7, and 13 are operated by the same rolling stock, i.e., rolling stock 1. Similarly,

the circulation plan of the other rolling stocks can be obtained based on the values of βi,i′ with

i, i′ ∈ {1,2, . . . ,18}.
In Figure 7, the rolling stock assigned to perform a train service can come from the depot

directly or can just be the same of a previous service. Furthermore, when a rolling stock ends its

current service, it can go back to the depot or can perform another service. Train services i and

i′ in Figure 7 are assigned to the same rolling stock, i.e., service i is connected with service i′, so

we have βi,i′ = 1. Based on the definitions of the binary variables ξi and βi,i′ in Table 3, we have

ξi′ = ∑
i∈I

βi,i′ , (14)

which basically means that if there is no service connected with service i′, i.e., ∑i∈I βi,i′ = 0, then

the rolling stock serving i′ must come from the depot. On the other hand, if the rolling stock
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serving i′ does not come from depot directly, then there must exist only one service connected

with train service i′, i.e., ∑i∈I βi,i′ = 1, since ξi′ is a binary variable and its maximum value is

equal to 1. We thus also have the following constraint

∑
i∈I

βi,i′ ≤ 1. (15)

Furthermore, for binary variables δi and βi,i′ , we have

δi = ∑
i′∈I

βi,i′ , (16)

which means that if service i is not connected with any service, i.e., ∑i′∈I βi,i′ = 0, then the rolling

stock serving i enter the depot. Otherwise, the rolling stock serving i does not enter the depot and

it must perform another service. Each rolling stock can perform at most one service at a time,

i.e., service i can only be connected with another service. We thus have

∑
i′∈I

βi,i′ ≤ 1. (17)

In addition, for any two services i and i′ with i < i′, when βi,i′ = 1, i.e., i is connected with i′,

then the rolling stock serving i must not go back to the depot, i.e., δi = 1. But this rolling stock

must turn around at station 1 and perform service i′. Hence, the rolling stock serving i′ does not

directly come from the depot, i.e., ξi′ = 1. The rolling stock circulation plan should satisfy the

following constraints:

δi + ξi′ ≤ 2+M(1−βi,i′),

δi + ξi′ ≥ 2−M(1−βi,i′).
(18)

When βi,i′ = 0, the constraints given in (18) will be satisfied automatically due to the big M.

In practical operations of an urban rail transit line, the number of rolling stocks available for

the daily operation is limited and is denoted by Nrs. In this paper, we only consider one depot.

All the rolling stocks are in the depot at the start of the daily operations and need to go back to

the depot at the end of the daily operations. When ξi = 0, i.e., the rolling stock for train service i

comes out from the depot, we need to check whether there is still a rolling stock inside the depot

to perform service i. The checking condition is basically the following: the difference between

the total number of exiting operations and the total number of entering operations should be less

than or equal to the number of available rolling stocks. This condition can be formulated as

i

∑
m=1

(1− ξm)−
i−1

∑
m=1

(1− δm)ym,i ≤ Nrs, (19)

where ∑i
m=1(1− ξm) and ∑i−1

m=1(1− δm)ym,i are the total numbers of exiting and entering oper-

ations regarding the depot until the departure of train service i at station 1 in the up direction.

In particular, binary-valued variable ym,i is introduced to denote whether the rolling stocks en-

tering the depot after service m could be used to perform service i. This constraint is defined as

[ym,i = 1]⇔ [ddn
m,1−d

up
i,1 + tenter + texit ≤ 0]. The previous definition is equivalent to the following

linear constraint

ddn
m,1− d

up
i,1 + tenter + texit ≤M(1− ym,i). (20)
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4.3. Objective function

The urban rail operators aim to minimize the operating cost and to provide a certain service

level to passengers at the same time. Since the passenger demand in urban rail transit lines

varies significantly along the daily time, it is important for urban rail operators to schedule trains

according to the passenger demand fluctuation. A certain service level can be achieved by the

load factor constraints (10) introduced in Section 4.2.4, where the maximum allowable load

factor σmax can take a value predefined by the urban rail operators based on their experiences. In

order to distribute the passengers to the train services, the difference between the actual maximal

load factor of each train service and the mean value of the actual maximal load factors of all train

services is minimized in the objective function, i.e.,

fload = ∑
i∈I

(

∣

∣max
j∈J

σ
up
i, j −σup

mean

∣

∣+
∣

∣max
j∈J

σdn
i, j −σdn

mean

∣

∣

)

, (21)

where

σup
mean =

∑i∈I max j∈J σup
i, j

I
and σdn

mean =
∑i∈I max j∈J σdn

i, j

I
. (22)

Apart from the crowdedness of train services, the passenger satisfaction is also influenced by

the traveling time, which involves the waiting time at stations and the onboard time. Because we

consider the OD-independent passenger demand in this paper, the onboard time and waiting time

of passengers cannot be calculated accurately. Moreover, the passengers are usually more sensi-

tive to the waiting time than to the onboard time (Niu and Zhou, 2013). We thus only consider

the waiting time of passengers, which can be minimized by maximizing the regularity of train

services. Based on the accumulated or sectional passenger demand, it is impossible to calculate

the waiting time accurately. In Yue et al. (2017), the waiting time of passengers is approximated

by the number of queuing passengers in the various sections (i.e., the segments between any

two adjacent stations). In Sun et al. (2014), the waiting time of passengers is formulated as the

product of the number of passengers traveling on the sections and the average waiting time of

passenger groups in each time interval. However, it would be hard to distinguish the passengers

that are already on-board with the passengers that are waiting at platforms, since the origin and

destination of passengers are not directly considered in the passenger demand profile. As stated

in Niu and Zhou (2013), an even schedule with a constant headway between consecutive vehi-

cles can reduce total waiting time, when the passenger arrival pattern at stations follows some

particular probability distributions, such as uniform and Poisson distributions. However, Niu and

Zhou (2013) considered the train scheduling problem for a heavily congested urban rail transit

line, where an even headway timetable may lead to longer passenger waiting times during over-

saturated periods, since some passengers may not be able to board the next arrival train. In the

current paper, we assume that all passengers get on the first coming train and their satisfaction

(or dissatisfaction) is indicated by the on-board crowdedness, i.e., the load factor. Furthermore,

for a short time period the passenger arrival pattern at stations can be assumed to follow uniform

or Poisson distributions. We thus minimize the headway variation between consecutive train ser-

vices in order to limit the waiting time of passengers. The headway variation is defined as the

absolute value of the difference between the current headway and the mean of the neighboring

headways. The headway variation f
up
headway in the up direction can be formulated as

f
up
headway = ∑

i∈I/{1}, j∈J

∣

∣

∣

∣

∣

(d
up
i, j − d

up
i−1, j)−

∑
min(i+i2,I)
m=max(i−i1,2)

(d
up
m, j− d

up
m−1, j)

min(i+ i2, I)−max(i− i1,2)

∣

∣

∣

∣

∣

, (23)
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where i1 and i2 are the numbers of neighboring train services before and after train service i. In

particular, (23) can be simplified and rewritten as

f
up
headway = ∑

i∈I/{1}, j∈J

∣

∣

∣

∣

∣

(d
up
i, j − d

up
i−1, j)−

d
up

min(i+i2,I), j
− d

up

max(i−i1,2)−1, j

min(i+ i2, I)−max(i− i1,2)

∣

∣

∣

∣

∣

. (24)

The headway variation f dn
headway in the down direction can be calculated in a similar way. We then

have

fheadway = f
up
headway + f dn

headway. (25)

The operating cost of urban rail operators is mostly affected by the number of required rolling

stocks and the number of services in the train schedule. In the integrated train scheduling and

rolling stock circulation planning formulation, the total number of train services I is considered

as a parameter and not as a variable. However, in practice, the possible value of I is defined

in an interval. We denote as [Imin, Imax]. An optimal total number of train services I can be

decided by solving the integrated optimization problem multiple times and by taking different

values of I in the interval [Imin, Imax]. The number of rolling stocks required and the operational

complexity of the integrated optimization problem can be reduced by minimizing the number of

entering/exiting depot operations, i.e.,

fdepot = ∑
i∈I

δi. (26)

In this paper, we consider the load factor variation, the headway variation, and the number of

entering/exiting depot operations as the objective function components and formulate the overall

problem as a multi-objective optimization problem. The linear weighted method is used to handle

the three objective function components and the objective function is formulated as follows:

f = γ1
fload

fload,nom

+ γ2

fheadway

fheadway,nom

+ γ3

fdepot

fdepot,nom

, (27)

where fload,nom, fheadway,nom, and fdepot,nom are the nominal values (or normalization factors) for

each of the objective function components, which are calculated by solving the optimization

problem related to each single objective function component; γ1, γ2, and γ3 are positive weights

to denote the importance of these three objectives. Specifically, if the three weights are set equal

to 1, we obtain a Pareto-optimal solution. Moreover, the values of γ1, γ2, and γ3 can be decided

according to the urban rail operators’ preferences and the practical operating situations.

4.4. Mathematical model

The integrated train scheduling and rolling stock circulation planning optimization problem

can be formulated as follows:
{

min f = γ1
fload

fload,nom
+ γ2

fheadway

fheadway,nom
+ γ3

fdepot

fdepot,nom
,

s.t. constraints (1)-(7), (10), (14)-(20).
(28)

The integrated optimization problem given in (28) is a mixed integer nonlinear program-

ming (MINLP) problem. The nonlinearities of the proposed model come from the load factor

constraints (10), where the calculation of the on-board passengers is the integration of a piece-

wise constant function between the departure times of consecutive train services. Moreover, the
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headway variations fheadway and the load factor variations fload in the objective function involve

absolute functions, which are also nonlinear. The integer variables are introduced by the rolling

stock circulation constraints to describe the entering or exiting of trains at the depot.

Remark. The formulation given in (28) can be considered as a fundamental model for train

scheduling and rolling stock circulation planning problems for an urban rail transit line. It

can also be extended in many ways to satisfy a variety of particular requirements, such as OD-

dependent passenger demand, no entering/exiting operations of rolling stocks in the depot for a

certain period, and a maximum number of train services that a rolling stock can serve.

5. Solution approach 1 - iterative nonlinear programming approach

In this section, a new iterative nonlinear programming (INP) approach is proposed to solve

the MINLP problem. For each iteration, the estimated values of ξ̂i, δ̂i, and β̂i,i′ are used for ξi,

δi, and βi,i′ , respectively. This approach eliminates the binary variables in the original MINLP

problem and the resulting optimization problem is a nonlinear programming problem, which can

be solved, e.g., by using multi-start sequential quadratic programming and active-set algorithms.

Based on a local optimum of the nonlinear programming problem, the new estimated values for

ξi, δi, and βi,i′ are calculated. By solving the nonlinear programming problem in an iterative

way, we get a local optimum of the original MINLP problem. The detailed procedure of the INP

method is given by Algorithm 1.

Algorithm 1 The procedure of the INP method

1: Input : feasible initial departure and arrival times for the up and down directions, i.e., d
up
i, j (0),

ddn
i, j (0), a

up
i, j(0), adn

i, j(0) for i = 1, . . . , I and j = 1, . . . ,J, pmax, convergence tolerance ς , maxi-

mum number of iterations pmax;

2: iteration index p← 0;

3: calculate initial estimates ξ̂i(p), δ̂i(p), and β̂i,i′(p) by solving the MILP problem with the

objective to minimize the number of depot operations fdepot and with constraints (7) and

(14)-(18) based on d
up
i, j(p), ddn

i, j (p), a
up
i, j(p), and adn

i, j(p);

4: calculate the initial objective function value f (p) by using (27);

5: Repeat

6: p = p+ 1;

7: substitute the estimated values ξ̂i(p− 1), δ̂i(p− 1), and β̂i,i′(p− 1) into the original

MINLP problem and get a new nonlinear programming problem;

8: obtain the best sub-optimal departure and arrival times d
up,∗
i, j (p), d

dn,∗
i, j (p), a

up,∗
i, j (p), and

a
dn,∗
i, j (p) by solving the nonlinear problem with multiple initial points;

9: compute estimates ξ̂i(p), δ̂i(p), and β̂i,i′(p) by solving the MILP problem with the

objective to minimize the number of depot operations fdepot and with constraints (7) and

(14)-(18) based on d
up,∗
i, j (p), d

dn,∗
i, j (p), a

up,∗
i, j (p), and a

dn,∗
i, j (p);

10: calculate the objective value f (p) by using (27);

11: Until p = pmax or | f (p)− f (p− 1)| ≤ ς

12: Return d
up,∗
i, j (p), d

dn,∗
i, j (p), a

up,∗
i, j (p), a

dn,∗
i, j (p), ξ̂i(p), δ̂i(p), β̂i,i′(p), f (p)
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Since the values of the binary variables, i.e., ξi, δi, and βi,i′ , are fixed for the nonlinear pro-

gramming problem in each iteration, the value of fdepot in the objective function keeps constant.

Hence, the number of the entering/exiting depot operations fdepot can be eliminated from the

objective function. However, in order to guide the nonlinear programming problem at each it-

eration and to minimize the number of depot operations, a new penalty term is added in the

objective function for the nonlinear programming problem. The newly added penalty term is

fixed according to the value of βi,i′ with i′ > i. The penalty is defined as follows

fpenalty =







0 for βi,i′ = 1,
rturn

1,min−
(

a
up

i′,1− ddn
i,1

)

for βi,i′ = 0 and a
up

i′,1− ddn
i,1 < rturn

1,min,
(

a
up

i′,1− ddn
i,1

)

− rturn
1,min for βi,i′ = 0 and a

up

i′,1− ddn
i,1 > rturn

1,max.
(29)

When βi,i′ is equal to 1, i.e., train services i and i′ are connected, during the whole optimization

process βi,i′ is equal to 1 due to the constraints in (7); the penalty is then set to zero. However,

when βi,i′ is equal to 0, a penalty term is added and the difference between a
up

i′,1 and ddn
i,1 varies

in the interval [rturn
1,min,r

turn
1,max]; in this way, βi,i′ has a higher probability to be equal to 1. Further-

more, the calculation of the estimates ξ̂i, δ̂i, and β̂i,i′ is done by solving a mixed integer linear

programming (MILP) problem, where the departure and arrival times of the services obtained

by the nonlinear programming problem are not allowed to change. The MILP problem can be

formulated as follows
{

min f = ∑i∈I δi,
s.t. constraints (7) and (14)-(18),

(30)

where the objective function is to maximize the number of connected train services and all the

constraints related with ξi, δi, and βi,i′ are included in the MILP formulation.

We note that the INP approach deals with a sequence of nonlinear approximations of the

original MINLP problem. We thus employ multiple starting points for the INP approach.

6. Solution approach 2 - MILP approach

In this section, the original mixed integer nonlinear programming (MINLP) problem will be

transformed into mixed integer linear programming (MILP) problems by transforming and/or

approximating the nonlinear terms into mixed logical dynamic models. The resulting MILP

problem can be solved by several existing commercial and free solvers, such as CPLEX, Xpress-

MP,GLPK (see, e.g., Linderoth and Ralphs (2005); Atamturk and Savelsbergh (2005)).

As for the objective function, the absolute functions (involved in the load factor variations

and the headway fluctuations) are handled by introducing new real-valued variables (i.e., ω
up
i ,

ωdn
i , q

up
i, j, and qdn

i, j). The new variables should satisfy the following constraints















ω
up
i ≥max j∈J σ

up
i, j −σ

up
mean,

ω
up
i ≥−max j∈J σ

up
i, j +σ

up
mean,

ωdn
i ≥max j∈J σdn

i, j −σdn
mean,

ωdn
i ≥−max j∈J σdn

i, j +σdn
mean,

(31)
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and


































q
up
i, j ≥ (d

up
i, j − d

up
i−1, j)−

d
up

min(i+i2,I), j
−d

up

max(i−i1,2)−1, j

min(i+i2,I)−max(i−i1,2)
,

q
up
i, j ≥−(d

up
i, j − d

up
i−1, j)+

d
up

min(i+i2,I), j
−d

up

max(i−i1,2)−1, j

min(i+i2,I)−max(i−i1,2)
,

qdn
i, j ≥ (ddn

i, j − ddn
i−1, j)−

ddn
min(i+i2,I), j

−ddn
max(i−i1,2)−1, j

min(i+i2,I)−max(i−i1,2)
,

qdn
i, j ≥−(d

dn
i, j − ddn

i−1, j)+
ddn

min(i+i2,I), j
−ddn

max(i−i1,2)−1, j

min(i+i2,I)−max(i−i1,2)
.

(32)

The objective function can then be approximated by

f = γ1

(

ω
up
i +ωdn

i

)

fload,nom

+ γ2

(

q
up
i, j + qdn

i, j

)

fheadway,nom

+ γ3

fdepot

fdepot,nom

. (33)

It is easy to verify that when we minimize the objective function (33) subject to (31) and (32), the

optimal value of ω
up
i and ωdn

i will be equal to
∣

∣max j∈J σ
up
i, j −σ

up
mean

∣

∣ and
∣

∣max j∈J σdn
i, j −σdn

mean

∣

∣.

This also holds for q
up
i, j and qdn

i, j. So the original objective function (27) will also be optimized.

As for the nonlinear load factor constraints (10), these will be transformed into an exact mixed

logical dynamic model by introducing new binary-valued variables and real-valued variables in

Section 6.1. In addition, we will also propose an approximated mixed logical dynamic model for

handling constraints (10), to reduce the computational effort, in Section 6.2.

6.1. Accurate MILP model

Regarding the nonlinear load factor constraints, the calculation of the onboard passengers is

an integral of the passenger traveling rates between two consecutive departures times, as given

in expression (12). Binary variable x
up
i, j,k with i ∈ I, j ∈ J, and k ∈ {1,2, . . . ,K} is introduced to

indicate whether the departure time d
up
i, j of train service i at station j is in time interval [tk−1, tk]

or not, i.e.,

x
up
i, j,k =

{

1 if the departure time d
up
i, j is in [tk−1, tk],

0 if the departure time d
up
i, j is not in [tk−1, tk].

(34)

Based on the definition of x
up
i, j,k, we have

d
up
i, j ≤

K

∑
k=1

x
up
i, j,ktk,∀i, j,

d
up
i, j ≥

K

∑
k=1

x
up
i, j,ktk−1,∀i, j,

K

∑
k=1

x
up
i, j,k = 1,∀i, j.

(35)

The calculation of the onboard passengers includes three scenarios as illustrated in Figure 8,

where the departure times of two consecutive trains can be in the same time interval (Figure

8(a)), in two consecutive time intervals (Figure 8(b)), or in two non-consecutive time intervals

(Figure 8(c)). For the scenario given in Figure 8(a), i.e., the passenger arrival rate is a constant
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Figure 8: Three scenarios for the calculation of onboard passengers

between the departures of services i and i− 1. When train service i departs from station j, the

number of on-board passengers can be calculated by

p
up
i, j =

K

∑
k=1

λ up
j,k

(

x
up
i, j,kd

up
i, j − x

up
i−1, j,kd

up
i−1, j

)

. (36)

For the scenario of Figure 8(b), i.e., when the passenger arrival rate changes once between the

departure times d
up
i−1, j and d

up
i, j , the number of onboard passengers can be calculated by

p
up
i, j =

K

∑
k=1

λ
up
j,k

(

tk− d
up
i−1, j

)

x
up
i−1, j,k +

K

∑
k=1

λ
up
j,k

(

d
up
i, j − tk−1

)

x
up
i, j,k. (37)

Moreover, when the two departures are in two non-consecutive time intervals (Figure 8(c)), the

number of onboard passengers is computed as

p
up
i, j =

K

∑
k=1

λ
up
j,k

(

tk− d
up
i−1, j

)

x
up
i−1, j,k +

K

∑
k=1

λ
up
j,k

(

d
up
i, j − tk−1

)

x
up
i, j,k+

K

∑
k=1

λ
up
j,k

(

k−1

∑
ℓ=1

x
up
i−1, j,ℓ−

k

∑
ℓ1

x
up
i, j,ℓ

)

(tk− tk−1).

(38)

Note that (36) and (37) are two specific cases of (38). We will thus use (38) to calculate the

number of onboard passengers. The load factor constraints given in (10) can be rewritten as

K

∑
k=1

λ
up
j,k

(

tk− d
up
i−1, j

)

x
up
i−1, j,k +

K

∑
k=1

λ
up
j,k

(

d
up
i, j − tk−1

)

x
up
i, j,k+

K

∑
k=1

λ
up
j,k

(

k−1

∑
ℓ=1

x
up
i−1, j,ℓ−

k

∑
ℓ1

x
up
i, j,ℓ

)

(tk− tk−1)≤ σmaxCtrain,

(39)

where λ
up
j,k, tk, and tk−1 are constants, and the product d

up
i, j x

up
i, j,k can be replaced by new real-valued

variables z
up
i, j,k with the following constraints

K

∑
k=1

z
up
i, j,k = d

up
i, j ,

z
up
i, j,k ≤ x

up
i, j,kM,

z
up
i, j,k ≥ 0.

(40)

24



6.2. Approximated MILP model

Since the passenger traveling rates in the up and down directions are piecewise constant func-

tions (see (8)), the calculation of the onboard passengers is given in (38). For the up direction,

we approximate the calculation of the onboard passengers given in (12) and (38) as follows

p
up
i, j ≈ λ̃ up

j

(

d
up
i, j

)

·
(

d
up
i, j − d

up
i−1, j

)

, (41)

where λ̃
up
j (·) is considered as a constant during time interval [d

up
i−1, j,d

up
i, j ] and the value of the

passenger arrival rate is taken as λ̃
up
j

(

d
up
i, j

)

, i.e., the passenger arrival rate when service i departs

from station j.

Remark. Here we approximate the piecewise constant function in time interval [d
up
i−1, j,d

up
i, j ] by

a constant, which is equal to the passenger traveling rate at d
up
i, j , i.e., λ̃ up

j

(

d
up
i, j

)

. However, the

constant could also be equal to λ̃
up
j

(

d
up
i−1, j

)

, λ̃
up
j

(

d
up
i, j+d

up
i−1, j

2

)

, or the passenger traveling rate

at any point between d
up
i−1, j and d

up
i, j . Note that due to the approximation errors, the maximum

load factor constraints could be violated when computing the train schedule and rolling stock

circulation plan by using the original nonlinear model.

As we introduced in Section 4.2.4, the whole operating period [tstart, tend] is split into K sub-

intervals with splitting points t1, t2, t3, . . . , tK−1. We propose the binary variable y
up
i, j,k with i ∈ I,

j ∈ J, and k ∈ {0,1,2, . . . ,K} to indicate whether the departure time d
up
i, j of train service i at

station j is smaller than tk or not. The definition of binary variable y
up
i, j,k is given as follows

[dup
i, j ≤ tk]⇔ [yup

i, j,k = 1], (42)

which means that if d
up
i, j is less than tk, then y

up
i, j,k is equal to 1; otherwise, y

up
i, j,k is equal to 0.

We note that y
up
i, j,0 = 0 and y

up
i, j,K+1 = 1 for all i ∈ I and j ∈ J. Based on the transformation

properties given in (Williams, 1999), the definition of y
up
i, j,k given in (42) can be reformulated by

the following linear inequalities

{

(tK − tk)y
up
i, j,k ≤ tK− d

up
i, j ,

(t0− tk− ε)y
up
i, j,k ≤ d

up
i, j − tk− ε,

(43)

where t0 and tK are the minimal and maximal values of d
up
i, j , and ε is a small positive number,

typically the machine precision. The small number is introduced to transform a strict equality

into a non-strict inequality to fit the MILP framework. Here we use the passenger traveling rates

at d
up
i, j , and we have

x
up
i, j,k = y

up
i, j,k− y

up
i, j,k−1,∀i ∈ I, j ∈ J,k ∈ {1,2, . . . ,K}. (44)

According to the definition of y
up
i, j,k, the passenger traveling rate λ̃

up
j

(

d
up
i, j

)

can be calculated

by

λ̃
up
j

(

d
up
i, j

)

=y
up
i, j,1λ

up
j,1 +(1− y

up
i, j,1)y

up
i, j,2λ

up
j,2 + · · ·+(1− y

up
i, j,k−1)y

up
i, j,kλ

up
j,k + . . .

+(1− y
up
i, j,K−1)y

up
i, j,Kλ

up
j,K .

(45)
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It can be observed that (45) is still nonlinear because of the products of binary variables, i.e.,

y
up
i, j,k−1y

up
i, j,k for k = 2,3, . . . ,K. These products can be replaced by auxiliary logical variables

ỹ
up
i, j,k−1 = y

up
i, j,k−1y

up
i, j,k, i.e., [ỹ

up
i, j,k−1 = 1]↔ [y

up
i, j,k−1 = 1]∧ [y

up
i, j,k = 1], with ∧ denoting “and”.

This replacement is equivalent to the following linear constraints (Williams, 1999)







−y
up
i, j,k−1 + ỹ

up
i, j,k−1 ≤ 0,

−y
up
i, j,k + ỹ

up
i, j,k−1 ≤ 0,

y
up
i, j,k−1 + y

up
i, j,k− ỹ

up
i, j,k−1 ≤ 1.

(46)

By replacing the product of binary variables with the new auxiliary logical variables, the function

λ̃
up
j

(

d
up
i, j

)

can be rewritten as the following linear form

λ̃
up
j

(

d
up
i, j

)

=y
up
i, j,1λ

up
j,1 +(y

up
i, j,2− ỹ

up
i, j,1)λ

up
j,2 + · · ·+(y

up
i, j,k− ỹ

up
i, j,k−1)λ

up
j,k + · · ·+(y

up
i, j,K− ỹ

up
i, j,K−1)λ

up
j,K .

(47)

When substituting (47) in (41) to calculate the number of onboard passengers, we will en-

counter the products of binary-valued variables (i.e., y
up
i, j,k and ỹ

up
i, j,k) and real-valued variables

(i.e., d
up
i, j ). By introducing new auxiliary variables z

up,1
i, j,k = y

up
i, j,kd

up
i, j , z

up,2
i, j,k = ỹ

up
i, j,kd

up
i, j , z

up,3
i, j,k =

y
up
i, j,kd

up
i−1, j, and z

up,4
i, j,k = ỹ

up
i, j,kd

up
i−1, j, (41) can be rewritten as

p
up
i, j ≈z

up,1
i, j,1λ

up
j,1 +

(

z
up,1
i, j,2− z

up,2
i, j,1

)

λ
up
j,2 + · · ·+

(

z
up,1
i, j,k− z

up,2
i, j,k−1

)

λ
up
j,k + · · ·+

(

z
up,1
i, j,K− z

up,2
i, j,K−1

)

λ
up
j,K

− z
up,3
i, j,1λ

up
j,1−

(

z
up,3
i, j,2− z

up,4
i, j,1

)

λ
up
j,2−·· ·−

(

z
up,3
i, j,k− z

up,4
i, j,k−1

)

λ
up
j,k−·· ·−

(

z
up,3
i, j,K− z

up,4
i, j,K−1

)

λ
up
j,K .

(48)

The definition of these auxiliary variables satisfies, by taking z
up,1
i, j,k as an example, [y

up
i, j,k = 0]⇐

[z
up,1
i, j,k = 0] and [y

up
i, j,k = 1]⇐ [z

up,1
i, j,k = d

up
i, j ]. It follows that z

up,1
i, j,k = y

up
i, j,kd

up
i, j is equivalent to the

following linear constraints






















z
up,1
i, j,k ≤ tKy

up
i, j,k,

z
up,1
i, j,k ≥ t0y

up
i, j,k,

z
up,1
i, j,k ≤ d

up
i, j − t0

(

1− y
up
i, j,k

)

,

z
up,1
i, j,k ≥ d

up
i, j − tK

(

1− y
up
i, j,k

)

,

(49)

where t0 and tK are the minimal and maximal possible values of d
up
i, j . Similarly, the auxiliary

variables z
up,2
i, j,k , z

up,3
i, j,k and z

up,4
i, j,k can be transformed into linear constraints. The approximated load

factor constraints in the up and down directions can be rewritten as linear constraints for the

integrated train scheduling and circulation planning problem studied in this paper.

As given in (8), the passenger traveling rate functions λ̃
up
j (·) and λ̃ dn

j (·) are piecewise con-

stant functions with K sub-functions, where the length of each time interval can be 30 minutes,

15 minutes, or even less. In the linearization process of the load factor constraints, the number

of auxiliary variables and constraints grows linearly with the number of sub-functions. There-

fore, we can approximate the original passenger traveling rate functions by a piecewise constant

function with much less sub-functions as follows:

λ̃
up,approx
j (t) =



















λ̂
up
j,1, if t ∈ [t0, t

′
1)

λ̂ up
j,2, if t ∈ [t1, t

′
2)

. . . . . .

λ̂
up

j,K′ , if t ∈ [t ′
K′−1

, tK′)

,∀ j ∈ J/{J}. (50)
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(d) SJZ --> XC (Dn)

Figure 9: An example of approximated passenger traveling rates between XHM and SJZ in the up and down directions

with tK′ = tK and K′ < K. For example, the passenger traveling rate functions corresponding

to the passenger demand of Figure 5 with 34 non-zero sub-functions can be approximated by a

piecewise constant function with 11 sub-functions, as illustrated in Figure 9. It is worth to note

that these approximations do not cause the violation of the load factor constraints, because the

approximated piecewise constant functions are always larger or equal to the original passenger

traveling rate functions.

7. Case study

We now present numerical experiments to illustrate the effectiveness and efficiency of our

integrated model and solution approaches. The sequential quadratic programming algorithm,

implemented in the fmincon function of the Matlab optimization toolbox, is employed to solve

the nonlinear programming problems, while CPLEX, through the interface function of the Matlab

OPTI toolbox, is used to solve the MILP problems. All the experiments are performed on a 3.6

GHz Intel Core i7-3520M CPU running with a 64-bit windows operating system and 16G RAM.

In addition, the solutions of the proposed INP, MILP-acc, MILP-app approaches are compared

with those of the two-stage approach, i.e., the non-integrated approach, proposed by Wang et al.

(2017a). Specifically, in the two-stage approach the train schedule is first calculated through

the sequential quadratic programming algorithm and the rolling stock circulation plan is then

obtained via the adjustments of the optimized train schedule by solving an MILP problem (see

Wang et al. (2017a) for details). Furthermore, the train schedule and rolling stock circulation

plan currently used in the Beijing Yizhuang line are also evaluated and compared with the train

schedules and rolling stock circulation plans computed in this paper.
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Figure 10: The layout of the Beijing Yizhuang line

7.1. Set-up

The proposed integrated model and solution approaches are applied to the Beijing Yizhuang

line, which was put into operation on December 30, 2010. The current daily ridership of this

line is around 200,000. This line has 14 stations and is 23.23 km long. There is one depot that

connects with Yizhuang station. The layout of the Beijing Yizhuang line is illustrated in Figure

10, where the direction from Yizhuang to Songjiazhuang is defined as the up direction and the

direction from Songjiazhuang to Yizhuang is defined as the down direction. The running times

between stations and the dwell times at stations are determined by train characteristics, grade

profile, resistances, and passenger demand. In the train schedule used in the current practice, the

running times and dwell times have the same values for all the train services and those values

are also used for the proposed integrated optimization model. For the turnaround operations at

Songjiazhuang and Yizhuang stations, the turnaround time must be larger than 120 s and smaller

than 720 s based on the practical operating requirements.

The daily operating period of the Beijing Yizhuang line is from 5:20 till 23:30. In particular,

the first train service departs from Yizhuang station at 5:20 and the last train service departs from

Yizhuang station at 22:05. In order to provide a consistent service to passengers, the departure

times of the first and last train services must not be changed, which can be easily included in

the integrated optimization model by specifying d
up
1,1 and d

up
N,1 equal to 5:20 and 22:05, respec-

tively. The passenger demand of the Beijing Yizhuang line in a weekday is illustrated in Figure

11, which shows the variations of passenger demand over the time of the day. In particular, the

quantities of passengers traveling between two consecutive stations are denoted by different col-

ors. Note that the passenger demand on the section between Ciqu and Yizhuang stations is equal

to zero, since passengers are not allowed to enter and exit Yizhuang station in the current oper-

ation of the Beijing Yizhuang line. In Figure 11, the sections adjacent to Songjiazhang station

have a higher passenger demand when compared with the sections adjacent to Yizhuang station.

This is because Songjiazhuang station is the only transfer station and is nearby the city center.

In Figure 11 (a), the morning peak hours are between 7:00 and 9:30 and the maximum volume

of passengers in the line is reached between 8:00 and 8:30 in the up direction. In addition, the

evening peak hours are between 17:00 and 19:00 in the up direction. Note that the passenger

volumes of the evening peak hours are smaller than those of the morning peak hours. Similar

observations are obtained from Figure 11 (b) for the down direction, but the evening hours are,

in this case, between 16:30 and 20:00.

The capacity of trains in the Beijing Yizhuang line is 1440 passengers, including the number

of seated passengers and the allowable standing passengers. With the increase of the passenger

demand, the maximum load factor of some train services can be larger than 0.9, and even close to
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(b) Down direction

Figure 11: The passenger demand of the Beijing Yizhuang line

1 during the morning peak hours, for the current train schedule (which is generated by the traffic

planner with the help of graphic tools) applied in the Beijing Yizhuang line. Since the number

of available rolling stocks for a daily operation is limited to 13 in the current practice, this is a

practical challenge for the train scheduling and rolling stock circulation planning problems of

the Beijing Yizhuang line. In this case study, the maximum load factor σmax of each train service

is set as 0.9 to guarantee the passenger satisfaction. In addition, the minimal and maximal head-

ways between train services are taken as 240 s and 660 s, respectively. The weights γ1, γ2, and

γ3 introduced in (27) are set equal to 1. Moreover, the nominal values for the objective function

components fload,nom, fheadway,nom, and fdepot,nom, are 31.66, 192.49, and 13, respectively. These

values are obtained by solving the three single-objective optimization problems with 122 ser-

vices. We observe that the number of services in the practical train schedule is also 122; we thus

use the same number of services to compute the nominal values. Furthermore, the maximum

computation time for the solution approaches in this case study is set as 5 hours.

7.2. Computational results

We evaluate the overall performance of the proposed integrated optimization model and solu-

tion approaches from the point of view of effectiveness and efficiency, such as their computation

times and their objective function values. A detailed quantitative analysis of the proposed meth-

ods is given afterwards, including the following aspects:

• a comparison between the three integrated approaches and the non-integrated approach,

i.e., the two-stage approach proposed in Wang et al. (2017a);

• a comparison between the best solutions obtained by non-integrated and integrated ap-

proaches and the practical solution generated by the traffic planners to show the practical

value of the proposed solution approaches;
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Figure 12: Results of the four solution approaches (i.e., two-stage, INP, MILP-acc, and MILP-app) for 122, 118, 114,

110, and 108 train services

• performance analysis for different passenger demand data to show the effects of demand

variations and the scalability of the fastest approach, i.e., the MILP-app approach;

• performance analysis for different weights in the multi-objective optimization problem to

show Pareto-optimal solutions obtained by the approach providing the best near-optimal

solutions, i.e., the MILP-acc approach.

7.2.1. Performance comparison between the integrated and non-integrated approaches

For the passenger demand given in Figure 11, the number of train services used in the prac-

tical train schedule generated by the traffic planners is 122 and the number of rolling stocks

required is 13. When solving the train scheduling problem by using the proposed approaches,

the number of train services can be reduced up to 108. In what follows, the train schedules and

rolling stock circulation plans with 122, 118, 114, 110, and 108 services are obtained by the pro-

posed solution approaches. For this case study, the allowed adjustments of the departure/arrival

times are set equal to 80 s for the generation of a feasible rolling stock circulation plan in the
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two-stage approach. After the adjustments, the resulting train schedules could violate some con-

straints, e.g., the maximum load factor constraints. In addition, for the two-stage approach and

the INP approach, multiple initial solutions need to be employed to achieve a better performance,

since the resulting optimization problem is nonlinear and non-convex. In the computational re-

sults presented in Table 4, the number of initial solutions is taken as 10.

The results for different numbers of train services obtained by the solution approaches are

reported in Figure 12, where we observe that the performance measures of the integrated ap-

proaches (especially the INP approach and the MILP-acc approach) are, on average, much bet-

ter when compared with those of the non-integrated approach, i.e., the two-stage approach. In

particular, the objective function values of the MILP-app approach are slightly higher than the

values of the other two integrated approaches. This deterioration of the performance is due to

the approximation adopted for the passenger arrival rates, as illustrated in Figure 9, where the

approximations cause sharp changes of the passenger demand. These sharp changes then re-

sult in sudden (or non-continuous) changes in the headways. Therefore, the headway variations

of the MILP-app approach are much larger than the ones of the other two integrated solution

approaches, especially when the number of train services is reduced for the same passenger de-

mand. Moreover, the objective function value increases with the decrease of the number of train

services, which is also mainly caused by the increase of the headway variations.

Load factor fluctuations for the different solution approaches are close to each other. In par-

ticular, the load variations obtained by the two-stage approach (i.e., the non-integrated approach)

are smaller when compared with the other approaches (i.e., the integrated approaches). This re-

sult indicates that the integrated problem is indeed a multi-objective optimization problem, where

a better performance for one objective is achieved at the cost of a worse performance for other

objectives. The load factor variation decreases, in general, with the reduction of the number of

train services. In addition, the average load factor for all the train services increases with the

decrease of the number of train services. The latter result is because the total number of passen-

gers traveling in the line is fixed. The solutions obtained by the two-stage approach violate the

maximum load factor constraints, as shown in Figure 12, where the maximum load factor for this

case study is chosen as 0.9 and the maximum load factors obtained by the two stage approach

are larger than 0.9, and even reach 1 in some cases. However, the solutions obtained by all the

integrated approaches proposed in this paper satisfy the load factor constraints. The smallest

number of depot operations is 15, which is obtained by the MILP-acc approach for the case with

122 train services. The number of depot operations for most cases is 17 and decreases with the

reduction of train services, except for the MILP-app approach, where the approximation of the

passenger demand could be the reason for the non-decrease. It is worth to note that the number

of rolling stocks required for all the cases is 13, which is mostly related to the passenger demand

in the morning and evening peak hours.

The computation time of the MILP-app approach is the smallest since this approach intro-

duces approximations for the passenger demand. On average, the MILP-acc approach outper-

forms the other approaches in terms of the objective function values. However, for the case with

122 train services, the optimality gap of the MILP-acc approach is 20.32% when the maximum

computation time of 5 hours is reached. In addition, we can observe that with the reduction of

the number of train services, the computation time of the MILP-acc approach and the MILP-app

approach decreases, which may be caused by the reduction of the feasible solution space. The

computation time of the two-stage approach and of the INP approach increases with the decrease

of the number of train services. Differently, the computation time of the two-stage approach is

higher than that of the INP approach for the case with 110 services. Since we solve the nonlin-
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Table 4: Performance comparison of the practical train schedule and the trains schedules with 122 services obtained by

the two-stage and MILP-acc approaches

Solution Computa- Objective Headway Load Number Maximal Average

approach tion time function variation factor of exits load load

[s] value [s] variation (Depot) factor factor

Practice – 16.94 2790 35.35 20 0.988 0.458

Two-stage 4582 9.32 1307 38.72 17 0.977 0.457

MILP-acc 18000 3.98 320 41.49 15 0.9 0.457
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Figure 13: The headways for the train schedules with 122 train services for the Beijing Yizhuang line

ear non-convex optimization problems in the two-stage approach and in the INP approach, their

computation time to get a local minimum is not deterministic.

7.2.2. Performance comparison of solutions obtained by the approaches and the traffic planners

The train schedule and rolling stock circulation plan used in the current practice of the Bei-

jing Yizhuang line are designed manually by the traffic planners based on their experiences and

the whole design process may take more than one week. The practical train schedule is regular,

where the headways for the peak and off-peak hours are constants. As it has been mentioned

before, the number of train services in the practical train schedule is 122. We thus compare the

practical solution with the best solutions with 122 services obtained by the non-integrated ap-

proach (i.e., the two-stage approach) and the most accurate integrated approach (i.e., the MILP-

acc approach).

The performance comparison of the obtained train schedules and rolling stock circulation

plans is given in Table 4. As it can be observed from Table 4, the MILP-acc approach results in

the best-known (near-optimal) solution. When compared to the practical solution, the headway

variation is reduced from 2790 s to 320 s and the number of entering/exiting depot operations is

reduced from 20 to 15. The headways for the train schedule generated by traffic planners are
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Figure 14: The load factors for the train schedules with 122 train services for the Beijing Yizhuang line

shown in Figure 13, where the headways in the off-peak hours are 660 s and the headways in the

morning and evening peak hours are 390 s and 350 s, respectively. Due to the sudden fluctuation

of the headways between the peak and off-peak hours, the headway variation defined in (25) is

quite large (is equal to 2790 s) for the practical train schedule. Moreover, since the passenger

demand varies much slower and smoother when compared with the sudden change of headways,

the load factors of several trains during the headway transition period are higher than 0.9, and

even reach 0.988 for the practical train schedule, as shown in Figure 14. In addition, the number

of entering/exiting depot operations is 20, while the number of required rolling stocks is 13 in

the practical rolling stock circulation plan ((Figure A.18 of Appendix A).

When comparing the headways related to the various approaches, the smoothness of the

headways obtained by the MILP-acc approach is the best, as shown in Figure 13. It is worth

to note that the smoothness of the headways obtained by the two-stage approach is also good

for most of the train services, while the headways change sharply for a few services. This is

because in the two-stage approach the train schedule is calculated first and is then adjusted when

computing the rolling stock circulation plan. The second stage adjustments can cause some

constraint violations. The sudden changes of the headways, reported in Figure 13, thus result in

the violation of maximal load factor constraints. Specifically, the maximal load factor is 0.977,

which is a bit smaller than the one of the practical solution. However, this value is larger than the

predefined maximal load factor (0.9). The solution obtained by the MILP-acc approach is much

better than those of the traffic planners and of the non-integrated approach. With the MILP-acc

approach, there is no violation of the maximum load factor constraints. Moreover, the headway

variation is hugely reduced and the number of entering/exiting depot operations is also reduced

with the cost of a limited increase in the load factor variation.

The rolling stock circulation plans with 122 services obtained by the two-stage approach and

the MILP-acc approach are given in Figures A.19-A.20 of Appendix A. Furthermore, the train
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schedule obtained by the MILP-acc approach is also given in Figures A.21-A.23 of Appendix

A. Moreover, the departure times in the up direction (i.e., the start time of train services) and the

arrival times in the down direction (i.e., the end time of train services) at Yizhuang station are

provided in Table B.8 of Appendix B. The number of on-board passengers for these 122 train

services in the up direction is given in Table B.9.

7.2.3. Performance analysis for different passenger demand data

We compare the train schedules and the rolling stock circulation plans under different passen-

ger demand data by using the fastest integrated approach, i.e., the MILP-app approach. In order

to evaluate the effects of the small variations of the passenger demand to the train schedules and

the rolling stock circulation plans, we have fixed the number of train services, which is taken as

114. The passenger demand data given in Figure 11 is considered as the nominal passenger de-

mand, i.e., the demand factor is equal to 1. In the following experiments, we vary the passenger

demand data by using different demand factors, which are taken as 0.9, 0.95, 1.05, and 1.1.

Table 5 gives the performance comparison of the solutions with 114 train services under

different passenger demand factors. It can be observed from Table 5 that with the increase of the

passenger demand, the value of the objective function also grows. Similar trends hold for all the

objective function components, i.e., the headway variations, the load factor variations, and the

number of exits from the depot. In particular, the number of exits from the depot is 15 and the

number of rolling stocks required is 12 when the passenger demand factors are equal to 0.9 and

0.95. Furthermore, when the passenger demand increases, more rolling stocks need to be put into

operation, e.g., the numbers of rolling stocks required are 14 and 15 when the demand factors

are equal to 1.05 and 1.1. Moreover, the average load factor for the train services increases from

0.438 to 0.536 when the passenger demand factor varies from 0.9 to 1.1. This is because the

number of services is fixed to 114 for all the demand scenarios.

The headways and load factors for each demand factor in the obtained train schedules are

given in Figures 15 and 16, respectively. As it can be observed from Figure 15, the headway be-

tween trains in the morning and evening peak hours decreases with the increase of the passenger

demand. Since the departure times of the first and last train services are fixed for all scenarios,

the optimization process distributes all the train services in the operating period as equally as

possible, when all the constraints are satisfied. Therefore, the headways between train services

in the off-peak hours are generally smaller, when the passenger demand is decreased. In Figure

16, the load factors of most of the train services become larger with the increase of the passenger

demand. However, since we set the maximum load factor as 0.9, the load factor of some train

services in peak hours is equal to 0.9, which is achieved by varying the headways between train

services.

In order to evaluate the scalability of the fastest integrated approach, i.e., the MILP-app ap-

proach, we enlarge the passenger demand to increase the scale of the integrated optimization

problem. Due to the transport capacity limit of the Beijing Yizhuang line, the maximum pas-

senger demand factor is set as 2.5. The passenger demand factors for the scalability evaluation

are thus chosen as 1, 1.25, 1.5, 1.75, 2, 2.25, and 2.5. The model sizes of the integrated op-

timization problems corresponding to these passenger demand factors are given in Table 6, in

terms of the number of constraints, binary variables, real-valued variables, and non-zeros. The

computation time and optimality gap for the integrated optimization problems under different

passenger demand data are shown in Figure 17. In addition, the number of entering/exiting depot

operations and the number of rolling stock required are also given in Figure 17. The computation

time increases with the number of train services in Figure 17. In particular, when the number
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Table 5: Performance comparison of the trains schedules and circulation plans with 114 services under different passen-

ger demand data obtained by the approximated MILP approach

Passenger Computa- Objective Headway Load Number Maximal Average Number

demand tion time function variation factor of exits load load of trains

factor [s] value [s] variation (Depot) factor factor required

0.9 4020 3.90 305 36.90 15 0.9 0.438 12

0.95 145 4.62 440 37.43 15 0.9 0.463 12

1 93 5.53 585 37.57 17 0.9 0.487 13

1.05 748 6.80 792 38.92 19 0.9 0.512 14

1.1 66 8.40 1086 38.66 20 0.9 0.536 15
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Figure 15: Headways of the train schedules with different passenger demand data obtained by the approximated MILP

approach
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Figure 16: Load factors of the train schedules with different passenger demand data obtained by the approximated MILP

approach

Table 6: The model sizes of the integrated optimization problems for different passenger demand data when using the

MILP-app approach

Passenger Number Original MILP Reduced MILP1

demand of train Number of Number of Number of Number of Number of Number of

factor services constraints variables constraints binaries real variables non-zeros

1 110 84,005 27,124 11,000 2,845 1,568 36,482

1.25 125 100,480 33,009 19,250 4,964 2,541 63,673

1.5 138 115,793 38,598 28,319 7,238 3,626 93,309

1.75 150 130,666 44,045 36,585 9,437 4,566 120,654

2 200 199,472 68,926 60,445 17,773 6,440 205,666

2.25 220 230,313 80,097 68,469 21,203 6,776 236,049

2.5 250 280,165 98,194 80,522 26,710 7,114 282,689

of train services is 150, an optimal solution cannot be found within 5 hours of computation and

the optimality gap is 0.67%. Since the maximum computation time is always set to 5 hours, the

optimality gap increases significantly with the number of train services. In order to satisfy the

increasing passenger demand, the number of entering/exiting depot operations and the number

of required rolling stocks also increase. For the case with 250 services, the number of enter-

ing/exiting depot operations is 59, while the number of rolling stocks is 35. A feasible solution

for the latter case is obtained within 10 minutes of computation; however, it may take a much

longer time to find the best-known solution. The optimality gap is 44.47% for the given time

limit of computation.
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Figure 17: The computation time, the optimality gap, the number of entering/exiting depot operations, and the number

of required rolling stocks for different passenger demand data and for an increasing number of train services

Table 7: Performance comparison of train schedules and circulation plans with different weights in the objective function

obtained by the MILP-acc approach

Computa- Load Headway Number

γ1 γ2 γ3 tion time factor variation of exits

[s] variation [s] (Depot)

1 1 1 587 40.01 508.8 15

0.1 1 1 307 39.99 508.7 15

0.5 1 1 694 39.90 511.9 15

5 1 1 1111 38.11 540.5 15

10 1 1 919 37.20 620.8 15

1 0.1 1 5382 38.59 589.5 14

1 0.5 1 1310 39.99 509.6 15

1 5 1 267 39.72 500.7 16

1 10 1 135 39.78 500.6 16

1 1 0.1 202 39.39 502.0 16

1 1 0.5 347 39.40 501.8 16

1 1 5 1873 39.92 548.6 14

1 1 10 3489 40.71 637.9 13

1 0 0 322 33.08 782.0 17

0 1 0 212 39.78 500.6 16

0 0 1 1306 40.00 645.0 13
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7.2.4. Performance analysis for different weights in the multi-objective optimization problem

In order to evaluate the influence of different weights in the multi-objective optimization

problem, we use the MILP-acc approach because this approach gives the best-known solutions.

Moreover, the number of train services is taken as 108. For all the scenarios, the MILP-acc ap-

proach obtains the optimal solutions (i.e., the optimality gap is zero2). In each row of Table 7 but

the last three rows, we keep two weights constants (i.e., 1) and change the other weight (i.e., 0.1,

0.5, 5, 10). In the last three rows of Table 7, we also report the Pareto-optimal solutions computed

by using the ε-constraint method, where an optimization problem with a bi-objective function is

solved to optimize two performance indicators with the same weight, while the other one per-

formance indicator is indirectly optimized via the insertion of an additional bound constraint,

forcing the value of the latter indicator to the best possible (bold) value in the corresponding row

of Table 7.

Detailed computational results for all these weight settings and the non-dominated solutions

obtained by the ε-constraint method are given in Table 7, where the computation time, the head-

way variation, the load factor variation, the number of exiting depot operations for each setting

are given. The best values for the headway variation, the load factor variation, and the number

of exiting depot operations are 500.6, 33.08, and 13, respectively. For the results of Table 7, the

computation time required by the CPLEX solver to find the optimal solution is influenced by the

values of the three weights. In addition, the load factor variation decreases with the increase of

γ1. Similar trends also hold for the headway variation and the number of entering/exiting depot

operations when γ2 and γ3 increase, respectively.

7.3. Discussion

Based on the computational results provided in the previous subsections, we can conclude

that the solutions obtained by the integrated approaches (i.e., the INP approach, the MILP-acc

approach, and the MILP-app approach) are better than those obtained by the non-integrated

approaches (i.e., the two-stage approach and the practical approach used by traffic planners).

The MILP-acc approach yields the best-known (near-optimal) solutions, while the performance

of the INP approach is also competitive. Moreover, the computation time of the MILP-app

approach is the smallest among all the solution approaches. The latter approach can be applied

to achieve the best overall trade-off when both the computation time and the objective function

value are considered.

Under the same passenger demand, the objective function value increases when the number

of services decreases. This is mainly because less available services result in larger headway

variations. When the number of train services is fixed and the passenger demand varies, the

objective function value deteriorates with the increase of the passenger demand. When looking

at the specific objective function components, the headway variations, the load variations, and

the number of entering/exiting depot operations are all increased when the passenger demand

increases. This is because the headways during the peak hours become smaller to satisfy the load

factor constraints. Moreover, smaller headways result in more depot entering/exiting operations

and additional rolling stocks.

To investigate the scalability of the MILP-app approach, we enlarge the passenger demand

factor up to 2.5 and the number of services reaches up to 250. Both these values are about two

1The reduced MILP problem is obtained by the presolving process of CPLEX.
2If the optimality gap is smaller than 10−6 , we consider it as zero.
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times the values used in practice. With this more complex setting, a feasible solution is found

easily, however, the optimality gap is still 44.47% after a computation time equal to 5 hours.

The weights γ1, γ2, and γ3 in the objective function are used to denote the relative importance of

the considered performance indicators. The weight setting indeed affects the optimal solutions

and the computation time. In general, the value of each objective function component decreases

with the increase of the corresponding weight, while the other components may deteriorate their

performance. We conclude that the studied problem is inherently a multi-objective optimization

problem.

8. Conclusions and future research

In this paper, we have tackled the integration of the passenger demand oriented train schedul-

ing and the rolling stock circulation planning by using a multi-objective mixed integer nonlinear

programming model. Three solution approaches have been developed: an iterative nonlinear

programming (INP) approach and two mixed integer linear programming (MILP) methods (i.e.,

an accurate MILP method and an approximated MILP method). Our aim is to compute train

schedules (i.e., departure and arrival times of all train services) and rolling stock circulation

plans (including entering/exiting depot operations of rolling stocks and connections between

train services) simultaneously. The performance of the proposed optimization approaches has

been compared with the state-of-the-art approach (i.e., the two-stage approach) of Wang et al.

(2017a) and the practical approach used by the traffic planners, from the viewpoints of solution

quality and computational efficiency. The comparison is based on the real-world data of Bei-

jing Yizhuang line. According to the experimental results, the accurate MILP approach yields

the best-known solutions. When taking the computation time into account, the approximated

MILP approach is the fastest algorithm. Furthermore, the performance of the INP approach is

competitive with the MILP-acc approach in terms of solution quality.

For our future research, one interesting extension is to employ short-turning train services to

speed up the circulation of rolling stocks and to transport more passengers efficiently; because

the passenger demand is not equally distributed to all the stations in the urban rail transit line.

Also, multiple depots could be considered in urban rail transit lines and the track storage can be

used for the daily operations, especially in case of large passenger demand. As other promising

research directions, we could investigate the positioning of rolling stocks for urban rail transit

lines with multiple depots. Furthermore, we could explore the benefits of rolling stock compo-

sition changes, e.g., in terms of transport capacity and energy-efficiency. Moreover, we assume

that the rolling stocks are available for the whole operating period; however, in practice, the

rolling stocks would have maintenance works. In future work, we thus would consider the inte-

gration of the maintenance scheduling, including daily check and double-weekly check as, e.g.,

in Giacco et al. (2014), with the train scheduling and rolling stock circulation planning for urban

rail transit systems. In addition, a different setting of binary variables for rolling stock circulation

planning could also be an interesting topic to speed-up the solution process. Furthermore, the

responsive behavior of passengers to service frequencies and the sensitive changes of passenger

arrival rates to departure times are not formulated in this paper. Further work could address the

issue of directly incorporating a demand model in order to capture various possible effects of

varying the train schedules. Finally, the service frequencies, stop patterns, etc. could also be

optimized based on an origin-destination dependent passenger demand.
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Figure A.18: Rolling stock circulation plan with 122 train services for the current practice of the Beijing Yizhuang line

Appendix A. Train schedules and rolling stock circulation plans with 122 train services

We report here the rolling stock circulation plans with 122 train services for the Beijing

Yizhuang line (regarding the experiments in Section 7.2.2) obtained by: the traffic planner (Fig-

ure A.18), the two-stage approach (Figure A.19), and the MILP-acc approach (Figure A.20),

respectively. Furthermore, the detailed train schedule with 122 servies obtained by the MILP-

acc approach is given in Figures A.21, A.21, and A.23, illustrating the morning, afternoon, and

evening schedules, respectively.

In Figures A.18-A.20, the number of required rolling stocks is 13 for all the three rolling

stock schedules. In particular, only 12 rolling stocks are put into operation during the morning-

peak hours in the solution obtained by the two-stage approach, which results in the violations

of the maximum load factor constraints. For the MILP-acc approach, the entering/exiting depot

operations are 15, which is less than those of the practical solution and of the solution obtained

by the two-stage approach.

Appendix B. Detailed results for 122 train services via the MILP-acc approach

The departure times in the up direction (i.e., the start time of train services) and the arrival

times in the down direction (i.e., the end time of train services) at Yizhuang station are provided

in Table B.8, which is linked to the train schedules given in Figures A.21-A.23 of Appendix A.

In addition, the number of on-board passengers for the 122 train services in the up direction is

given in Table B.9.
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Figure A.19: Rolling stock circulation plan with 122 train services via the two-stage approach for the Beijing Yizhuang

line

 5:00  7:00  9:00 11:00 13:00 15:00 17:00 19:00 21:00 23:00

1

2

3

4

5

6

7

8

9

10

11

12

13

1 13 26 38 49 59 68 77 87 98

2 14 27 39 50 60 69 78 88 99 108 115 122

3 15 28 40 51 61 70 79 89 100

4 16 29 41 52

5 17 30 42 53 62 71 80 90 101 109 116

6 18 31 43

7 19 32 44 54 63 72 81 91 102 110 117

8 21 34 45 55 64 73 82 93 104 112 119

9 22 35 46 56 65 74 83 94 105

10 23 36 47 57 66 75 84 95

11 24 37 48 58 67 76 86 97 107 114 121

12 25

20 33

85 96 106 113 120

92 103 111 118

Time (hours)

T
ra

in
 in

de
x

Figure A.20: Rolling stock circulation plan with 122 train services via the MILP-acc approach for the Beijing Yizhuang
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Figure A.21: Train schedule with 122 train services via the MILP-acc approach for the morning hours of the Beijing
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Figure A.22: Train schedule with 122 train services via the MILP-acc approach for the afternoon hours of the Beijing

Yizhuang line
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Table B.8: Departure and arrival times of the train services at the Yizhuang (YZ) station obtained by the MILP-acc

approach for the Beijing Yizhuang line

Service Departure Arrival Service Departure Arrival Service Departure Arrival

number time (up) time (dn) number time (up) time (dn) number time (up) time (dn)

1 5:20:00 6:37:26 42 9:55:05 11:13:09 83 16:10:32 17:26:07

2 5:27:09 6:43:56 43 10:02:53 11:21:02 84 16:18:47 17:34:23

3 5:34:20 6:50:26 44 10:10:46 11:29:01 85 16:26:54 17:42:32

4 5:41:29 6:56:56 45 10:18:45 11:37:04 86 16:34:54 17:50:33

5 5:48:36 7:03:26 46 10:26:49 11:45:13 87 16:42:45 17:58:29

6 5:55:53 7:09:57 47 10:34:58 11:53:27 88 16:50:28 18:06:17

7 6:02:53 7:16:26 48 10:43:13 12:01:48 89 16:58:04 18:13:58

8 6:09:50 7:22:56 49 10:51:33 12:10:14 90 17:05:32 18:21:33

9 6:16:41 7:29:25 50 10:59:57 12:18:46 91 17:12:52 18:29:01

10 6:23:24 7:35:53 51 11:08:29 12:27:23 92 17:20:04 18:36:22

11 6:30:01 7:42:22 52 11:17:09 12:36:07 93 17:27:07 18:43:37

12 6:36:32 7:48:49 53 11:25:54 12:44:56 94 17:34:06 18:50:44

13 6:42:57 7:55:17 54 11:34:47 12:53:51 95 17:40:51 18:57:45

14 6:49:15 8:01:44 55 11:43:47 13:02:51 96 17:47:28 19:04:40

15 6:55:27 8:08:11 56 11:52:53 13:11:58 97 17:54:23 19:11:23

16 7:01:34 8:14:38 57 12:02:06 13:21:10 98 18:01:43 19:18:07

17 7:07:29 8:21:04 58 12:11:27 13:30:28 99 18:09:17 19:24:50

18 7:13:25 8:27:29 59 12:20:54 13:39:52 100 18:17:11 19:31:33

19 7:19:20 8:33:55 60 12:30:27 12:49:21 101 18:25:23 19:39:06

20 7:25:16 8:40:20 61 12:40:08 13:58:47 102 18:33:53 19:47:01

21 7:31:17 8:46:44 62 12:49:56 14:08:38 103 18:42:42 19:55:21

22 7:37:20 8:53:09 63 12:59:50 14:18:24 104 18:51:49 20:04:11

23 7:43:27 8:59:34 64 13:09:52 14:18:24 105 19:01:14 20:13:31

24 7:49:39 9:05:54 65 13:20:00 14:38:16 106 19:10:58 20:23:15

25 7:55:50 9:12:21 66 13:30:12 14:48:16 107 19:21:01 20:33:18

26 8:02:09 9:18:50 67 13:40:41 14:58:40 108 19:31:19 20:43:40

27 8:08:33 9:25:16 68 13:51:07 15:08:39 109 19:42:00 20:54:40

28 8:15:02 9:31:52 69 14:01:17 15:18:36 110 19:53:00 21:05:40

29 8:21:37 9:38:33 70 14:11:27 15:28:28 111 20:04:00 21:16:40

30 8:28:17 9:45:18 71 14:21:20 15:38:11 112 20:15:00 21:27:40

31 8:35:02 9:52:08 72 14:31:09 15:47:49 113 20:26:00 21:38:40

32 8:41:52 9:59:04 73 14:40:51 15:57:19 114 20:37:00 21:49:40

33 8:48:48 10:06:05 74 14:50:24 16:06:42 115 20:48:00 22:00:40

34 8:55:49 10:13:12 75 14:59:50 16:15:59 116 20:59:00 22:11:40

35 9:02:55 10:20:23 76 15:09:08 16:25:09 117 21:10:00 22:22:40

36 9:10:06 10:27:40 77 15:18:18 16:34:12 118 21:21:00 22:33:40

37 9:17:23 10:35:02 78 15:27:20 16:43:08 119 21:32:00 22:44:40

38 9:24:45 10:42:29 79 15:36:14 16:51:57 120 21:43:00 22:55:40

39 9:32:12 10:50:01 80 15:45:01 17:00:40 121 21:54:00 23:06:40

40 9:39:44 10:57:39 81 15:53:39 17:09:16 122 22:05:00 23:19:25

41 9:47:22 11:05:21 82 16:02:10 17:17:45 – – –

45



Table B.9: Number of on-board passengers for the train services in the up direction of the Beijing Yizhuang line

Service YZ - CQ - CQN - JH - TJN - RC - RJ - WY - WHY - YZQ - JG- XHM XC

number CQ CQN JH TJN RC RJ WY WHY YZQ JG XHM XC SJZ

1 0 8 9 28 19 33 55 78 86 144 152 202 210

2 0 7 10 17 62 57 60 63 56 72 97 179 170

3 0 7 10 17 62 57 60 65 87 173 208 242 176

4 0 7 10 17 65 85 116 117 146 195 207 240 175

5 0 8 13 37 95 132 141 120 149 200 212 246 180

6 0 21 18 43 91 127 136 115 143 193 213 305 409

7 0 21 18 43 90 126 135 114 156 278 509 388 482

8 0 21 18 42 89 147 186 260 255 332 503 383 477

9 0 21 18 60 215 308 241 293 250 326 494 376 468

10 0 31 52 85 238 303 237 288 246 321 487 388 565

11 0 37 52 84 234 298 233 284 242 378 647 972 738

12 0 36 52 82 230 293 229 331 466 768 750 956 726

13 0 35 51 81 282 371 524 462 596 754 736 939 713

14 0 35 68 157 467 435 540 455 586 742 725 924 701

15 0 87 113 176 461 429 533 449 578 732 715 951 1107

16 0 90 110 170 447 415 516 435 560 720 1093 1018 1296

17 0 90 110 170 447 415 516 517 692 745 1185 1018 1296

18 0 90 110 170 441 544 521 656 736 745 1185 1018 1296

19 0 90 107 216 423 633 521 656 736 745 1185 1018 1296

20 0 108 100 232 430 643 529 667 748 758 1204 1078 1284

21 0 111 101 233 433 647 533 671 753 783 1106 1225 1270

22 0 113 102 235 437 653 538 638 588 844 1085 1237 1282

23 0 114 103 238 445 526 573 576 531 854 1097 1250 1296

24 0 114 109 180 451 443 573 576 531 854 1097 1250 1296

25 0 84 123 173 462 453 586 589 543 873 1122 1126 914

26 0 83 124 175 467 458 594 596 549 717 676 873 758

27 0 85 126 178 473 464 553 462 525 520 644 884 768

28 0 86 128 173 344 406 412 368 530 527 653 897 779

29 0 77 80 134 246 402 418 373 537 534 662 909 775

30 0 58 59 136 250 407 423 378 544 541 636 586 656

31 0 58 60 137 253 413 429 373 447 485 579 492 665

32 0 59 60 139 249 351 331 281 309 485 586 498 673

33 0 60 55 85 209 264 304 285 313 491 594 505 682

34 0 34 42 67 212 267 308 288 317 497 591 476 509

35 0 33 43 68 214 270 312 292 319 417 296 435 452

36 0 33 43 69 217 247 231 294 318 368 300 441 458

37 0 34 41 70 162 152 162 297 322 372 303 446 463

38 0 25 20 71 160 154 164 300 326 377 307 425 416

39 0 23 21 72 162 156 166 304 321 277 351 373 387

40 0 23 21 72 164 163 187 245 249 190 358 377 391

41 0 24 22 64 147 190 207 233 252 192 362 381 396

42 0 18 26 58 147 192 209 235 255 194 366 377 294

43 0 17 26 59 149 194 211 238 239 263 352 368 244

44 0 17 27 59 145 195 212 239 177 303 356 372 247

45 0 18 27 51 108 196 214 241 179 306 360 376 250

46 0 26 27 48 109 198 216 244 181 309 352 284 380

47 0 27 28 49 110 201 218 227 223 289 327 230 399

48 0 27 28 50 122 194 145 167 264 290 331 232 403

49 0 23 16 55 137 191 144 168 265 292 333 235 394

50 0 19 12 56 139 195 147 171 270 299 268 357 369

51 0 19 12 57 141 188 185 236 284 306 238 362 374

52 0 20 15 56 143 139 236 268 288 310 241 367 378

53 0 13 23 57 145 141 239 272 292 314 272 373 390

54 0 13 24 57 147 142 242 277 296 230 367 379 396

55 0 13 24 59 120 194 239 283 300 223 371 384 401

56 0 18 22 62 99 211 242 286 303 226 376 402 356

57 0 21 22 63 100 213 245 288 286 319 429 446 306

58 0 22 22 63 120 220 263 213 229 379 437 452 310

59 0 23 26 43 161 227 271 216 231 384 443 445 354

60 0 25 28 44 163 229 274 218 243 364 406 280 454
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Table B.9 Number of on-board passengers for the train services in the up direction of the Beijing Yizhuang line (continued

from previous page)

Service YZ - CQ - CQN - JH - TJN - RC - RJ - WY - WHY - YZQ - JG- XHM XC

number CQ CQN JH TJN RC RJ WY WHY YZQ JG XHM XC SJZ

61 0 25 28 44 162 220 199 277 308 339 398 284 460

62 0 25 21 58 156 206 160 287 311 343 402 287 457

63 0 23 16 59 158 209 163 291 316 300 303 415 434

64 0 23 16 60 162 191 227 307 327 237 264 419 439

65 0 22 25 67 169 162 263 310 329 238 266 421 406

66 0 19 31 70 173 167 270 319 314 293 367 415 310

67 0 19 31 69 147 186 251 290 189 343 393 413 308

68 0 22 29 59 88 200 238 282 184 334 383 384 342

69 0 26 29 59 87 198 236 278 217 341 390 270 414

70 0 26 28 57 107 202 253 202 323 343 387 267 409

71 0 21 21 42 142 205 254 199 319 338 381 280 408

72 0 16 18 41 140 202 251 196 311 331 261 381 411

73 0 16 18 40 132 168 188 271 291 324 236 375 406

74 0 17 14 48 114 132 164 270 287 320 233 370 400

75 0 19 12 48 112 130 162 267 283 280 326 378 396

76 0 19 12 47 111 143 195 264 283 217 363 373 391

77 0 18 16 46 109 181 223 261 279 214 358 368 385

78 0 12 22 46 107 179 220 257 275 223 358 375 304

79 0 12 21 45 106 176 223 247 265 396 361 374 297

80 0 12 21 45 108 194 248 236 259 390 355 368 293

81 0 13 13 46 108 193 245 232 255 384 350 353 378

82 0 13 13 45 106 190 241 229 282 420 409 322 450

83 0 13 13 44 120 223 311 372 410 443 406 317 443

84 0 13 15 76 231 284 345 379 404 436 400 312 436

85 0 14 19 84 227 279 339 373 397 429 477 616 652

86 0 14 19 83 224 275 334 421 526 682 681 782 664

87 0 13 19 82 227 354 544 633 661 699 669 769 653

88 0 16 22 106 236 403 556 623 650 687 658 756 650

89 0 22 24 105 232 396 546 612 639 675 701 777 770

90 0 22 24 103 228 389 537 670 688 783 775 775 757

91 0 21 23 101 262 433 608 889 727 771 760 760 743

92 0 21 24 181 340 459 603 871 713 756 745 745 728

93 0 24 26 185 337 454 597 862 705 748 771 759 836

94 0 23 25 180 326 440 578 835 691 738 872 748 818

95 0 23 24 176 319 420 537 620 696 726 852 731 800

96 0 24 24 145 229 408 543 638 730 761 893 766 838

97 0 17 15 120 236 431 575 675 772 805 945 733 765

98 0 15 15 124 244 446 595 698 784 652 520 522 691

99 0 16 16 129 254 430 470 447 450 473 472 544 720

100 0 16 16 97 153 269 316 370 468 492 491 566 748

101 0 15 16 73 149 279 327 384 485 510 475 475 414

102 0 15 16 76 154 289 339 375 434 324 281 365 294

103 0 16 17 73 145 196 244 274 351 282 291 377 304

104 0 17 13 38 132 146 242 284 363 291 300 365 316

105 0 18 13 39 136 151 250 293 336 290 245 233 330

106 0 18 13 40 119 153 178 185 191 290 241 241 340

107 0 11 13 26 75 155 156 187 197 297 247 237 290

108 0 5 14 27 78 160 161 191 195 238 262 184 189

109 0 5 14 30 83 138 190 165 179 195 271 190 195

110 0 6 8 36 87 123 194 165 179 195 254 203 215

111 0 7 7 36 87 123 179 168 183 199 132 223 230

112 0 7 7 34 87 80 94 175 187 199 132 223 230

113 0 5 5 33 88 76 94 175 187 191 164 217 218

114 0 5 5 33 87 80 105 159 168 131 212 214 216

115 0 6 7 28 39 93 121 148 164 131 212 214 203

116 0 9 9 26 39 93 121 148 156 133 169 116 110

117 0 9 9 26 43 81 92 81 78 135 148 108 110

118 0 6 5 16 55 67 78 73 78 135 148 107 105

119 0 4 4 16 55 67 78 72 79 97 66 102 99

120 0 4 4 14 35 33 28 71 81 79 61 102 99

121 0 2 1 10 19 21 26 71 81 79 51 61 43

122 0 1 1 4 3 0 0 0 0 0 23 19 16
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Figure A.23: Train schedule with 122 train services via the MILP-acc approach for the evening hours of the Beijing

Yizhuang line
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