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Abstract

In this paper we introduce a model describing diffusion of species by a suitable
regularization of a “forward-backward” parabolic equation. In particular, we prove
existence and uniqueness of solutions, as well as continuous dependence on data, for
a system of partial differential equations and inclusion, which may be interpreted,
e.g., as evolving equation for physical quantities such as concentration and chemical
potential. The model deals with a constant mobility and it is recovered from a
possibly non-convex free-energy density. In particular, we render a general viscous
regularization via a maximal monotone graph acting on the time derivative of the
concentration and presenting a strong coerciveness property.
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1 Introduction

The model we are introducing may be applied to different situations, dealing with diffusion
of different species (located in some domain 2 C R™ and) described in terms of concentra-
tion. In the following, moving from the classical approach in thermodynamics which leads
to the well-known Cahn-Hilliard equation, we introduce our point of view and make some
comments on its thermodynamical consistency. In particular, we are focusing on diffusion
in solids and we have in mind, as a possible final application, hydrogen storage in metals.
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2 REGULARIZATION OF A FORWARD-BACKWARD PARABOLIC EQUATION

Models for species diffusion. In the simplest setting, a mathematical model describing
species diffusion in a solid can be obtained by combining the following three ingredients:

1) the mass-balance law for the concentration u
4+ divh = 0; (1.1)

2) a linear constitutive relation connecting the fluz of diffusant h to the gradient of
chemical-potential p through a mobility constant m (as it is suggested by the Fick law):

h = -mVy, m > 0; (1.2)
3) a possibly nonlinear relation between p and w:

=1 (u), (1.3)
dictated by the derivative ¢’ of a coarse-grained free energy 1.

An important property of the free energy to ensure the well-posedness of the resulting
model is convexity. However, in physical situations when diffusion is accompanied by
phase separation, in general b must be assumed to be a non-convex function, a typical
choice being the double-well polynomial potential:

Y(u) = k(u —1)%u?, k> 0. (1.4)

This kind of specifications would make the system (1.1))—(1.3)) backward parabolic (e.g., for
(1.4), in the region where 0 < u < 1), an undesirable feature both from the physical and
from the mathematical standpoint.

In order to make the system well-posed and physically sound, the most popular remedy
is the so-called elliptic regularization of ((1.3)):
pu =1 (u) — ocAu, o >0, (1.5)

which results into the celebrated Cahn—Hilliard system [?]. This mathematical model
was originally devised in materials science to describe spinodal decomposition, namely,
the process by which a binary alloy undergoes phase separation when its temperature is
brought below a critical value. However, the same model finds its application in several
other fields, spanning from complex fluids [?] to image processing [?] and [?].

A different type of regularization has been considered by Novick-Cohen and Pego [?]
and Plotnikov [?], who replace the elliptic term —oAu with a term of the form i, which
incorporates viscoelastic relaxation effects. The result is the viscous reqularization:

=1 (u) + a, a> 0. (1.6)

The discussion in [?] suggests that in the limit as the viscosity parameter a tends to zero
hysteretic effects should be observed.

A combination of energetic and viscous regularization, namely,
p=1'(u) — cAu+ au, (1.7)

which leads to the so-called viscous Cahn—Hilliard equation, was derived by Novick-Cohen
in [?] and analytically investigated by Elliott and Garcke in [?] and by Elliott and Stuart
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in [?], with computations being carried out in [?]. Its vanishing-viscosity limit was studied
in [?]. We point out that the regularizing terms in (1.7)) with their coefficients o and «
actually correspond to the respective quadratic contributions in the free energy functional
for the gradient term and in the dissipation potential for the velocity. More sophisticated
generalizations of the Cahn—Hilliard system that still incorporate a viscous contribution
have been proposed and investigated in [?,?]. In the same spirit, a similar viscous
regularization has been introduced in the paper [?], which deals with phase separation in
binary alloys driven by mechanical effects.

The elliptic regularization as a microforce balance. Derivations of diffusion models
of Cahn—Hilliard type have been proposed by Gurtin in [?] and by Podio-Guidugli in [?].
We give here a brief account, instrumental for setting up the mathematical problem we
study, and we refer to the quoted papers and to the references cited therein for further
details.

Central to the aforementioned derivations are the following ingredients:

e a system of microforces, distinct from Newtonian forces, which obey their own
balance laws and whose power expenditure is associated to the evolution of the
observable fields of interest — in the present case, the concentration u;

e a collection of constitutive specifications, which relate microforces to the actual
evolution of the system;

e a dissipation principle, which sifts away thermodynamically inconsistent constitutive
specifications.

Within this common framework, the elliptic regularization ([1.5)) is a particular instance of
the balance statement:

divE+7m+v=0, (1.8)
an instance that arises when we adopt the constitutive specifications:
& =o0Vu, T =p—(u), v =0, (1.9)

for the vectorial microstress & and the two scalar-valued fields, 7 and ~, respectively, the
internal and the external microforce.

Other constitutive specifications may be taken into consideration of course, provided
that they are thermodynamically consistent. In this respect, two distinct options are offered
in [?] and [?]. In this paper we opt for the former, where thermodynamical consistency is
embodied by the dissipation inequality:

< (u—n)i+€-Vi—h- -V, (1.10)

with ¢ the free-energy density.

A standard argument [?] shows that consistency with ((1.10]) rules out any constitutive
dependence of free energy on the time derivative of u; accordingly, one assumes that the
free energy and the concentration fields are related through a specification of the form:

¢ = 6(u, Vu). (1.11)
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A consequence of (1.10) and ([1.11)) is that, on introducing the equilibrium parts

£ = ——(u,Vu) and 7= — %(u, Vu), (1.12)

of, respectively, microstress and internal microforce, the test for consistency of a certain
constitutive choice with the dissipation inequality (1.10]) reduces to verifying that, for
whatever process, the non-equilibrium parts

£ =€ — €%, =7 — (1.13)

of microstress and internal microforce satisfy, together with the flux of diffusant h, the
reduced dissipation inequality:

0< -0+ £ Vi—h- V. (1.14)

In particular, the constitutive specifications (|1.9)) follow from ((1.12)—(1.13]) on taking

-~

Blu, V) = SalVal + b(w),

and on choosing
=0 =0, (1.15)

a choice consistent with (|1.14)).

The viscous and the “non smooth” regularizations. The viscous variant is
obtained in a similar fashion: first, we exclude microscopic contact interactions by letting
& = 0, and we set to null the external microforce v, so that the microforce balance
reduces to

™ =0. (1.16)

Then, consistent with this choice, we rule out the dependence of free energy on concentration
gradient by letting

~

o(u, Vu) = ¥(u), (1.17)
so that the second of specializes to
T = p— Y (w); (1.18)

As to the “non-equilibrium part”, the simplest constitutive choice is
™ = —au, a >0, (1.19)

so that, bearing in mind the second of (1.13)), we recover (|1.6]) from ({1.16]) and (1.18)).

Note that, actually, the above relation could be introduced in terms of a “dissipation
functional” ®: the so-called pseudo-potential of dissipation introduced by Moreau [7],
which is a non-negative and convex functional, equal to zero for null dissipation. In
particular, letting ® (i) = §|u|?, the non-equilibrium part could be introduced as

o
e _ _0® 1.2
i o (1.20)
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Note in particular that the assumptions on ® and the relation ((1.20)) lead to
w0 <0, (1.21)

which is important to ensure thermodynamical consistency. Indeed, if (1.21]) and (|1.2))
hold, then the reduced dissipation inequality (1.14]) is satisfied (recall that £"® = 0, which

follows from (T12)y, (L13);, and (LI7)).

The choice & = %a’[ﬂ, which leads to (1.19)), is not the only possible. In fact, to model
hysteresis, we make another choice, following a suggestion in [?]. Precisely, we replace
(1.19) with the following specification:

— (7™ + au) € B(1), (1.22)

where, as before, & > 0 is a constant and § : R = R is a set-valued mapping whose graph
is (maximal) monotone and contains the origin:

0 € 3(0), (1.23)

as in the case § = 0( is the subdifferential of a non-negative convex function (, with
¢(0) = 0.

As to the assumption on £, it is easily seen that the constitutive specification ([1.22)) is
consistent with the dissipation inequality ([1.14)): indeed, owing to the monotonicity of f,

we have
v € B(wy) & vy € Blwy) = (v1 —v2)(wy —wy) > 0; (1.24)

thus, if the pair (7"¢, %) is compliant with ([1.22)), then we can take v; = —(7"° + aa) and
wy = U as tests in ([1.24)); meanwhile, ((1.23)) entitles us to choose wy = vy = 0; with these

choices, (|1.24)) yields — (7" 4+ au)d > 0, which entails ((1.21)).

The system we investigate. In view of the aforementioned discussion, in order to
assemble the system we study, it now suffices for us to combine the balance law for
diffusant, the Fick’s law and the constitutive specification of the chemical potential.
Specifically, we proceed in two steps:

1) we substitute the expression for the flux of diffusant prescribed by Fick’s law (1.2])
in the balance equation ({1.1]) that governs the time evolution of concentration. As a result,
we obtain the partial differential equation:

uw—mAp = 0; (1.25)

2) we combine the second of with and to obtain
¢ = (u) — p. (1.26)
Then, we substitute into the inclusion to arrive at
pe Y (u) + au+ B(u), (1.27)

where, with slight abuse of notation, we write p + 3(¢) to denote the set {r e R:r —p €
B(q)}. Some heuristic discussions, as in [?] (see also the remark enclosing ([1.32)) below),
suggest that the inclusion ([1.27)) is able to reproduce phenomenologically the hysteretic
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behavior observed, e.g., in solid-state hydrogen-storage systems, where the chemical
potential during adsorption and desorption is not the same (see also [?]).

Of course, in one may want to replace the constant mobility m with a function
of concentration: for the standard Cahn-Hilliard system this dependence can be handled,
even in the degenerate case [?]. However, we prefer to keep our focus on the main novelty
of this paper, that is, the non-smooth dependence of p on %, which was suggested, but not
treated analitically, in [?].

We finally complete the system ([1.25)—(1.27) with a specification of the initial con-
centration u(0) (see (1.39¢) below) and a time-dependent specification of the chemical
potential on the boundary:

p(-t) = w(-,t) on I':= 0. (1.28)

Dirichlet-type boundary data involving chemical potential are consistent with appli-
cations. An example in the context of the mathematical modeling of hydrogen stor-
age [?,7,7,7] is the following: consider that the domain €2 where diffusion takes place
represents a body immersed in a gaseous reservoir at uniform pressure p, and tempera-
ture T}, both of which may be possibly time dependent. The chemical potential of the
diffusant in the reservoir is related to its pressure and temperature through the formula
tg = o+ RT,1og(py/po) (see for instance [?, Eq. 5.16]), where pi is the standard chemical
potential, R is the Avogadro constant, and py is the standard pressure (typically, po = 1bar).
If local equilibrium prevails, p is continuous across the boundary I', and hence
holds with g, (z,t) = py(t). Another example is provided by mechanical theories that
describe the behaviour of a permeable elastic solid immersed in an incompressible fluid
(see for instance [?]); in these theories, the chemical potential of the fluid is given by
fr = po + v(ps — po), where v is the molar volume of the solvent and py is its pressure.

Of course, boundary conditions other than could be considered: for example,
the control of the flux on the boundary through the difference of chemical potentials on
both sides can be prescribed. However, this would not affect our analysis, as far as the
coerciveness of the energy estimate with respect to p is concerned. Moreover, some care
is required to guarantee that p has the spatial smoothness required for our comparison

argument to apply (cf. (3.4) and ((3.14))).

Energy and dissipation. The precise assumptions we make on the coarse-grained free
energy 1) are stated in below. Note in particular that we can allow 1 to be nonconvex
(a feature that, as already pointed out, allows for phase separation) and that we can
include logarithmic type potentials. On the other hand, we are not able to deal, e.g., with
subdifferential of indicator functions of closed intervals.

As to the mapping 3, whose choice together with that of the constant « affects the
dissipative structure of the system, we assume in below that it is the subdifferential
of a non-negative, convex, lower semicontinous potential ¢ (without setting any restriction
on the growth of ¢) with ((0) = 0 . Besides the trivial case 8 = 0, which leads to the PDE
considered in [?], other possible choices are:
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(i) B(r) = By sign(r), where By > 0 and the sign graph is defined by

{+1} if r >0,
sign(r) = ¢ [-1,+1] ifr=0, (1.29)
{-1} if r <0,

which, as we shall discuss below, may induce hysteresis.

(ii) the subdifferential of the indicator function I, of a closed bounded interval [a, b]
(in our computations we require 0 € [a, b])

{0} if r € (a,b),
B(r) = 0l (r) = ¢ [0,+00) ifr=0b, (1.30)
(—00,0] ifr=a,

forcing the rate of change of concentration to be bounded in the interval [a, b].
(iii) the subdifferential of the indicator function of [0, +00), namely,

{0} if r € (0, +00),

(—00,0] ifr=0 (1.31)

B(r) = 1[0, +o0) (r) = {

which is a choice particularly interesting, for it entails that the concentration at a
given point cannot decrease, that is, @ in (1.27)) has to remain non-negative.

Remarks on hysteresis. For the viscous variant of the Cahn—Hilliard system — namely,
the system that arises from (|1.6)) — it is known that hysteresis (in the sense of irreversibility
[?]) emerges in the vanishing-viscosity limit:

a— 0,

provided that v is a non-convez function [?,7]. It is not hard to construct examples
showing that our constitutive assumptions lead to hysteresis as well, even if ¥ is convex.

In order to provide an illustration, we choose 3 as in (i) above and we take ¥(u) = Lku?,
with £ > 0. As a result, the system ([1.25)—(1.27) becomes:
Ou = mAp, (1.32a)
€ adu+ By sign (Opu) + ku, (1.32b)

where 0, denotes the (partial) derivative with respect to t. We supplement (|1.32a}) with a
boundary condition of the form

p(,t)=f (—) on I, (1.33)

and we investigate the formal limit when the characteristic time 7 tends to infinity, which
corresponds to the regime of a slowly-varying chemical potential imposed at the boundary.

On replacing ¢ with the dimensionless variable
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and on considering that the 8 in (i) is invariant under time reparametrization, we can
rewrite ((1.32)) as
T—lasu — mA,u, (134&)
p € 7 adou + By sign (Osu) + ku. (1.34b)

Formally, as 7 — +o00, the parabolic system ((1.34) degenerates into the elliptic system:

0 =mApy, (1.35a)
W€ By sign (Osu) + ku. (1.35b)

Having stipulated with (|1.33)) that p is spatially constant on the boundary, the homogeneous
elliptic equation ([1.35a)) entails that p is spatially uniform in the bulk:

p(-s) = f(s) in Q. (1.36)
As a consequence, the concentration field satisfies the following differential inclusion:
f(s) € Bo sign (Osu) + ku, (1.37)

which is known to exhibit hysteresis (actually, it reproduces the well-known stop operator,
see e.g. [?,7]).

The initial boundary value problem. We consider the evolution in a smooth domain
Q) in the expanse of time (0,7). We suppose that at time ¢ = 0 the concentration field
be given by a prescribed function uy(x), x € 2. We also suppose that a time-dependent
chemical potential p,(x,t) be prescribed on for all z € T" at all times ¢ € [0, 7.

At each particular time, we harmonically extend f, to the interior of © (still denoting
by w, the harmonic extension) and we introduce the characteristic time and lengthscale
Ty =« and Ly = \/? as well as the new variables and functions:

f=g  T=p  Fma—m B0)=B0/T). (1.38)

We express the system in terms of these new variables and we henceforth drop tildas, so as
to obtain the following problem:

Opu = A,U/J
p= O+ &+ py + ' (u), in Qx(0,7) (1.39a)
§ € B(Ou)
with the boundary condition
w=0 on I'x(0,7), (1.39b)
and the initial condition
u(-,0) =up in Q. (1.39¢)

fWe assume that all energy densities per unit volume are renormalized to a reference value, and so are
dimensionless.
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We conclude this section with the outline of the paper. In the next section, we
introduce notation, assumptions on the data of the problem and state the main existence
and uniqueness result, which is complemented by the continuous dependence of the solution
with respect to the data of the problem. In Section [3| we proceed by exploiting the a
priori estimates on the solutions of the system we use to prove existence and regularity. In
Section [ we show the continuous dependence estimates on solutions. Finally, in Section [f]
we provide a detailed proof of the existence and the uniqueness of the solution. To this aim,
we first establish our result for a “regularized” version of the system, obtained by a suitable
truncation of the coarse-grained free energy mapping; then, owing to the estimates carried
out in Section [3] and by making use of a maximum-principle argument, we establish our
result for the original problem.

2 Notation, assumptions, and main results

Before stating the problem we are dealing with and the main existence result, let us make
precise our assumptions on the data and the notation we use. In the sequel, €2 is a bounded
smooth domain in R? with smooth boundary I'. We introduce the spaces

H := L*(Q), V= H}(Q), W= H*(Q) N HL(R).

We endow H, V, and W with their usual scalar products and norms, and use a self-
explanatory notation, like || - ||y/. For the sake of simplicity, the same symbol will be used
both for a space and for any power of it (for instance, we use || - ||y, to denote the norm on
V' as well as the norm on V' x V). We note that the norms ||[v||y and ||Vv|| g are equivalent
for v € V, thanks to the Poincaré inequality. In addition, let us point out that, after
identifying H with its dual, the triplet (V, H,V’) is a Hilbert triplet (where V' coincides
with the Sobolev space H~1(12)). Hence, we use the notation (-, -) for the duality pairing
between V' and V. Given a final time T > 0, we set

Q:=Qx(0,7), X:=Tx(0,T).
As far as the data of the problem are concerned, we assume that the domain of 1 is an

open interval (a,b) C R, where a and b could be taken equal to —oo and 400, respectively,
and require that

Y € C?(a,b), (2.1a)

Y(r) >0 forall r € (a,b), (2.1b)

lim ¢'(r) = —oo, lim ¢'(r) = +o0, (2.1c)
r—at r—b—

YP'(r) > =K, forall r € (a,b), (2.1d)
for some positive constant K7; note that in (2.1c) a™ has to become —oo if @ = —oo and
b~ reduces to +o0o if b = +o0. For the initial concentration uy we suppose that

up € H, Jag > a, by <b such that ay < ug(x) < by for a.a. z € Q, (2.1e)

whence both ug and ¢/ (up) lie in L>(€2). Concerning the known datum g, we assume that

w, € HY(0,T; H) N L™(Q). (2.1f)
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Finally, as to the (possibly) multi-valued mapping /3, we let (see [?])

f = 90¢, with ¢ : R — [0, +00] convezr and
lower-semicontinuous, such that ((0) = 0. (2.1g)

Let us specify a weak formulation of the problem in the set of the Hilbert triplet
(V,H,V"). Let us define the operator A : V' — V', corresponding to the “weak realization”
of the Laplace operator —A (combined with homogeneous Dirichlet boundary condition)
in the duality between V' and V', by letting

(Avy,vg) 1= / Vi - Vugdz, wv,v9 €V, (2.2)
Q

and specify its inverse A7! : V' — V, such that for w,z € V' andv € V

(Av, AMw) = (w,0), (w, A1z} = (z, Alw) = / V(A w) V(A 2).  (23)

Q
We introduce a norm in V’, denoted by || - ||, which is equivalent to the usual one,
lwl? = (w, A" w), weV" (2.4)

Definition 1 (Weak solution). We say that a triplet (u,&, 1) is a weak solution to the

problem (1.39) if
we CY[0, T H), £eC0,T];H), peC(0,T)V), (2.5a)
V' (u) € H'(0,T; H) (2.5b)

and the following equations are satisfied:

Owu(t) + Au(t) =0 V', for allt €0,T), (2.6a)

p(t) = (Ou+E+w +¢'(w)(t)  ae nQ, foralltel0,T], (2.6b)
£(t) € B(Owu(t)) a.e. inQ, forallte]0,T], (2.6¢)

u(0) =uy a.e. in Q. (2.6d)

Theorem 1 (Existence and uniqueness). Under the assumptions , there exists a
unique solution to the problem , in the sense of Definition 1. In addition, it results
that

u € L>(Q) (2.7)

and the solution is strong in the following sense: u € C°([0,T]; W) and equation (2.6a)
can be replaced by

Owu(t) — Au(t) =0 a.e. inQ, foralltel0,T]. (2.8)

Moreover, a continuous dependence on the data holds: namely, if (u1,&1, p1), (ug, &, 12)
are two solution triplets corresponding to the initial data ugy, wgs and bulk data p,1, fhe,
respectively, then their difference satisfies

lur — wsller oy + 161 — Ellcoqommy + 11 — p2llcoqo,mw)

< R (|l1 — moallcoqo sy + lluor — uozllar) (2.9)

for some constant R depending only on the structural assumptions stated in (2.1)).
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3 Basic estimates

In this section, for the reader’s convenience, before proving Theorem [I], we recover the a
priori estimates instrumental to prove in Section 4 a continuous dependence result, from
which the uniqueness of the solution follows. The same estimates are used to exploit our
fixed point argument enabling us to show the existence of a solution in Section 5. Following
the standard convention, we use C' as a placeholder for a positive constant dependmg only
on the data of the problem.

Energy estimate. We first show that system admits in a natural way a so-called
“energy estimate”. Indeed, once v and p are solution components for the problem ,
they satisfy so that we are allowed to test by p and by d;u. Then, we
combine the resulting equations and integrate by parts in time over (0,t); by exploiting
Holder’s and Young’s inequalities and using the chain rule and the smoothness of i, we
find that

/w d:r+// (|0su|?® + € Opu + |V u|?) dzds

§/¢(u0)dx+//|ub8tu|dxds,
/1/1 up) de + = //’Mb’ dzds + = //[@uﬁdxds (3.1)

Owing to the monotonicity of # and the fact that 0 € 5(0), we have that

/0 t /Q ¢ dyudads > 0. (3.2)

As ([2.5a)) holds, we also point out that u(t) = ug + fo Ou(s)ds, whence

t
lu)IE < 2luollz + QT/O 10eu(s)I[7 ds,

thanks to the Holder inequality. Thus, by virtue of the Poincaré inequality and the
nonnegativity of ¢ as well, (3.1)) and (2.1]) yield the estimate

19 () || oo 0,121 ) + 1wl 10,050y + 12l 20,1y < C- (3.3)

Note that (3.3) entails in particular that u lies between a and b almost everywhere in Q.
Hence, recalling that €2 and I are smooth enough and that p has null trace on I'; by a
comparison in (2.6a)) and standard elliptic regularity estimates we obtain, in addition,

(2.8) and
lellz2 .y < C. (3.4)

L* estimate for chemical potential. Let us first introduce py € V as the unique
solution of the nonlinear elliptic problem

Ao+ (I + B) " (10 — >(0) — ¥/ (ug)) = 0, (3.5)
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where I denotes the identity operator. Indeed, note that 1,(0) + ¢'(ug) € H by (2.11),
(2.1¢) and (2.1al): then, concerning the sum of the two maximal monotone operators A
(when restricted to W with values in H) and

v (T4 8)7H v = 115(0) — ¢/ (un))

we can apply [?, Cor. 1.3, p. 48], which ensures that the sum is maximal monotone and sur-
jective thanks to the Lipschitz continuity of the second operator and the coerciveness of A.
Moreover, the uniqueness of 1y € W solving ({3.5)) follows from the strong monotonicity

of A. Clearly, from (2.5) and (2.6 we have that p(0) = po and
Ou(0) = Apog =1 ug € H and  §(0) = puo — ugy — p1,(0) — ¢’ (ug) =: § € H.  (3.6)

We emphasize that &, satisfies §, € [(uy) almost everywhere in . Next, in order to
show the L estimate for u, let us fix t € (0,7] and, for n € N, set 7, = t/n, tI" = i,

1 =0,1,...,n. For typographical convenience, we henceforth omit the dependence of ¢
on n. In view of (2.5)), equations (2.6a)) and (2.6b|) hold at the times ¢;:

Owu(t;) + Au(t;) =0 in V', (3.7)

pulti) = 3tU(ti) +&(t:) + (s +¢'(w)(t:) in H, (3.8)

fori=1,...,n. Test . by u(t;) — pu(t;—1) and the difference of equalities (3.8) at the
steps ¢ and i — 1 by Ouu(t;). Then, by combining the results it is not difficult to check that

/|Vu Idx——/lvu i) Pz + /|Vu — Vpu(ti)dz

—II&:U( Dl — II@tU(z D+ IIé’tU( i) = Oeu(tion) |5
+(§(ti)—§(ti— )ﬁzeU( i) + ((uwl/)( D) = (s + 9 (w))(ti-1), Gu(ti)) = 0, (3.9)

where (-, ) denotes the scalar product in H. Now, by the properties of the subdifferential
B = 0¢ (which is a maximal monotone graph) it turns out that the inclusion (see ([2.6¢)

and ([2.1g)
19) (t;) € 0C(dyulty))

can be rewritten as
Oru(t;) € ¢ (E(L:)) (3.10)
almost everywhere in €2, where (*(w) := sup,cp(vw—_(v)), w € R, is the Legendre-Fenchel

transform [?] of ¢, and its subdifferential * coincides with 37!, the inverse graph of /3.
Then, using the definition of subdifferential, it is straightforward to infer that

((t) — E(tir), Dyt / ¢ (E(t))de — /Q C(E(t))de

Hence, on performing summation in . for: =1,...,n, we plainly deduce that

! / |w<t>|2dx+1||atu<t>||z+ | ¢ emnas

n Z Uy + w/ ))( ) - ( y + w,(u))(tifl) ’ @u(ti))

/ Vol + % + / () (3.11)
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Owing to (2.1f) and (2.5b)), it is a standard matter to infer that
n / tz _ / ti— t ,
ZTn((MbJﬂ/} (w)(t:) — (> + ' (w))( 1),8tu(ti)) _ // D1ty + 0 (1)) Oyu daeds
0Ja

-
i=1 n

as n — 00, and assumptions (2.1d) and (2.1f) easily yield

t
/ / Ou(jss + ' () By dds > — 1|0yl 0 el 2 0zsary — K |Betl ooy > —C
0JQ

the last inequality being due to the previous estimate . As & € 0C(ug) and conse-
quently *(&) + C(ugy) = &o up almost everywhere in €2, from 1) it follows that

/ ¢ (o)dz < lollullupllr — / C(uh)da < C. (3.12)

On the other hand, it is easy to check that ¢* is non-negative, whence

/g ))dz > 0.

Then, passing to the limit as n — oo in (3.11]) and exploiting the previous remarks, we
find out that
le@IF + 0u(t)lf < C for all t € [0,T). (3.13)

At this point, by comparison in (2.6al) and thanks to well-known elliptic regularity results
combined with the Sobolev embedding W C L*({2), we recover

| 1all o o,y + | 1tll oo () < C- (3.14)

In particular, because of the L> boundedness of j, postulated in Assumption (2.1f), we
infer that there exists a constant M such that

1= || oo (@) < M. (3.15)

L estimate for concentration. We combine (2.6b)—(2.6d)) to obtain the Cauchy
problem in H:

Buu(t) = (I + B)™ (u(t) — (1) — W/ (u(t))), te[0.T], (3.16a)

u(0) = uy. (3.16Db)

Now, by assumptions (2.1c|) and (2.1€|) there exist two constants k., k* € (a,b) such that
'(r)y> M forall r > k¥, (3.17a)

P'(r) < =M forall r <k, (3.17b)

ko <ag <wup(z) <by <k* foraa zel (3.17¢)

We test by (u— k*)* = max{u — k*,0} and —(u — k.)~ = min{u — k., 0}, and
we integrate over (0,¢). We note that (I + 8)7!(r) has the same sign of r and the right
hand side of (3.16a]) is nonpositive if u > k* and nonnegative if u < k,, thanks to (3.17)
and (3.15). Then, after integration by parts in time, it is a standard matter to infer that

k., <u <k ae inQ, (3.18)

which entails (2.7)).
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4 Continuous dependence on the data

Consider a pair of data {u;, t}, i = 1,2, fulfilling (2.1¢)), (2.1f]) and let (u;, &, ), 7 = 1,2,
be the corresponding solutions. Then, the triplet (u,&, i), with @ 1= uy — ug, £ := & — &o,

[ = p1q — Mg, satisfies (cf. (2.6) and (2.8))

owu(t) — Ap(t) =0 ae. in Q, forall t € [0,T], (4.1a)

f(t) = (O + & + iy + ' (uy) — ¥ (u2))(t) a.e. in Q, forallt € [0,T], (4.1b)
&(t) € B(Owuy(t)) ae inQ, forallte|0,T], i=1,2, (4.1c)

u(0) =uy a.e. in Q, (4.1d)

where g = ug; — ugz and fi, = fiy1 — 2.

In view of the regularities in ([2.5a)), we can test (4.1al) by n(t), (4.1b) by dyu(t) and
add the resulting equations. In particular, by virtue of (4.1c) and by the monotonicity of
3, we have that [, £(¢)0,u(t) > 0 and consequently

LAWM@de+LKWUWd$S1NMGN+WWMUD—WWAWD@M®MW (4.2)

Now, since 1 is twice continuously differentiable, its derivative is locally Lipschitz-
continuous. Moreover, by the estimate , it turns out that both solutions w; stay in a
bounded interval J. Consequently, we have that [¢'(u1) — 9’ (ug)| < ||¢"|| Lo (s)|| and, by
Young’s and Poincaré’s inequalities, we infer

a1 + loaliz < C (1 O1E + la)lE)- (4.3)

Given that ||u(t)]|% < C <||ﬂo||fq + fot 1 0sa(s) % ds), from (4.3)) it follows that

I + ool
t
< (ImO + @l + [ 1oalEds) foraee .7,
0
Thus, an application of the Gronwall-Bellmann inequality yields

12llcoo,ryvy + 18l oo,y < C (s llcoo,rymy + ltolla) - (4.4)

Then, the analogous estimates for Aji (and consequently for i in C°([0, T]; W)) and € in
C°([0,T); H) follow from by a comparison in and (4.1b)), which helps us to
conclude the proof of (2.9)). Of course, implies in particular the uniqueness of the
solution to the problem ([2.6]).

5 Existence of solutions

In this section, we give details on the proof of the existence of the solution to our problem.
We use a contracting argument. First let us make a truncation of the function v, which
allows us to exploit the above a priori bounds on the solutions to (2.6). Let k., and k*
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be two constants fulfilling (3.17)). It is not hard to check that, thanks to the assumption
(2.1¢)), there exist constants K, and K* such that

(ke k™) C (K, K7) (5.1)
and
P'(K,) >0, P"(K*) > 0. (5.2)

We introduce the following truncation of :

Y(r) if K. <r<K*,
Pu(r) = § W(K*) + ' (K*)(r — K*) 4+ s¢"(K*)(r — K*)* if r> K*, (5.3)
V(K,) + ' (K)(r— K)+ 2 (K)(r— K)? if r <K,

and we denote by
L := max [ (r)| < 400 (5.4)
re

the Lipschitz constant of its derivative ¢.. We note on passing that the truncated function

1, satisfies the assumptions ([2.1al)—(2.1d)) with (a,b) = (—o0, +00). In particular, the
bound from below([2.1d]) holds for ¢” with the same constant —K; as for ¢”.

Next, we consider the set
S:={veC%0,T); H): v(0) =up} (5.5)

and we introduce the map F : S — S which to every v € S associates u = F(v) defined by

u(t) = F(v)(t) := uo + /O (I+8)7" (uls) = m(s) = ¥l(v(s)))ds, te[0,T], (56)
where p(t) denotes the unique element of V' that solves the nonlinear elliptic equation
Ap(t) + (I + B) 7 (ult) — p(t) — i (v(t)) = 0, t€[0,T]. (5.7)

Before proceeding, let us comment on the existence of a unique u € C°([0,T];V)
satisfying for some v fixed in S. First, we recall ) and observe that 1/ is
Lipschitz continuous, so that the function ¢ — 1, (t) — ¢, (v(t)) is continuous from [0, 7] to
H. Then, for all ¢ € [0,T] there exists a unique u(¢) fulfilling (5.7): this can be shown
arguing as for and using [?, Cor. 1.3, p. 48]. Moreover, as (I + 3)~! is monotone and
Lipschitz continuous, it is not difficult to check that u € C°([0,T]; V). Once u is found,
the function u = F(v) € S is completely determined from (5.6)).

Eventually, we shall apply a fixed point argument: indeed, we will see that any fixed
point for the operator F turns out to be a solution to the problem made precise by
—. To this aim, we are going to show that some power F/ (j € N) is a contraction
mapping in S and, as a consequence, it admits a unique fixed point, which results at the
end to provide the unique solution to our system.

To this aim, we pick a pair {v;};—12 C S and set

w = F(v), &= i — p — %(Uz’) — Oy,
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where p; is the solution to (5.7)) corresponding to v;, i = 1,2. Then, it is easy to verify
that

Oyu;(t) + Api(t) =0 in V', for all ¢t € [0,T], (5.8a)

wi(t) = (Opui + & + p + ' (v))(¢)  ae. in Q, forallte[0,7],, (5.8b)
&(t) € B(Owu(t)) ae. in Q, forall ¢t € [0,T], (5.8¢)

u;(0) =uy a.e. in Q (5.8d)

for i = 1,2. Now, we use the notation u for the difference of u; — uo, and the same notation
for £, i and 9. We take the difference of (5.8al) for i = 1,2, test it by A~}(9,u(t)) and, at
the same time, we test the difference of (5.8b]) by d;u(t). Then we combine the obtained
equalities and use the properties of A~! stated in and . Hence, we have that

o) + o)l + [ €0aan < [ i) - vielida)
< Sl + 5 [ 10(w0) = )P (5.9
Due to , we handle the right hand side observing that
[ i) = vituate)l < 22 [ ool (5.10)
In addition, by the monotonicity of 5 and we deduce that
/Qg(t)ﬁtu(t) > 0.

Thus, we easily obtain
10wu®) ]| < Llo(®)] (5.11)

and, as both u; and usy satisfy the same initial condition (5.8d)), we can easily infer that
t
| F(v1(t)) — F(va(t)) || < L/ llvi(s) — va(s)||lgds for all t € [0,T]. (5.12)
0
This inequality leads to
HJT"(1)1) - ‘F(’UQ)HCO([QJ];H) S LtHUl - ’U2HCO([0¢];H) for all ¢t € [O,T] (513)
An iteration of the argument, due to (5.12) and (5.13), leads to

172 (v1) = F2(w2)llcoqoasrm < L/O [F (v1)(s) = F(v2)(s)|[ mds

(Lt)?
2

t
< L2/ sljvr — U2||CO([0,S};H)d8 < v — U2||C°([O,t];H)-
0

EE o1 = vallcoqo,gam) for all

By iterating j times, we find || F7 (v1) — F7(v2) | coqo,0:m) <
t € [0, T], whence, in particular,

LTY
j!) v — UZHCO([O,T];H)- (5.14)

19 01) = P () ewqoiryan) < &
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Thus, for j large enough F7 turns out to be a contraction mapping from S into itself, as
announced; as a consequence, 7 has a unique fixed point «*, which is also the unique
fixed point for 7. In view of (5.8)), this fixed point yields the triplet (u*, ", u*) that solves
the problem in which ¢ is substituted by .. Of course, for (u*, £*, u*) we can repeat
the estimates carried out in Section [3| In particular — and this is the crucial point — we
can derive for p* the same estimate as , namely,

|1 — s || o) < M, (5.15)

with the same value of the constant M. In fact, if one checks carefully the estimates, one
can see that ¢* appears in (3.1) with the mtegral of ¥, (ug) = ¥(up) and in with
P (ug) = (cf. and (3.17d)), and especially with the constant K7 in (2.1d)
which, as observed at the beginning of this section, can be the same for ¢ and v,. In
addition, by its very definition the derivative 1! satisfies

Pi(r)y> M forall r > k*, (5.16a)
P(r) < =M for all r <k, (5.16Db)
as ¢ does in f. Thus, a repetition of the argument leading to yields
k., <u*<Ek* ae inQ (5.17)

and, since ¥ = 1, in [k,, k*], entails
P(u*) = (u*) ae inQ. (5.18)

In other words, (u*,&*, u*) is actually a solution to the original problem and ful-
fills (2.7). Moreover, (u*,&*, p*) is the unique solution of (2.6), owing to the continuous
dependence property proved in Section . Finally, recalling the smoothness of {2 and
[' and the homogeneous boundary condition on I'; by , and standard elliptic
regularity estimates we obtain and the regularity p € C°([0, T]; W) for (u*,&*, u*).
Therefore, Theorem [1] is completely proved.

Remark 1. Note that if we assume ug € H'(Q) and p, € L?(0,T; H*(2)) besides
and (2.1f)), then we can recover the additional regularity u € H'(0,T; H'()) for the
solution component u. Indeed, it suffices to take formally the gradient of and test
it by V(9yu). Thanks to the Lipschitz continuity (with Lipschitz constant 1) of (I + 3)~*
and of ¢/, (which can replace ¢’ as we have seen) with constant L (cf. (5.4))), by the Young
inequality we easily infer that

1
IV @) Ol < IV (e = ) (Ol + L2 V(@) 5
Now, pointing out that u — pu, € L*(0,T; H'(Q)) (cf., e.g., (2.64))), as
t
IVu@)llE < 2l[Vuollz + 2T/0 IV (@) ()13 ds,

we can easily apply the Gronwall lemma and find out that d,u € L?(0,T; H'()).
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