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Abstract: Uncertainty quantification is an important issue in the seismic fragility analysis of bridge 

type structures. However, the influence of different sources of uncertainty on the seismic fragility 

of the system is commonly overlooked due to the costly re-evaluation of numerical model simula-

tions. This paper aims to present a framework for the seismic fragility analysis of reinforced concrete 

highway bridges, where a data-driven metamodel is developed to approximate the structural re-

sponse to structural and ground motion uncertainties. The proposed framework to generate fragility 

curves shows its efficiency while using a few finite element simulations and accounting for various 

modeling uncertainties influencing the bridge seismic fragility. In this respect, a class of single-bent 

bridges available in the literature is taken as a case study, whose three-dimensional finite element 

model is established by the OpenSees software framework. Twenty near-source records from dif-

ferent sources are selected and the Latin hypercube method is applied for generating the random 

samples of modeling and ground motion parameters. The Kriging metamodel is then driven on the 

structural response obtained from nonlinear time history analyses. Component fragility curves of 

the reinforced concrete pier column are derived for different damage states using the Kriging met-

amodel whose parameters are established considering different modeling parameters generated by 

Monte Carlo simulations. The results demonstrate the efficiency of the proposed framework in in-

terpolating the structural response and deriving the fragility curve of the case study with any input 

conditions of the random variables. 

Keywords: fragility analysis; kriging metamodel; reinforced concrete bridge; nonlinear time history 

analysis; Monte Carlo simulation 

 

1. Introduction 

Seismic vulnerability is often represented in the form of fragility curve, which is an 

important decision support tool to identify the potential seismic risk in the framework of 

performance-based earthquake engineering (PBEE). These curves represent the condi-

tional probability of exceeding a limit state for a given seismic intensity. In recent decades, 

owing to the development of the computer’s hardware and numerical modeling tech-

niques, different methods of the seismic fragility evaluation for bridge structures in high-

way networks, especially reinforced concrete (RC) bridges, have been extensively devel-

oped also in a parametric form in the case of bridge classes [1]. Innovative numerical mod-

els and computational techniques help to simulate and analyze complex and large struc-

tures with high accuracy; however, they are computationally expensive [2–4]. In addition, 

one of the challenges in the development of seismic fragility functions is to include vari-

ous sources of uncertainties, e.g., ground motion and modeling parameters, into the prob-

abilistic seismic demand model. Therefore, the fragility function may hardly be presented 

in closed-form, which is typically assumed as lognormal and calibrated using fitting 

methods or by Monte Carlo simulations. 
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Traditional seismic fragility assessment methods consider the record-to-record vari-

ation only to obtain component and system fragility curves [1]; this may result in an inac-

curate estimation due to a deterministic assumption of input parameters such as material 

and geometry properties of the model. Considering different sources of uncertainty into 

a complex numerical model or a class of structures is commonly a hard task due to the 

time-consuming re-construction and re-evaluation of the numerical model. Therefore, im-

plementing interpolation or regression techniques to accurately predict the seismic re-

sponse of structural elements that only use a few numbers of dynamic analyses is an al-

ternative in the seismic vulnerability assessment step [2–4]. 

With the development of the computer science industry, machine learning has 

evolved rapidly over recent years and widely applied to the earthquake engineering field 

[5]. The substantial computational time of complex finite element (FE) models can be re-

duced by building a surrogate model or metamodel, i.e., from the subset of machine learn-

ing techniques. This approximation modeling approach is adopted when the outcome 

cannot be directly measured; thus, an interpolation model of the outcome is used instead 

[6]. Different types of surrogate models have been previously presented, which are com-

monly classified into three categories, i.e., data-driven surrogates, projection-based meth-

ods, and multi-fidelity-based surrogates. The proper application of these models to differ-

ent fields of engineering has also been demonstrated [7–10]. 

Kriging or Gaussian modeling regression is one of the data-driven surrogate models 

which has been widely adopted in engineering problems. The idea of this regression ap-

proach is that the value of a function at a given point can be predicted by taking a 

weighted average of known values of the neighborhood points, and the function of inter-

est is treated as a realization of a Gaussian random process, whose parameters are esti-

mated from available inputs and computer outputs [11]. The application of surrogate 

modeling techniques for generating seismic fragility curves has recently been used for 

bridges (e.g., [12,13]). Kriging metamodel has also been adopted in a few recent studies 

for the seismic vulnerability analysis of bridges. The possibility of the application of a 

Kriging metamodel to the seismic fragility evaluation of an RC bridge was presented by 

Zhang and Wu [14]. The performance of the Kriging metamodel in generating seismic 

fragility curves is verified with the conventional Latin hypercube method using a simple 

nonlinear spring-mass single-degree-of-freedom system. Most recently, Gidaris et al. [15] 

discussed the computational efficiency for fragility and resilience analyses of bridges in-

corporating aftershock effects. In this case, the nonlinear mainshock and aftershock bridge 

responses are approximately obtained using the Kriging model established from uncer-

tain hazard and structural model parameters. In the above studies, the influence of trend 

and covariance models forming the metamodel has not been clarified that may have a 

significant effect on the predicted response. There is also the lack of detailed discussions 

on cross-validation methods to estimate the prediction error of a given metamodel; this is 

an important indicator that should be considered for assessing the model performance. 

Thus, this study aims to discuss in detail a computationally efficient framework for 

the seismic fragility evaluation of a class of RC highway bridges based on a Kriging-based 

surrogate model and its flexibility in generating fragility curves for different input condi-

tions of the modeling parameters. To reach this goal, a class of typical single-column bent 

RC highway bridge is selected, whose material and geometry properties are considered 

to be random variables. Based on a suitable design of the experiments (DOE) method, 

several samples are generated and corresponding three-dimensional FE models are then 

properly developed using the OpenSees software. The Kriging metamodel is built based 

on nonlinear time history responses of the FE models, in which the influence of different 

trend functions that form the metamodel are evaluated. Consequently, component fragil-

ity curves associated with failure modes of the column bent considering different input 

conditions of the modeling parameters are obtained using Monte Carlo simulations. 
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This paper is organized as follows. In Section 2, a description of the Kriging meta-

model-based seismic fragility analysis framework of RC bridges is presented. The appli-

cation of the methodology to a case study of single-bent RC highway bridges is presented 

in Section3. Section 4 finishes with conclusions. 

2. Kriging-Based Metamodeling 

2.1. Kriging Formulation 

Kriging or Gaussian process regression is a commonly used interpolation method 

that uses a set of observed data to predict spatially correlated data. One of the advantages 

of the Kriging model is its flexibility to represent a variety of complex models using a 

limited number of observed data. Differently from other kinds of data-driven methods 

(e.g., linear regression, artificial neural networks, or polynomial chaos), the Kriging model 

provides a function that is independent of the probabilistic model for the input data. 

The Kriging model is formulated by two terms including the mean of the Gaussian 

process and the zero mean covariance stationary Gaussian process that is a combination 

of a regression model and departure [16], 

�(�) = ���(�) + �(�), (1) 

where �(�) is the unknown function of interest, �(�) is the known regression function 

vector, � is the unknown regression coefficient vector. The team ���(�) in Equation (1) 

refers to the mean of a Kriging metamodel known as the trend. The most commonly used 

trends based on a polynomial basis are listed such as simple, ordinary, linear, quadratic, 

and polynomial, etc. [17]. The function �(�) is the realisation of the Gaussian process 

with zero mean and nonzero covariance; Z(x) is expressed as 

��� ��(��), ������ = ������ − ��|��, (2) 

where �� is the process variance and ���� − ��|�� is the spatial correlation function with 

known or unknown correlation parameters �. The Gaussian process assumes that the cor-

relation between �(��) and ����� is a function of the distance between �� and ��. Sev-

eral correlation functions can be used in the Kriging model, e.g., linear, exponential, 

squared exponential, and Matérn, etc. [17]. 

It should be noticed from Equation (1) that the first term ���(�) provides a global 

model which is represented by various basic functions, and the second term �(�) creates 

a localized deviation between the global model and the exact model. Therefore, the 

Kriging model can successfully interpolate the � data points and this method is flexible 

due to various basic and correlation functions. 

The output �(��), where �� is a new input point, can be predicted based on the in-

put points � = (��, ��, … , ��)  and the corresponding computer output �� =

(�(��), �(��), … , �(��))�, given as 

��(�0)

�� �~��+1 ���0
�

�
� �, �2 �

1 �0
�

�0 �
��, 

(3) 

where �� = �(��) and � = ��(��) are the regression function vector of the predicted data 

and the regression function matrix of the training data, respectively, �� is the correlation 

function vector of among �� and �(��), � is the correlation matrix of among ��. Then, 

the conditional mean and the conditional variance of the Gaussian process of �(��) are 

extracted from Equation (3), i.e., 

��(��) =  ���
� �� + ��

����(�� − ���)� and (4) 

��
�(��) = ��(1 − ��

������ + (������� − ��)�(������)��(������� −

��)), 

(5) 
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with �� = (������)���������. (6) 

Because the hyperparameter vector � is unknown, an estimation method needs to 

be used to obtain a Kriging model and the estimation. The estimation is obtained by solv-

ing an optimization problem. In this paper, the maximum likelihood estimation is adopted 

to identify the vectors �, ��, and �, given as 

�(�, ��, �|��) =
(����)

�
�

(����)
�
�

 exp(−
�

���
(�� − ��)����(�� − ��)). 

(7) 

By maximizing the quantity in Equation (3), the analytical estimates of � and �� 

that are functions of � can be are obtained [16,17]. 

2.2. Metamodel Validation 

The predictive performance of the Kriging model can be evaluated by the error be-

tween observed and predicted responses. The leave-one-out (LOO) cross-validation 

method is the most commonly used, in which one point is randomly selected for the vali-

dating purpose while the other points are used for training the metamodel. This proce-

dure is repeated until all the points are used as a test dataset. Therefore, to perform the 

LOO cross-validation, one point ��  from the DOE is removed and the metamodel 

��(��)(��) is subsequently built from the remaining points of the DOE. The root mean 

square error (RMSE) quantifying the difference between the predictive and observed re-

sponses from the cross-validation and the coefficient of determination R� are calculated 

as 

RMSE = �∑ ��(��)���(��)(��)�
��

���

�
 and 

(8) 

R� = 1 −
�

�

∑ ��(��)���(��)(��)�
��

���

��� (��) 
, 

(9) 

where Var(��) is the estimated variance of the actual responses. In addition, the relative 

maximum absolute error (RMAE) can be also determined, which measures the extent of 

the local fitting error, given as 

RMAE =
�����(��)���(��)(��)�

���(��)
, (10) 

where Std(��) is the standard deviation of the actual responses. 

2.3. Fragility Analysis Procedure 

The entire procedure for evaluating fragility functions of RC bridges based on 

Kriging metamodel is described in Figure 1. The steps are summarized as the following: 

1. Design variables are first defined. In the case of RC bridges, uncertainties of material 

and geometry parameters are commonly defined by a range of design values. The 

ground motion uncertainty is also considered by a range of peak ground acceleration 

(���). To reduce the computational cost, a screening study is often conducted to de-

fine which modeling parameters are significant [18]. However, this step is ignored in 

this study; the sensitivity of some modeling parameters will be assessed after the 

metamodeling has been built. 

2. The next step of the framework is the generation of samples of input random varia-

bles using a proper DOE technique. Among different sampling methods, Latin hy-

percube sampling (LHS) is often suggested for Kriging metamodeling [19] and is se-

lected in this study. 

3. In the subsequent step, nonlinear time history dynamic analyses are performed on 

the FE model of generated bridges subjected to different levels of ground motions. 

Peak responses are then measured for each simulation. Because each ground motion 



Buildings 2021, 11, 238 5 of 14 
 

is scaled with respect to the ��� values in the DOE, hence the total of observed re-

sponses from the time history analyses is (�������  x ������� ������). To be a suitable 

input for the metamodel, a deterministic observed response for each sample is need; 

therefore, statistics in terms of the mean and standard deviation (Std) of the responses 

are calculated for each sample of the DOE, where the Std represents the variation of 

the response due to the frequency content. With emphasizing on the damage of the 

column bent, in this study, the column drift ratio will be recorded from the analyses. 

4. Two Kriging metamodels are built for the mean and Std of the observed responses, 

and then a composed Kriging metamodel is then developed assuming a lognormal 

distribution [14,15]. 

5. Seismic fragility curves are finally derived by Monte Carlo simulations, given an en-

gineering demand parameter (EDP) and its limit state (LS) that are conducted based 

on a close-formed Kriging metamodel. The flexibility of the Kriging model allows 

deriving fragility curves with any DOEs of any input conditions of the random vari-

ables. 

 

Figure 1. Kriging metamodel-based fragility evaluation procedure. 

3. Seismic Fragility Analysis of Case Study 

3.1. Description of Case Study, Input Variables and Numerical Modeling 

A class of single-bent RC highway bridges with a box girder is selected as a case 

study, as shown in Figure 2. This is a typical overpass bridge in California and has been 

evaluated by numerous studies, e.g., [20–23]. Analyses are performed on the DOE of six 

modeling parameters involving bridge material and geometry properties, detailed in Ta-

ble 1 along with ranges assigned to each of the parameters. In the later DOE, all the pa-

rameters are assumed to follow the uniform distribution. The superstructure is a multiple-

cell box girder, its width � and depth �� are deterministic (i.e., 11.9 and 1.83 m, respec-

tively). The span length �, the column height �, and the column diameter ��  are varied. 

Furthermore, material properties for both the concrete and reinforcing steel, including the 

reinforcement nominal yield strength ��, the concrete nominal strength �’�, and the lon-

gitudinal reinforcement ratio ��, are also varied, making in total 60 experimental designs 

of the input random variables. It should be noticed that the ranges of the parameters listed 

in Table 1 are chosen according to Mackie and Stojadinovic [20] and Huang et al. [21]. 

The base bridge is modeled using the FE OpenSees software [24]. The discrete FE 

model is also shown in Figure 2. The detail of the modeling approach is as follows: 
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1. Deck: The deck is modeled using elastic beam-column elements discretized into five 

separate elements along each clear span. Elastic material properties are assigned to 

all the elements with the assumption is that the deck behavior under the seismic 

event falls in the elastic range. The material and section properties used to modeled 

the RC deck with the elastic behavior are is shown in Table 2; in this study, these 

parameters are set as deterministic. 

Table 1. Ranges of the design parameters for single-bent RC highway bridges. 

Input Variable Range 

Span length (�) 18–55 m 

Deck width (�) 11.9 m 

Deck depth (��) 1.83 m 

Colum height (�) 5–11 m 

Column diameter (��) 1–2 m 

Longitudinal reinforcement ratio (��) 1–4% 

Steel strength (��) 470–655 MPa 

Concrete strength (�’�) 20–55 MPa 

Steel weight 76,973 N/m� 

Concrete weight 23,563 N/m� 

Table 2. Deck properties. 

Deck Property Value 

Young modulus  28,000 MPa 

Shear modulus 11,500 MPa 

Unit weight 23.571 kN/m� 

Area cross-section 6.328 m� 

Moment of inertia about the horizontal axis 3.073 m� 

Moment of inertia about the horizontal axis 71.823 m� 

Torsion constant 8.444 

Weight per unit length 149.152 kN/m 

2. Pier: The circular column pier is modeled as nonlinear beam-column elements with 

the fiber section, where the Concrete-02 and Steel-02 uniaxial materials are used to 

model the nonlinear behavior of the concrete and steel of the column (see fiber section 

model in Figure 2). Concrete-02 is a uniaxial material with linear tension softening, 

while Steel-02 is a uniaxial Giuffré-Menegotto-Pinto material that allows for isotropic 

strain hardening. The material parameters of Concrete-02 are obtained from the Man-

der constitutive relationships [25] for confined and unconfined concretes. In detail, 

for cover concrete, the concrete unconfined strength is equal to �’� , the concrete 

strain at maximum strength equals 0.002, the concrete crushing strength is zero, and 

the concrete strain at crushing strength equals 0.006. For core concrete of circular col-

umn cross-sections, the modeling parameters are defined according to the Mander 

model. As boundary conditions, the column ends are connected to the superstructure 

and the footing by rigid link elements. The footing is supported by translational and 

rotational springs as recommended by Nielson and DesRoches [26] that can be con-

sidered the stiffness of an individual pile and the stiffness of the pile group. In this 

study, the springs are modelled to be very stiff, neglecting the soil-structure interac-

tion (SSI) effect. Influencing the SSI into the numerical model considering the inter-

action between the pile group and soil will enhance considerably the model accuracy 

[22,23]; however, this is out of scope within the study since the focusing is on the 

fragility analysis framework. 
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Figure 2. Two-span, single-bent RC bridge model. 

3. Abutment: A simplified abutment model is used with the general scheme presented 

in Figure 2. This abutment model consists of a rigid element connected through a 

rigid joint to the superstructure, with defined longitudinal, transverse, and vertical 

behaviors at each end. The calculation of these spring behaviors for the abutment 

model has followed the work by Mackie et al. [20,27]. 

The Rayleigh damping is employed in the model, which takes form as 

� =  ��� + ���, (11) 

where � is the mass matrix, � is the damping matrix, and � is the initial stiffness ma-

trix. Damping coefficients �� and ��  can be determined from the relationship 

� =  
��

���
 + ����, (12) 

where � is the damping ratio and � is the frequency. From Equation (12), damping coef-

ficients are defined by specifying two frequencies and damping ratio values. In this study, 

the first two-frequency range with 1 and 6 Hz, and 2% damping ratio are assumed. 

The LHS method is used to generate samples of the random variables in Table 1. This 

method has been demonstrated as the most suitable with the Kriging model in construct-

ing surrogate models [19]. A total of 60 bridge samples is generated; this number of sam-

ples is chosen according to the work of Huang et al. [21]. The modal analysis is first per-

formed for the sample set. Longitudinal behavior is described by the first two natural pe-

riods, i.e., �� = 0.181-0.830 s and �� = 0.167-0.603 s. In later nonlinear structural dynamic 

analyses, the governing equations of the system are discretized by Newmark time inte-

gration and then is solved via the KrylovNewton algorithm [24]. 

3.2. Ground Motion Selection 

The selection of a suite of ground motions to be used as input for nonlinear dynamic 

analysis is also a challenge within the PBEE framework. The number of suitable ground 

motions depends on which fragility analysis method to be adopted. Usually, a large num-

ber of records is used for the structural dynamic analysis to build an appropriate proba-

bilistic seismic demand model, and in the context of a surrogate model, there is no specific 

standard for the ground motion selection. 
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In this paper, unscaled ground motion records are selected, which have been demon-

strated as a suitable input for analytical fragility assessments [28]. For a Kriging-based 

metamodel, a limited number of records can be used [4], hence in this study, a set of 20 

records is selected from the PEER ground motion database [29]. The characteristics of the 

records are summarized in Table 3; these records are mainshock free-field recordings. The 

soil of the record stations is characterized by stiff soil conditions, which has average shear 

wave velocities of the top 30 m of soil (��,��) from 360 to 760 m/s. The set of records covers 

a wide range of the moment magnitudes (��) between 5.1 and 6.9. The Joyner-Boore dis-

tances (���) are limited under 20 km for near-source records. The response spectra of all 

selected records along with their mean spectrum and the range of the bridge fundamental 

periods are shown in Figure 3. 

Table 3. Selected PEER ground motion records. 

ID Earthquake Name Year Station �� 
���  

(km) 

��,��  

(m/sec) 

1 Irpinia Italy-01 1980 Bagnoli Irpinio 6.9 8.14 649.67 

2 Irpinia Italy-01 1980 Sturno 6.9 6.78 382 

3 Irpinia Italy-02 1980 Calitri 6.2 8.81 455.93 

4 Corinth Greece 1981 Corinth 6.6 10.27 361.4 

5 Northridge-01 1994 Sunland—Mt Gleason A 6.69 12.38 402.16 

6 Chi-Chi Taiwan-03 1999 TCU084 6.2 3.68 665.2 

7 Tottori Japan 2000 SMNH01 6.61 5.83 446.34 

8 Parkfield-02 CA 2004 Parkfield—Upsar 03 6 9.49 440.59 

9 Parkfield-02 CA 2004 Parkfield—Upsar 05 6 9.14 440.59 

10 Parkfield-02 CA 2004 Parkfield—Upsar 06 6 9.14 440.59 

11 Parkfield-02 CA 2004 Parkfield—Upsar 08 6 8.93 440.59 

12 Parkfield-02 CA 2004 Parkfield—Upsar 09 6 8.86 466.12 

13 Parkfield-02 CA 2004 Parkfield—Upsar 12 6 9 466.12 

14 Parkfield-02 CA 2004 Parkfield—Upsar 13 6 9 466.12 

15 Chuetsu-oki Japan 2007 Joetsu K. Kakizaki 6.8 9.43 383.43 

16 Chuetsu-oki Japan 2007 Tani Kozima Nagaoka 6.8 5 561.59 

17 Iwate Japan 2008 IWTH24 6.9 3.1 486.41 

18 Iwate Japan 2008 MYG005 6.9 10.71 361.24 

19 Iwate Japan 2008 Mizusawaku Interior 6.9 7.82 413.04 

20 Iwate Japan 2008 Kurihara City 6.9 12.83 512.26 

 

Figure 3. Response spectra of the selected records. 
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3.3. Construction of the Kriging Metamodel Using Nonlinear Time History Analyses 

As a result of the LHS, 60 samples with different combinations of the modeling pa-

rameter and ��� are generated. Each sample is modeled using the three-dimensional FE 

model presented in Section 3.1 and subjected to 20 selected records in Section 3.2. The 

records are respectively scaled to ��� values in the DOE. Therefore, 1200 simulations are 

carried out. An example of the time history data in terms of the drift ratio of the column 

top and its drift ratio-shear force hysteretic behavior is shown in Figure 4. The response 

quantities are measured from the analysis of Sample 1 and Sample 60 subjected to Record 

1; where Sample 1 is comprised by � = 6.730 m, � = 34.315 m; ��  = 1.150 m, �’� = 299.310 

MPa; ��  = 475.369 MPa; ��  = 3.009; ��� = 0.540 and Sample 60 is comprised by � = 

7.563 m, � = 45.776 m; ��  = 1.035 m, �’� = 205.263 MPa, �� = 545.532 MPa; �� = 2.186; 

��� = 0.693. It can be seen that Sample 60 is more vulnerable to seismic action because of 

the weak column and high seismic intensity. The peak drift ratio measured for Sample 60 

is about 2.7% while that of Sample 1 is about 0.8%. 

 
(a) 

 
(b) 

Figure 4. Example of nonlinear time history analysis results: (a) Time history data of column top 

drift ratio and (b) Hysteretic behavior in terms of column top drift ratio and base shear. 

Similarly, the peak seismic responses in terms of the drift ratio are measured for all 

the samples, as shown in Figure 5. The analyses consider the variation of the frequency 

content by scaling each ground motion record to different ��� values from the DOE. At 

each ��� value, the responses vary due to the effect of the frequency content from dif-

ferent ground motions. Therefore, the transient analysis results are not able to use as train-

ing data for the Kriging model; thus, the mean and Std values of the responses at each 

��� level are used instead. 
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Figure 5. Maximum column drifts collected as observed training data. 

Kriging metamodels are built for the mean and Std responses using the Matlab-based 

UQLAB software framework [17]. To select the best suitable trend (or basic function) for 

the model, a parametric study on the effectiveness of different trends is first conducted, 

where the correlation function is set as the default. The leave-one-out (LOO) cross-valida-

tion method is used to evaluate the error of the model. The results in terms of RMSE, R�, 

and RMAE are shown in Table 4. It can be seen from the table that all the trends show 

their ability in predicting the mean of the structural response with low error and high 

determination coefficient (R� > 0.96). A careful reader can see that the 2nd-degree poly-

nomial function shows its best performance. Hence in the following evaluation, the 2nd-

degree polynomial function is chosen. The correlation type and the correlation family are 

given by the Separable correlation function and the Matern 3/2 kernel function, respec-

tively. The maximum likelihood estimation in Equation (7) is adopted to estimate the hy-

perparameters. Once the two Kriging models for both mean and Std of the responses are 

built, the composed Kriging model is then obtained that is assumed to follow a lognormal 

distribution [4]. 

Table 4. Basic function comparison by the LOO error estimation. 

Basic Function RMSE �� RMAE 

Ordinary 0.124 0.965 0.778 

Linear 0.117 0.969 0.649 

Quadratic 0.090 0.981 0.981 

1st-degree polynomial 0.119 0.968 0.679 

2nd-degree polynomial 0.087 0.983 0.357 

3.4. Fragility Analysis 

With a particular focus on the performance of the column, its EDP is quantified in 

terms of the maximum drift ratio. The damage states according to the drift ratio EDP are 

damage with initial cracking (DS1), cover concrete spalling (DS2) and column failure 

(DS3). For this typical reinforced concrete column with a circular cross-section, three dam-

age states and their median drift ratios for the LS are defined [20], as shown in Table 5. 

Table 5. Damage states and corresponding limit states for the column drift EDP. 

Damage 

State 
Damage State Limit Description 

Median Drift Ratio for 

the Limit State (%) 

DS1 Negligible damage with initial cracking 0.23 

DS2 Cover concrete spalling 1.64 

DS3 Column failure 6.72 
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Given the limit states, the fragility curves of the corresponding failure modes are de-

rived based on Monte Carlo simulations which are performed on the composed Kriging 

metamodel. Given a range of ��� values varying from 0.01 g to 1.5 g with a step size of 

0.01, the simulated are repeated for each ��� in the range which incorporates the mod-

eling parameters to generate a new DOE. The post-processing of the data on a large num-

ber of samples, i.e., 10,000 samples for each ���, results in fragility curves of the three 

failure modes of the column, as shown in Figure 6. To ensure a smooth curve and a reliable 

result, a large number of samples must be used; this is only possible in the context of an 

available metamodel. The fragility curves presented in Figure 6 show the probabilities of 

exceeding the drift limits of the column. For DS1, the 50% probability of failure corre-

sponds to a ��� value of around 0.15 g, while this figure for DS2 is about 1.3 g. The prob-

ability of occurrence of DS3 is very limited. 

 

Figure 6. Fragility curves for different damage states of the column considering the range of the 

input random variables in Table 1. 

In addition, the advance of the metamodel is its flexibility to rapidly draw fragility 

curves for different input conditions. For examples, it can easily assess the effect of one 

input variable on the seismic fragility of the column without re-construction and re-eval-

uation of the model. For example, by considering the lower and upper values of one of 

the geometry variables, i.e., the column height, the span length, or the column diameter, 

corresponding fragility curves for the DS1 and DS2 are respectively obtained as shown in 

Figures 7–9. It is noticed that the remaining variables are kept in the range illustrated in 

Table 1. 

 

Figure 7. Fragility curves for DS1 and DS2 of the column with the lower and upper values of the 

column height. 
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Figure 8. Fragility curves for DS1 and DS2 of the column with the lower and upper values of the 

span length. 

 

Figure 9. Fragility curves for DS1 and DS2 of the column with the lower and upper values of the 

column diameter. 

The findings from the analysis show that the geometry parameters are much sensi-

tive to the fragility curves of the two damage states. In Figure 7, the 50% probability of the 

column damage with initial cracking (i.e., DS1) corresponding for ��  = 1 and 2 m are 0.1 

g and 0.3 g, respectively. This observation is similar to the case in which two different 

span lengths (i.e., 18 and 55 m) are considered (see Figure 8), whereas the increase of the 

column diameter from 1 m to 2 m significantly reduces the probability of the column fail-

ure, as shown in Figure 9. Also of note is that there is a remarkable change in the fragility 

curve of the cover concrete spalling (i.e., DS2) for the lower and upper span lengths. This 

difference is considerable in the cases of the column diameter, especially for the column 

height cases, the fragility curves of the lower and upper bound are quite close. The sensi-

tivity analysis can be further expanded to the material parameters by setting one of the 

parameters as deterministic and performing similarly the analysis based on the developed 

metamodel. 

4. Conclusions 

This paper presented a computationally efficient framework for the seismic fragility 

evaluation of a class of RC highway bridges. The framework used a probabilistic meta-

model that is built based on the Kriging approach. By application to a case study of typical 

single-bent RC highway bridges, this framework offered a limited of simulations to obtain 

seismic fragility curves of the bridge class and showed its capacity in rapidly predicting 

fragility curves for different input conditions of the random variables without re-construc-

tion and re-evaluation of the numerical model simulation. 

The metamodel was developed based on the LHS DOE of seven input random vari-

ables and the output responses obtained from time history analyses of the resulting 60 FE 

models subjected to 20 near-source natural records; this led to a total of 1200 simulations. 

Fragility curves of three damage states of the column were obtained using Monte Carlo 
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simulations carried out on the closed-form of the Kriging metamodel. Results of the anal-

ysis showed the good seismic performance of the column bent of this highway bridge 

class that was recognized a low probability of failure. 

In addition, using a cross-validation method, a comparative study on the selection of 

the trend function in the performance of the metamodel was performed. The 2nd-degree 

polynomial function showed the best performance among others by comparing three pre-

dictive error indicators, i.e., RMSE, R�, and RMAE. 

The capability of the present procedure of obtaining fragility curves for different in-

put conditions was also demonstrated. By setting one of the input variables as determin-

istic with its lower and upper bound, fragility curves of different damage stages could be 

rapidly built without re-construction and re-evaluation of the numerical model. There-

fore, the fragility sensitivity of some geometry modeling parameters was assessed. The 

findings from the analysis showed significant effects of the geometry parameters, such as 

the column height, the span length, and the column diameter, on the seismic fragility 

curves of the column. 

The fragility curves were generated for the specific bridge class, i.e., single-bent RC 

highway bridges with a circular column; however, the finding framework can further ap-

ply to any type of bridges considering different sources of uncertainty. 
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