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Abstract. We study the reducibility of a linear Schrödinger equation subject to a small un-
bounded almost-periodic perturbation which is analytic in time and space. Under appropriate as-
sumptions on the smallness, analyticity and on the frequency of the almost-periodic perturbation,
we prove that such an equation is reducible to constant coefficients via an analytic almost-periodic
change of variables. This implies control of both Sobolev and Analytic norms for the solution of the
corresponding Schrödinger equation for all times.
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1. Introduction. The problem of control of Sobolev norms for linear Schrödinger
operators on a torus with smooth time dependent potential has been studied by vari-
ous authors. Groundbreaking results were proved by Bourgain in [Bou99a] in the case
of quasi-periodic bounded potentials with a Diophantine frequency, then in [Bou99b]
for general time dependent potentials. The main result was an upper bound on the
growth in time of the Sobolev norm, respectively logarithmic and polynomial in time.
Such results were generalized to unbounded potentials in [Del10], [MR17], [Mon18],
[BM18],[BGMR17], [Mon19a], [Mon19b], [BM19], [FM19].
The main feature of such results is that they are very general, require little or no
conditions on the time dependence of the potential and can often be applied also in
non-perturbative settings. At this level of generality such results are in fact optimal
as showed in [Bou99b]. See also [Mas19], [HM20] for examples of growth.
A parallel point of view is to study the reducibility of Schrödinger equations with small
quasi-periodic potentials by requiring stronger non-resonance conditions on the fre-
quency, see [EK09]. We recall that a first order linear differential equation u̇ = L(t)u
is said to be reducible if there exists a (uniformly bounded) time dependent linear
operator which conjugates it to an equation v̇ = Dv where D is time independent and
diagonal (or block diagonal). Thus one gets a uniform control in time of the Sobolev
norms to the price of restricting to small quasi-periodic potentials with rather invo-
luted non-resonance conditions on the frequency. We remark that reducibility is a
key argument in KAM for non-linear PDEs. This is a strong motivation for studying
reducibility for linear PDEs. Conversely many KAM results can be adapted to the
reducibility setting.
As can be expected the (block) diagonalization algorithm relies on lower bounds on
the difference of distinct eigenvalues (the spectral gaps) as well as on a strong control
on their possible multiplicity. Indeed the first results were for bounded potentials in
the case of Dirichlet boundary conditions on [0, π], where the eigenvalues are sim-
ple (see for instance [Kuk87], [Pös89], [P9̈6], [KP96], [Kuk98]). The last ten years
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have seen considerable progress in this field, particularly in the case of unbounded
potentials. The first results were in [IPT05] in the case of periodic potentials and
[BBM14], [BBM16] for the quasi-periodic case. Regarding Schrödinger equations we
mention [FP15], [Feo15],[Bam17],[Bam18]. Note that all the preceding papers deal
with Sobolev stability; generalizing to the analytic case, especially in the case of un-
bounded potentials of order two and in the context of a nonlinear KAM scheme, is
not straightforward. A strategy was discussed in [CFP19],[FP]. While the literature
on reducibility of quasi-periodic potentials is quite extensive in the case of one space
dimension, the case of higher dimensional manifolds is still largely open. We men-
tion [EK10], [BG16], [EGK16] and finally [BGMR18], [FGMP19],[Mon19b], [CM18],
[BLM19] for an unbounded potential.
Common features of the reduction algorithms are : 1. they are perturbative, 2. they
require complicated non-resonance conditions depending on the potential, 3. they
strongly depend on the number of frequencies.

In the present paper we study the reducibility of Schrödinger equations on the
circle with a small unbounded almost periodic potential of the form

(1.1)
∂tu = i

(
∂2
x + εP (t)

)
u ,

P (t) := V2(x, t)∂2
x + V1(x, t)∂x + V0(x, t) , x ∈ T := R/(2πZ) , t ∈ R .

Here V0, V1, V2 are analytic (in an appropriate sense) almost periodic functions of time
with frequency ω which is an infinite dimensional Diophantine vector in `∞(N,R)
(see definitions 1.3 and (1.1)). For small ε we prove a reducibility result under the
assumption that for any t ∈ R, the operator P (t) is L2 self-adjoint and that ω belongs
to some (explicit but convoluted) Cantor set of asymptotically full measure.

Of course the difficulty of such a result is strongly related to the regularity of
the almost-periodic potential. Indeed, by definition, an almost periodic function is
the limit of quasi-periodic ones with an increasing number of frequencies. If the limit
Pn → P is reached sufficiently fast, the most direct strategy is to reduce iteratively
the approximations of (1.1) with quasi-periodic potentials, by considering at each step
n the operator Pn as a small perturbation of the one of the previous step. This pro-
cedure in fact works if one considers a sufficiently smoothing and regular potentials
but becomes very delicate in the case of unbounded potentials.
Good comparisons are: [P0̈2] which studies a smoothing nonlinear Schrödinger equa-
tion with external parameters and proves existence of almost-periodic solutions with
super exponential decay in the Fourier modes. [Bou05], on almost-periodic solutions
for a nonlinear Schrödinger equation with external parameters with sub-exponential
decay in the Fourier modes. In the first paper the very fast decay implies that at
each KAM step, one only needs to construct quasi-periodic solutions (with increasing
number of frequencies) which is a well known result; the only point is to show that
they converge super-exponentially to a non-trivial almost periodic solution. In the
second paper the author does not rely on quasi-periodic approximations, this requires
to completely revisit the KAM scheme but leads to solutions with much less regularity.
In this paper we follow the general point of view of [Bou05], see also [BMP19], us-
ing the same infinite dimensional Diophantine vectors and various technical lemmata
(detailed proofs of all the technical Lemmata can be found in [BMP]). The strategy
is to generalize the approach of [BBM14] to the context of almost-periodically forced
PDEs. This requires developing pseudo-differential calculus in the context of analytic
functions on infinite dimensional tori, see page 5 for a more detailed presentation of
the novelties.
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In order to give the precise statement of our theorems, we introduce some notations
and definitions.
We define the parameter space of frequencies as a subset of1 `∞(N,R), where we recall
that

`∞(N,R) :=
{
ω = (ωj)j∈N ∈ RN : ‖ω‖∞ := sup

j∈N
|ωj | <∞

}
.

More precisely, our set of frequencies is the infinite dimensional cube

(1.2) R0 :=
[
1 , 2

]N
.

We endow the space of parameters R0 with the `∞ metric, namely we set

(1.3) d∞(ω1, ω2) := ‖ω1 − ω2‖∞, ∀ω1, ω2 ∈ R0 .

Furthermore, we endow R0 with the probability measure P induced by the product
measure of the infinite-dimensional cube R0.
We now define the set of Diophantine frequencies. The following definition is a slight
generalization of the one given by Bourgain in [Bou05]. Here and in the following we
denote by 〈j〉 := max{1, |j|}.

Definition 1.1. Given γ ∈ (0, 1), µ > 1, we denote by Dγ,µ the set of Diophan-
tine frequencies
(1.4)

Dγ,µ :=

ω ∈ R0 : |ω · `| > γ
∏
j∈N

1

(1 + |`j |µ〈j〉µ)
, ∀` ∈ ZN : 0 <

∑
j∈N
|`j | <∞

.
In the following we shall fix µ = 2 and denote Dγ := Dγ,2.

For all µ > 1, Diophantine frequencies are typical in the set R0 in the sense of the
following measure estimate, proved in [Bou05] (see also [BMP]).

Lemma 1.2. For µ > 1 there exists a positive constant C(µ) > 0 such that

P
(
R0 \ Dγ,µ

)
≤ C(µ)γ .

For η > 0, we define the set of infinite integer vectors with finite support

(1.5) Z∞∗ :=
{
` ∈ ZN : |`|η :=

∑
j∈N

jη|`j | <∞
}
.

Note that `j 6= 0 only for finitely many indices j ∈ N.

Definition 1.3. Given ω ∈ Dγ and a Banach space (X, ‖ · ‖X), we say that
F (t) : R → X is almost-periodic in time with frequency ω and analytic in the strip
σ > 0 if we may write it in totally convergent Fourier series

F (t) =
∑
`∈Z∞∗

F̂ (`)ei`·ωt such that F̂ (`) ∈ X , ∀` ∈ Z∞∗ and
∑
`∈Z∞∗

‖F̂ (`)‖Xeσ|`|η <∞.

1Here and in the following N does not contain {0}.
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We shall be particularly interested in almost-periodic functions where X = H(Tσ)

H(Tσ) :=
{
u =

∑
n∈Z

ûne
inx , ûj ∈ C : ‖u‖H(Tσ) :=

∑
n∈Z
|ûn|eσ|n| <∞

}
is the space of analytic functions Tσ → C, where Tσ := {ϕ ∈ C : Re(ϕ) ∈ T, |Im(ϕ)| ≤
σ} is the thickened torus.

Now we are ready to state precisely our main result. We make the following assump-
tions.

• (H1) The functions V0, V1, V2 are almost-periodic and analytic, in the sense
of Definition 1.3, for σ > 0 and X = H(Tσ).

• (H2) We assume that

(1.6)

V2(x, t) = V2(x, t) , ∀(x, t) ∈ T× R ,

V1(x, t) = 2∂xV2(x, t)− V1(x, t) , ∀(x, t) ∈ T× R

V0(t, x) = V0(x, t)− ∂xV1(x, t) + ∂xxV2(x, t) , ∀(x, t) ∈ T× R .

This implies that the operator P (t) in (1.1) is L2 self-adjoint for t ∈ R.
Here and in the following we denote by B(E,F ) the space of bounded linear
operators from E to F . If E = F , we write B(E) instead of B(E,E).

Theorem 1.4 (Reducibility). Let σ > 0 and assume the hypotheses (H1) and
(H2). Then there exists a subset Ωε ⊂ R0 = [1, 2]N satisfying

(1.7) lim
ε→0

P(Ωε) = 1

such that the following holds. For any ω ∈ Ωε, t ∈ R, 0 < σ < σ′ ≤ σ/4, ρ > 0 there
exists δ = δ(σ, σ′) ∈ (0, 1) such that if εγ−1 ≤ δ then there exists a unitary (in L2(T))
operator W∞(t) ≡W∞(t;ω) such that:

1. W∞(t),W∞(t)−1 are almost periodic and analytic maps on the strip σ/4 into

X = B
(
H(Tσ′),H(Tσ)

)
.

2. u(·, t) is a solution of the Schrödinger equation (1.1) if and only if v(·, t) =
W∞(t)−1[u(·, t)] is a solution of the time independent equation

(1.8) ∂tv = iD∞v

where D∞ is a linear, self-adjoint, time independent, 2 × 2 block-diagonal
operator2 of order two such that the commutator [D∞, ∂xx] = 0.

3. For any s ≥ 0, the maps R→ B
(
Hs(T)

)
, t 7→W∞(t)±1 are bounded.

From the Theorem stated above, we can deduce the following Corollaries:

Corollary 1.5 (Asymptotics of the eigenvalues). The spectrum of the operator
D∞ is given by

spec(D∞) = {µ0(ω)} ∪ {µ(+)
j (ω), µ

(−)
j (ω)}j∈N0

⊂ R ,(1.9)

µσj (ω) = λ2j
2 + σλ1j + λ0(ω) + σ

λ−1(ω)

j
+
rσj
j2
, j > 0

2We recall that an operator L on a vector space V is d × d block diagonal if there exists a
decomposition of V = ⊕Vj such that L maps each Vj in itself and all the Vj have dimension at most
d.
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where λ2 − 1 , λ1 ∼ ε do not depend on ω, while λ0, λ−1, r
σ
j are Lipschitz w.r. to ω

and of order ε. Finally µ0 is Lipschitz w.r. to ω and of order ε.

For compactness of notations we set µ
(+)
0 = µ

(−)
0 = µ0.

Corollary 1.6 (Characterization of the Cantor set). The Cantor set Ωε, given
in Theorem 1.4, is defined explicitly in terms of the spectrum of the block diagonal
operator D∞. More precisely it is equal to the set Ω∞(γ), γ = εa for some a ∈ (0, 1),
where
(1.10)

Ω∞(γ) :=
{
ω ∈ Dγ : |ω · `+ µ

(σ)
j − µ(σ′)

j′ | ≥
2γ

d(`)
, ∀(`, j, j′) ∈ Z∞∗ × N0 × N0, j 6= j′, σ, σ′ ∈ {+,−}

|ω · `+ µ
(σ)
j − µ(σ′)

j | ≥ 2γ

d(`)〈j〉2
, ∀(`, j) ∈ (Z∞∗ \ {0})× N0, σ, σ′ ∈ {+,−}

}
where

d(`) :=
∏
n∈N

(1 + |`n|4〈n〉4), ∀` ∈ Z∞∗ .

Corollary 1.7 (Dynamical consequences). Under the same assumptions of
Theorem 1.4 the following holds

• Analytic stability. For any 0 < σ < σ/4, ρ > 0, u0 ∈ H(Tσ), the unique
solution of the equation (1.1) with initial datum u(x, 0) = u0(x) satisfies the
estimate ‖u(·, t)‖H(Tσ) .σ,σ ‖u0‖H(Tσ) uniformly w.r. to t ∈ R.

• Sobolev stability. For any s ≥ 0, u0 ∈ Hs(T), the unique solution of
the equation (1.1) with initial datum u(x, 0) = u0(x) satisfies the estimate
‖u(·, t)‖Hs(T) .s ‖u0‖Hs(T) uniformly w.r. to t ∈ R.

Remark 1.8. By Theorem 1.4, items (1) and (3), one gets boundedness properties
of the maps W∞(t)±1 both on analytic and Sobolev spaces. This is the reason why
in Corollary 1.7, we get a stability result for both analytic and Sobolev initial data,
see Section 7.

Strategy of the Proof. The overall strategy of the proof is the one proposed
in [BBM14] and consists of two main steps: a regularization procedure and a KAM
reduction scheme. The aim of the first step is to conjugate (1.1) to a simpler dynam-
ical system where the vector field is space and time independent up to a sufficiently
smoothing remainder. Here one uses the fact that the linear operator in (1.1) has a
pseudo-differential structure.
In the second step one completes the reduction by applying a KAM scheme, which
relies on the fact that the eigenvalues are at most double, with a quantitative control
on the differences.
In order to explain which are the main difficulties to overcome in order to deal with
almost-periodic potentials let us describe the strategy more in detail.

It is convenient to think of almost-periodic in time functions as restrictions of
functions on an infinite dimensional torus. To this purpose we define analytic func-
tions of infinitely many angles as the class of totally convergent Fourier series with a
prescribed (and very strong) decay on the Fourier coefficients. One may verify that
in fact this definition coincides with the set of holomorphic functions on the thickened
torus

T∞σ := {ϕ = (ϕj)j∈N , ϕj ∈ C : Re(ϕj) ∈ T , |Im(ϕj)| ≤ σ〈j〉η} ,

so not only we consider analytic functions, but the radius of analyticity increases as
j →∞. This is quite a strong condition but it is not at all clear to us whether it may
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be weakened, even in apparently harmless ways like requiring |Im(ϕj)| ≤ σ log(1+〈j〉)p
with p� 1.

In a nutshell the main novelties are the following: in the regularization step, we
need a normal form procedure which uses 1) operators induced by diffeomorphisms
of infinite dimensional tori, 2) pseudo differential operators with symbols depending
analytically on ϕ ∈ T∞. This basically requires to develop a pseudo differential cal-
culus for “classical” symbols a(ϕ, x, ξ), with ϕ ∈ T∞σ . On the other hand in the KAM
reducibility scheme the main difficulty is the presence of extremely small divisors,
which have to be controlled by shrinking the radius of analiticity appropriately.

Let us give a more detailed description of our approach. In the regularization
procedure the first step is to reparametrize the x variable (x x+β(x, ωt)), in order
to remove the space dependence in the leading order term V2 of (1.1). This induces
an invertible linear operator which acts on the dynamical system removing the x
dependence from V2. Here the time behaves as a parameter, so no condition on the
time dependence of the potential is needed. Note however that this change of variables
mixes time and space. Namely if we start with a potential which is analytic in time
but only Sobolev in space, after the change of variables it will have finite regularity
both in time and in space. For this reason, since we need to preserve analyticity in
time throughout our procedure, we require that our potentials are analytic also in
space.

In the second step one reparameterizes the variables ϕ ∈ T∞σ so as to remove the
angle dependence in V2. Here there are various non-trivial points to discuss, both in
order to guarantee that the change of variables is well defined and “invertible” and in
order to describe the action on analytic functions.
Indeed even in the much simpler case of a finite number of angles, the regularization
procedure is usually performed on C∞ potentials and working in the analytic class
requires some extra care (see also [FP]).
In dealing with infinitely many angles one uses the fact that ω is Diophantine in the
sense of (1.4) as well as the fact that the potentials are analytic with growing radius
of analyticity as j →∞ (see formula (1.11) and the comments following it).

The remaining steps in the regularization procedure do not introduce further problems
w.r.t. the first two steps. As is typical in this kind of results one could further push the
regularization procedure up to an arbitrarily smoothing remainder. We have chosen
to regularize our problem up to order −2 because this is the “minimal action” required
in order to complete the successive KAM iterative procedure.
An interesting point is that all the regularization steps apart from the first three, do
not mix the regularity of time and space so that one could work with potentials that
are only analytic in time. A simple consequence is that if in (1.1) we assume that V2

and V1 are constant in time then we can require that V0 has only finite regularity in
space (but is still analytic in time).

Since we work with a perturbation which is a differential operator whose coefficients
are analytic both in time and space, we cannot apply as a black box the regularization
procedure as in [BGMR17], [Mon18], which is based on Egorov-type theorems and is
developed for general pseudo-differential perturbations of class C∞. Indeed developing
a general Egorov-type theorem in analytic class does not appear a straightforward
question (actually the quantitative estimates that we need might not hold true in a
general setting).
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Therefore we perform the regularization procedure in the class of analytic func-
tions, with quantitative estimates, see Sections 3.1 and 4. The main feature which we
exploit is that our perturbation P is a classical pseudo-differential differential operator
(i.e. it admits an expansion in homogeneous symbols of decreasing order).

We remark that in the regularization procedure, one could impose much weaker ana-
lyticity conditions. One sees that in fact the only condition needed here is that there
exists ρ > 0 such that

(1.11) sup
`∈Z∞∗

∏
i∈N

(1 + 〈i〉2`2i )e−ρ
∑
j〈j〉

η|`j | <∞ .

If we choose different radii of analyticity, such as

T̂∞ρ := {ϕ = (ϕj)j∈N , ϕj ∈ C : Re(ϕj) ∈ T , |Im(ϕj)| ≤ ρF (j)} , F (j) ≥ 1 ,

condition (1.11) becomes

sup
`∈Z∞∗

∏
i∈N

(1 + 〈i〉2`2i )e−ρ
∑
j |`j |F (j) <∞ .

and one can construct many examples where this holds.

In the KAM scheme most difficulties come from quantitative issues, particularly
measure estimates. At a purely formal level our scheme is essentially classical. At
each step one considers a linear operator of the form D+P(ϕ) where P is very small
while D is time independent and block-diagonal with blocks of dimension at most two.
First we introduce an “ultraviolet cut-off” operator, so that ΠNP depends on finitely
many angles (depending on N), while the remainder (Id−ΠN )P is very small.
Then one applies a linear change of variables eF(ϕ) where F solves the homological
equation

−ω · ∂ϕF + [iD,F ] + ΠNP = [P̂(0)] ,

where [P̂(0)] is the time-independent and block-diagonal part of P .
Direct computations show that (at least at a purely formal level) this change of
variables conjugates D+P(ϕ) to an operator of the form D+ +P+(ϕ) where P+(ϕ)�
P(ϕ). In order to ensure that a solution to the homological equation exists and in
order to give quantitative estimates, one restricts ω to a set where the spectrum of
the operator

(1.12) L(ϕ) 7→ −ω · ∂ϕL(ϕ) + [iD, L(ϕ)]

is appropriately bounded from below. Iterating this KAM step infinitely many times
one reduces the operator D+P(ϕ), for all ω in some implicitly defined set where the
condition (1.12) holds throughout the procedure.
The difficult part is to verify that the Melnikov conditions (1.10) are such that: 1.
The Cantor set Ω∞(γ) has positive measure; 2. for all ω ∈ Ω∞(γ) (1.12) holds at each
KAM step with a quantitative control in the solution of the homological equation; 3.
the iterative scheme converges.
Here one needs not only for (1.11) to hold for all ρ > 0 but also that the supremum
in (1.11) does NOT diverge too badly when ρ→ 0. It is here that the special choice
of analyticity comes into play, and it is not clear to us if it can be weakened in any
significant way.
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The paper is organized as follows. In Section 2 we state the properties of the analytic
functions on the infinite dimensional torus that we need in our proofs. In Section 3,
we provide some definitions and quantitative estimates for the class of linear operators
that we deal with. In particular we define the norms that we use in Sections 4, 5 and
their corresponding properties. In Section 4 we show that our equation can be reduced
to another one whose vector field is a two-smoothing perturbation of a diagonal one.
This is enough to perform the KAM reducibility scheme of Section 5. In Section 6
we provide the measure estimate of the non resonant set of parameters Ω∞(γ) (see
(1.10)) and in Section 7 we conclude the proofs of Theorem 1.4 and Corollary 1.7.
Finally, in the appendices A and B we collect some technical proofs of some lemmas
that we use along our proofs.

2. Analytic functions on an infinite dimensional torus. As is habitual in
the theory of quasi-periodic functions we shall study almost periodic functions in the
context of analytic functions on an infinite dimensional torus. To this purpose, for
η, σ > 0, we define the thickened infinite dimensional torus T∞σ as

ϕ = (ϕj)j∈N , ϕj ∈ C : Re(ϕj) ∈ T , |Im(ϕj)| ≤ σ〈j〉η .

Given a Banach space (X, ‖ · ‖X) we consider the space F of point-wise absolutely
convergent formal Fourier series T∞σ → X

(2.1) u(ϕ) =
∑
`∈Z∞∗

û(`)ei`·ϕ , û(`) ∈ X

and define the analytic functions as follows.

Definition 2.1. Given a Banach space (X, ‖·‖X) and σ > 0, we define the space
of analytic functions T∞σ → X as the subspace

H(T∞σ , X) :=
{
u(ϕ) =

∑
`∈Z∞∗

û(`)ei`·ϕ ∈ F : ‖u‖σ :=
∑
`∈Z∞∗

eσ|`|η‖û(`)‖X <∞
}
.

In the case H(T∞σ ,C), we shall use the shortened notation H(T∞σ )

Remark 2.2. We have chosen to work with an infinite torus T∞σ whose angles are
ϕj with j ∈ N which in our notations does not contain 0. Of course it would be
completely equivalent to working on Tσ ×T∞σ with angles θj with j ∈ N0 := N∪ {0}.
To this purpose one just needs to define Ẑ∞∗ := {k ∈ ZN0 : |k|η :=

∑
i∈N0
〈i〉η|ki| <

∞} = Z× Z∞∗ and consider Fourier series

u =
∑
k∈Ẑ∞∗

û(k)eik·θ such that
∑
k∈Ẑ∞∗

|û(k)|eσ|k|η <∞.

This notation is useful when working with the space H(T∞σ ,H(Tσ)) which can thus
be identified with H(Tσ × T∞σ ,C) ≡ H(Tσ × T∞σ ). Indeed u ∈ H(T∞σ ,H(Tσ)) means

u =
∑
`∈Z∞∗

û(`, x)ei`·ϕ =
∑

(`,n)∈Z∞∗ ×Z

ûn(`)ei`·ϕ+inx =
∑
k∈Ẑ∞∗

û(k)eik·θ

where θ = (x, ϕ) ∈ Tσ × T∞σ and k = (n, `).

With this definition an almost-periodic function as in Definition 1.3 is the re-
striction of a function in H(T∞σ , X) to ϕ = ωt. Given F ∈ H(T∞σ , X) we define
f(t) = F(ωt). Note that the condition u ∈ H(T∞σ , X) implies that the series in (2.1)
is totally convergent for ϕ ∈ T∞σ .
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2.1. Reformulation of the reducibility problem.. In order to prove Theo-
rem 1.4, we then consider analytic ϕ-dependent families of linear operators R : T∞σ →
B(L2

0(Tx)), ϕ 7→ R(ϕ). Recall that the definition of B(E), for any Banach space E,
is given above Theorem 1.4. Given a frequency vector ω ∈ R0 and two operators
L,Φ : T∞σ → B(L2

x), under the change of coordinates u = Φ(ωt)v, the dynamical
system

∂tu = L(ωt)u

transforms into
(2.2)
∂tv = L+(ωt)u, L+(ϕ) ≡ (Φω∗)L(ϕ) := Φ(ϕ)−1L(ϕ)Φ(ϕ)− Φ(ϕ)−1ω · ∂ϕΦ(ϕ) ,

where 3

(2.3) ω · ∂ϕΦ :=
∑
`∈Z∞∗

i(` · ω)Φ̂(`)ei`·ϕ .

A direct calculation shows that if L(ωt) is skew-self adjoint and Φ(ωt) is unitary, then
L+(ωt) is skew self-adjoint too.
In conclusion our goal is to prove the existence of mapsW,W−1 ∈ H(T∞σ̄/4,B(H(Tσ),H(Tσ′)),
such that W (t) =W(ωt) and W (t) =W−1(ωt) which solve the reduction equation:

(2.4) W(ϕ)−1i(∂2
x + εP(ϕ))W(ϕ)−W(ϕ)−1ω · ∂ϕW(ϕ) = iD∞ ,

where the operator P(ϕ) ∈ H(T∞σ ,B(H(Tσ),H(Tσ′))) is of the form P(ϕ) = V2(x, ϕ)∂2
x+

V1(x, ϕ)∂x + V0(x, ϕ) with Vi ∈ H(T∞σ ,H(Tσ)) and is such that P (t) = P(ωt). Note
that for ϕ ∈ T∞, (∂2

x+ εP(ϕ)) is self-adjoint, henceW(ϕ) is unitary. We remark that

solving (2.4) is equivalent to diagonalizing the linear operator

iω · ∂ϕ + ∂2
x + εP ∈ B(H(Tσ × T∞σ ,C),H(T∞σ′ × Tσ′ ,C))

via a bounded change of variables with the special property that it is Töplitz in time.

2.2. Properties of analytic functions. We now discuss some fundamental
properties of the space H(T∞σ , X), note that all the results hold verbatim for H(Tσ ×
T∞σ , X).

For any function u ∈ H(T∞σ , X), given N ≥ 0, we define the projector ΠNu as

(2.5) ΠNu(ϕ) :=
∑
|`|η≤N

û(`)ei`·ϕ and Π⊥Nu := u−ΠNu .

The following Lemma holds:

Lemma 2.3. Let σ, ρ > 0, u ∈ H(T∞σ+ρ, X). Then the following holds:

‖Π⊥Nu‖σ ≤ e−ρN‖u‖σ+ρ .

3 If we set F (t) = Φ(ωt), since the series expansion for t ∈ R is totally convegent we have clearly
∂tF (t) = ω · ∂ϕΦ(ωt) .
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Proof. One has

‖Π⊥Nu‖σ =
∑
|`|η>N

eσ|`|η‖û(`)‖X ≤ e−ρN
∑
`∈Z∞∗

e(σ+ρ)|`|η‖û(`)‖X

and the lemma follows.

Lemma 2.4. Let σ > 0, u ∈ H(T∞σ , X). Then ‖u‖L∞(T∞σ ,X) ≤ ‖u‖σ.

Proof. For any ϕ ∈ T∞σ , one has

‖u(ϕ)‖X ≤
∑
`∈Z∞∗

‖û(`)‖Xeσ|`|η = ‖u‖σ .

Lemma 2.5. Assume that X is a Banach algebra and u, v ∈ H(T∞σ , X). Then
uv ∈ H(T∞σ , X) and ‖uv‖σ ≤ ‖u‖σ‖v‖σ.

Proof. One has

u(ϕ)v(ϕ) =
∑

`,k∈Z∞∗

û(`− k)v̂(k)ei`·ϕ

and therefore, one obtains that

‖uv‖σ ≤
∑

`,k∈Z∞∗

eσ|`|η‖û(`− k)‖X‖v̂(k)‖X .

Using the triangular inequality |`|η ≤ |` − k|η + |k|η, one gets eσ|`|η ≤ eσ|`−k|ηeσ|k|η ,
implying that

‖uv‖σ ≤
∑

`,k∈Z∞∗

eσ|`−k|η‖û(`− k)‖Xeσ|k|η‖v̂(k)‖X ≤ ‖u‖σ‖v‖σ .

Lemma 2.6. Let u ∈ H(T∞σ , X). Then

(2.6)

∫
T∞

u(ϕ) dϕ := lim
N→+∞

1

(2π)N

∫
TN

u(ϕ)dϕ1 . . . dϕN = û(0) .

Moreover, for any ` ∈ Z∞∗ \ {0}:

(2.7) û(`) =

∫
T∞

u(ϕ)e−i`·ϕ dϕ = lim
N→∞

1

(2π)N

∫
TN

u(ϕ)e−i`·ϕ .

Proof. Let ` ∈ Z∞∗ \{0} and let Nη ≤ |`|η. Then surely `j = 0 for all j > N , thus

ei`·ϕ = ei`1ϕ1 . . . ei`NϕN

implying that
1

(2π)N

∫
TN

ei`·ϕ dϕ1 . . . dϕN = 0 .

Hence

1

(2π)N

∫
TN

u(ϕ)dϕ1 . . . dϕN =
1

(2π)N

∫
TN

(
û(0) +

∑
0<|`|η≤Nη

û(`)ei`·ϕ +
∑
|`|η>Nη

û(`)ei`·ϕ
)
dϕ1 . . . dϕN

= û(0) +
1

(2π)N

∫
TN

∑
|`|η>Nη

û(`)ei`·ϕdϕ1 . . . dϕN .
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Since u ∈ H(T∞σ , X), the tail of the series
∑
|`|η>Nη goes to zero as N → ∞. This

proves (2.6).
Now let ` ∈ Z∞∗ \ {0}. Then we set

u`(ϕ) := u(ϕ)e−i`·ϕ =
∑
k∈Z∞∗

û(k)ei(k−`)·ϕ =
∑
h∈Z∞∗

û(h+ `)eih·ϕ .

By applying the claim (2.6) to the function u` and observing that û`(0) = û(`), the
equality (2.7) follows.

Given two Banach spaces X and Y , for any k ∈ N, we define the space Mk(X,Y ) of
the k-linear and continuous forms endowed by the norm

(2.8) ‖M‖Mk(X,Y ) := sup
‖u1‖X ,...,‖uk‖X≤1

‖M [u1, . . . , uk]‖Y , ∀M ∈Mk(X,Y ) .

To shorten notations, we denote `∞ := `∞(N,C), moreover for k ∈ N, we write
Mk instead of Mk(`∞, X) where X is an arbitrary Banach space.

Let us now discuss the differentiability of functions. We define for ϕ̂1, . . . , ϕ̂k ∈ `∞

(2.9) dkϕu[ϕ̂1, . . . , ϕ̂k] :=
∑
`∈Z∞∗

ik
k∏
j=1

(` · ϕ̂j)û(`)ei`·ϕ .

Note that if u ∈ H(T∞σ+ρ, X) for any ρ > 0 then the series in (2.9) is totally convergent
on T∞σ .

Lemma 2.7 (Cauchy estimates). Let σ, ρ > 0 and u ∈ H(T∞σ+ρ, X). Then for

any k ∈ N, the k-th differential dkϕu satisfies the estimate

‖dkϕu‖H(T∞σ ,Mk) .k ρ
−k‖u‖σ+ρ .

Proof. For any k ∈ N, ϕ ∈ T∞σ , ϕ̂1, . . . , ϕ̂k ∈ `∞, ‖ϕ̂j‖∞ ≤ 1 for any j = 1, . . . , k,
one has by duality |` · ϕ̂| ≤ ‖`‖1‖ϕ̂‖∞ ≤ |`|η‖ϕ̂‖∞, and substituting in (2.9) one gets

‖dkϕu(ϕ)[ϕ̂1, . . . , ϕ̂k]‖σ ≤
∑
`∈Z∞∗

|`|kηeσ|`|η‖û(`)‖X ≤ sup
`∈Z∞∗

(
|`|kηe−ρ|`|η

)
‖u‖σ+ρ .

A straightforward calculation shows that

sup
`∈Z∞∗

|`|kηe−ρ|`|η ≤ sup
x≥0

xke−ρx = kkρ−ke−k .k ρ
−k

which implies the claimed estimate.

Remark 2.8. Note that if we endow the torus T∞σ with the `∞ metric , namely
given two angles ϕ1 = (ϕ1,j)j∈N ∈ T∞σ and ϕ2 = (ϕ2,j)j∈N ∈ T∞σ , we define

(2.10) d∞(ϕ1, ϕ2) := supj∈N

(
|Re(ϕ1,j − ϕ2,j)|mod 2π + |Im(ϕ1,j)− Im(ϕ2,j)|

)
.

then (2.9) is the k’th differential in the usual sense. Moreover the tangent space to
T∞σ is `∞(C).
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Given a frequency vector ω ∈ R0 and u ∈ Hσ(X), we define ω · ∂ϕu as in 2.3

(2.11) ω · ∂ϕu(ϕ) :=
∑
`∈Z∞∗

i(ω · `)û(`)ei`·ϕ = du(ϕ)[ω] .

If we set f(t) = u(ωt), since the series expansion for t ∈ R is totally convergent we
have clearly ∂tf(t) = ω · ∂ϕu(ωt) .

The following Lemma holds

Lemma 2.9. (i) Let σ, ρ > 0, u ∈ Hσ+ρ(X), ω ∈ R0. Then

‖ω · ∂ϕu‖σ . ρ−1‖u‖σ+ρ .

Proof. The lemma follows by the formula (2.11) and by applying Lemma 2.7 in
a straightforward way.

Parameter dependence. Let Y be a Banach space and γ ∈ (0, 1). If f : Ω → Y ,
Ω ⊆ R0 := [1, 2]N is a Lipschitz function we define

(2.12)

‖f‖sup
Y := sup

ω∈Ω
‖f(ω)‖Y , ‖f‖lipY := sup

ω1,ω2∈Ω
ω1 6=ω2

‖f(ω1)− f(ω2)‖Y
‖ω1 − ω2‖∞

,

‖f‖Lip(γ,Ω)
Y := ‖f‖sup

Y + γ‖f‖lipY .

If Y = H(T∞σ , X) we simply write ‖·‖sup
σ , ‖·‖lipσ , ‖·‖Lip(γ,Ω)

σ . If Y is a finite dimensional
space, we write ‖ · ‖sup, ‖ · ‖lip, ‖ · ‖Lip(γ,Ω).

The following result follows directly

Lemma 2.10. In Lemmata 2.3, 2.5,2.7, 2.9, if u(·;ω) is Lipschitz w.r. to ω ∈
Ω ⊆ R0, the same estimates hold verbatim replacing ‖ · ‖σ by ‖ · ‖Lip(γ,Ω)

σ .

As is typical in KAM reduction schemes, a fundamental tool in reducibility is to solve
the ”homological equation”, i.e. to invert the operator ω · ∂ϕ.

Lemma 2.11 (Homological equation). Let σ, ρ > 0, f ∈ H(T∞σ+ρ, X), ω ∈
Dγ,µ (see (1.4)). with f̂(0) = 0. Then there exists a unique solution u := (ω ·∂ϕ)−1f ∈
H(T∞σ , X) of the equation

ω · ∂ϕu = f ,

satisfying the estimates

(2.13) ‖u‖σ . exp
( τ

ρ
1
η

ln
(τ
ρ

))
‖f‖σ+ρ

for some constant τ = τ(η, µ) > 0. If f(·;ω) ∈ H(T∞σ+ρ, X) is Lipschitz w.r. to
ω ∈ Ω ⊆ Dγ , then

‖u‖Lip(γ,Ω)
σ . exp

( τ

ρ
1
η

ln
(τ
ρ

))
‖f‖Lip(γ,Ω)

σ+ρ

for some constant τ(η, µ) > 0 (eventually larger than the one in (2.13)).



LINEAR SCHRÖDINGER EQUATION WITH AN ALMOST PERIODIC POTENTIAL 13

Proof. Since ω ∈ Dγ , the solution u of the equation ω · ∂ϕu = f is given by

u(ϕ) = (ω · ∂ϕ)−1f(ϕ) =
∑

`∈Z∞∗ \{0}

f̂(`)

iω · `
ei`·ϕ .

Hence, using that ω ∈ Dγ,µ

‖u‖σ ≤ γ−1
∑

`∈Z∞∗ \{0}

∏
i

(1 + 〈i〉µ|`i|µ)‖f̂(`)‖Xeσ|`|η ≤ γ−1 sup
`∈Z∞∗

(
e−ρ|`|η

∏
i

(1 + 〈i〉µ|`i|µ)
)
‖f‖σ+ρ

and the claimed estimate follows by applying Lemma B.1-(i).

We conclude this section by discussing how the definition ofH(T∞σ , X) (or equivalently
H(T∞σ × Tσ, X)) depends on the coordinates on T∞σ .

Definition 2.12. Recall `∞ := `∞(N,C). We say that a function a ∈ H(T∞σ+ρ)
is real on real if a(ϕ) ∈ R for all ϕ ∈ T∞. Similarly, α ∈ H(T∞σ+ρ, `

∞) is real on real
if αj(ϕ) ∈ R, for all ϕ ∈ T∞, j ∈ N.

Proposition 2.13 (Torus diffeomorphism). Let α ∈ H(T∞σ+ρ, `
∞) be real on

real. Then there exists ε = ε(ρ) such that if ‖α‖σ+ρ ≤ ε, then the map ϕ 7→ ϕ+α(ϕ)
is an invertible diffeomorphism of the infinite dimensional torus T∞σ (w.r. to the `∞-
topology) and its inverse is given by the map ϑ 7→ ϑ+ α̃(ϑ), where α̃ ∈ H(T∞σ+ ρ

2
, `∞)

is real on real and satisfies the estimate ‖α̃‖σ+ ρ
2
. ‖α‖σ+ρ. Furthermore if α(·;ω) ∈

H(T∞σ+ρ, `
∞) is Lipschitz w.r. to ω ∈ Ω ⊆ R0, then ‖α̃‖Lip(γ,Ω)

σ+ ρ
2

. ‖α‖Lip(γ,Ω)
σ+ρ .

Corollary 2.14. Given α ∈ H(T∞σ+ρ, `
∞) as in Theorem 2.13, the operators

Φα : H(T∞σ+ρ, X)→ H(T∞σ , X), u(ϕ) 7→ u(ϕ+ α(ϕ)) ,(2.14)

Φα̃ : H(T∞σ+ ρ
2
, X)→ H(T∞σ , X), u(ϑ) 7→ u(ϑ+ α̃(ϑ))

are bounded, satisfy

‖Φα‖
B
(
H(T∞σ+ρ,X),H(T∞σ ,X)

), ‖Φα̃‖
B
(
H(T∞σ+ρ,X),H(T∞σ ,X)

) ≤ 1

and for any ϕ ∈ T∞σ , u ∈ H(T∞σ+ρ, X), v ∈ H(T∞σ+ ρ
2
, X) one has

Φα̃ ◦ Φαu(ϕ) = u(ϕ) , Φα ◦ Φα̃v(ϕ) = u(ϕ) .

In order to prove our result we shall proceed in steps, proving a series of technical
lemmata.

Lemma 2.15. For σ, ρ > 0, let u ∈ H(T∞σ+ρ, X) and α ∈ H(T∞σ , `∞) with ‖α‖σ ≤
ρ. Then the function f(ϕ) := u(ϕ+α(ϕ)) belongs to the space H(T∞σ , X) and ‖f‖σ ≤
‖u‖σ+ρ. As a consequence, the linear operator

Φα : H(T∞σ+ρ, X)→ H(T∞σ , X), u(ϕ) 7→ u(ϕ+ α(ϕ))

is bounded and satisfies ‖Φα‖
B
(
H(T∞σ+ρ,X),H(T∞σ ,X)

) ≤ 1.

Proof. One has that

(2.15) f(ϕ) =
∑
`∈Z∞∗

û(`)ei`·ϕei`·α(ϕ) .
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Moreover for any ` ∈ Z∞∗ , one has
(2.16)

ei`·α(ϕ) =
∑
n∈N

in

n!
(` · α(ϕ))n =

∑
n∈N

∑
`1,...,`n∈Z∞∗

in

n!
(` · α̂(`1)) . . . (` · α̂(`n))ei(`1+...+`n)·ϕ .

By the formulae (2.15), (2.16) one then gets that

(2.17)

f(ϕ) =
∑
k∈Z∞∗

f̂(k)eik·ϕ,

f̂(k) :=
∑
n∈N

in

n!

∑
`+`1+...+`n=k

(` · α̂(`1)) . . . (` · α̂(`n))û(`) .

Using that for k = `+ `1 + . . .+ `n, one has that eσ|k|η ≤ eσ|`|ηeσ|`1|η . . . eσ|`n|η , and
|(` · α̂(`i))| ≤ ‖`‖1‖α̂(`i)‖∞ one gets that
(2.18)

‖f‖σ =
∑
k∈Z∞∗

eσ|k|η‖f̂(k)‖X

≤
∑
n∈N

1

n!

∑
`,`1,...,`n∈Z∞∗

(‖`‖1)neσ|`|η‖û(`)‖Xeσ|`1|η‖α̂(`1)‖∞ . . . eσ|`n|η‖α̂(`n)‖∞

‖`‖1≤|`|η
≤

∑
`∈Z∞∗

eσ|`|η‖û(`)‖X
∑
n∈N

|`|nη
n!

n∏
j=0

∑
`j∈Z∞∗

eσ|`j |η‖α̂(`j)‖∞

≤
∑
`∈Z∞∗

eσ|`|η‖û(`)‖X
∑
n∈N

|`|nη‖α‖nσ
n!

≤
∑
`∈Z∞∗

eσ|`|η‖û(`)‖Xexp
(
|`|η‖α‖σ

)
‖α‖σ≤ρ
≤

∑
`∈Z∞∗

e(σ+ρ)|`|η‖û(`)‖X = ‖u‖σ+ρ .

For α ∈ H(T∞σ+ρ, `
∞) we now consider the map

(2.19) Ψα(u)(ϕ) := −α(ϕ+ u(ϕ))

which, by Lemma 2.15 (with σ  σ + ρ
2 and ρ  ρ

2 ) is well defined Bσ+ ρ
2
(0, R) →

H(T∞σ+ ρ
2
, `∞), where

u ∈ Bσ(0, R) :=
{
u ∈ H(T∞σ , `∞) : ‖u‖σ ≤ R

}
provided R < ρ

2 .

Lemma 2.16. Let α ∈ H(T∞σ+ρ, `
∞). Then there exists ε = ε(ρ) such that if

‖α‖σ+ρ ≤ ε, there exists a unique solution u ∈ H(T∞σ+ ρ
2
, `∞) of the fixed point equation

u = Ψα(u) satisfying the estimate ‖u‖σ+ ρ
2
≤ ‖α‖σ+ρ. If α(·;ω) ∈ H(T∞σ+ρ, `

∞),

ω ∈ Ω ⊆ R0 = [1, 2]N is Lipschitz, then ‖u‖Lip(γ,Ω)
σ . ‖α‖Lip(γ,Ω)

σ+ρ .

Proof. To start with we show the following claim.
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• Claim. There exist ε = ε(ρ), R = R(ρ) > 0 such that if ‖α‖σ+ρ ≤ ε, then
the map 2.19 is a contraction on

Bσ(0, R) :=
{
u ∈ H(T∞σ , `∞) : ‖u‖σ ≤ R

}
.

Proof of the claim. By taking R = R(ρ) sufficiently small, by applying Lemma
2.15, one gets that for any u ∈ Bσ+ ρ

2
(0, R), Ψα(u) ∈ H(T∞σ+ ρ

2
, `∞) and ‖Ψα(u)‖σ+ ρ

2
≤

‖α‖σ+ρ. Then, if ‖α‖σ+ρ ≤ ε ≤ R, one has that Ψα : Bσ+ ρ
2
(0, R) → Bσ+ ρ

2
(0, R).

Now, given u1, u2 ∈ Bσ+ ρ
2
(0, R), we want to bound ‖Ψα(u1) − Ψα(u2)‖σ. By the

mean value theorem, one has

(2.20) Ψα(u1)−Ψα(u2) =

∫ 1

0

dϕα
(
ϕ+ tu1(ϕ) + (1− t)u2(ϕ)

)
[u2 − u1] dt .

Since ‖u1‖σ+ ρ
2
, ‖u2‖σ+ ρ

2
≤ R, by taking R ≤ ρ

4 , by Lemmata 2.7 and 2.15 one has
the estimate

(2.21)
‖Ψα(u1)−Ψα(u2)‖σ+ ρ

2
≤ ‖dϕα‖H(T∞

σ+
3ρ
2

,M1)‖u1 − u2‖σ+ ρ
2

. ρ−1‖α‖σ+ρ‖u1 − u2‖σ+ ρ
2
.

Hence by taking ‖α‖σ+ρ ≤ ε(ρ) small enough, one gets that the map Ψα is a con-
traction and by recalling Lemma 2.15 the unique solution of the fixed point equation
satisfies ‖u‖σ+ ρ

2
≤ ‖α‖σ+ρ. Now assume that α(·;ω), ω ∈ Ω is Lipschitz w.r. to ω.

Recalling the definition (2.19) and using the fixed point equation u = Ψα(u), one
computes for any ω1, ω2 ∈ Ω

∆ω1ω2u(ϕ) = α(ϕ+ u(ϕ;ω1);ω1)− α(ϕ+ u(ϕ;ω2);ω2)

= α(ϕ+ u(ϕ;ω1);ω1)− α(ϕ+ u(ϕ;ω1);ω2)

+ α(ϕ+ u(ϕ;ω1);ω2)− α(ϕ+ u(ϕ;ω2);ω2) .

By taking R = R(ρ) small enough, using the mean value Theorem, the Cauchy esti-
mates of Lemma 2.7 and the composition Lemma 2.15, one gets

‖∆ω1ω2
u‖σ+ ρ

2
≤ ‖∆ω1ω2

α‖σ+ρ + C(ρ) sup
ω∈Ω
‖α(·;ω)‖σ+ρ‖∆ω1ω2

u‖σ+ ρ
2
.

Hence, by taking C(ρ) supω∈Ω ‖α(·;ω)‖σ+ρ ≤ 1
2 , one gets that ‖∆ω1ω2

u‖σ+ ρ
2
≤ 2‖∆ω1ω2

α‖σ+ρ

and the claimed Lipschitz estimate follows.

Proof of Proposition 2.13. Clearly the map ϕ 7→ ϕ+ α(ϕ) is invertible by taking
‖α‖σ+ρ ≤ ε small enough. By applying Lemma 2.16 there exists a unique α̃ ∈
H(T∞σ+ ρ

2
, `∞) with ‖α̃‖σ+ ρ

2
. ‖α‖σ+ρ satisfying the equation

α̃(ϑ) + α(ϑ+ α̃(ϑ)) = 0

for ϑ ∈ T∞σ+ ρ
2
. The same holds exchanging ϑ  ϕ and α  α̃ for ϕ ∈ T∞σ . Hence

ϑ 7→ ϑ+α̃(ϑ) is the inverse of ϕ 7→ ϕ+α(ϕ) and vice-versa and the proof is concluded.

3. Linear operators. Given a linear operator R : L2(T) → L2(T), we identify
it with its matrix representation (Rk′k )k,k′∈Z with respect to the exponential basis
where

Rk
′

k :=
1

2π

∫
T
R[eik′x]e−ikx dx .



16 R. MONTALTO AND M. PROCESI

Clearly given R as above, the adjoint w.r.t the standard hermitian product in L2(C)
is given by

(3.1) (R∗)k
′

k = Rkk′ .

We may also give a block-matrix decomposition by grouping together the matrix-
Fourier indices with the same absolute values. More precisely, we define for any j ∈ N0

the space Ej as

(3.2) E0 := span{1} , Ej := span{eijx, e−ijx}, ∀j ∈ N

and we define the corresponding projection operator πj as
(3.3)

π0 : L2(T)→ L2(T), u(x) =
∑
j∈Z

û(j)eijx 7→ π0u(x) := û(0) ,

πj : L2(T)→ L2(T), u(x) =
∑
j∈Z

û(j)eijx 7→ πju(x) := û(j)eijx + û(−j)e−ijx , j ∈ N .

The following properties follow directly from the definitions (3.2), (3.3):
(3.4)

π2
j = πj , ∀j ∈ N0, πjπj′ = 0, ∀j 6= j′ ∈ N0,

∑
j∈N0

πj = Id, L2(T) = ⊕j∈N0
Ej .

Hence, any linear operator R : L2(T) → L2(T) can be written in 2 × 2 block-
decomposition

(3.5) R =
∑

j,j′∈N0

πjRπj′ .

where j, j′ ∈ N0 the operator πjRπj′ is a linear operator in B(Ej′ ,Ej). If j, j′ ∈ N,
the operator πjRπj′ can be identified with the 2× 2 matrix defined by

(3.6)

(
Rj
′

j R−j
′

j

Rj
′

−j R−j
′

−j

)
.

The action of any linear operator M ∈ B(Ej′ ,Ej), j, j
′ ∈ N is given by

(3.7) Mu(x) =
∑
k=±j
k′=±j′

Mk′

k û(k′)eikx , ∀u ∈ Ej′ , u(x) = û(j′)eij′x + û(−j′)e−ij′x .

The operator π0Rπ0 ∈ B(E0) is identified with the multiplication operator by the
matrix element R0

0 and if j, j′ ∈ N, the operators πjRπ0, π0Rπj are identified with
the vectors (

R0
j

R0
−j

)
and

(
Rj
′

0 ,R
−j′
0

)
.

We denote by [R] the block-diagonal part of the operator R, namely

(3.8) [R] :=
∑

j∈N0

πjRπj .
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If πjRπj′ = 0, for any j 6= j′, we have R = [R] and we refer to such operators as
2 × 2 block-diagonal operators. Note that for any j, j′ ∈ N0, the adjoint operator
M∗ ∈ B(Ej ,Ej′) is thus defined as 4

(3.9) (M∗)k
′

k := Mk
k′ .

We denote by S(Ej) the space of self-adjoint matrices in B(Ej).
For any j, j′ ∈ N0, we endow B(Ej′ ,Ej) with the Hilbert-Schmidt norm

(3.10) ‖X‖HS :=
√

Tr(XX∗) =
( ∑
|k|=j
|k′|=j′

|Xk′

k |2
) 1

2

.

For any σ > 0, m ∈ R we define the class of linear operators of order m (densely
defined on L2(T)) Bσ,m as

(3.11)

Bσ,m :=
{
R : L2(T)→ L2(T) : ‖R‖Bσ,m <∞

}
where

‖R‖Bσ,m := sup
j′∈N0

∑
j∈N0

eσ|j−j
′|‖πjRπj′‖HS〈j′〉−m .

The following monotonicity properties hold:

(3.12) ‖R‖Bσ,m ≤ ‖R‖Bσ′,m , σ < σ′ , ‖R‖Bσ,m ≤ ‖R‖Bσ,m′ , m′ ≤ m.

As a notation, if m = 0, we write Bσ instead of Bσ,0. Note that a direct consequence
of the definition is that if R ∈ Bσ,m then (recall that D = −i∂x)

(3.13) ‖R‖Bσ,m = ‖R〈D〉−m‖Bσ

where for any α ∈ R, the diagonal operator 〈D〉α is defined by

〈D〉αu(x) :=
∑
j∈Z
〈j〉αû(j)eijx .

Note that Bσ is contained in the set of bounded linear operators B(H(Tσ)) as shown
in the following.

Lemma 3.1. Let σ > 0 and Φ ∈ Bσ. Then
(i) ‖Φ‖B(H(Tσ)) ≤ ‖Φ‖Bσ
(ii) For any s ≥ 0, ‖Φ‖B(Hs(T)) .s σ−s‖Φ‖Bσ .

Proof. Proof of (i) Let Φ ∈ Bσ. According to (3.3), (3.5), for u ∈ H(Tσ),
set Φu(x) =

∑
j,j′∈N0

πjΦπj′ [πj′u]. Then, using that for any j, j′ ∈ N0, eσ|j| ≤
eσ|j−j

′|eσ|j
′|, one gets the chain of inequalities

‖Φu‖σ =
∑
j∈N0

eσ|j|
∥∥∥ ∑
j′∈N0

πjΦπj′ [πj′u]
∥∥∥
L2

≤
∑
j′∈N0

eσ|j
′|‖πj′u‖L2

( ∑
j∈N0

eσ|j−j
′|‖πjΦπj′‖HS

)
≤ sup
j′∈N0

( ∑
j∈N0

eσ|j−j
′|‖πjΦπj′‖HS

)
‖u‖σ

(3.11)

≤ ‖Φ‖Bσ‖u‖σ .

4If j, j′ ∈ N, A ∈ B(E0), B ∈ B(Ej′ ,E0), C ∈ B(E0,Ej), then

(A∗)00 := A0
0 , (B∗)0k = Bk

0 , k = ±j′, (C∗)k0 = C0
k , k = ±j .
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Proof of (ii). Let s ≥ 0 and u ∈ Hs(T). Then, using that for any j, j′ ∈ N0,
〈j〉 . 〈j′〉+ 〈j − j′〉 . 〈j′〉〈j − j′〉, one gets that

‖Φu‖2Hs =
∑
j∈N0

〈j〉2s
∥∥∥ ∑
j′∈N0

πjΦπj′ [πj′u]
∥∥∥2

L2
≤
∑
j∈N0

∥∥∥ ∑
j′∈N0

〈j〉sπjΦπj′ [πj′u]
∥∥∥2

L2

.s
∑
j∈N0

( ∑
j′∈N0

〈j′〉s〈j − j′〉s‖πjΦπj′‖HS‖πj′u‖L2

)2

Moreover, by using the Cauchy-Schwartz inequality, one gets

‖Φu‖2Hs .s
∑
j′∈N0

〈j′〉2s‖πj′u‖2L2

∑
j∈N0

〈j − j′〉2(s+1)‖πjΦπj′‖2HS

(3.11)

.s sup
k∈N0

〈k〉2(s+1)e−σ|k|‖Φ‖Bσ‖u‖Hs .s σ−s‖Φ‖Bσ‖u‖Hs

which proves the claimed estimate.

3.1. Töplitz in time linear operators. We now consider ϕ-dependent families
of linear operators on L2(T) i.e. absolutely convergent Fourier series T∞σ → L2(T).

Definition 3.2. For σ > 0, m ∈ R we consider R ∈ H(T∞σ ,Bσ,m). We define
the decay norm

(3.14) |R|σ,m :=
∑
`∈Z∞∗

eσ|`|η‖R̂(`)‖Bσ,m .

Moreover, given γ ∈ (0, 1) and if R = R(ϕ;ω) depends on the parameter ω ∈ Ω, we
define

(3.15)

|R|Lip(γ,Ω)
σ,m := sup

ω∈Ω
|R(ω)|σ,m + γ|R|lipσ,m+2 ,

|R|lipσ,m+2 := sup
ω1,ω2∈Ω
ω1 6=ω2

|R(ω1)−R(ω2)|σ,m+2

‖ω1 − ω2‖∞
.

If m = 0 we write | · |σ instead of | · |σ,m. By recalling (3.12), one can easily see that
the following properties hold:

(3.16)
| · |σ,m ≤ | · |σ′,m, | · |Lip(γ,Ω)

σ,m ≤ | · |Lip(γ,Ω)
σ′,m ∀σ ≤ σ′ ,

| · |σ,m ≤ | · |σ,m′ , | · |Lip(γ,Ω)
σ,m ≤ | · |Lip(γ,Ω)

σ,m′ ∀m′ ≤ m.

Definition 3.3. We say that R ∈ H(T∞σ ,Bσ,m) is self-adjoint (resp. skew self-
adjoint or unitary) if for all ϕ ∈ T∞, the operator R(ϕ) ∈ Bσ,m is self-adjoint (resp.
skew self-adjoint or unitary ).

We now state some standard properties of linear operators in H(T∞σ ,Bσ,m).

Lemma 3.4. Let Tσ × T∞σ → C, (x, ϕ) 7→ a(x, ϕ) be in H(Tσ+ρ × T∞σ+ρ). Then
the multiplication operator Ma : u 7→ au satisfies |Ma|σ . ρ−1‖a‖σ+ρ. If a(x, ϕ;ω),

ω ∈ Ω ⊆ R0 is Lipschitz w.r. to ω, then |Ma|Lip(γ,Ω)
σ . ρ−1‖a‖Lip(γ,Ω)

σ+ρ .
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Lemma 3.5. Let N, σ, ρ > 0, m,m′ ∈ R, R ∈ H(T∞σ ,Bσ,m), Q ∈ H(T∞σ+ρ,Bσ+ρ,m′).

(i) The product operator RQ ∈ H(T∞σ ,Bσ,m+m′) with |RQ|σ,m+m′ .m ρ−|m||R|σ,m|Q|σ+ρ,m′ .

If R(ω),Q(ω) depend on a parameter ω ∈ Ω ⊆ R0, then |RQ|Lip(γ,Ω)
σ,m+m′ .m ρ−(|m|+2)|R|Lip(γ,Ω)

σ,m |Q|Lip(γ,Ω)
σ+ρ,m′ .

(ii) The projected operator |Π⊥NR|σ,m ≤ e−ρN |R|σ+ρ,m. If R(ω) depends on a param-

eter ω ∈ Ω ⊆ R0, then the same statement holds by replacing | · |σ,m with | · |Lip(γ,Ω)
σ,m .

(iii) The mean value |[R̂(0)]|σ,m ≤ |R|σ,m. Moreover, if R = R(ω) depends on
a parameter ω ∈ Ω ⊆ R0, then the same statement holds by replacing | · |σ,m with

| · |Lip(γ,Ω)
σ,m .

Iterating the estimate of Lemma 3.5-(i), one has that if R ∈ Hσ+ρ(Bσ+ρ,m), then
there exists a constant C0(m) > 0 such that for any N ≥ 1, RN ∈ Hσ(Bσ,mN ) and

(3.17)
|RN |σ,mN ≤

(
C0(m)ρ−|m||R|σ+ρ,m

)N−1

|R|σ,m ,

|RN |Lip(γ,Ω)
σ,mN ≤

(
C0(m)N−1ρ−(|m|+2)|R|Lip(γ,Ω)

σ+ρ,m

)N−1

|R|Lip(γ,Ω)
σ,m .

Let m ∈ Z. We recall that the operator ∂mx is defined by setting

(3.18) ∂mx [1] = 0, ∂mx [eijx] = imjmeijx j 6= 0 .

Note that this means that ∂0
x = Id− π0, see formula (3.3).

Lemma 3.6. Let σ, ρ > 0, m,m′ ∈ Z, a ∈ H(Tσ+ρ × T∞σ+ρ).

(i) We have ∂mx a∂
m′

x ∈ H(T∞σ ,Bσ,m+m′) and |∂mx a∂m
′

x |σ,m+m′ . ρ−|m|‖a‖σ+ρ. If

a(·;ω), ω ∈ Ω is Lipschitz w.r. to ω, then |∂mx a∂m
′

x |
Lip(γ,Ω)
σ,m+m′ . ρ

−|m|‖a‖Lip(γ,Ω)
σ+ρ .

(ii) For any N ∈ N

(3.19) ∂mx a∂
m′

x =

N−1∑
i=0

ci,m(∂ixa)∂m+m′−i
x +RN (a)

where the remainder RN (a) satisfies the estimate

(3.20) |RN (a)|σ,m+m′−N .m,N ρ−(2N+|m|+1)‖a‖σ+ρ .

Moreover, one has c0,m = 1, c1,m = m. If a(·;ω), ω ∈ Ω is Lipschitz w.r. to ω, then

(3.21) |RN (a)|Lip(γ,Ω)
σ,m+m′−N .m,N ρ−(2N+|m|+1)‖a‖Lip(γ,Ω)

σ+ρ .

(iii) Let b(·;ω) ∈ H(Tσ+ρ × T∞σ+ρ), ω ∈ Ω and set A = a∂mx , B := b∂m
′

x . Then

AB ∈ H(T∞σ ,Bσ,m+m′) satisfies, for any N ≥ 1, the expansion

(3.22) AB = ab∂m+m′

x +mabx∂
m+m′−1
x +

N−1∑
i=2

ci,ma(∂ixb)∂
m+m′−i
x +RN (a, b) ,

where cm,i ∈ R for any i = 2, . . . , N−1, the remainder RN (a, b) satisfies the estimate

(3.23) |RN (a, b)|Lip(γ,Ω)
σ,m+m′−N .m,m′,N ρ−κ‖a‖Lip(γ,Ω)

σ+ρ ‖b‖Lip(γ,Ω)
σ+ρ

for some constant κ = κ(m,m′, N) > 0. As a consequence for any N ≥ 1, the
commutator [A,B], admits the expansion

[A,B] = (mabx−m′axb)∂m+m′−1
x +

N−1∑
i=2

(
cm,ia(∂ixb)−cm′,i(∂ixa)b

)
∂m+m′−i
x +RN (a, b)−RN (b, a) .
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Proof. Proof of (i). It follows by Lemmata 3.5, 3.4 and using that for any

p ∈ Z, σ > 0, |∂px|σ,p = |∂px|
Lip(γ,Ω)
σ,p ≤ 1.

Proof of (ii). Let R := ∂mx a∂
m′

x . Then R(ϕ) =
∑
`∈Z∞∗

R̂(`)ei`·ϕ, where for any

` ∈ Z∞∗ , the operator R̂(`) admits the matrix representation (R̂j
′

j (`))j,j′∈Z

(3.24) R̂j
′

j (`) = im+m′jmâ(`, j − j′)j′m
′
, ∀j, j′ ∈ Z \ {0} .

We write the Taylor expansion

(3.25) jm = j′m +mj′m−1(j − j′) +

N−1∑
k=2

cm,kj
′m−k(j − j′)k + rN (j, j′)

where the remainder rN (j, j′) is given by

(3.26) rN (j, j′) := cN,m

∫ 1

0

(1− τ)N−1(j′ + τ(j − j′))m−N dτ(j − j′)N .

By using the Petree inequality, one has that

(j′ + τ(j − j′))m−N

j′m−N
.m,N 〈j − j′〉N+|m| .

This latter inequality, implies that

(3.27) |rN (j, j′)| .m,N 〈j′〉m−N 〈j − j′〉2N+|m| .

By the definition (3.24) and using the expansion (3.24), we get the the operator R
can be expanded as

R(ϕ) = a∂m+m′

x +m(∂xa)∂m+m′−1
x +

N−1∑
i=2

cm,i(∂
i
xa)∂m+m′−i

x +RN (ϕ)

where the operator RN (ϕ) =
∑
`∈Z∞∗

R̂N (`)ei`·ϕ and for any ` ∈ Z∞∗ , the operator

R̂N (`) admits the matrix representation

(3.28) (R̂N (`))j
′

j := im+m′ â(`, j − j′)rN (j, j′)j′m
′
, j, j′ ∈ Z \ {0} .

By (3.27), using that â(`, ·) ∈ H(Tσ+ρ), one gets the estimate

(3.29) |R̂N (`)j
′

j | . 〈j − j
′〉2N+|m|e−(σ+ρ)|j−j′|〈j′〉m+m′−N‖â(`, ·)‖σ+ρ .

Furthermore, using that

〈j − j′〉2N+|m|e−
ρ
2 |j−j

′| .N,m ρ−(2N+|m|),

one gets the estimate

(3.30) |R̂N (`)j
′

j | . ρ
−(2N+|m|)e−(σ+ ρ

2 )|j−j′|〈j′〉m+m′−N‖â(`, ·)‖σ+ρ .

Now if j, j′ ∈ N0, using the for any δ > 0, e−δ|j+j
′| ≤ e−δ|j−j

′|, the latter estimate
implies also the estimate on the 2× 2 block πjR̂N (`)πj′ of the form
(3.31)

‖πjR̂N (`)πj′‖ .m,N ρ−(2N+|m|)e−(σ+ ρ
2 )|j−j′|〈j′〉m+m′−N‖â(`, ·)‖σ+ρ, ∀j, j′ ∈ N0 .
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Then for any j′ ∈ N0, one has that∑
j∈N0

eσ|j−j
′|‖πjR̂N (`)πj′‖〈j′〉N−(m+m′) .m,N ρ−(2N+|m|)‖â(`, ·)‖σ+ρ

∑
j∈N0

e−
ρ
2 |j−j

′|

.m,N ρ−(2N+|m|+1)‖â(`, ·)‖σ+ρ

which implies that

‖R̂N (`)‖Bσ,m+m′−N .m,N ρ−(2N+|m|+1)‖â(`, ·)‖σ+ρ .

By using this latter estimate one gets that

|RN |σ,m+m′−N .m,N ρ−(2N+|m|+1)
∑
`∈Z∞∗

eσ|`|η‖â(`, ·)‖σ+ρ .m,N ρ−(2N+|m|+1)‖a‖σ+ρ

which is exactly the claimed estimate (3.20).
If a depends on the parameter ω ∈ Ω ⊆ R0, given ω1, ω2 ∈ Ω, one expands the
operator ∂mx (∆ω1ω2

a)∂m
′

x as in (3.19) where a is replaced by ∆ω1ω2
a and the remainder

RN (∆ω1ω2
a) is estimated in term of ∆ω1ω2

a. The Lipschitz estimate then follows.
Proof of (iii). The claimed expansion (3.22) follows by a repeated application of
the item (i). The estimates of the remainder RN (a, b) follows by using the estimates
of the items (i) and (ii) and by using the composition Lemma 3.5. The expansion of
the commutator follows easily by expanding AB and BA.

Lemma 3.7 (Exponential map). Let σ > 0, ρ ∈ (0, 1), m ≥ 0 and R(ω) ∈
H(T∞σ+ρ,Bσ+ρ,−m), ω ∈ Ω ⊆ R0 and assume that

(3.32) ρ−2|R|Lip(γ,Ω)
σ+ρ ≤ δ

for some δ ∈ (0, 1) small enough. Then, for any N ≥ 1, the map ΦN := exp(R) −∑N−1
n=0

Rn
n! ∈ H(T∞σ ,Bσ,−Nm) with

(3.33) |ΦN |Lip(γ,Ω)
σ,−Nm .

(
C0ρ

−(|m|+2)|R|σ+ρ,−m

)N
.

As a consequence exp(R) ∈ H(T∞σ ,Bσ) and

(3.34) |exp(R)|Lip(γ,Ω)
σ ≤ 1 + Cρ−(|m|+2)|R|Lip(γ,Ω)

σ+ρ,−m

for some constant C > 0.

4. Normal form. As we said in the introduction we want to conjugate to con-
stant coefficients the Schrödinger equation ∂tu = L(ωt)u where

L(ϕ) := i(1 + εV2(x, ϕ))∂xx + εiV1(x, ϕ)∂x + εiV0(x, ϕ) .

We assume that the functions V0,V1,V2 ∈ H(T∞σ̄ × Tσ̄), for some σ̄ > 0 satisfy the
condition (1.6), so that L(ϕ) is an L2 skew selfadjoint linear operator.

4.1. Normalization of the x-dependence of the highest order term. We
consider an operator induced by an analytic diffeomorphism of the torus

(x, ϕ) 7→ (x+ β(x, ϕ), ϕ)
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where β is a real on real analytic function on the infinite dimensional torus that will
be determined later. We make the ansatz that

(4.1) β ∈ H(Tσ1 × T∞σ1
), ‖β‖σ .σ1,σ̄ δ, ∀0 < σ1 < σ̄ .

By Proposition 2.13, for any 0 < σ1 < σ̄ there exists δ0(σ1, σ̄) such that for any
δ ≤ δ0, the map (x, ϕ) 7→ (x+ β(x, ϕ), ϕ) is invertible, with inverse given by (y, ϕ) 7→
(y + β̃(y, ϕ), ϕ) and

(4.2) β̃ ∈ H(Tσ2
× T∞σ2

), ‖β̃‖σ2
.σ1,σ2

‖β‖σ1
, ∀σ2 < σ1 < σ̄ .

We now define the operator

(4.3) Φ(1)(ϕ)[u] :=
√

1 + βx(x, ϕ)u(x+ β(x, ϕ)) .

A direct calculation shows that this map is unitary and, if β is appropriately small,
invertible with inverse given by

(4.4) Φ(1)(ϕ)−1[u] :=

√
1 + β̃y(y, ϕ)u(y + β̃(y, ϕ))

for ϕ ∈ T∞σ with σ < σ2. Note that one has the relation

(4.5) 1+ β̃y(y, ϕ) =
1

1 + βx(y + β̃(y, ϕ), ϕ)
, 1+βx(x, ϕ) =

1

1 + β̃y(x+ β(x, ϕ), ϕ)
.

The following lemma holds.

Lemma 4.1. For any σ < σ′ < σ̄, there exists δ ≡ δ(σ, σ′, σ) ∈ (0, 1) such that if
ε ∈ (0, δ) the following holds. Define

(4.6)

m2(ϕ) :=
( 1

2π

∫
T

dx√
1 + εV2(x, ϕ)

dx
)−2

β(x, ϕ) := ∂−1
x

[ √
m2(ϕ)√

1 + εV2(x, ϕ)
− 1
]
.

(i) The map T∞σ → B(H
(
Tσ′),H(Tσ)

)
, ϕ 7→ Φ(1)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T)
)
, ϕ 7→ Φ(1)(ϕ)±1 is bounded.

(iii) Φ(1)(ϕ) transforms the operator L(ϕ) into

(4.7) L(1)(ϕ) := (Φ
(1)
ω∗ )L(ϕ) = im2(ϕ)∂2

x + a1(x, ϕ)∂x + a0(x, ϕ)

where the functions m2 ∈ H(T∞σ ), β, β̃, a1, a0 ∈ H(Tσ × T∞σ ) are independent of the
parameter ω and satisfy the estimates

(4.8) ‖m2 − 1‖σ, ‖β‖σ, ‖β̃‖σ , ‖a1‖σ, ‖a0‖σ .σ,σ̄ ε .

Finally L(1) is skew self-adjoint, hence m2(ϕ), a1(x, ϕ) are real on real while a0 =
−a0 + ∂xa1.

Proof. The proof of the item (i) follows by the definitions (4.3), (4.4), by using

the estimates on β, β̃ (4.8) and by applying Lemmata 2.5, 2.15.

To prove the item (ii) we argue as follows. Since β and β̃ are analytic, then for any ϕ ∈
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T∞ one has β(ϕ, ·), β̃(ϕ, ·) ∈ C∞(T) and supϕ∈T∞ ‖β(ϕ, ·)‖Cs(T) , supϕ∈T∞ ‖β̃(ϕ, ·)‖Cs(T) <
∞ for any s ≥ 0. A direct calculation then shows that supϕ∈T∞ ‖Φ(ϕ)‖B(Hs(T)) ≤
C
(

supϕ∈T∞ ‖β(ϕ, ·)‖Cs(T)

)
and

sup
ϕ∈T∞

‖Φ(ϕ)−1‖B(Hs(T)) ≤ C
(

sup
ϕ∈T∞

‖β̃(ϕ, ·)‖Cs(T)

)
and the result follows.
In order to prove (iii) we remark that the map Φ(1)(ϕ) satisfies the following conju-
gation rules:
(4.9)

Φ(1)(ϕ)−1 ◦ a(x, ϕ) ◦ Φ(1)(ϕ) = a(y + β̃(y, ϕ), ϕ) ,

Φ(1)(ϕ)−1 ◦ ∂x ◦ Φ(1)(ϕ) = (1 + βx(y + β̃(y, ϕ), ϕ))∂y +
1

2
(1 + β̃y(y, ϕ))βxx(y + β̃(y, ϕ), ϕ) ,

Φ(1)(ϕ)−1ω · ∂ϕΦ(1)(ϕ) = ω · ∂ϕβ(y + β̃(y, ϕ), ϕ)∂y +
1

2
(1 + β̃y(y, ϕ))ω · ∂ϕβx(y + β̃(y, ϕ), ϕ) .

Then, recalling (2.2), the transformed operator is
(4.10)

L(1)(ϕ) = ia2(y, ϕ)∂2
y + a1(y, ϕ)∂y + a0(y, ϕ) ,

a2 :=
(

(1 + εV2)(1 + βx)2
)
x=y+β̃(y,ϕ)

,

a1 :=
(

2i(1 + εV2)βxx + εiV1(1 + βx)− ω · ∂ϕβ
)
x=y+β̃(y,ϕ)

,

a0 := i

√
1 + β̃y

(
(1 + εV2)∂xx

√
1 + βx

)∣∣∣
x=y+β̃(y,ϕ)

+
1

2
i(1 + β̃y)

(
εV1βxx + ω · ∂ϕβx

)∣∣∣
x=y+β̃(y,ϕ)

+ εV0(y, ϕ+ β̃(y, ϕ)) .

By the definitions of the functions β(x, ϕ) and m2(ϕ) given in (4.6) one gets

(4.11) a2(x, ϕ) = m2(ϕ), namely (1 + εV2)(1 + βx)2 = m2(ϕ)

hence the operator L(1)(ϕ) in (4.10) takes the form (4.7). Since Φ(1) is unitary, by
construction L(1) is skew self-adjoint.

Since V2 ∈ Hσ̄x,ϕ, by applying Lemma A.4, (applied to the analytic function

f(u) = 1√
1+u

, |u| ≤ 1
2 ) and by the definition (4.6), one gets that for ε small enough,

β ∈ H(Tσ1
× T∞σ1

), m2 ∈ H(T∞σ1
) for any 0 < σ1 < σ̄. Using the mean value theorem,

one gets the estimate, ‖β‖σ1
, ‖m2−1‖σ1

.σ1,σ̄ ε. The ansatz (4.1) is then proved. The
ansatz (4.2), follows by Proposition 2.13. Finally, by applying Lemmata A.4, 2.15,
2.7, and using that V2,V1,V0 ∈ H(Tσ × T∞σ ), one deduces the claimed properties on
the functions a0 and a1.

4.2. Reduction to constant coefficients of the highest order term. Our
next purpose is to eliminate the ϕ-dependence from the highest order coefficient
m2(ϕ)∂xx of the operator L(1)(ϕ) in (4.7). To achieve this we conjugate the equation
∂tu = iL(1)(ωt)u by means of a reparameterization of time t 7→ t+ α(ωt), where α is
a suitable analytic function which has to be determined. More precisely we consider
the change of variables

(4.12) u(t, x) = Φ(2)v(t, x) := v(x, t+ α(ωt)), (x, t) ∈ T× R .
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We assume that α(ϕ) is real on real and satisfies the ansatz

(4.13) α ∈ H(T∞σ1
), ‖α‖σ1 .σ1,σ̄ δ, ∀0 < σ1 < σ̄ .

By applying Proposition 2.13, for any σ2 < σ̄ there exists δ0 = δ0(σ2, σ1, σ̄) small
enough such that if δ ≤ δ0, the map ϕ 7→ ϕ + ωα(ϕ) is invertible with inverse given
by ϑ 7→ ϑ+ ωα̃(ϑ) and

(4.14) α̃ ∈ H(T∞σ2
), ‖α̃‖σ2

.σ1,σ2
‖α‖σ1

, ∀σ2 < σ1 < σ̄ .

The inverse of the map Φ(2) in (4.12) is then given by

(4.15) (Φ(2))−1u(x, τ) := u(x, τ + α̃(ωτ)) .

Remark 4.2. If u(x) is a function independent of the ϕ, then (Φ(2))±1u = u.

The following lemma holds.

Lemma 4.3. Let ω ∈ Dγ . For any σ < σ̄ there exists δ(σ, σ̄) > 0 such that if
εγ−1 ≤ δ, then, setting

(4.16) λ2 := m̂2(0) =

∫
T∞

m2(ϕ) dϕ , α := (ω · ∂ϕ)−1
[m2

λ2
− 1
]
,

then Φ(2) transforms the operator L(1)(ϕ) in

(4.17) L(2)(ϑ) = iλ2∂
2
x + b1(ϑ, x)∂x + b0(ϑ, x) .

The constant λ2 ∈ R is independent of ω. For all ω ∈ Dγ the functions α(·;ω), α̃(·;ω) ∈
H(T∞σ ), b1(·;ω), ib0(·;ω) ∈ H(Tσ×T∞σ ) are well defined and real on real. Furthermore,
for any Ω ⊆ Dγ the following estimates hold:

|λ2 − 1|, ‖b0‖Lip(γ,Ω)
σ , ‖b1‖Lip(γ,Ω)

σ . ε , ‖α‖Lip(γ,Ω)
σ , ‖α̃‖Lip(γ,Ω)

σ . εγ−1 .

Proof. A direct calculation shows that formula (2.2) reads
(4.18)

L(2)(ϑ) := (Φ
(2)
ω∗ )L(1)(ϕ) =

1

ρ(ϑ)
L(1)(ϑ+ ωα̃(ϑ)) , ρ(ϑ) := 1 + ω · ∂ϕα(ϑ+ ωα̃(ϑ)) .

Note that, since L(1)(ωt) is skew self-adjoint then also L(2)(ωt) is skew self-adjoint.
By (4.18), one has

(4.19)

L(2)(ϑ) = ib2(ϑ)∂2
x + b1(ϑ, x)∂x + b0(ϑ, x) ,

b2(ϑ) :=
[ m2

1 + ω · ∂ϕα

]∣∣∣
ϕ=ϑ+ωα̃(ϑ)

,

b1(ϑ, x) :=
[ a1

1 + ω · ∂ϕα

]∣∣∣
ϕ=ϑ+ωα̃(ϑ)

,

b0(ϑ, x) :=
[ a0

1 + ω · ∂ϕα

]∣∣∣
ϕ=ϑ+ωα̃(ϑ)

.

By the definitions of α(ϕ) and λ2 ∈ R given in (4.16), one obtains that

(4.20) b2(ϑ) = λ2, namely
m2(ϕ)

1 + ω · ∂ϕα(ϕ)
= λ2
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and therefore the linear operator L(2)(ϕ) defined in (4.19) takes the form given in
(4.17). Note that the function m2(ϕ) defined in (4.6) is independent of ω and
therefore also λ2 does not depend on ω. By applying Lemma 4.1, by the defini-
tion (4.16) and by Lemmata 2.11-(ii), 2.13, one gets that |λ2 − 1| . ε and that for
any 0 < σ < σ̄, for εγ−1 ≤ δ, for some δ = δ(σ, σ̄) small enough, α, α̃ ∈ H(T∞σ ) with

‖α‖Lip(γ,Ω)
σ , ‖α̃‖Lip(γ,Ω)

σ .σ,σ̄ εγ−1. Finally, recalling the definitions (4.19), using the
properties on a0 and a1 stated in Lemma 4.1 and by applying Lemmata A.4 (with
f(u) = 1

1+u , |u| ≤ 1
2 ), 2.15, 2.9-(ii), we can deduce the claimed properties on b0 and

b1.

4.3. Elimination of the x-dependence from the first order term. The
next aim is to eliminate the dependence on x from the first order term in (4.17). To
this aim, we conjugate the vector field L(2)(ϕ) by means of a multiplication operator

(4.21) Φ(3)(ϕ) : u 7→ eip(x,ϕ)u

where p is an analytic real on real function which has to be determined. The following
lemma holds.

Lemma 4.4. Let ω ∈ Dγ . For any 0 < σ < σ̄ there exists δ(σ, σ̄) > 0 such that if
εγ−1 ≤ δ, the following holds. Define

(4.22) m1(ϕ) :=
1

2π

∫
T
b1(x, ϕ) dx , p(x, ϕ) :=

∂−1
x [b1(x, ϕ)−m1(ϕ)]

2λ2
.

(i) The map T∞σ → B(H
(
Tσ)

)
, ϕ 7→ Φ(3)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T)
)
, ϕ 7→ Φ(3)(ϕ)±1 is bounded.

(iii) The operator Φ(3)(ϕ) transforms L(2)(ϕ) in

(4.23) L(3)(ϕ) = iλ2∂xx +m1(ϕ)∂x + c0(x, ϕ)

where the functions p(·;ω), ic0(·;ω) ∈ H(Tσ×T∞σ ), m1(·;ω) ∈ H(T∞σ ) are real on real,
well defined for ω ∈ Dγ and satisfy for Ω ⊆ Dγ the estimates

(4.24) ‖p‖Lip(γ,Ω)
σ , ‖c0‖Lip(γ,Ω)

σ , ‖m1‖Lip(γ,Ω)
σ .σ,σ̄ ε .

Proof. Item (i) follows by the definition (4.21), by Lemmata 2.5, A.4 and by the
estimates (4.24) on p, which are a straightforward computation.
(ii) Since p is analytic, then p(ϕ, ·) ∈ C∞(T) for any ϕ ∈ T∞ andM(s) := supϕ∈T∞ ‖p(ϕ, ·)‖Cs(T) <
∞ for any s ≥ 0. A direct calculation shows that

supϕ∈T∞ ‖Φ(3)(ϕ)±1‖B(Hs(T)) .s supϕ∈T∞ ‖exp(ip)‖Cs(T) .s exp(M(s)). The lat-
ter estimate proves item (ii).
(iii) A direct calculation shows that
(4.25)

L(3)(ϕ) := (Φ
(3)
ω∗ )L(2)(ϕ) = Φ(3)(ϕ)−1L(2)(ϕ)Φ(3)(ϕ)− Φ(3)(ϕ)−1ω · ∂ϕΦ(3)(ϕ)

= iλ2∂xx + c1(x, ϕ)∂x + c0(x, ϕ)

where

(4.26)
c0 := −iλ2p

2
x − λ2pxx + ib1px − iω · ∂ϕp+ b0 ,

c1 := −2λ2px + b1 .
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The definions of p and m1 given in (4.22) allow to solve the equation

(4.27) − 2λ2px(x, ϕ) + b1(x, ϕ) = m1(ϕ) .

Therefore, the operator L(3)(ϕ) in (4.25)takes the form (4.23).
Note that the skew self-adjoint structure guarantees that im1(ϕ) is a real function

(meaning that it is real on real). The claimed properties on the functions p and m1

follow by their definitions (4.22) and by applying Lemma 4.3. The claimed properties
on the function c0 defined in (4.26) follow by Lemma 4.3 and by applying Lemmata
2.7-(ii), 2.9-(ii).

4.4. Reduction to constant coefficients of the first order term. In or-
der to reduce to constant coefficients the first order term in (4.23), we consider the
transformation

(4.28) Φ(4)(ϕ) : u(x) 7→ u(x+ q(ϕ))

where q is an analytic function on T∞σ to be determined. Clearly, the inverse of Φ(4)(ϕ)
is given by

Φ(4)(ϕ)−1 : u(x) 7→ u(x− q(ϕ)) .

Lemma 4.5. Let ω ∈ Dγ . For any σ < σ̄ there exists δ(σ, σ̄) > 0 such that if
εγ−1 ≤ δ, and define

(4.29) λ1 :=

∫
T∞

m1(ϕ) dϕ = m̂1(0), q(ϕ) := (ω · ∂ϕ)−1[m1(ϕ)− λ1] .

(i) The map T∞σ → B(H
(
Tσ)

)
, ϕ 7→ Φ(4)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T)
)
, ϕ 7→ Φ(4)(ϕ)±1 is bounded.

(iii) The map Φ(4)(ϕ) transforms the operator L(3)(ϕ) as

(4.30) L(4)(ϕ) = iλ2∂xx + λ1∂x + d0(x, ϕ)

where the constant λ1 ∈ R does not depend on ω and q(·;ω) ∈ H(T∞σ ), id0(·;ω) ∈
H(Tσ×T∞σ ) are real on real functions defined for ω ∈ Dγ . Furthermore, the following
bounds hold for any Ω ⊆ Dγ

(4.31) ‖q‖Lip(γ,Ω)
σ , ‖d0‖Lip(γ,Ω)

σ .σ,σ̄ ε , |λ1| . ε .

Proof. Items (i)-(ii) follow as the corresponding ones of Lemma 4.1, by using the
estimate (4.31) on the function q(ϕ), which is a direct computation.

(iii) A direct calculation shows that

(4.32)
L(4)(ϕ) := (Φ

(4)
ω∗ )L(3)(ϕ) = iλ2∂xx +

(
− ω · ∂ϕq(ϕ) +m1(ϕ)

)
∂x + d0(x, ϕ) ,

d0(x, ϕ) := c0(x, ϕ− q(ϕ)) .

By the definition (4.29), we solve the equation

(4.33) − ω · ∂ϕq(ϕ) +m1(ϕ) = λ1 .

Then, the operator L(4) defined in (4.32) takes the form given in (4.30). We now show
that λ1 is independent of ω. By (4.22), (4.29), one has that

λ1 =
1

2π

∫
T∞

∫
T
b1(ϑ, x) dx dϑ
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where by (4.19) and using the properties (A.12), one has that

b1(ϑ, x) =
[ a1

1 + ω · ∂ϕα

]∣∣∣
ϕ=ϑ+ωα̃(ϑ)

= a1(ϑ+ ωα̃(ϑ), x)
(

1 + ω · ∂ϑα̃(ϑ)
)
.

By expanding a1(x, ϕ) in Fourier series, i.e. a1(x, ϕ) =
∑
j∈Z

∑
`∈Z∞∗

â1(`, j)ei`·ϕeijx

one has that

λ1 =
1

2π

∫
T∞

∫
T
b1(ϑ, x) dx dϑ

=
∑
j∈Z

∑
`∈Z∞∗

â1(`, j)

∫
T
eijx dx

∫
T∞

ei`·(ϑ+ωα̃(ϑ))
(

1 + ω · ∂ϑα̃(ϑ)
)
dϑ

=
∑
`∈Z∞∗

â1(`, 0)

∫
T∞

ei`·(ϑ+ωα̃(ϑ))
(

1 + ω · ∂ϑα̃(ϑ)
)
dϑ

LemmaA.3
= â1(0, 0) =

1

2π

∫
T

∫
T∞

a1(x, ϕ) dϕ dx .

By Lemma 4.1, the function a1 does not depend on ω and therefore also λ1 is inde-
pendent of ω.
The estimates on λ1, q, d0 given in (4.32), (4.29) follow by applying Lemmata 4.4,
2.15, 2.11-(ii).

4.5. Elimination of the x-dependence from the zero-th order term. In
order to eliminate the x-dependence from the zero-th order term in the operator
L(4)(ϕ) in (4.32), we conjugate using (2.2), by a transformation

(4.34) Φ(5)(ϕ) := exp(V(ϕ)) where V(ϕ) :=
1

2

(
v(x, ϕ) ◦ ∂−1

x + ∂−1
x ◦ v(x, ϕ)

)
where v(x, ϕ) is a real on real function to be determined. Note that for real values of
the angle ϕ ∈ T∞, one has that V(ϕ) = −V(ϕ)∗, implying that Φ(5)(ϕ) is a unitary
operator.

Lemma 4.6. Let ω ∈ Dγ . For any 0 < σ < σ̄ there exists δ(σ, σ̄) > 0 such that if
εγ−1 ≤ δ, the following holds. Define

(4.35) v :=
1

2iλ2
∂−1
x

(
〈d0〉x − d0

)
.

(i) The map T∞σ → B(H
(
Tσ)

)
, ϕ 7→ Φ(5)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T)
)
, ϕ 7→ Φ(5)(ϕ)±1 is bounded.

(iii) The map Φ(5)(ϕ) transforms the operator L(4)(ϕ) in

(4.36) L(5)(ϕ) := (Φ
(5)
ω∗ )L(4)(ϕ) = iλ2∂xx+λ1∂x+〈d0〉x(ϕ)+e−1(x, ϕ)∂−1

x +R(5)(ϕ)

and the functions v(·;ω) ∈ H(Tσ × T∞σ ) and the operator R(5)(ω) ∈ H
(
T∞σ ,Bσ,−2

)
defined for ω ∈ Dγ satisfy the estimates

(4.37) ‖v‖Lip(γ,Ω)
σ , ‖e−1‖Lip(γ,Ω)

σ , |R(5)|Lip(γ,Ω)
σ,−2 .σ,σ̄ ε .
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Proof. By the definition (4.35), using the estimates on d0 given in Lemma 4.5,
one gets that v satisfies the estimate (4.37). By Lemma 3.6, one has that the operator
V(ϕ) admits an expansion of the form

(4.38) V(ϕ) = v(x, ϕ)∂−1
x −

1

2
vx(x, ϕ)∂−2

x + c−3vxx∂
−3
x +RV(ϕ)

where c−3 ∈ R is a constant and for any 0 < σ < σ̄, RV ∈ H
(
T∞σ ,Bσ,−4

)
and

(4.39) |V|Lip(γ,Ω)
σ,−1 , |RV |Lip(γ,Ω)

σ,−4 .σ,σ̄ ε .

By (4.34), (4.39), Lemma 3.6-(i) and the estimate (3.34), there exists δ = δ(σ, σ) ∈
(0, 1) such that if εγ−1 ≤ δ, |(Φ(5))±1|σ .σ,σ 1. Items (i)-(ii) then follow by applying
Lemmata 2.4, 3.1.
(iii) A direct calculation shows that
(4.40)

L(5)(ϕ) := (Φ
(5)
ω∗ )L(4)(ϕ) = Φ(5)(ϕ)−1L(4)(ϕ)Φ(5)(ϕ)− Φ(5)(ϕ)−1ω · ∂ϕΦ(5)(ϕ)

= iλ2∂xx + λ1∂x + d0(x, ϕ) + [iλ2∂xx + λ1∂x,V(ϕ)]

− Φ(5)(ϕ)−1ω · ∂ϕΦ(5)(ϕ) +R(I)(ϕ)

where the remainder R(I)(ϕ) is given by
(4.41)

R(I)(ϕ) :=

∫ 1

0

(1− t)exp(−τV(ϕ)) [[iλ2∂xx + λ1∂x,V(ϕ)],V(ϕ)] exp(τV(ϕ)) dτ

+

∫ 1

0

e−τV(ϕ)[d0,V(ϕ)]eτV(ϕ) dτ .

By recalling (4.38), (4.39), by applying Lemma 3.6, using that ∂0
x = Id− π0 and that

λ2 = 1 +O(ε), λ1 = O(ε), one obtains that

[iλ2∂xx + λ1∂x,A(ϕ)] = 2iλ2vx(x, ϕ) + a(−1)
v (x, ϕ)∂−1

x +R(II)(ϕ)

where for any 0 < σ < σ̄, a
(1)
v ∈ H(Tσ × T∞σ ), R(II) ∈ H

(
T∞σ ,Bσ,−2

)
with

(4.42) ‖a(−1)
v ‖Lip(γ,Ω)

σ , |R(II)|Lip(γ,Ω)
σ,−2 .σ ε

and

(4.43)

[[iλ2∂xx + λ1∂x,V],V] ∈ H(T∞σ ,Bσ,−2) ,∣∣∣[[iλ2∂xx + λ1∂x,V],V]
∣∣∣Lip(γ,Ω)

σ,−2
.σ,σ̄ ε .

Moreover, using the estimate on d0 provided in Lemma 4.5 and by applying again
Lemma 3.6, one gets that

(4.44) [d0,V] ∈ H(T∞σ ,Bσ,−2), |[d0,V]|Lip(γ,Ω)
σ,−2 .σ,σ̄ ε .

By applying Lemma 3.5, using Lemma 3.7 and the estimate (4.39) to bound exp(±τV(ϕ))
and by applying the estimates (4.43), (4.44), one obtains that

(4.45) R(I) ∈ H
(
T∞σ ,Bσ,−2

)
, |R(I)|Lip(γ,Ω)

σ,−2 .σ,σ̄ ε .
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Moreover, recalling the definition of the operator Φ(5) given in (4.34), using (4.38),
(4.39) and by applying Lemmata 3.6, 3.7, one obtains that

(4.46)
− Φ(5)(ϕ)−1ω · ∂ϕΦ(5)(ϕ) = −ω · ∂ϕv(x, ϕ)∂−1

x +R(III)(ϕ),

R(III)(ϕ) ∈ H
(
T∞σ ,Bσ,−2

)
, |R(III)|Lip(γ,Ω)

σ,−2 .σ,σ̄ ε , ∀0 < σ < σ̄

and therefore by (4.40) one gets
(4.47)

L(5)(ϕ) = λ2∂xx + λ1∂x + d0 + 2λ2vx + e−1(x, ϕ)∂−1
x +R(5)(ϕ) ,

e−1(x, ϕ) := a(−1)
v (x, ϕ)− ω · ∂ϕv(x, ϕ) , R(5)(ϕ) := R(I)(ϕ) +R(II)(ϕ) +R(III)(ϕ) .

The claimed statement then follows since d0 + 2iλ2vx = 〈d0〉x (see (4.35)), by the

estimate (4.37) on v, the estimate (4.42) on a
(−1)
v and the estimates (4.42), (4.45),

(4.46) on R(I),R(II),R(III).

4.6. Elimination of the x dependence from the order −1.. In order to
eliminate the x-dependence from the term of order −1 in the operator L(5) given in
(4.36), we conjugate such an operator by means of a transformation

(4.48) Φ(6)(ϕ) := exp(G(ϕ)) where G(ϕ) :=
i

2

(
g(x, ϕ) ◦ ∂−2

x + ∂−2
x ◦ g(x, ϕ)

)
and g(x, ϕ) is a real on real function to be determined. Note that for real values of
the angle ϕ ∈ T∞, one has that G(ϕ) = −G(ϕ)∗, implying that Φ(6)(ϕ) is unitary.

Lemma 4.7. Let ω ∈ Dγ . For any σ < σ̄ there exists δ(σ, σ̄) > 0 such that if
εγ−1 ≤ δ, the following holds. Define

(4.49) g(x, ϕ) :=
1

2λ2
∂−1
x

[
e−1(x, ϕ)− 〈e−1〉x(ϕ)

]
.

(i) The map T∞σ → B(H
(
Tσ)

)
, ϕ 7→ Φ(6)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T)
)
, ϕ 7→ Φ(6)(ϕ)±1 is bounded.

(iii) The map Φ(6)(ϕ) transform the operator L(5)(ϕ) as

(4.50) L(6)(ϕ) = (Φ
(6)
ω∗ )L(5)(ϕ) = λ2∂xx+λ1∂x+ 〈d0〉x(ϕ) + 〈e−1〉x(ϕ)∂−1

x +R(6)(ϕ)

where the function g(·;ω) ∈ H(Tσ × T∞σ ) is real on real and the operator R(6)(ω) ∈
H
(
T∞σ ,Bσ,−2

)
is skew self-adjoint. Moreover they are defined ω ∈ Dγ and satisfy for

all Ω ⊆ Dγ , the estimates

(4.51) ‖g‖Lip(γ,Ω)
σ , |R(6)|Lip(γ,Ω)

σ,−2 .σ,σ̄ ε .

Proof. By the definition (4.49), using the estimates on e−1 given in Lemma 4.6,
one gets that g satisfies the estimate (4.51). By Lemma 3.6 and by the estimate on g
one has that for any 0 < σ < σ̄,

(4.52) G ∈ H
(
T∞σ ,Bσ,−2

)
, |G|Lip(γ,Ω)

σ,−2 .σ ε .

The above estimate and Lemma 3.7, using that ω · ∂ϕΦ(6) = ω · ∂ϕ(Φ(6) − Id), imply
that for any 0 < σ < σ̄

(4.53) sup
τ∈[0,1]

|exp(±τG)|Lip(γ,Ω)
σ .σ,σ̄ 1, |ω · ∂ϕ(Φ(6))|Lip(γ,Ω)

σ,−2 .σ,σ̄ ε .
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Items (i)-(ii) follow by the estimate (4.53) and by applying Lemmata 2.4, 3.1.
(iii) A direct calculation shows that
(4.54)

L(6)(ϕ) := (Φ
(6)
ω∗ )L(5)(ϕ) = Φ(6)(ϕ)−1L(5)(ϕ)Φ(6)(ϕ)− Φ(6)(ϕ)−1ω · ∂ϕΦ(6)(ϕ)

= iλ2∂xx + λ1∂x + 〈d0〉(ϕ) + e−1(x, ϕ)∂−1
x + [iλ2∂xx + λ1∂x,G(ϕ)]

+R(I)(ϕ)

where the remainder R(ϕ) is given by
(4.55)

R(I)(ϕ) :=

∫ 1

0

(1− t)exp(−τG(ϕ)) [[iλ2∂xx + λ1∂x,G(ϕ)],G(ϕ)] exp(τG(ϕ)) dτ

+

∫ 1

0

e−τG(ϕ)
(

[〈d0〉x + e−1∂
−1
x ,G(ϕ)]

)
eτG(ϕ) dτ − Φ(6)(ϕ)−1ω · ∂ϕΦ(6)(ϕ) .

By recalling the estimate of Lemma 4.5 on d0, the estimate of Lemma 4.6 on e−1, the
estimate (4.52) on G, by applying Lemmata 3.6, 3.5 and using that λ2 = 1+O(ε) and
λ1 = O(ε), one obtains that for any 0 < σ < σ̄
(4.56)

[[λ2∂xx + λ1∂x,G(ϕ)],G(ϕ)] , [〈d0〉x + e−1∂
−1
x ,G(ϕ)] ∈ H

(
T∞σ ,Bσ,−2

)
,∣∣∣[[λ2∂xx + λ1∂x,G(ϕ)],G(ϕ)]

∣∣∣Lip(γ,Ω)

σ,−2
,
∣∣∣[〈d0〉x + e−1∂

−1
x ,G(ϕ)]

∣∣∣Lip(γ,Ω)

σ,−2
.σ,σ̄ ε .

Therefore, the estimates (4.56), (4.53) and Lemma 3.5 imply that the remainder R(I)

defined in (4.55) satisfies

(4.57) R(I) ∈ H
(
T∞σ ,Bσ,−2

)
, |R(I)|Lip(γ,Ω)

σ,−2 .σ,σ̄ ε, ∀0 < σ < σ̄ .

Recalling the definition of G, using the estimate (4.51) on g, by applying Lemma 3.6,
using that λ2 = 1 +O(ε), λ1 = O(ε), one gets that

(4.58) [iλ2∂xx + λ1∂x,G(ϕ)] = −2λ2gx∂
−1
x +R(II)(ϕ)

where for any 0 < σ < σ̄,

(4.59) R(II) ∈ H
(
T∞σ ,Bσ,−2

)
, |R(II)|Lip(γ,Ω)

σ,−2 .σ,σ̄ ε .

Therefore by (4.54), one gets

(4.60)
L(6)(ϕ) = λ2∂xx + λ1∂x + 〈d0〉x +

(
− 2λ2gx + e−1

)
∂−1
x +R(6)(ϕ) ,

R(6)(ϕ) := R(I)(ϕ) +R(II)(ϕ) .

The claimed statement then follows since e−1 − 2λ2gx = 〈e−1〉x (see (4.49)) and by
recalling (4.57), (4.59).

4.7. Reduction to constant coefficients up to order −2.. In the last step of
our regularization procedure, we eliminate the ϕ-dependence from the term 〈d0〉x(ϕ)+
〈e−1〉(ϕ)∂−1

x . To achieve this purpose, we consider the map

(4.61) Φ(7)(ϕ) := exp(F(ϕ)), F(ϕ) := diagj∈Zfj(ϕ)

where for any j ∈ Z, fj are analytic functions to be determined which are purely
imaginary for any real value of the angle ϕ. We prove the following lemma.
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Lemma 4.8. Let ω ∈ Dγ . For any 0 < σ < σ̄ there exists δ(σ, σ̄) > 0 such that if
εγ−1 ≤ δ, the following holds. Define

(4.62)
λ0 :=

1

i
〈d0〉x,ϕ, λ−1 := 〈e−1〉x,ϕ ,

F(ϕ) := (ω · ∂ϕ)−1[〈d0〉x − iλ0] + (ω · ∂ϕ)−1[e−1 − λ−1]∂−1
x .

(i) The map T∞σ → B(H
(
Tσ)

)
, ϕ 7→ Φ(7)(ϕ)±1 is bounded.

(ii) For any s ≥ 0, the map T∞ → B(Hs(T)
)
, ϕ 7→ Φ(7)(ϕ)±1 is bounded.

(iii) The map Φ(7)(ϕ) transform the operator L(6)(ϕ) in

(4.63) L(7)(ϕ) := (Φ
(7)
ω∗ )L(6)(ϕ) = iλ2∂xx + λ1∂x + iλ0 + λ−1∂

−1
x +R(7)(ϕ)

where λ0, λ−1 ∈ R and the operator R(7) ∈ H
(
T∞σ ,Bσ,−2

)
satisfy the estimates

(4.64) |λ0|Lip(γ,Ω), |λ−1|Lip(γ,Ω) . ε , |R(7)|Lip(γ,Ω)
σ,−2 .σ,σ̄ ε .

Proof. Since the operator F(ϕ) is a diagonal operator, one has that [F(ϕ), ∂kx ] = 0
for any k ∈ Z and a direct calculation shows that

(4.65) Φ(7)(ϕ)−1ω · ∂ϕΦ(7)(ϕ) = ω · ∂ϕF(ϕ) .

Therefore, by the definition (4.62), we solve the homological equation

(4.66) − ω · ∂ϕF(ϕ) + 〈d0〉x + 〈e−1〉x∂−1
x = iλ0 + λ−1∂

−1
x .

By the estimates (4.31) on d0 and (4.37) on e−1 one gets that |λ0|Lip(γ,Ω), |λ−1|Lip(γ,Ω) .
ε and by applying Lemmata 2.11, 3.6 one obtains that for any 0 < σ < σ̄,

(4.67) F ∈ H(T∞σ ,Bσ), |F|Lip(γ,Ω)
σ .σ,σ̄ εγ

−1 .

The latter estimate, together with Lemma 3.7 imply that

(4.68) (Φ(7))±1 ∈ H(T∞σ ,Bσ), |(Φ(7))±1|Lip(γ,Ω)
σ ≤ 1 + C(σ, σ̄)εγ−1

for some constant C(σ, σ̄) > 0. Hence, one obtains that
(4.69)

L(7)(ϕ) = (Φ
(7)
ω∗ )L(6)(ϕ) = iλ2∂xx + λ1∂x − ω · ∂ϕF(ϕ) + 〈d0〉x + 〈e−1〉x∂−1

x +R(7)(ϕ) ,

R(7)(ϕ) := Φ(7)(ϕ)−1R(6)(ϕ)Φ(7)(ϕ) .

The estimate (4.64) on the operatorR(7), defined in (4.69), follows by the composition
Lemma 3.5, by the estimate (4.51) on R(6) and by the estimate (4.68) on (Φ(7))±1.

5. The KAM reducibility scheme. In this section we carry out the reducibil-
ity of the equation ∂tu = L0(ωt)u where the operator L0 ≡ L(7) is given in Lemma
4.8. We fix

(5.1) σ0 :=
σ̄

2
.

The operator L0(ϕ) ≡ L0(ϕ;ω) defined for ω ∈ Dγ , has the form

(5.2) L0(ϕ) = iD0 + P0(ϕ)
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where for all Ω ∈ Dγ

(5.3)

D0 := λ2∂xx +
1

i
λ1∂x + λ0 +

1

i
λ−1∂

−1
x ,

λ2, λ1, λ0, λ−1 ∈ R, |λ2 − 1|, |λ1|, |λ0|Lip(γ,Ω), |λ−1|Lip(γ,Ω) . ε ,

|P0|Lip(γ,Ω)
σ0,−2 .σ0

ε .

Note that, as we pointed out in the previous section, the real constants λ2, λ1 do not
depend on the parameter ω. The linear operator D0 is a 2×2 block diagonal operator
D0 = diagj∈N0

D0(j) where for any j ∈ N0, the 2× 2 block D0(j) is given by

(5.4)
D0(j) :=

(
µ

(0)
j 0

0 µ
(0)
−j

)
,

µ
(0)
j := −λ2j

2 + λ1j + λ0 − λ−1j
−1 , µ

(0)
−j := −λ2j

2 − λ1j + λ0 + λ−1j
−1 .

In order to state our reducibility Theorem, we fix some other constants. For n ≥ 1,
we set

(5.5) χ ∈ (1, 2), σn = σ0

(
1− 1

4π

n∑
j=1

1

j2

)
, Nn = 〈n〉3χnN0

and to shorten notation, we set

(5.6) d(`) :=
∏
n∈N

(1 + |`n|4〈n〉4), ∀` ∈ Z∞∗ .

Theorem 5.1 (Reducibility). Let γ ∈ (0, 1). Then there exists δ ∈ (0, 1) small
enough such that if εγ−1 ≤ δ, for any n ≥ 0, the following holds.
(S1)n There exists a linear skew self-adjoint vector field

(5.7) Ln(ϕ) = iDn + Pn(ϕ)

where Dn is a 2 × 2 self-adjoint block diagonal operator Dn = diagj∈N0
Dn(j), Pn ∈

H
(
T∞σn ,B

σn,−2
)

is skew self-adjoint, moreover both are defined for ω ∈ Ωn(γ), where
Ω0(γ) := Dγ and for any n ≥ 1
(5.8)

Ωn(γ) :=
{
ω ∈ Ωn−1(γ) : ‖On−1(`, j, j′)−1‖Op ≤

d(`)

γ
, ∀(`, j, j′) ∈ Z∞∗ × N0 × N0,

j 6= j′ and ‖On−1(`, j, j)−1‖Op ≤
d(`)j2

γ
∀(`, j) ∈ (Z∞∗ \ {0})× N0, |`|η ≤ Nn−1

}
.

For any (`, j, j′) ∈ Z∞∗ ×N0×N0, the operators On−1(`, j, j′) : B(Ej′ ,Ej)→ B(Ej′ ,Ej)
are defined by

(5.9) On−1(`, j, j′) := ω · ` Id +ML(Dn−1(j))−MR(Dn−1(j′)) .

For any j ∈ N0,

(5.10) ‖Dn(j)−D0(j)‖Lip(γ,Ωn)
HS . ε
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and

(5.11) |Pn|Lip(γ,Ωn)
σn,−2 ≤ C∗εe−χ

n

for some constant C∗ > 0.

For n ≥ 1, there exists a map Φn(ϕ) := exp(Fn(ϕ)), where Fn ∈ H
(
T∞σn−1+σn

2

,B
σn−1+σn

2

)
is skew self adjoint and defined for ω ∈ Ωn(γ), which satisfies

(5.12) Ln(ϕ) = (Φn)ω∗Ln−1(ϕ) .

The operator Fn satisfies the estimate

(5.13) |Fn|Lip(γ,Ωn)
σn−1+σn

2

. εγ−1e−
χn−1

2 .

(S2)n For any j ∈ N0 there exists a Lipschitz extension of the function Dn(j; ·) :

Ωn(γ) → S(Ej) to the set Dγ , denoted by D̃n(j; ·) : Dγ → S(Ej) that, for any n ≥ 1,
satisfies the estimate

(5.14)
sup
ω∈Dγ

‖D̃n(j;ω)− D̃n−1(j;ω)‖HS . 〈j〉−2εe−χ
n−1

,

‖D̃n(j)− D̃n−1(j)‖lipHS . εγ−1e−χ
n−1

.

5.1. Proof of Theorem 5.1. Proof of (Si)0, i = 1, 2. The claims hold by
recalling the properties of the operator L0 listed in (5.2)-(5.4).

(S2)0 holds, since the constants λ2 and λ1 are independent of ω and λ0, λ−1 are
already defined on Dγ .

5.1.1. The reducibility step. Proof of (S1)n+1. We now describe the in-
ductive step, showing how to define a symplectic transformation Φn+1 := exp(Fn+1)
so that the transformed vector field Ln+1(ϕ) = (Φn+1)ω∗Ln(ϕ) has the desired prop-
erties. We write Πn instead of ΠNn to denote the projector on the Fourier modes
|`|η ≤ Nn, where Nn is defined in (5.5). A direct calculation shows that
(5.15)
Ln+1(ϕ) = (Φn+1)ω∗Ln(ϕ) = Φn+1(ϕ)−1Ln(ϕ)Φn+1(ϕ)− Φn+1(ϕ)−1ω · ∂ϕΦn+1(ϕ)

= iDn − ω · ∂ϕFn+1 + [iDn,Fn+1] + ΠnPn + Π⊥nPn +

∫ 1

0

(1− τ)e−τFn+1 [[iDn,Fn+1],Fn+1]eτFn+1 dτ

+

∫ 1

0

e−τFn+1 [Pn,Fn+1]eτFn+1 dτ −
∫ 1

0

(1− τ)e−τFn+1 [ω · ∂ϕFn+1,Fn+1]eτFn+1 dτ .

Our next aim is to solve the Homological equation

(5.16) − ω · ∂ϕFn+1 + [iDn,Fn+1] + ΠnPn = [P̂n(0)]

where the diagonal part of the operator P̂n(0) is defined according to (3.8).

Lemma 5.2. For all ω ∈ Ωn+1(γ) (see (5.8)), there exists a unique solution
Fn+1 ∈ H

(
T∞σn−ρ,B

σn−ρ
)

with ρ > 0, σn − ρ > 0 of the Homological equation (5.16)
satisfying the bound

(5.17) |Fn+1|Lip(γ,Ωn+1)
σn−ρ . γ−1exp

( τ

ρ
1
η

ln
(τ
ρ

))
|Pn|Lip(γ,Ωn)

σn,−2

for some appropriate constant τ > 1.
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Proof. In order to simplify notations in this proof, we drop the index n and we
write + instead of n + 1. Passing to the 2× 2 block representation of operators and
taking the Fourier transform w.r. to ϕ, one gets that the equation (5.16) is equivalent
to

(5.18)

i
(
− ω · `πjF̂+(`)πj′ +D(j)πjF̂+(`)πj′ − πjF̂+(`)πj′D(j′)

)
+ πjP̂(`)πj′ = 0

∀(`, j, j′) ∈ Z∞∗ × N0 × N0, (`, j, j′) 6= (0, j, j), |`|η ≤ N,

and πjF̂+(0)πj = 0, ∀j ∈ N0 .

According to the definition given in (5.9), for any ω ∈ Ω+(γ) ≡ Ωn+1(γ), since the
operator

(5.19) O(`, j, j′) := ω · ` Id−ML(D(j)) +MR(D(j′))

is invertible, one defines F+ as

(5.20) πjF̂+(`)πj′ :=

{
−iO(`, j, j′)−1πjP̂(`)πj′ , ∀(`, j, j′) 6= (0, j, j)

0 ∀(`, j, j′) = (0, j, j) .

For any (`, j, j′) 6= (0, j, j), j 6= j′, |`| ≤ N one obtains that

(5.21) ‖πjF̂+(`)πj′‖HS ≤
d(`)

γ
‖πjP̂(`)πj′‖HS

and for ` 6= 0, |`|η ≤ N ,

(5.22) ‖πjF̂+(`)πj‖HS ≤
d(`)〈j〉2

γ
‖πjP̂(`)πj‖HS .

Let σ ≡ σn. By recalling the definition (3.11), the estimates (5.21), (5.22) imply that
for any ` ∈ Z∞, |`|η ≤ N

(5.23) ‖F̂+(`)‖Bσ−ρ ≤ d(`)γ−1‖P̂(`)‖Bσ,−2 .

Hence in view of the definition (3.14), one obtains that
(5.24)

|F+|σ−ρ ≤ γ−1
∑
`∈Z∞∗

d(`)e(σ−ρ)|`|η‖P̂(`)‖Bσ,−2 ≤ γ−1
(

sup
`∈Z∞∗

d(`)e−ρ|`|η
)
|P|σ,−2

LemmaB.1
≤ γ−1exp

( τ

ρ
1
η

ln
(τ
ρ

))
|P|σ,−2 .

Now we show the Lipschitz estimate. Let ω1, ω2 ∈ Ω+(γ). Then for any (`, j, j′) 6=
(0, j, j′), |`|η ≤ N ,
(5.25)

∆ω1ω2

(
πjF̂+(`)πj′

)
= −iO(`, j, j′;ω1)−1∆ω1ω2

(
πjP̂(`)πj′

)
+ iO(`, j, j′;ω1)−1

(
∆ω1ω2

O(`, j, j′)
)
O(`, j, j′;ω2)−1πjP̂(`;ω2)πj′ .

By (A.7), (5.3), (5.4), (5.10), one obtains that

(5.26)
‖∆ω1ω2

O(`, j, j′)‖Op ≤ ‖ω1 − ω2‖∞|`|η + 2 sup
j∈N0

‖∆ω1ω2
D(j)‖HS

. (1 + |`|η)‖ω1 − ω2‖∞ .
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Hence since ω1, ω2 ∈ Ω+(γ), the formula (5.25) and the estimate (5.26) imply that
for any ` ∈ Z∞∗ , j 6= j′, |`|η ≤ N

(5.27)

‖∆ω1ω2

(
πjF̂+(`)πj′

)
‖HS .

d(`)2

γ2
(1 + |`|η)‖πjP̂(`;ω2)πj′‖HS

+
d(`)

γ
‖∆ω1ω2

(
πjP̂(`)πj′

)
‖HS

and for any ` ∈ Z∞∗ \ {0}, j ∈ N0, |`|η ≤ N ,

(5.28)

‖∆ω1ω2

(
πjF̂+(`)πj

)
‖HS .

d(`)2〈j〉4

γ2
(1 + |`|η)‖πjP̂(`;ω2)πj‖HS‖ω1 − ω2‖∞

+
d(`)〈j〉2

γ
‖∆ω1ω2

(
πjP̂(`)πj

)
‖HS .

Recalling the definition (3.11) and using the estimates (5.27), (5.28), one obtains that

(5.29)

‖∆ω1ω2
F̂+(`)‖Bσ−ρ,2 .

d(`)2

γ2
(1 + |`|η)‖P̂(`;ω2)‖Bσ,−2‖ω1 − ω2‖∞

+
d(`)

γ
‖∆ω1ω2

P̂(`)‖Bσ .

Hence, recalling the definition (3.14), one gets
(5.30)

|∆ω1ω2
F+|σ−ρ,2 . γ−2

(
sup
`∈Z∞∗

d(`)2e−ρ|`|η (1 + |`|η)
)
‖ω1 − ω2‖∞ sup

ω∈Ω
|P(ω)|σ,−2

+ γ−1
(

sup
`∈Z∞∗

d(`)e−ρ|`|η
)
|∆ω1ω2P|σ

LemmaB.1

. γ−2exp
( τ

ρ
1
η

ln
(τ
ρ

))(
‖ω1 − ω2‖∞ sup

ω∈Ω
|P(ω)|σ,−2 + γ|∆ω1ω2

P|σ
)

for some τ > 0. The bounds (5.24), (5.30), together with the definition (3.15) imply
the claimed bound.

By the formula (5.15) and using that the operator Fn+1 solves the homological equa-
tion (5.16), one obtains that

(5.31)

Ln+1(ϕ) := iDn+1 + Pn+1(ϕ) ,

Dn+1 := Dn + Zn, Zn :=
1

i
[P̂n(0)] ,

Pn+1 := Π⊥nPn +

∫ 1

0

(1− τ)e−τFn+1 [[P̂n(0)]−ΠnPn,Fn+1]eτFn+1 dτ

+

∫ 1

0

e−τFn+1 [Pn,Fn+1]eτFn+1 dτ .

The new block-diagonal part Dn+1. Since by the inductive hypothesis the oper-

ator Pn(ϕ) is skew self-adjoint, then also the 2× 2 block-diagonal operator [P̂n(0)] =

diagj∈N0
πjP̂n(0)πj is skew self-adjoint, therefore the 2 × 2 block diagonal operator

Zn := 1
i [P̂n(0)] is self-adjoint. Hence using the induction hypothesis, one gets that

Dn+1 is a 2× 2 self-adjoint block diagonal operator. We then set

(5.32) Dn+1(j) := πjDn+1πj := Dn(j) + Zn(j), Zn(j) := πjZnπj , ∀j ∈ N0 .
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By the inductive estimate (5.11), one gets that for any σ ≤ σn

(5.33) |Zn|Lip(γ,Ωn)
σ,−2 = |Dn+1 −Dn|Lip(γ,Ωn)

σ,−2 ≤ |Pn|Lip(γ,Ωn)
σn,−2 . εe−χ

n

.

The latter estimate, implies that

(5.34)

sup
ω∈Ωn(γ)

‖Zn(j;ω)‖HS . εe−χ
n

〈j〉−2 ,

sup
ω1,ω2∈Ωn(γ)

ω1 6=ω2

‖Zn(j;ω1)−Zn(j;ω2)‖HS
‖ω1 − ω2‖∞

. εγ−1e−χ
n

,

uniformly w.r. to j ∈ N0. The estimate (5.9) at the step n+1 then follows by applying
(5.33), using a telescoping argument.

The new remainder Pn+1. By applying Lemma 3.5-(ii), one obtains the estimates

(5.35) |Π⊥nPn|
Lip(γ,Ωn)
σn+1,−2 ≤ e−Nn(σn−σn+1)|Pn|Lip(γ,Ωn)

σn,−2 .

Furthermore, by applying iteratively Lemma 3.5-(i), (iii) one obtains that if ρ > 0
satisfies σn+1 + 3ρ < σn
(5.36)∣∣∣e−τFn+1 [Pn,Fn+1]eτFn+1

∣∣∣Lip(γ,Ωn+1)

σn+1,−2
+
∣∣∣e−τFn+1 [[P̂n(0)]−ΠnPn,Fn+1]eτFn+1

∣∣∣Lip(γ,Ωn+1)

σn+1,−2

. ρ−a
(

sup
τ∈[0,1]

|e±τFn+1 |Lip(γ,Ωn+1)
σn+1+3ρ

)
|Pn|Lip(γ,Ωn)

σn,−2 |Fn+1|Lip(γ,Ωn+1)
σn+1+2ρ ,

for some constant a > 0.
Now we want to use Lemma 3.7 in order to estimate supτ∈[0,1] |e±τFn+1 |Lip(γ,Ωn+1)

σn+1+3ρ .

We fix ρ := σn−σn+1

8 so that σn+1 + 4ρ = σn+1 + σn−σn+1

2 = σn+σn+1

2 < σn. With
this choice of ρ, by applying Lemma 5.2 and the inductive estimate (5.11) on Pn, one
obtains that
(5.37)

|Fn+1|Lip(γ,Ωn+1)
σn+σn+1

2

= |Fn+1|Lip(γ,Ωn+1)
σn+1+4ρ . γ−1exp

( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

))
|Pn|Lip(γ,Ωn)

σn,−2

. εγ−1exp
( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

)
− χn

)
. εγ−1e−

χn

2 ,

using that, by (5.5), one has

sup
n∈N

{
exp
( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

)
− χn

2

)}
<∞ .

The estimate (5.37) proves the estimate (5.13) at the step n+ 1. Furthermore,

(5.38)
1

(σn − σn+1)2
|Fn+1|Lip(γ,Ωn+1)

σn+σn+1
2

≤ δ

for some δ ∈ (0, 1) small enough by taking εγ−1 small enough and using that by (5.5)

lim
n→∞

1

(σn − σn+1)2
e−

χn

2 = 0 .
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The smallness condition (3.32) of Lemma 3.7 is verified and therefore we get the
estimate

(5.39) sup
τ∈[0,1]

|e±τFn+1 |Lip(γ,Ωn+1)
σn+3ρ . 1 .

The estimates (5.35), (5.36), (5.37), (5.39) (recalling the definition of the remainder
Pn+1 given in (5.31)) lead to the inductive estimate

(5.40)

|Pn+1|Lip(γ,Ωn+1)
σn+1,−2 ≤ e−Nn(σn−σn+1)|Pn|Lip(γ,Ωn)

σn,−2

+ Cγ−1 1

(σn − σn+1)a
exp
( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

))
(|Pn|Lip(γ,Ωn)

σn,−2 )2

where C > 0 is a positive constant and a > 0 is the constant appearing in the
estimate (5.36). The latter estuimate, together with the inductive estimate (5.11) on

|Pn|Lip(γ,Ωn)
σn,−2 imply that

(5.41)

|Pn+1|Lip(γ,Ωn+1)
σn+1,−2 ≤ e−Nn(σn−σn+1)C∗εe

−χn

+ Cγ−1 1

(σn − σn+1)a
exp
( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

))
C2
∗ε

2e−2χn

≤ C∗εe−χ
n+1

provided
(5.42)

sup
n∈N

{
exp
(
χn(χ− 1)−Nn(σn − σn+1)

)}
≤ 1

2
,

CC∗εγ
−1 sup

n∈N

{ 1

(σn − σn+1)a
exp
( τ

(σn − σn+1)
1
η

ln
( τ

σn − σn+1

)
− (2− χ)χn

)}
≤ 1

2
.

The first condition in (5.42) holds by recalling (5.5) and by taking N0 > 0 large
enough. The second condition in (5.42) holds by recalling (5.5) and by taking εγ−1

small enough.

Proof of (S2)n+1. We shall need the following (which is a simple adaptation of the
extension result Lemma M5 in [KP03])

Lemma 5.3. Let (X, d) be a metric space and let H be a Hilbert space of dimension
d. Let E ⊆ X be a subset of X and

f : E → H

by a function satisfying

‖f‖∞ := sup
x∈E
‖f(x)‖H <∞, ‖f‖lip := sup

x1,x2∈E,x1 6=x2

‖f(x1)− f(x2)‖H
d(x1, x2)

<∞ .

Then there exists a Lipschitz extension f̃ : X → H satisfying

‖f̃‖∞ .d ‖f‖∞, ‖f̃‖lip .d ‖f‖lip .

By recalling the estimate (5.34), for any j ∈ N0, the function Ωn+1(γ) → S(Ej),
ω 7→ Zn(j;ω) = Dn+1(j;ω) − Dn(j;ω) is a Lipschitz function. Hence we apply the
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extension Lemma 5.3 with E = Ωn+1(γ), (X, d) = (Dγ , d∞) (recall the definition 1.1
and (1.3)) and H = S(Ej) equipped with the scalar product (A.3). Hence we get

a Lipschitz extension Z̃n(j; ·) : Dγ → S(Ej) of Zn(j) preserving the sup norm and

the Lipschitz seminorm, namely supω∈Dγ ‖Z̃n(j;ω)‖HS . supω∈Ωn+1(γ) ‖Zn(j;ω)‖HS,
‖Z̃n(j)‖lipHS . ‖Zn(j)‖lipHS . Therefore, using the bounds (5.34) and defining D̃n+1(j) :=

D̃n(j) + Z̃n(j), the claimed statement follows.

5.2. Convergence. Final blocks. By applying Theorem 5.1-(S2)n the se-

quence of the Lipschitz functions D̃n(j; ·) : Dγ → S(Ej), j ∈ N0 is a Cauchy sequence
w.r. to the norm ‖ · ‖Lip(γ,Ω0) and therefore, we can define the final blocks

(5.43) D∞(j) := lim
n→∞

D̃n(j), ∀j ∈ N0 .

By using a telescoping argument one obtains that for any j ∈ N0, for any n ∈ N, the
following estimates hold

(5.44)
sup
ω∈Dγ

‖D∞(j;ω)− D̃n(j;ω)‖HS . 〈j〉−2εe−χ
n

,

‖D∞(j)− D̃n(j)‖lipHS . εγ−1e−χ
n

.

Then, recalling the definition of the norm | · |Lip(γ,Ω)
σ,m given in (3.15), if we define the

2× 2 block diagonal operators

(5.45) D̃n := diagj∈N0
D̃n(j), ∀n ∈ N , D∞ := diagj∈N0

D∞(j)

one gets that for any σ > 0, n ∈ N and Ω ∈ Dγ

(5.46) |D∞ − D̃n|Lip(γ,Ω)
σ,−2 . εe−χ

n

.

Final Cantor set. For any ` ∈ Z∞∗ , j, j′ ∈ N0, we define the linear operator
O∞(`, j, j′) : B(Ej′ ,Ej)→ B(Ej′ ,Ej)

(5.47) O∞(`, j, j′) := ω · ` Id−ML(D∞(j)) +MR(D∞(j′))

and we define the set
(5.48)

Ω∞(γ) :=
{
ω ∈ Dγ : ‖O∞(`, j, j′)−1‖Op ≤

d(`)

2γ
, ∀(`, j, j′) ∈ Z∞∗ × N0 × N0,

j 6= j′ and ‖O∞(`, j, j)−1‖Op ≤
d(`)j2

2γ
∀(`, j) ∈ (Z∞∗ \ {0})× N0

}
.

The following lemma holds

Lemma 5.4. One has that

Ω∞(γ) ⊆ ∩n∈N0
Ωn(γ) .

Proof. We proceed by induction. By definition Ω∞(γ) ⊆ Dγ . Now assume that
Ω∞(γ) ⊆ Ωn(γ) for some n ≥ 0 and let us show that Ω∞(γ) ⊆ Ωn+1(γ). Let
ω ∈ Ω∞(γ). Since by the induction hypothesis ω ∈ Ωn(γ), the 2× 2 blocks Dn(j;ω),

j ∈ N0, are well defined and Dn(j;ω) = D̃n(j;ω) on such set. By the estimates (5.44),
recalling the property (A.7), one obtains that

‖ML

(
D∞(j)−Dn(j)

)
)‖Op , ‖MR

(
D∞(j)−Dn(j)

)
)‖Op . ε〈j〉−2e−χ

n
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and using that

On(`, j, j′)−O∞(`, j, j′) = −ML(Dn(j)−D∞(j)) +MR(Dn(j′)−D∞(j′)),

the latter estimate implies that for any ` ∈ Z∞∗ , |`|η ≤ Nn, j, j′ ∈ N0, j 6= j′

(5.49) ‖On(`, j, j′)−O∞(`, j, j′)‖Op . εe
−χn

and for any ` ∈ Z∞∗ \ {0}, |`|η ≤ Nn, j ∈ N0

(5.50) ‖On(`, j, j)−O∞(`, j, j)‖Op . εe
−χn〈j〉−2 .

Since ω ∈ Ω∞(γ) ⊆ Ωn(γ), we can write

On(`, j, j′) = O∞(`, j, j′) +On(`, j, j′)−O∞(`, j, j′)

= O∞(`, j, j′)
(

Id +O∞(`, j, j′)−1
[
On(`, j, j′)−O∞(`, j, j′)

])
and using the estimates (5.49), (5.50), we get for any (`, j, j′) 6= (0, j, j), |`|η ≤ Nn,
the bound

(5.51)

‖O∞(`, j, j′)−1
[
On(`, j, j′)−O∞(`, j, j′)

]
‖Op . εγ

−1e−χ
n

sup
|`|η≤Nn

d(`)

LemmaB.2

. εγ−1e−χ
n

(1 +Nn)C(η,µ)N
1

1+η
n

. εγ−1 sup
n∈N

exp
(
− χn + C(η)N

1
1+η
n ln(1 +Nn)

)
.

By the choice of Nn provided in (5.5), one obtains that

sup
n∈N

exp
(
− χn + C(η, µ)N

1
1+η
n ln(1 +Nn)

)
<∞

implying that for εγ−1 small enough

‖O∞(`, j, j′)−1
[
On(`, j, j′)−O∞(`, j, j′)

]
‖Op ≤

1

2
.

Hence by Neumann series On(`, j, j′) is invertible and ω ∈ Ωn+1(γ).

KAM transformations
For every n ≥ 1, we define the transformation Ψn as

(5.52) Ψn := Φ1 ◦ . . . ◦ Φn ,

where for any n ≥ 1, the transformation Φn = exp(Fn) is constructed in Theorem
5.1. Note that for any n ∈ N, the map Ψn is invertible and the inverse is given by

(5.53) Ψ−1
n := Φ−1

n ◦ . . . ◦ Φ−1
1 .

We now show the convergence of the sequence of transformations (Ψn)n∈N, in the

space H
(
T∞σ0

2

,B
σ0
2

)
.
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Lemma 5.5. (i) The sequence of transformation (Ψn)n∈N converges to an invert-

ible transformations Ψ∞, for ω ∈ Ω∞(γ) w.r. to the norm |·|Lip(γ,Ω∞(γ))
σ0
2

. Furthermore

the following bounds hold:

|Ψ∞ − Id|Lip(γ,Ω∞(γ))
σ0
2

, |Ψ−1
∞ − Id|Lip(γ,Ω∞(γ))

σ0
2

. εγ−1 .

(ii) For any 0 < σ ≤ σ0

2 , for any s ≥ 0, the maps T∞σ → B(H(Tσ),H(Tσ)), ϕ 7→
Ψ∞(ϕ)±1 and T∞ → B(Hs(T), Hs(T)), ϕ 7→ Ψ∞(ϕ)±1 are bounded.

Proof. Proof of (i). This is a completely standard argument.
Proof of (ii). The claimed statement follows by the item (i) and by applying
Lemmata 2.4, 3.1.

Final normal form
We now show the following

Lemma 5.6. For any ω ∈ Ω∞(γ) and for any ϕ ∈ T∞σ0/3
, the operator L0(ϕ;ω)

defined in (5.2) is congugated to the 2 × 2 block diagonal operator iD∞ (see (5.43),
(5.45)), namely (Ψ∞)ω∗L0(ϕ;ω) = iD∞(ω)

Proof. By applying Theorem 5.1, by recalling the definition (5.52) of the maps
Ψn, n ∈ N and using that by Lemma 5.4, Ω∞(γ) ⊆ ∩n≥0Ωn(γ), one gets that for any
n ∈ N

(5.54) iDn(ω) + Pn(ϕ;ω) = Ln = (Ψn)ω∗L0(ϕ;ω), ∀ω ∈ Ω∞(γ) .

By (5.2), (5.3) and by Lemmata 5.5, 2.9, one has
(5.55)

|ω·∂ϕ(Ψ∞−Ψn)|Lip(γ,Ω∞(γ))
σ0
2 −ρ

. ρ−1|Ψ∞−Ψn|Lip(γ,Ω∞(γ))
σ0
2

→ 0 as n→∞, and |L0|Lip(γ,Ω∞(γ))
σ0,−2 . 1

for ρ > 0 so that σ0

2 − ρ > 0. Therefore, by recalling the definition (2.2), by the
estimates (5.55) and by applying Lemma 3.5-(i), one gets that

(5.56) lim
n→∞

|(Ψn)ω∗L0 − (Ψ∞)ω∗L0|Lip(γ,Ω∞(γ))
σ0
3

= 0 .

By the estimates (5.11), (5.46), (5.56) and passing to the limit in (5.54) one obtains
the claimed statement.

6. Measure estimates. It remains only to estimate the measure of the set
Ω∞(γ), defined in (5.48). In order to do this, let us start with some preliminary
considerations. For any j ∈ N0, the 2 × 2 block D∞(j;ω), ω ∈ Dγ is self-adjoint and
depends in a Lipschitz way on the parameter ω. By (5.43), (5.44) and by recalling
(5.3), (5.4), for any j ∈ N, we can write that

(6.1) D∞(j) = λ2j
2Id +R∞(j;ω)

where the self-adjoint 2× 2 block R∞(j;ω) satisfies the estimate

(6.2) sup
ω∈Dγ

‖R∞(j;ω)‖HS . ε〈j〉 , ‖R∞(j)‖lipHS . εγ−1 .

By applying Lemma A.2, one then obtains that for any j ∈ N,

spec(D∞(j;ω)) = {µ(+)
j (ω), µ

(−)
j (ω)}, spec(R∞(j;ω)) = {r(+)

j (ω), r
(−)
j (ω)}
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where µ
(±)
j and r

(±)
j depend in a Lipschitz way on the parameter ω ∈ Dγ and they

satisfy

(6.3)
µ

(±)
j (ω) = λ2j

2 + r
(±)
j (ω) ,

|λ2 − 1| . ε , sup
ω∈Dγ

|r(±)
j (ω)| . ε〈j〉, |r(±)

j |
lip . εγ−1 .

If j = 0 one has |µ0|Lip(γ,Dγ) . ε. For compactness of notations we set µ
(+)
0 = µ

(−)
0 =

µ0. By applying Lemmata A.1 and A.2-(ii) one then obtains that the set Ω∞(γ) can
be written as
(6.4)

Ω∞(γ) =
{
ω ∈ Dγ : |ω · `+ µ

(σ)
j − µ(σ′)

j′ | ≥
2γ

d(`)
, ∀(`, j, j′) ∈ Z∞∗ × N0 × N0, j 6= j′, σ, σ′ ∈ {+,−}

|ω · `+ µ
(σ)
j − µ(σ′)

j | ≥ 2γ

d(`)〈j〉2
, ∀(`, j) ∈ (Z∞∗ \ {0})× N0, σ, σ′ ∈ {+,−}

}
,

where we recall
d(`) :=

∏
n∈N

(1 + |`n|4〈n〉4), ∀` ∈ Z∞∗ .

In the remaining part of this section we prove the following Proposition.

Proposition 6.1. Assume that µ > 3. For εγ−1 and γ small enough one has

that P
(
R0 \ Ω∞(γ)

)
. γ.

We note that

(6.5) P
(
R0 \ Ω∞(γ)

)
≤ P

(
R0 \ Dγ

)
+ P

(
Dγ \ Ω∞(γ)

)
.

In [BMP], it is proved that

(6.6) P
(
R0 \ Dγ

)
. γ ,

therefore, we need to estimate the set Dγ \ Ω∞(γ). In order to shorten notations, we
define

(6.7) Z1 :=
{

(`, j, j′) ∈ Z∞∗ × N0 × N0 : j 6= j′
}
, Z2 := (Z∞∗ \ {0})× N0 .

One has that

(6.8) Dγ \ Ω∞(γ) =
( ⋃

(`,j,j′)∈Z1

R`jj′(γ)
)⋃( ⋃

(`,j)∈Z2

Q`j(γ)
)

where for any (`, j, j′) ∈ Z1, we define

(6.9) R`jj′(γ) :=
⋃

σ,σ′∈{+,−}

{
ω ∈ Dγ : |ω · `+ µ

(σ)
j − µ(σ′)

j′ | <
2γ

d(`)

}
and for any (`, j) ∈ Z2, we define

(6.10) Q`j(γ) :=
⋃

σ,σ′∈{+,−}

{
ω ∈ Dγ : |ω · `+ µ

(σ)
j − µ(σ′)

j | < 2γ

d(`)〈j〉2
}
.
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Lemma 6.2. (i) Let (`, j, j′) ∈ Z1. If R`jj′(γ) 6= ∅, then |j2 − j′2| ≤ C|`|1 and
P(R`jj′(γ)) . γ

d(`) .

(ii) Let (`, j) ∈ Z2. If Q`j(γ) 6= ∅, then P(Q`j(γ)) . γ
〈j〉2d(`) .

Proof. We prove item (i). The proof of the item (ii) can be done arguing in a
similar fashion. Let j, j′ ∈ N0, j 6= j′ and σ, σ′ ∈ {+,−}. By (6.3) one has that for
some constant C > 0,

|µ(σ)
j − µ(σ′)

j′ | ≥ |λ2||j2 − j′2| − Cε(j + j′)− Cε .

Using that λ2 = 1 + O(ε) and that |j + j′| ≤ |j2 − j′2| one obtains that for ε small
enough

(6.11) |µ(σ)
j − µ(σ′)

j′ | ≥
1

2
|j2 − j′2|

implying that R0jj′(γ) = ∅ for any j 6= j′. Hence if (`, j, j′) ∈ Z1 and R`jj′(γ) 6= ∅
one has that ` 6= 0. Furthermore if ω ∈ R`jj′(γ) 6= ∅ one has that by using (6.11),
one obtains that

(6.12)
1

2
|j2 − j′2| ≤ |µ(σ)

j − µ(σ′)
j′ | ≤

2γ

d(`)
+ |ω · `| . 1 + ‖ω‖∞‖`‖1 . 1 + ‖`‖1 .

Now let
s := min{n ∈ N : `n 6= 0}, S := max{n ∈ N : `n 6= 0} .

and e(s) = (e
(s)
n )n∈N the vector whose n-th component is 0 if n 6= s and 1 if n = s.

Similarly we define the vector e(S). Let

ψ(t) := (ω + te(s)) · `+ µσj (ω + te(s))− µ(σ′)
j′ (ω + te(s)) .

By using the estimate (6.3), for εγ−1 small enough, one has that

|ψ(t1)− ψ(t2)| ≥ |t1 − t2||`s| − Cεγ−1|t1 − t2| ≥
1

2
|t1 − t2| .

The latter estimate implies that∣∣∣{t : ω + te(s) ∈ R`jj′(γ), |ψ(t)| < 2γ

d(`)

}∣∣∣ . γ

d(`)
.

Since R`jj′(γ) is a cylinder with at most S − s components, one obtains the desired
bound.

Proof of Proposition 6.1. By recalling (6.8) and by applying Lemma 6.2, one
gets the estimate

P
(
Dγ \ Ω∞(γ)

)
.

∑
(`,j,j′)∈Z1

|j2−j′2|≤‖`‖1

γ

d(`)
+

∑
(`,j)∈Z2

γ

〈j〉2d(`)

. γ
( ∑
`∈Z∞∗

‖`‖21
d(`)

+
∑
`∈Z∞∗

1

d(`)

∑
j∈N0

1

〈j〉2
) LemmaB.3

. γ .

The claimed statement then follows by recalling (6.5), (6.6).
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7. Proof of Theorem 1.4 and Corollary 1.7. Let γ := εa, a ∈ (0, 1). Then
the smallness condition εγ−1 ≤ δ is fullfilled by taking ε ∈ (0, ε0) with ε0 small
enough. By setting Ωε := Ω∞(γ), the Proposition 6.1 implies (1.7). For any ω ∈ Ωε,
we define

(7.1) W∞(ϕ) := Φ(1)(ϕ) ◦ Φ(2) ◦ . . . ◦ Φ(7)(ϕ) ◦Ψ∞(ϕ) ϕ ∈ T∞σ/4

where the maps Φ(1), . . . ,Φ(7) are constructed in Section 4 and the map Ψ∞ is given
in Lemma 5.5. The properties (1) and (2) on the maps W∞(ϕ)±1 stated in Theorem
1.4 are easily deduced from Lemmata 4.1, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 5.5-(ii) and from
remark 4.2. Furthermore, by the same Lemmata and 5.6 one obtains that u(t, x) is
a solution of (1.1) if and only if v(·, t) := W∞(ωt)−1u(·, t), ω ∈ Ωε solves the time
independent equation ∂tv = iD∞v where D∞ is the 2×2 time independent self-adjoint
block-diagonal operator defined in (5.43)-(5.45). The proof of Theorem 1.4 is then
concluded.
Proof of Corollary 1.7. Since D∞ is a 2×2 block diagonal self-adjoint operator,
the general solution of the equation ∂tv = iD∞v can be written as

v(x, t) =
∑
j∈N0

eitπjD∞πj [Πjv0] .

Since πjD∞πj : Ej → Ej is self-adjoint (recall (3.2)), one has that
∥∥eitπjD∞πj [πjv0]

∥∥
L2 =

‖πjv0‖L2 for any j ∈ N0. This implies that both analytic and Sobolev norms are pre-
served, namely for any σ > 0, ‖v(·, t)‖σ = ‖v0‖σ and for any s ≥ 0, ‖v(·, t)‖Hs =
‖v0‖Hs . Hence, by using the properties (1) and (2) stated in Theorem 1.4, one obtains
that for any ω ∈ Ωε, the solution u(·, t) :=W∞(ωt)v(·, t) of (1.1) satisfies the desired
bounds both in analytic and Sobolev norms. The proof of the Corollary is therefore
concluded.

Appendix A. technical lemmata.

A.1. Linear operators in finite dimension. Given an operator A ∈ B(Ej),
we define its trace as

(A.1)
Tr(A) := A0

0, A ∈ B(E0),

Tr(A) := Ajj +A−j−j , A ∈ B(Ej), j ∈ N .

It is easy to check that if A,B ∈ B(Ej), then

(A.2) Tr(AB) = Tr(BA) .

For all j, j′ ∈ N0, the space B(Ej′ ,Ej) is a Hilbert space5 equipped by the inner
product given for any X,Y ∈ B(Ej′ ,Ej) by

(A.3) 〈X,Y 〉 := Tr(XY ∗) .

This scalar product induces the L2-norm ‖ · ‖HS defined in (3.10).
Given a linear operator L : B(Ej′ ,Ej) → B(Ej′ ,Ej), we denote by ‖L‖Op its opera-
torial norm, when the space B(Ej′ ,Ej) is equipped by the L2-norm (3.10), namely

(A.4) ‖L‖Op := sup
{
‖L(M)‖HS : M ∈ B(Ej′ ,Ej) , ‖M‖HS ≤ 1

}
.

5Actually all the norms on the finite dimensional space B(Ej′ ,Ej) are equivalent.
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For any operator A ∈ B(Ej) we denote by ML(A) : B(Ej′ ,Ej) → B(Ej′ ,Ej) the
linear operator defined for any X ∈ B(Ej′ ,Ej) as

(A.5) ML(A)X := AX .

Similarly, given an operator B ∈ B(Ej′), we denote by MR(B) : B(Ej′ ,Ej) →
B(Ej′ ,Ej) the linear operator defined for any X ∈ B(Ej′ ,Ej) as

(A.6) MR(B)X := XB .

The following elementary estimates hold:

(A.7) ‖ML(A)‖Op ≤ ‖A‖HS , ‖MR(B)‖Op ≤ ‖B‖HS .

We denote by S(Ej), the set of the self-adjoint operators form Ej onto itself, namely

(A.8) S(Ej) :=
{
A ∈ B(Ej) : A = A∗

}
.

Furthermore, for any A ∈ B(Ej) denote by spec(A) the spectrum of A. The following
Lemma can be proved by using elementary arguments from linear algebra, hence the
proof is omitted.

Lemma A.1. Let j, j′ ∈ N0, A ∈ S(Ej), B ∈ S(Ej′), then the following holds:
(i) The operators ML(A), MR(B) defined in (A.5), (A.6) are self-adjoint operators
with respect to the scalar product defined in (A.3).
(ii) Let j, j′ ∈ N, A ∈ S(Ej), B ∈ S(Ej′). The spectrum of the operator ML(A) ±
MR(B) satisfies

spec
(
ML(A)±MR(B)

)
=
{
λ± µ : λ ∈ spec(A) , µ ∈ spec(B)

}
.

(iii) Let j ∈ N, A ∈ S(Ej) and B ≡ λ0 ∈ S(E0). Then, the spectrum of the operators
ML(A)±MR(λ0) ≡ML(A)±λ0Id : B(E0,Ej)→ B(E0,Ej) and ML(λ0)±MR(A) ≡
λ0Id±MR(A) : B(Ej ,E0)→ B(Ej ,E0) satisfy

spec
(
ML(A)± λ0Id

)
= spec

(
λ0Id±MR(A)

)
=
{
λ± λ0 : λ ∈ spec(A)

}
.

We finish this Section by recalling some well known facts concerning linear self-adjoint
operators on finite dimensional Hilbert spaces. Let H be a finite dimensional Hilbert
space of dimension n equipped by the inner product (· , ·)H. For any self-adjoint
operator A : H → H, we order its eigenvalues as

(A.9) spec(A) :=
{
λ1(A) ≤ λ2(A) ≤ . . . ≤ λn(A)

}
.

Lemma A.2. Let H be a Hilbert space of dimension n. Then the following holds:
(i) Let A1, A2 : H → H be self-adjoint operators. Then their eigenvalues, ordered as
in (A.9), satisfy the Lipschitz property

|λk(A1)− λk(A2)| ≤ ‖A1 −A2‖B(H) , ∀k = 1, . . . , n .

(ii) Let A = yIdH +B, where y ∈ R, IdH : H → H is the identity and B : H → H is
selfadjoint. Then

λk(A) = y + λk(B) , ∀k = 1, . . . , n .

(iii) Let A : H → H be self-adjoint and assume that spec(A) ⊂ R \ {0}. Then A is
invertible and its inverse satisfies

‖A−1‖B(H) =
1

mink=1,...,n |λk(A)|
.
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A.2. Properties of torus diffeomorphisms. In Subsection 4.2, we have con-
sidered diffeomorphisms of the form

(A.10) ϕ 7→ ϕ+ ωα(ϕ)

where α ∈ H(T∞σ+ρ), σ, ρ > 0 and ω ∈ Dγ . By Lemma 2.13, for ε = ε(ρ) small enough,
if ‖α‖Hσ+ρ ≤ ε, then the diffeomorphism (A.10) is invertible and its inverse has the
form

(A.11) ϑ 7→ ϑ+ ωα̃(ϑ)

where α̃ ∈ H(T∞σ ) and ‖α̃‖σ . ‖α‖σ+ρ. Note that by (A.10), (A.11), one can easily
deduce the formulae

(A.12)

1 + ω · ∂ϑα̃(ϑ) =
1

1 + ω · ∂ϕα(ϑ+ ωα̃(ϑ))
,

1 + ω · ∂ϕα(ϕ) =
1

1 + ω · ∂ϑα̃(ϕ+ ωα(ϕ))
.

The following lemma will be used in the reduction procedure of Section 4, in order to
show that some averages do not depend on the parameter ω ∈ Ω.

Lemma A.3. The following holds:
Let ω ∈ Dγ be a Diophantine frequency and let a be a function in H(T∞σ ). Then∫
T∞ ω · ∂ϑa(ϑ) dϑ = 0. As a consequence one has

(A.13)

∫
T∞

(
1 + ω · ∂ϑα̃(ϑ)

)
dϑ = 1

and for any ` ∈ Z∞∗ \ {0},

(A.14)

∫
T∞

ei`·
(
ϑ+ωα̃(ϑ)

)(
1 + ω · ∂ϑα̃(ϑ)

)
dϑ = 0 .

Proof. Let N ∈ N. Then We split

ω · ∂ϑa(ϑ) =
∑

` 6=0 , |`|η≤N

iω · `â(`)ei`·ϑ +
∑
|`|η>N

iω · `â(`)ei`·ϑ .

Since a is an analytic function, the second term on the right hand side goes to zero
as N → +∞. Moreover∫

TN

∑
6̀=0 , |`|η≤N

iω · `â(`)ei`·ϑ dϑ =
∑

` 6=0 , |`|η≤N

iω · `â(`)

∫
TN

ei`·ϑ dϑ = 0 .

Therefore one deduces that∫
T∞

a(ϑ) dϑ = lim
N→∞

1

(2π)N

∫
TN

∑
|`|η>N

iω · `â(`)ei`·ϑ dϑ = 0 .

The equality (A.13) follows immediately by the previous claim. The equality (A.14),
follows observing that since ` ∈ Z∞∗ \ {0} and ω is Diophantine, one has that

ei`·
(
ϑ+ωα̃(ϑ)

)(
1 + ω · ∂ϑα̃(ϑ)

)
=

1

iω · `
ω · ∂ϑ

(
ei`·
(
ϑ+ωα̃(ϑ)

))
hence the result follows by applying the first claim.
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Lemma A.4 (Moser composition lemma). Let f : BR(0) → C be an holo-
morphic function defined in a neighbourhood of the origin BR(0) of the complex plane
C. Then the composition operator F (u) := f ◦ u is a well defined non linear map
H(T∞σ )→ H(T∞σ ).

Proof. Clearly, since f(z) =
∑
n≥0 anz

n is analytic, for any z ∈ C, |z| < R, the
series

∑
n≥0 |an||z|n is convergent. Moreover, Let u ∈ H(T∞σ ) with ‖u‖σ ≤ r < R.

By applying Lemma 2.5, for any n ≥ 1, un ∈ H(T∞σ ) and ‖un‖σ ≤ ‖u‖nσ ≤ rn. The
series

∑
n≥0 anu

n is absolutely convergent w.r. to ‖ · ‖σ. Indeed , one has∥∥∥∑
n≥0

anu
n
∥∥∥
σ
≤
∑
n≥0

|an|‖u‖nσ ≤
∑
n≥0

|an|rn <∞ .

this implies that F (u) =
∑
n≥0 anu

n belongs to the space H(T∞σ ) and the proof of
the lemma is concluded.

Appendix B. some estimates of constants.

Lemma B.1. (i) Let µ1, µ2 > 0. Then

sup
`∈Z∞∗
|`|η<∞

∏
i

(1 + 〈i〉µ1 |`i|µ2)e−ρ|`|η ≤ exp
( τ

ρ
1
η

ln
(τ
ρ

))

for some constant τ = τ(η, µ1, µ2) > 0.

(ii) Let ρ > 0. Then
∑
`∈Z∞∗

e−ρ|`|η . exp
(
τ

ρ
1
η

ln
(
τ
ρ

))
, for some constant τ = τ(η) >

0.

Proof. Proof of (i). We remark that the left hand side can be expressed as

exp
(∑

i

−ρ〈i〉η|`i|+ ln
(
1 + 〈i〉µ1 |`i|µ2

))
=: exp(

∑
i

fi(|`i|))

where

(B.1) fi(x) := ln
(
1 + 〈i〉µ1xµ2

)
− ρ〈i〉ηx .

The result follows word by word from Lemma 7.2 of [BMP] where it is proved in the
special case µ1 = 2 + q, µ2 = 2.
Proof of (ii). By Lemma 4.1 of [BMP], one has∑

`∈Z∞∗

∏
i

1

1 + 〈i〉2|`i|2
≤ C0 <∞ .

Therefore ∑
`∈Z∞∗

e−ρ|`|η =
∑
`∈Z∞∗

∏
i

1

1 + 〈i〉2|`i|2
e−ρ〈i〉

η|`i|
(
1 + 〈i〉2|`i|2

)
. sup
`∈Z∞∗

(∏
i

e−ρ〈i〉
η|`i|

(
1 + 〈i〉2|`i|2

))
.

The claimed statement then follows by item (i) with µ1 = µ2 = 2.
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Lemma B.2 (Small divisor estimate). Let µ1, µ2 ≥ 1. We have the following
estimate for N � 1

(B.2) sup
`∈Z∞∗ : |`|η<N

∏
i

(1 + 〈i〉µ1 |`i|µ2) ≤ (1 +N)C(η,µ1,µ2)N
1

1+η

for some constant C(η, µ1, µ2) > 0.

Proof. For ` fixed, let us denote by k the number of non-zero components of `.

We claim that k .η N
1

1+η , indeed

N ≥ |`|η =

k∑
j=1

〈ij〉η|`ij | ≥
k∑
j=1

〈ij〉η ≥
k∑
j=1

jη 'η k1+η

and the claim follows. Now if η ≥ 1 we have 〈i〉|`i| ≤ 〈i〉η|`i| ≤ N and setting
µ := max{µ1, µ2}

sup
`∈Z∞∗ : |`|η≤N

∑
i

ln(1 + 〈i〉µ1 |`i|µ2) .η N
1

1+η ln(1 +Nµ) .η,µ N
1

1+η ln(1 +N).

Otherwise if η ≤ 1 one has 〈i〉|`i| ≤ (〈i〉η|`i|)
1
η ≤ N

1
η and again

sup
`∈Z∞∗ : |`|η≤N

∑
i

ln(1 + 〈i〉µ1 |`i|µ2) .η N
1

1+η ln(1 +N
µ
η ) .η,µ N

1
1+η ln(1 +N).

Lemma B.3. For µ1, µ2 > 3, one has that
∑
`∈Z∞∗

‖`‖21
d(`) < ∞ where d(`) :=∏

i∈N(1 + 〈i〉µ1 |`i|µ2).

Proof. The proof is very similar to the one of the measure estimate Lemma 4.1
of [BMP].
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