
GENUS TWO CURVES ON ABELIAN SURFACES

ANDREAS LEOPOLD KNUTSEN AND MARGHERITA LELLI-CHIESA

ABSTRACT. This paper deals with singularities of genus 2 curves on a general (d1, d2)-
polarized abelian surface (S,L). In analogy with Chen’s results concerning rational
curves on K3 surfaces [Ch1, Ch2], it is natural to ask whether all such curves are nodal.
We prove that this holds true if and only if d2 is not divisible by 4. In the cases where
d2 is a multiple of 4, we exhibit genus 2 curves in |L| that have a triple, 4-tuple or
6-tuple point. We show that these are the only possible types of unnodal singularities
of a genus 2 curve in |L|. Furthermore, with no assumption on d1 and d2, we prove
the existence of at least one nodal genus 2 curve in |L|. As a corollary, we obtain
nonemptiness of all Severi varieties on general abelian surfaces and hence generalize
[KLM, Thm. 1.1] to nonprimitive polarizations.

1. INTRODUCTION

The minimal geometric genus of any curve lying on a general abelian surface is 2
and there are finitely many curves of such genus in a fixed linear system. The role
of genus two curves on abelian surfaces is thus analogous to that of rational curves
on K3 surfaces, but until now it has not been investigated as extensively. Their enu-
meration is now well understood. Their count in the primitive case was carried out
by Göttsche [Go], Debarre [De] and Lange-Sernesi [LS1], and used in [De] in order
to compute the Euler characteristic of generalized Kummer varieties. Only recently,
Bryan, Oberdieck, Pandharipande and Yin [BOPY] handled the nonprimitive case,
thus obtaining a formula parallel to the full Yau-Zaslow conjecture for rational curves
on K3 surfaces (cf. [KMPS]).

Singularities of rational curves on K3 surfaces have received plenty of attention.
Mumford [MM, Appendix] first proved the existence of a nodal rational curve in the
primitive linear system |L| on a general genus g polarized K3 surface (S,L); as a
byproduct, he obtained nonemptiness of the Severi variety |L|δ parametrizing δ-nodal
curves in |L| for any integer 0 ≤ δ ≤ g. His results were then generalized by Chen
[Ch1, Ch2] to nonprimitive linear systems. In the primitive case, Chen managed to
deal with all rational curves in |L| showing that they are all nodal; the analogue for
nonprimitive linear systems is still an open problem.

Singularities of genus 2 curves on abelian surfaces are not as well understood, even
though they are necessarily ordinary (cf. [LS2, Prop. 2.2]). The natural question
whether any genus 2 curve on a general (d1, d2)-polarized abelian surface is nodal
[LC, Pb. 2.7] has negative answer if one does not make any assumption on d1 and d2.
Indeed, multiplication by 2 on a principally polarized abelian surface (A,L) identifies
the six Weierstrass points of its theta divisor, whose image is thus a genus 2 curve with
a 6-tuple point lying in (a translate) of the linear system |L⊗4| (cf. Example 2). Since
this is a polarization of type (4, 4), all genus 2 curves may still be expected to be nodal
in primitive linear systems (or even in linear systems not divisible by 4, cf. [LC, Conj.
2.10]). Our main result is that this expectation does not hold in its full generality and
detects all the cases where it fails, thus completely answering the question.
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Theorem 1.1. Let (S,L) be a general abelian surface with a polarization of type (d1, d2).
Then any genus 2 curve in the linear system |L| is nodal if and only if 4 does not divide d2.

When d2 is a multiple of 4, we exhibit genus 2 curves in |L| that have an unnodal sin-
gularity and, more precisely, a triple, a 4-tuple or a 6-tuple point (cf. Examples 1 and
2). We also show that these are the only types of unnodal singularities that a genus 2
curve on a general abelian surface may acquire (cf. Remark 1). To our knowledge, the
best bound on the order of such a singularity in the literature was 1
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by Lange-Sernesi, cf. [LS2, Prop. 2.2]. The existence of unnodal genus 2 curves in all
primitive linear systems of type (1, 4k) is quite striking and highlights a major differ-
ence with the K3 case.

When 4 divides d2, the above theorem does not exclude the existence in |L| of some
nodal genus 2 curves. This is indeed proved in the following:

Theorem 1.2. Let (S,L) be a general (d1, d2)-polarized abelian surface. Then the linear
system |L| contains a nodal curve of genus 2.

Given a nodal genus 2 curve as above, standard deformation theory enables one
to smooth any of its nodes independently remaining inside the linear system |L|. As
a consequence, Theorem 1.2 yields nonemptiness of all Severi varieties on general
abelian surfaces:

Corollary 1.3. Let (S,L) be a general (d1, d2)-polarized abelian surface. Then, for any 0 ≤
δ ≤ d1d2−1 the Severi variety |L|δ is nonempty and smooth of dimension equal to d1d2−1−δ.

This generalizes [KLM, Thm. 1.1] to nonprimitive linear systems. Note that, since
S has trivial canonical bundle, the regularity of |L|δ stated in Corollary 1.3 follows for
free from its nonemptiness by the proofs of Propositions 1.1 and 1.2 in [LS2]. We men-
tion that the irreducible components of the Severi varieties on a general primitively
polarized abelian surface have been determined very recently by Zahariuc in [Za1].

We now spend some words on the proofs of Theorems 1.1 and 1.2. In contrast
to the methods proposed in [Ch1, Ch2, KLM], we need neither to degenerate S to
a singular surface nor to specialize it to an abelian surface with large Neron-Severi
group. Instead, we exploit the universal property of Jacobians in order to translate
the if part of Theorem 1.1 and Theorem 1.2 into the following statement concerning
Brill-Noether theory on a general curve of genus 2:

Theorem 1.4. Let [C] ∈ M2 be a general genus 2 curve and fix any integer d ≥ 4. If
C admits a g2d totally ramified at three points P1, P2, P3, then d is even and P1, P2, P3 are
Weierstrass points.

We refer to Section §2 for the details of this reduction, that we mention here only
briefly. The key fact is that any genus 2 curve C on a (d1, d2)-polarized abelian surface
S with normalization C arises as image of a composition

(1) C
u
↪→ J(C)

λ→ S,

where u is the Abel-Jacobi map and λ is an isogeny. Three pointsP1, P2, P3 ∈ C = u(C)
identified by λ necessarily differ by elements in its kernel. Since the order of any such
element is divisible by d2, the three divisors d2P1, d2P2, d2P3 ∈ Cd are linearly equiva-
lent and thus define (for d2 ≥ 4) a g2d2 onC totally ramified at three points. Theorem 1.4
excludes the existence of such a linear series for C general and odd values of d2, thus
implying our main results in these cases. If instead d2 is even, a g2d2 totally ramified at
three points does exist: as soon as P1, P2, P3 are Weierstrass points of C, the divisors
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2P1, 2P2, 2P3 are linearly equivalent and thus the same holds true for d2P1, d2P2, d2P3.
Conversely, by Theorem 1.4, any g2d2 with three points of total ramification on C is
of this type. This characterization is used in Section §2 both to prove the if part of
Theorem 1.1 and Theorem 1.2 for d2 ≡ 2 mod 4, and to provide examples of genus 2
curves with a triple, 4-tuple or 6-tuple point (cf. Examples 1 and 2) when d2 ≡ 0 mod 4
implying the only if part of Theorem 1.1. These examples are based on the construc-
tion of suitable isogenies λ as in (1) or, equivalently by taking their kernels, suitable
isotropic (with respect to the commutator pairing) subgroups of the group J(C)[d1d2]
of d1d2-torsion points of J(C).

Section §3 is devoted to the proof of Theorem 1.4. This is done in two steps. First,
we degenerate C to the transversal union of two elliptic curves meeting at a point
and reduce Theorem 1.4 into a statement of Brill-Noether theory with ramification
on a general elliptic curve (cf. Proposition 3.1). This reduction seriously involves
the theory of limit linear series on curves of compact type, for which we refer to the
original papers by Eisenbud and Harris [EH1, EH2, EH3]. Proposition 3.1 is then
proved by an infinitesimal study of a generalized Severi variety (cf. [CH, Za2]).

Acknowledgements: We are especially grateful to Nicolò Sibilla for numerous valu-
able conversations on the topic and to Alessandro D’Andrea for his substantial help in
the proof of Lemma 2.1. We have benefited from interesting correspondence with Igor
Dolgachev. The first named author has been partially supported by grant n. 261756 of
the Research Council of Norway and by the Trond Mohn Foundation.

2. POLARIZED ISOGENIES AND PROOF OF THE MAIN THEOREMS

In this section we review some known facts concerning polarized isogenies and
genus 2 curves on complex abelian surfaces and reduce the proof of Theorems 1.1 and
1.2 to a statement concerning Brill-Noether theory with prescribed ramification on a
general curve of genus 2.

2.1. Polarized isogenies and genus 2 curves. Let S be an abelian surface defined over
C and consider a genus 2 curve C ⊂ S such that the line bundle L := OS(C) is a
polarization of type (d1, d2). The normalization map ν : C → C ⊂ S then factors as

C
u
↪→ J(C)

λ→ S,

where u is the Abel-Jacobi map (that is is an embedding only defined up to translation)
and λ is an isogeny. We set A := J(C).

By the Push-Pull formula, the above isogeny λ has degree d1d2 and thus λ∗L '
L⊗d1d21 , where L1 is a principal polarization on A. We write A = V/Λ, where V is
a 2-dimensional C-vector space and Λ is a rank 4 lattice. Chosen a symplectic basis
λ1, λ2, µ1, µ2 of Λ, we denote by e′1 := λ1/(d1d2), e′2 := λ2/(d1d2), f′1 := µ1/(d1d2), f′2 :=
µ2/(d1d2) the standard generators of the group A[d1d2] of d1d2-torsion points of A.
By definition, the commutator pairing on A[d1d2] is the nondegenerate multiplicative
alternating form

ed1d2 : A[d1d2]×A[d1d2]→ C∗

that takes value 1 on all pairs of standard generators with the only two following
exceptions:

(2) ed1d2(e′1, f
′
1) = ed1d2(e′2, f

′
2) = e

2πi
d1d2 .

For a fixed principally polarized abelian surface A with a fixed theta divisor Θ, by
[Mu, §23] there is a bijection between the following two sets:
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(*) polarized isogenies λ : A→ S onto abelian surfaces S such that λ(Θ) ∈ |L| for
some polarization L on S of type (d1, d2);

(**) isotropic subgroups G of A[d1d2] of cardinality d1d2 such that G⊥/G ' Z⊕2d1 ⊕
Z⊕2d2 .

Indeed, the kernel G of any isogeny λ in (*) is a subgroup of A[d1d2] in (**); further-
more, G⊥/G is isomorphic to the kernel K(L) of the isogeny defined by L:

φL : S → Ŝ, φL(x) = t∗xL⊗ L∨,

where tx denotes the translation by x on S. Viceversa, given a subgroup G in (**), the
quotient map λ : A→ A/G is an isogeny as in (*).

Given λ as in (*), let
λ̂ : Ŝ → Â

be its dual isogeny and denote by L̂ the dual polarization of L. Again by [Mu, §23]
the kernel Ĝ of λ̂ is a maximal isotropic subgroup of K(L̂) ' Z⊕2d1 ⊕ Z⊕2d2 . On the
other hand, Ĝ is the character group of G (cf. [BL, Prop. 2.4.3]) and thus Ĝ ' G. In
particular, the order of any element of G = kerλ divides d2.

2.2. Reduction of Theorem 1.1 to Theorem 1.4 for odd values of d2. Since isogenies
are étale, all singularities of the image λ(Θ) of a theta divisor under an isogeny λ as
in (*) are ordinary (cf. [LS2, Prop. 2.2]). The only pathology that might prevent λ(Θ)
from being nodal is thus the existence of three points x, y, z ∈ Θ such that λ(x) =
λ(y) = λ(z). Since the order of any element in the kernel of λ divides d2, such a triple
of points x, y, z would be identified by the multiplication map

md2 : A→ A;

equivalently, if A = J(C), the three divisors d2x, d2y, d2z on C would be linearly
equivalent. For d2 ≥ 4 this implies the existence of a g2d2 on C totally ramified at
x, y, z. In the cases d2 = 2 and d2 = 3 the same conclusion holds up to replacing d2
with a multiple of it. Theorem 1.1 for odd values of d2 then follows from Theorem 1.4.

2.3. Theorem 1.1 for even values of d2. Theorem 1.4 also implies that the image of a
theta divisor under an isogeny λ as in (*) for even values of d2 may have non-nodal
singularities only at the image of its Weierstrass points. In order to analize this pos-
sibility, we denote by e1 := λ1/2, e2 := λ2/2, f1 := µ1/2, f2 := µ2/2 the standard
generators of the group A[2] of 2-torsion points of A. Note that

(3) ei =
d1d2

2
e′i, fi =

d1d2
2

f′i for i ∈ {1, 2}.

As the Abel-Jacobi map u : C↪→J(C) = A is defined up to translation, we may assume
its image to coincide with a symmetric theta divisor Θ so that (the image under u of)
the six Weierstrass points of C are exactly the 2-torsion points of A contained in Θ,
namely, without loss of generality by [BL, Ex. 10.2.7], the points:

(4) e1, f1, e1 + f1, e2, f2, e2 + f2.

Theorem 1.1 for d2 ≡ 2 mod 4 then follows from the following Lemma.

Lemma 2.1. Let G be an isotropic subgroup of A[d1d2] such that |G| = d1d2, G⊥/G '
Z⊕2d1 ⊕ Z⊕2d2 and at least three among the six 2-torsion points in (4) lie in the same G-orbit of
A[d1d2]. Then, one necessarily has d2 ≡ 0 mod 4.
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Proof. Up to exchanging the ei’s with the fi’s and up to relabelling the indices i, we
may assume that one of the three points in the same G-orbit of A[d1d2] is e1. It follows
that G contains at least two elements g1, g2 in the following set:

(5) {e1 + f1, f1, e2 + e1, f2 + e1, e2 + f2 + e1} .

Using (2) and (3) one obtains ed1d2(g1, g2) = e
2d1d2πi

4 (up to exchanging g1 and g2),
and thus

(6) d1d2 ≡ 0 mod 4

since G is isotropic.
In order to exclude the case d2 ≡ 2 mod 4 (that would also imply d1 ≡ 2 mod 4 by

(6)), we proceed by contradiction. Both the elements 2g1
d1d2

and 2g2
d1d2

have order d1d2

and ed1d2( 2g1
d1d2

, 2g2
d1d2

) = e
2πi
d1d2 ; therefore, there exists an automorphism ϕ of A[d1d2]

preserving the alternating form ed1d2 such that ϕ( 2g1
d1d2

) = e′1 and ϕ( 2g2
d1d2

) = e′2. In
particular, we may assume g1 = e1 and g2 = f1. We consider the group

K := 〈e1, f1〉,
and its orthogonal K⊥ = 〈2e′1, 2f′1, e′2, f′2〉. By (3), one gets

(7) K⊥/K ' Z⊕2d1d2
4

⊕ Z⊕2d1d2 ' Z⊕4d1d2
4

⊕ Z⊕24 with
d1d2

4
odd,

where the second isomorphism follows from the assumption d2 ≡ 2 mod 4. The inclu-
sions K < G < G⊥ < K⊥ imply that

K⊥/K > G⊥/K and G⊥/G ' (G⊥/K)/(G/K);

in particular G⊥/G is a quotient of a subgroup of K⊥/K. However, our assumption
yields

G⊥/G ' Z⊕2d1 ⊕ Z⊕2d2 ' Z⊕42 ⊕ Z⊕2d1
2

⊕ Z⊕2d2
2

with
d1
2
,
d2
2

odd.

As a consequence, Z⊕42 is a quotient of a subgroup of K⊥/K and thus of Z⊕24 by (7).
This is a contradiction because the only quotient of a subgroup of Z⊕24 having cardi-
nality 16 is Z⊕24 itself. �

By the following example, as soon as d2 ≡ 0 mod 4, there do exist isotropic sub-
groups G of A[d1d2] as in Lemma 2.1. As a consequence, a general polarized abelian
surface of type (d1, d2) contains an unnodal genus 2 curve and the only if part of The-
orem 1.1 follows.

Example 1. We fix positive integers d1, d2, a, b such that d1|d2 and the relation ab =
d21d2 holds. We consider the following subgroup of A[d1d2]

G := 〈ae′1, bf′1, d2e′2〉.
One has |G| = d1d2

a ·
d1d2
b · d1 = d1d2 and

G⊥ =

〈
d1d2
b

e′1,
d1d2
a

f′1, e
′
2, d1f

′
2

〉
,

and hence G⊥/G ' Z⊕2d1 ⊕ Z⊕2d2 . In particular, the group G corresponds to a polarized
isogeny from the principally polarized abelian surfaceA to a (d1, d2)-polarized abelian
surface (S,L). If both a and b divide d1d2/2 (and thus ab = d21d2 divides (d1d2)

2/4, or
equivalently, d2 ≡ 0 mod 4), then G contains the 2-torsion points e1, f1, e1 + f1 and we
find a genus 2 curve in |L| with a singularity that is (at least) a triple point. Note that
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for any values of d1, d2 such that d1|d2 and d2 ≡ 0 mod 4, the integers a = d1d2/2 and
b = 2d1 satisfy all the above conditions. If moreover d1 is even, then G contains also
the point e2 and the image of the theta divisor aquires a 4-tuple point.

To our knowledge the only example of an unnodal genus 2 curve on an abelian sur-
face from the published literature until now was the image of the theta divisor under
the multiplication by two on a principally polarized abelian surface. This example has
played interesting roles in various works concerning curve singularities (cf. [DS, Ex.
4.14]) and Seshadri constants (cf. [St, Pf. of Prop. 2], [Ba, Rmk. 6.3], [KSS, Ex. 4.2]).
We recall and generalize this example:

Example 2. Assume we have an isogeny λ as in (*) identifiying all the six Weierstrass
points of Θ. The group A[2] of 2-torsion points of A is necessarily contained in the
kernel of such a λ, that hence factors through the multiplication by 2

m2 : A→ A.

In fact, the image m2(Θ) has only one singularity at the image of the six Weierstrass
points, that is thus a 6-tuple point. Furthermore,m2(Θ) ∈ |L⊗41 |whereL1 is a principal
polarization on A. As soon as d1 ≡ 0 mod 4, one constructs a genus 2 curve with a
sixtuple point on a general (d1, d2)- polarized abelian surface (S,L) by composing m2

with an isogeny λ′ : A → S such that λ′(Θ) ∈ |L′| where L′ is a polarization on S
satisfying L′⊗4 ' L.

Remark 1. Theorem 1.4 along with the fact that any smooth genus 2 curve has exactly
6 Weierstrass points yields that 6 is the maximal order of any singularity of a genus
2 curve on a general abelian surface. Examples 1 and 2 exhibit genus 2 curves with
a triple, a 4-tuple or a 6-tuple point. It is natural to ask whether one can construct a
genus 2 curve with a 5-tuple point. Such a curve would correspond to an isotropic
subgroup G containing exactly 4 points in the set (5). However, any subgroup of A[2]
generated by 4 elements in the set (5) contains e1, e2, f1, f2 and thus coincides withA[2].
As a consequence, if one requires G to contain four points in (5), then G contains the
wholeA[2] and one falls in Example 2 thus obtaining a 6-tuple and not a 5-tuple point.

Remark 2. While looking for a proof of Theorem 1.1, we realized that the proof of [DL,
Proposition 3.1] contains a gap since it somehow assumes that an isogeny between
two principally polarized abelian surfaces λ : A → B never identifies three or more
points on the theta divisor of A. In [DL] the abelian varieties are defined over an
algebraically closed field K of arbitrary characteristic and the kernel of λ is a maximal
isotropic subgroup ofA[p] for some prime integer p 6= charK. Theorem 1.4 repairs the
mentioned gap for K = C.

2.4. Reduction of Theorem 1.2 to Theorem 1.4. We conclude this section by proving
the following lemma, to which Theorem 1.2 reduces thanks to Theorem 1.4.

Lemma 2.2. For any positive integers d1, d2 with d1|d2, there exists an isotropic subgroup G
of A[d1d2] as in (**) such that any G-orbit of A[d1d2] contains at most two points in (4).

Proof. The group
G := 〈d1e′1, d2e′2〉

is clearly isotropic. By (3), G contains e1 if d2 is even and e2 if d1 is even; in no case G
contains other elements of order 2. As a consequence, the only set of points contained
in (4) and lying in the sameG-orbit are {f1, e1+f1} for even values of d2, and {f2, e2+f2}
if d1 is even. One easily checks that

G⊥ := 〈e′1, d2f′1, e′2, d1f′2〉
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so that G⊥/G ' Z⊕2d1 ⊕ Z⊕2d2 .
�

3. PROOF OF THEOREM 1.4

We proceed by degeneration to a curve C0 having two irreducible smooth elliptic
components E1 and E2 meeting at a point P .

Let π : C → B be a flat family of curves over a local one-dimensional base B (that is,
B = SpecR for some discrete valuation ring R) with special fiber C0 and generic fiber
Cb being a smooth irreducible curve of genus 2; also assume that the total space C is
smooth. A relative linear series of type g2d on C is a pair l = (A,V) such that A is a line
bundle on C flat over B and V is a rank-3 subbundle of π∗A. We assume the existence
of a linear series lb = (Ab, Vb) of type g2d on the generic fiber Cb of π totally ramified at
three points. Possibly after finitely many sequences of base changes and blow-ups at
the nodes of the special fiber, we obtain a family π′ : C′ → B′ such that:

(i) the generic fiber of π′ is again Cb;
(ii) the special fiber C ′0 of π′ is obtained from C0 by inserting a chain of h ≥ 0

rational curves at the node P ;
(iii) lb is the restriction of a relative linear series l = (A,V) on C′;
(iv) there are three sections σ1, σ2, σ3 of π′ such that lb is totally ramified at the

points σ1(b), σ2(b), σ3(b);
(v) the points x1 := σ1(0), x2 := σ2(0), x3 := σ3(0) lie in the smooth locus of C ′0

(but are allowed to coincide).
We label the rational components inserted at P with γ1, . . . , γh and set γ0 := E1,
γh+1 := E2 and Pi := γi−1 ∩ γi for 1 ≤ i ≤ h + 1. The restriction of l to C ′0 is a
(crude) limit linear series [EH2], whose aspect on γi (cf. [EH2, Def. p. 348]) is denoted
by li = (Ai, Vi). If Pj ∈ γi, let αi(Pj) = (αi0(Pj), α

i
1(Pj), α

i
2(Pj)) denote the ramification

sequence of li at Pj . We recall the following compatibility conditions [EH2, p. 346]:

(8) αi−1j (Pi) + αi2−j(Pi) ≥ d− 2 for 1 ≤ i ≤ h+ 1 and 0 ≤ j ≤ 2.

Furthermore, any two points Q,Q′ on the same component γi satisfy:

(9) αij(Q) + αi2−j(Q
′) ≤ d− 2 for 0 ≤ i ≤ h+ 1 and 0 ≤ j ≤ 2.

Since E2 = γh+1 is elliptic, then αh+1
1 (Ph+1) ≤ d − 3 and thus αh1(Ph+1) ≥ 1 by (8).

Inequality (9) then yields αh1(Ph) ≤ d− 3. By the same argument, we obtain that

(10) αi−11 (Pi) ≥ 1 for 1 ≤ i ≤ h+ 1.

Analogously, using the fact that E1 = γ0 is elliptic, one proves that

(11) αi1(Pi) ≥ 1 for 1 ≤ i ≤ h+ 1.

In particular, γ0 = E1 has at least a cusp at P1 and γh+1 = E2 has at least a cusp at
Ph+1.

If x1 lies on the component γi, then αi2(x1) = d− 2 and thus (9) yields αi0(Pi) = 0 as
soon as i 6= 0 and αi0(Pi+1) = 0 for i 6= h+ 1. By (8), we get that both αi−12 (Pi) ≥ d− 2

if i 6= 0 and αi+1
2 (Pi+1) ≥ d− 2 if i 6= h+ 1. Inductively, we obtain

αj2(Pj+1) ≥ d− 2 for 0 ≤ j ≤ i− 1 (if i 6= 0) ,(12)

αj2(Pj) ≥ d− 2 for i+ 1 ≤ j ≤ h+ 1 (if i 6= h+ 1) .(13)
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We get the same conclusion if x2 ∈ γi or x3 ∈ γi. In particular, l0 has total ramification
at P1 as soon as at least one among the points x1,x2,x3 does not lie on γ0 = E1. Analo-
gously, if at least one among x1,x2,x3 lies outside of γh+1 = E2 we obtain that Ph+1 is
a total ramification point for lh+1.

By abuse of notation, we set αi(x1) to be the 0-sequence if x1 does not lie on γi, and
the same for x2 and x3. In the case where x1, x2, x3 are distinct the additivity of the
Brill-Noether number (cf. [EH2, Lem. 3.6]) then yields:

−4 = ρ(2, 2, d, (0, . . . , 0, d− 2), (0, . . . , 0, d− 2), (0, . . . , 0, d− 2))

≥ ρ(1, 2, d, α0(P1), α
0(x1), α

0(x2), α
0(x3))

+
h∑
i=1

ρ(0, 2, d, αi(Pi), α
i(Pi+1), α

i(x1), α
i(x2), α

i(x3))

+ρ(1, 2, d, αh+1(Ph+1), α
h+1(x1), α

h+1(x2), α
h+1(x3)).

If x2 = x1 and x3 6= x1, the above inequality still holds up to deleting all the αi(x2).
The cases where x3 coincides with x1 and/or x2 can be treated similarly. We recall
that:

- the adjusted Brill-Noether number of any linear series on P1 with respect to
any collection of points is nonnegative (cf. [EH3, Thm. 1.1]);

- the adjusted Brill-Noether number of any linear series on an elliptic curve with
respect to any point is nonnegative (cf. [EH3, Thm. 1.1])

- the adjusted Brill-Noether number of any g2d on an elliptic curve with respect
to any two points is ≥ −2 (cf. [F, Prop. 4.1]).

Concerning the position of the points x1, x2, x3, we can thus conclude (up to rela-
belling them) that either

(a) x1 lies on E1, x2 lies on E2 and x3 lies on γi for some 1 ≤ i ≤ h, or
(b) x1 and x2 are distinct and lie on the same elliptic component.

In case (a), one has αi(x3) ≥ (0, 0, d − 2) and inequalities (10), (11), (12), (13) imply
both αi(Pi) ≥ (0, 1, d − 2) and αi(Pi+1) ≥ (0, 1, d − 2); this contradicts the Plücker
Formula [EH1, Prop. 1.1] according to which the total ramification of any grd on P1

equals (r + 1)d− r(r + 1).
Thus we necessarily fall in case (b). Without loss of generality, we assume that

x1, x2 ∈ E1 = γ0. If x3 = x1 or x3 = x2, the ramification weight of l0 at x3 is ≥ 2(d− 2)
since it equals the sum of the weights of the ramification points ofCb tending to x3 (cf.,
e.g., [HM, p. 263]). On the other hand, x3 cannot be a base point and thus α0(x3) =
(0, d − 2, d − 2) and this is a contradiction because E1 is elliptic. We conclude that l0
is totally ramified at three distinct points, namely, x1, x2, x3 if x3 ∈ E1 and x1, x2, P1 if
x3 6∈ E1; in both cases, l0 also has a cusp at P1. We apply the next proposition; in the
former case this implies the relation 2x1 ∼ 2x2 ∼ 2x3 on E1, while in the latter case
we obtain 2x1 ∼ 2x2 ∼ 2P1 on E1.

Let π′0 : Jπ′ → B′ be the relative generalized jacobian of the family π′, whose generic
fiber is the jacobian J(Cb) and whose special fiber is the generalized jacobian J(X ′0)
parametrizing isomorphism classes of line bundles having degree 0 on every irre-
ducible component of X ′0. Hence, one has J(X ′0) ' Pic0(E1) × Pic0(E2) and π′0 is
a family of smooth principally polarized abelian surfaces. The relative degree-0 line
bundleOC′(σ2− σ1) defines a torsion section of π′0 (since dσ1(b) ∼ dσ2(b) by (iv)) inter-
secting the special fiber J(X ′0) in the 2-torsion point (OE1(x2 − x1),OE2). By [Mi, Pf.
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of Prop. VII.3.2 and Cor. VII.3.3] (that works for families of abelian varieties of arbi-
trary dimension), the group of torsion sections of π′0 injects in the torsion subgroup of
any fiber of π′0 and thus we conclude that OC′(σ2 − σ1) is 2-torsion. In particular, on
the generic fiber Cb of π′ the divisors 2σ1(b) and 2σ2(b) are linearly equivalent, that is,
σ1(b) and σ2(b) are Weierstrass points.

We claim that σ3(b) is a Weierstrass point, as well (this is clear in the case where
2x1 ∼ 2x2 ∼ 2x3 but needs some work when 2x1 ∼ 2x2 ∼ 2P1). Let ιb be the hyperel-
liptic involution on Cb and set σ4(b) := ιb(σ3(b)). By contradiction, we assume σ4(b) 6=
σ3(b). As d is even, then dσ3(b) ∼ dσ1(b) ∼ d

2(σ3(b)+σ4(b)) and thus dσ4(b) ∼ dσ3(b) ∼
dσ1(b). As a consequence, the linear series l′b := (OCb(dσ1(b)), 〈dσ1(b), dσ3(b), dσ4(b)〉)
is a g2d on Cb totally ramified at σ1(b), σ3(b), σ4(b). The first part of the proof applied to
l′b thus yields that at least two points among σ1(b), σ3(b), σ4(b) are Weierstrass points
of Cb and thus a contradiction.

Proposition 3.1. Fix an integer d ≥ 3. If a general elliptic curve possesses a g2d totally
ramified at three points P1, P2, P3 and with a cusp, then d is even, the g2d is not birational and
the relation 2P1 ∼ 2P2 ∼ 2P3 holds.

Proof. We first show that, if a g2d on a general elliptic curve E totally ramified at three
points P1, P2, P3 is not birational, then d is even and 2P1 ∼ 2P2 ∼ 2P3. We consider
the Stein factorization of the map f : E → P2 defined by the g2d (which is base point
free since it admits three points of total ramification):

E

p
��

f

##
P1

q
// R ⊂ P2,

where p is a cover of degree k ≥ 2, q is birational and R is a singular plane curve of
degree d/k. Since f is totally ramified at P1, P2, P3, the same holds for p. The Riemann-
Hurwitz formula thus implies k ≤ 3. The case k = 3 can be excluded for general E
because, by Riemann’s Theorem along with the fact that all triples of points on P1 are
projectively equivalent, there is a unique genus 1 triple cover of P1 totally ramified at
three points.

It remains to show that a birational g2d on a general elliptic curve E totally ramified
at three points P1, P2, P3 admits no cusps. Let X be the degree d plane curve image
of E under the map defined by the g2d. We note that the three lines L1, L2, L3 cutting
the divisors dP1, dP2, dP3 cannot belong to a pencil of lines through a fixed point of
P2 since otherwise this pencil would cut a g1d on E totally ramified at three points,
thus contradicting the Riemann-Hurwitz formula for d ≥ 4 and the generality ofE for
d = 3, as above. The curve X defines a point in the generalized Severi variety

Vd,1 (L1 + L2 + L3, (d, d, d))

parametrizing reduced and irreducible plane curves of geometric genus 1 and degree
d having contact order d at three unassigned points in the smooth locus of L1 + L2 +
L3. More strongly, since all triples of lines with no common points are projectively
equivalent, the image of any elliptic curve under any birational g2d totally ramified at
three points is represented by a point in Vd,1 (L1 + L2 + L3, (d, d, d)). Conversely, the
normalization map of any member of Vd,1 (L1 + L2 + L3, (d, d, d)) defines a g2d on an
elliptic curve totally ramified at three points.
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We next note that an elliptic curve E has a finite number of g2d totally ramified at
three points up to automorphisms; indeed, the relation dP1 ∼ dP2 ∼ dP3 on E yields
that the line bundles O(Pi − Pj) are d-torsion elements of Pic0(E) ' E. To prove the
desired statement that a birational g2d on a general elliptic curve E totally ramified at
three points admits no cusps, it is therefore enough to show that a general element X
in any irreducible component V of Vd,1 (L1 + L2 + L3, (d, d, d)) is immersed (that is, the
differential of its normalization map is everywhere injective).

Generalized Severi varieties were introduced by Caporaso-Harris in [CH] (cf. [Za2]
for recent results on the topic). Our situation is slightly different since we fix the rami-
fication profile at three lines instead of one; however, the local computations in [CH,
§2.2] are proved for fixed contact order with any smooth curve and thus apply also in
our case where the points of contact lie in the smooth locus of L1 + L2 + L3.

We recall the main deformation theoretic arguments in [CH], adapting them to
our setting1. Let X be a general element of any irreducible component V of
Vd,1 (L1 + L2 + L3, (d, d, d)) and let f : E → X ⊂ P2 denote the normalization map.
Then f∗(L1 + L2 + L3) = dP1 + dP2 + dP3 for some points P1, P2, P3 ∈ E. We con-
sider the normal sheaf Nf , its torsion subsheaf Hf supported at the vanishing divisor
Z of the differential df of f , and the quotient Nf := Nf/Hf . We have the following
commutative diagram (cf. [Se, (3.51)]):

(14) 0

��
Hf

��
0 // TE ' OE

��

df // f∗TP2 // Nf

��

// 0.

0 // TE(Z) ' OE(Z) // f∗TP2 // Nf

��

// 0

0

As in [CH, p. 363], for 1 ≤ i ≤ 3 let li be the order of vanishing of the differential of f
at Pi and define the two following divisors on E:

D :=

3∑
i=1

(d− 1)Pi,

D0 :=

3∑
i=1

liPi;

1In the notation of Caporaso-Harris the line L is here replaced by L1 + L2 + L3 and we have α = 0,
that is, we are not imposing contact order at any fixed points of L1 + L2 + L3, and

β = (0, . . . , 0︸ ︷︷ ︸
d− 1

, d),

that is, we are imposing contact order d at three unassigned points of L1 + L2 + L3.
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note that the differenceD1 := D−D0 is effective in our case2. Furthermore, the divisor
Z −D0 is effective by the definition of Z and li.

By [CH, Lemma 2.3 and Lemma 2.6] (cf. also [AC, p.26]), the tangent space T[X]V

of V at the point [X] injects in H0(E,Nf (−D1)). From (14) we get:

(15) degNf (−D1) = 3d− degZ − degD + degD0 = 3− deg(Z −D0) ≤ 3,

and thus

(16) dimV ≤ dim T[X](V ) ≤ h0(E,Nf (−D1))) ≤ 3.

On the other hand, 3 equals the expected dimension of V because 3 = 3d − 3(d − 1),
where 3d is the dimension of the Severi variety of degree d genus 1 plane curves and
3(d − 1) comes from the ramification imposed at three unassigned points (cf. [CH,
§2.1]). Hence, dimV = 3 and all inequalities in (15) and (16) are equalities. In parti-
cular, V is smooth at [X] and T[X]V can be identified with H0(E,Nf (−D1)). Having
degree 3, the line bundle Nf (−D1) is very ample and thus possesses a section vanish-
ing at any point of E with order exactly 1; as in [CH, Proof of Prop. 2.2 p. 364], this
implies that X is immersed and concludes the proof. �

Remark 3. Proposition 3.1 is sharp in the following sense. Take three points P1, P2, P3

on an elliptic curve E satisfying 2P1 ∼ 2P2 ∼ 2P3 and let d ≥ 4 be an even integer.
Then the map f defined by the linear series 〈dP1, dP2, dP3〉 factors as follows:

E

p
��

f

##
P1

q
// R ⊂ P2,

where p is the double cover branched at P1, P2, P3 and at a further point P0, and q is the
(unique up to projectivities) map from P1 defined by the linear series 〈d2x1,

d
2x2,

d
2x3〉

with xi := p(Pi). Plücker’s Formula yields that q has no ramification outside of
x1, x2, x3. Therefore, one computes that the ramification sequence of the g2d on E at
Pi is (0, 1, d − 2) for 1 ≤ i ≤ 3 and (0, 1, 2) for i = 0. In particular, the g2d has cusps at
all the four points P0, P1, P2, P3.
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