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ABSTRACT

The reciprocal interconversion between spin polarization and charge current (CSC) is the focus of intensive
theoretical and experimental investigation in spintronics research. Its physical origin stems from the Rashba
spin-orbit coupling (SOC) induced by the breaking of the structure inversion symmetry. The steady-state
interconversion efficiency is the result of the non-trivial spin textures of the electric- field distorted Fermi surface.
Its full understanding and evaluation requires the consideration of disorder-induced relaxation effects in the
presence of spin-orbit induced band splitting. In this paper the additional effect of the orbital degree of freedom
is analyzed in a two-subband quantum well with both conventional and unconventional Rashba SOC in the
presence of disorder impurity scattering. The latter is treated at the level of the Born approximation in the
Green’s function self-energy and with the inclusion of vertex corrections in the linear response functions for the
charge current and the spin polarization. By explicitly considering the symmetry properties of the Hamiltonian
the matrix structure of the correlation functions is shown to decompose in independent blocks of symmetry-related
physical observables. We find that the inclusion of vertex corrections is important for the correct estimate of the
CSC efficiency, which also depends on the position of the Fermi level. We also find that the relative sign of the
Rashba SOC in the two subbands plays a key role in determining the behavior of the CSC. Finally, we point out
how the two-subband model compares with the standard single-band two-dimensional electron gas.

Keywords: Double Quantum Well, Rashba Spin-orbit Coupling, Spin Relaxation

1. INTRODUCTION

The spin-orbit (SO) interaction couples electron spin and its momentum, affording electric control and manipu-
lation of magnetic degrees of freedom, the spin, in quantum spintronics.1,2 Also, the SO effects underlie novel
topological phenomena in diverse fields of quantum condensed matter such as topological insulators,3 Majorana
fermions,4,5 van der Waals heterostructurs6,7 and Weyl semimetals.8,9 Recent proposals of persistent skyrmion
lattice,10 stretchable spin helix11 as well as helix-stretch based orbit (pseudospin) filter,12 which can be realized
by fine tuning the SO strengths, also indicate the important role of SO effects in semiconductor nanostruc-
tures. Further, the SO field is the key leading to the charge-to-spin conversion by the direct Rashba-Edelstein
effect (REE) and spin-to-charge conversion by the inverse Rashba-Edelstein effect (IREE).13–23 The reciprocal
interconversion between spin polarization and charge current plays a crucial role in modern spintronics, and
accordingly is the focus of intensive theoretical and experimental investigations for spintronic applications.

In semiconductor nanostructures, the SO effects usually have two dominant contributions, i.e., the Rashba24

and Dresselhaus25 terms, arising from the structural and bulk inversion asymmetries, respectively. While the
Dresselhaus coupling mainly depends on the quantum confinement (e.g., the well width),11,26,27 the Rashba cou-
pling can be electrically controlled by using an external bias, thus facilitating coherent spin manipulation.11,28–30
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As a consequence, the Rashba effect is often used in proposed spintronic devices, e.g., spin-field31–33 and spin-Hall
effect34,35 transistors as well as spin-charge conversion based applications. Extensive studies have been devoted
to coherent spin control by resorting to the Rashba SO coupling in semiconductor heterostructures with only one
occupied electron subband.11,36–38 However, for the case of the single-subband occupancy, the two lifted spin
branches of the energy dispersion feature opposite chiralities, greatly suppressing the efficiency of charge-spin
conversion in spintronic applications. Recently, following that additional orbital degrees of freedom may offer
more intriguing possibilities for SO control, e.g., band crossing and anticrossing assisted spin manipulation, the
spin features in two-band Rashba quantum systems have also attracted growing interest, with both intra- and
interband SO terms.11,39–43 In general, the intra- and interband SO terms have the same symmetry, leading
to the conventional two-band Rashba model.27,36,44,45 Within the conventional model, it has been shown that
coupling between subbands can be used to control the spin lifetime in the persistent spin helix regime.10,11,40–42

Experimentally, measurements of spin dynamics in two-subband GaAs quantum wells have shown long and
anysotropic spin lifetimes.46–48

Recently, Song et al. also proposed an unconventional two-band Rashba model in two-dimensional (2D)
systems,49 where the intra- and interband SO terms have different symmetries, so that the Fermi circles of spin-
lifted subbands have chirality with the same sign, thus providing high efficiency of spin to charge conversion.
However, so far, detailed SO features involving the energy dispersion of the four distinct spin branches and
the corresponding spin textures for the conventional and unconventional SO models, which are essential for
spintronic applications,50,51 still remain obscure. Further, the effect of vertex correction in momentum space,
which is important for the correct charge-spin conversion (CSC),13 particularly near the crossing or avoided
crossing points of the two bands, is largerly unexplored.

Here, we explore the SO features of the unconventional Rashba model and make comparison to the conven-
tional one for a QW with two subbands with both intra- and interband SOC. We demonstrate avoided crossings
of the energy dispersion and intertwined spin textures, in stark contrast to the conventional Rashba model.
And, near the avoided crossings in momentum space, there may even exist vanishing SO fields, triggered by the
interband coupling. This can be used as an handle to suppress spin-relaxation mechanisms for electrons in a
controllable manner. Furthermore, we take into account the disorder (e.g., impurity) scattering within the Born
approximation in the self-energy of Green’s function and include the vertex correction of spin textures in the
linear response functions for the charge current and spin polarization, to estimate the CSC effciency. We find
that two distinct regimes can be identified as a function of the Fermi energy, depending whether one or two
subbands are occupied. When both bands are occupied, the vertex corrections are important and to a large
extent can be understood in a way similar to the behavior of the single-band case. In the regime with only
one band occupied, the relevance of the vertex corrections is controlled by the strength of the disorder, e.g.
impurity scattering. Our analysis is based on the standard diagrammatic impurity technique here generalized to
the case of two bands. Symmetry considerations are exploited in order to simplify the algebraic structure of the
vertex corrections arsing from both orbital and spin degrees of freedom and support the numerical evaluation.
Within linear response to a d.c. external electric field we evaluate the Kubo formula for both the induced spin
polarization and the electrical current, from whose ratio we measure the CSC efficiency. One byproduct of the
algebraic structure of the vertex corrections equation is the information about the spin relaxation times, which
appear to behave differently in the conventional and unconventional models.

This paper is organized as follows. In Sec. 2, we first present the conventional and unconventional two-band
Rashba models, as well as the corresponding energy dispersion with avoided crossings and novel spin textures.
The Green’s and response functions, involving the self-energy, the vertex equation, and the sysmmetry analysis,
are introduced in Sec. 3. We present and discuss numerical results for CSC conversion in Sec. 4. We summarize
our main finding in Sec. 5

2. CONVENTIONAL AND UNCONVENTIONAL RASHBA MODELS

We consider two-dimensional electron gases (2DES) confined in semiconductor quantum wells of two occupied
subbands, with parabolic dispersion and both intra- and inter-subband Rasbha SO couplings. Following the
notation introduced in Ref. 49, we consider the cases of conventional and unconventional Rashba SOC. The
conventional model follows from the usual two-subband GaAs zincblende quantum wells grown along the z = [001]
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direction,27,36 where electrons are confined to the xy plane with x = [110] and y = [11̄0]. Assuming structural
inversion asymmetry (SIA), the effective Hamiltonian of the conventional model at the Γ point must be invariant
under the C2V = {C2(z),My} point group. In contrast, the unconventional model occurs in 2D systems that
transform under the C3V = {C3(z),My} point group at the Γ point.

The derivation of both, conventional HC and unconventional HU , Hamiltonians is shown in Appendix A.
There, we see that HC and HU are strikingly similar, differing only by the intersubband Rashba terms ηC and
ηU . Consequently, it is useful to recast both Hamiltonians into a generic form,

H =


ε1 −iα1k− 0 −iη∗k−

iα1k+ ε1 iηk+ 0
0 −iη∗k− ε2 −iα2k−

iηk+ 0 iα2k+ ε2

 . (1)

For the conventional case, the intersubband Rasbha SO coupling η ≡ ηC is real, ensuring that the intra- (−iαjk−)
and intersubband (−iηCk−) terms have the same symmetry. In contrast, for the unconventional case, η ≡ −iηU is
imaginary, indicating that the intra- (−iαjk−) and intersubband (ηUk−) terms have different symmetries in spin
space. The subband basis is labeled as |j, σ⟩, where j = {1, 2} refer to the subbands, and σ = {↑, ↓} to the spin
along z. We will use two sets of Pauli matrices λ0, λx, λy, λz and σ0, σx, σy, σz to represent the matrix structure
in subbands and spin degrees of freedom, respectively. In both cases of intersubband Rashba SO coupling, the

basis |j, σ⟩ is sorted as {|1 ↑⟩ , |1 ↓⟩ , |2 ↑⟩ , |2 ↓⟩}, and for each subband εj = ε0j +
ℏ2

2mk2, ε0j are the band edges,
the effective mass m is assumed to be the same in both subands, αj is the intra-subband Rashba SO coupling,
k = (kx, ky) is the in-plane quasi-momentum, and k± = kx ± iky. Unless otherwise specified, we use a set of
parameters similar to those in Ref. 49, i.e., ε01 = 0 meV, ε02 = 160 meV, m = 0.365m0, |α1| = |α2| = 78 meV nm,
|ηC | = |ηU | = 126 meV nm , where m0 is the bare electron mass.

2.1 Subband anti-crossings and spin textures in k-space

The different cases above for η ≡ ηC or η ≡ −iηU yield similar band structures, but they imply different
conditions for anti-crossings between the subbands, and distinct spin textures in k-space, as shown in Fig. 1. To
see this, first notice that at ky = 0, and with η = 0, we have [H,σy] = 0. Thus, the wave-functions are eigenstates
of σy with energies Ej,± = εj ± αjkx. If α1/α2 > 0, the crossing subbands will have the opposite σy, while for
α1/α2 < 0 they have the same σy. Now, for the conventional case, if we consider a finite η ≡ ηC as a perturbation
of the type H ′ = ηCλx ⊗ σy kx, it couples crossing subbands only if they have the same σy (i.e., α1/α2 < 0).
In contrast, for the unconventional case with η ≡ −iηU , the perturbation would be H ′ = ηUλx ⊗ σx kx, which
couples crossings with opposite σy (i.e., α1/α2 > 0). The four possible scenarios lead to the four distinct helical
spin textures shown in Fig. 1.

For the conventional cases shown in Fig. 1(a–b), the intersubband SOC ηC does not mix the spin components,
as argued above, and affects only the band dispersion. In contrast, for the unconventional ηU leads to significant
spin admixture, as shown by the color code of Fig. 1(c–d). The U+ case, with α1/α2 > 0, Fig. 1(c) is a
particularly interesting scenario, since the spin admixture induced by ηU leads to a regime where both spin
branches of the lower subband have the same helicity. Consequently, one would expect that this case should lead
to a higher charge-spin interconversion, as proposed in Ref. 49. However, as we will present below, this is not
necessarily the case.

3. THE DIAGRAMMATIC ANALYSIS FOR THE GREEN’S AND RESPONSE
FUNCTIONS

3.1 Statement of the problem

Our aim is the evaluation of the Kubo formula for the response functions of an observable in the presence of an
external field. In particular, we will be interested in the spin polarization response to an applied electric field
(REE) by allowing electron scattering from random impurities. We will consider standard scalar (i.e. with no
dependence on subband and spin degrees of freedom) disorder potential U(r) with delta-like correlated impurities
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Figure 1. (a1–d1) Band structure for the two-subband models of the conventional (Cα) and unconventional (Uα) types
with α = ± indicating the sign of α1/α2 in each panel. The energies En,s are calculated at ky = 0 and the color code
refers to the mean value of the spin operator σy (i.e., ⟨σy⟩ > 0 in blue, and ⟨σy⟩ < 0 in red shades). (a2–d2) Spin textures
in k-space corresponding to the band structures and energy (dashed line) from the top panels. The arrows and their shade
indicate the direction (helicity) and intensity of the spin vector ⟨σ⟩. At ky = 0, the color code matches the one from the
top panels.

such that ⟨U(r)U(r′)⟩ = u2
0δ(r− r′), where u2

0 = nimpv
2
0 with nimp the impurity concentration and v0 the single-

impurity scattering amplitude. At the level of the Born approximation, the retarded self-energy ΣR(ω,k) is
obtained by the so-called rainbow diagram, as shown in Fig. 2(a), and it is given in terms of the single-particle
electron Green’s function as

ΣR(ω,k) = u2
0

∫
d2k′

(2π)2
GR(ω,k′) = u2

0

∫
d2k′

(2π)2

∑
s,n

Ps,n(k
′)

ℏω − Es,n(k′) + i0+
, (2)

where Es,n(k) and Ps,n(k) indicate the eigenvalues and the corresponding projector operators of the generic
Hamiltonian from Eq. (1). The summation run over the possible combinations of the indexes n = ± and s = ±,
which will be defined later on. Notice that with the adopted model of disorder the self-energy does not depend
on the external momentum k.

Once the self-energy has been evaluated and inserted into the Green’s function, the Kubo formula, say, for
the y-axis spin polarization in response to an x-axis applied electric field may be evaluated by the diagram shown
in Fig. 2(b) and reads13,52 (below e > 0 is the unit charge and a factor ℏ/2 accounts for the spin value and
dimensions)

χyx =
ℏ
2π

(−e)ℏ
2

∫
d2k

(2π)2
Tr

[
S0
yG

R(ω,k)Jx(k)G
A(ω,k)

]
, (3)

where S0
y = λ0 ⊗ σy is the bare spin-density vertex (in units of ℏ/2) and the Jx(k) is the dressed charge-

current vertex (more precisely, the number-current vertex because we have taken out the charge −e). The
latter is obtained by considering the ladder diagrams represented in Fig. 2(c), which yield the vertex corrections
mirroring the self-energy corrections due to the rainbow diagram. In explicit terms Jx(k) is obtained by solving
the equation53–55

Jx(k) = J0
x(k) + u2

0

∫
d2k′

(2π)2
GR(ω,k′)Jx(k

′)GA(ω,k′), (4)
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(a) (b) (c)

Figure 2. (a) Self-energy rainbow diagram for the Born approximation. The solid and dashed lines represent the electron
Green’s function and the impurity average, respectively. (b) Bubble diagram for the response function. The gray and
black dots represent the bare and dressed vertices. (c) Ladder diagram for the dressed vertex.

J0
x(k) being the bare charge-current vertex. The set of Eqs. (2,3,4) are well known13,53,54 and have been applied

to the single-subband model with Rashba SOC. Its application to the generic Hamiltonian from Eq. (1) will be
considered in this paper. The presence of two subbands makes the analytic treatment more involved and it is
useful to exploit the symmetries of the model to make the solution of the Eqs. (2,3,4) simpler and physically
more transparent. This will be carried out in the following of this section, wheres the discussion of the results
will be postponed to a subsequent section.

3.2 The diagonalization of the Hamiltonian and the structure of the self-energy

According to Eq. (2), the evaluation of the self-energy requires the knowledge of the eigenvalues and projection
operators of the generic Hamiltonian from Eq. (1). We now make the useful observation that the Hamiltonian
can be made block-diagonal by introducing the Rashba eigenstates of each subband separately, considering that
their spinor structure is independent of the strength of the two Rashba SOC couplings α1 and α2. We then
introduce the new basis by the following unitary transformation

S(θ) =
1√
2


1 −ie−iθ 0 0
0 0 1 ie−iθ

1 ie−iθ 0 0
0 0 1 −ie−iθ

 , (5)

where the angle θ identifies the wave vector momentum k = (k cos θ, k sin θ). In this new basis, where all
quantities will be denoted by an upper index S, the Hamiltonian reads

HS ≡ S(θ)HS−1(θ) =


ε1 + α1k iIm(η)k 0 Re(η)k
−iIm(η)k ε2 − α2k −Re(η)k 0

0 −Re(η)k ε1 − α1k −iIm(η)k
Re(η)k 0 iIm(η)k ε2 + α2k

 . (6)

The Hamiltonian is block-diagonal if we restrict it to either to the conventional (Im(η) = 0) or to the uncon-
ventional (Re(η) =0) cases. Notice as the interband SOC couples equal (opposite) chiralities in the convential
(unconventional) case. We then label the two blocks by

hs
2 =

(
λs
1 βs

β′
s λs

2

)
, s = ±1, (7)

where λs
j = εj + sᾱjk, with ᾱ1 = α1, ᾱ2 = tα2, and the sign t = ± on α2 refers to the conventional and

unconventional cases, respectively. Furthermore, βs = sηk and β′
s = sη∗k. In the S basis, the eigenvalues and

projection operators are easily found to be

Esn =
1

2

(
λs
1 + λs

2 + n
√
(λs

1 − λs
2)

2 + 4βsβ′
s

)
, PS

sn =
1

Nsn

(
|βs|2 βsδ

∗
sn

β∗
s δsn |δsn|2

)
, n = ±1, (8)
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where δsn = Esn − λs
1 and N2

sn = |βs|2 + |δsn|2. In the above, the index n = ±1 labels the eigenvalues for each
block s. By transforming back the projection operators PS

sn in the original basis one finds

Psn(θ) = S−1(θ)PS
snS(θ) =

1

2N2
sn


|βs|2 −ise−iθ|βs|2 βsδ

∗
sn −itse−iθβsδ

∗
sn

iseiθ|βs|2 |βs|2 iseiθβsδ
∗
sn tβsδ

∗
sn

β∗
s δsn −ise−iθβsδ

∗
sn |δsn|2 −itse−iθ|βs|2

itseiθβsδ
∗
sn tβ∗

s δsn itseiθ|βs|2 |δsn|2

 . (9)

Because the eigenvalues Esn, as shown in Eq. (8), only depend on the absolute value of k, when the projector
Psn(θ) is inserted into Eq. (2) for the self-energy, the latter acquires the simple structure

ΣR(ω,k) = −iπu2
0

∑
sn

Dsn⟨Psn(θ)⟩ ≡ −iπu2
0

∑
sn

DsnP
0
sn(ksn), (10)

where ⟨Psn(θ)⟩ = P 0
sn(ksn) denotes the angle average and Dsn is the density of states in the band with quantum

numbers s, n, which reads

Dsn =
k

2π

dk

dEsn(k)

∣∣∣
k=ksn(µ)

, (11)

µ being the Fermi energy, and ksn ≡ ksn(µ) is the Fermi momentum for each band. We notice that the summation
over s, n actually runs only over the occupied subbands. When taking the angle average of the projector Psn(θ)
the self-energy reduces to only three independent parameters for the conventional and unconventional cases,
greatly simplifying the numerical evaluation, and yields

ΣR ≈


Σ11 0 Σ12 0
0 Σ11 0 tΣ12

Σ21 0 Σ22 0
0 tΣ21 0 Σ22

 , (12)

where the sign t = ± refer to the conventional and unconventional cases. In the first Born approximation, the
Hermitian part of ΣR vanishes and ΣR becomes pure skew-symmetric, thus, it does not introduce renormalizations
to H. Namely, we get ReΣ11 = ReΣ22 = 0 in all cases. For the conventional case, ReΣ12 = ReΣ21 = 0 and
ImΣ12 = ImΣ21. For the unconventional case ImΣ12 = ImΣ21 = 0, and ReΣ12 = −ReΣ21. Although the
above matrix structure has been obtained at the level of the Born approximation, it actually has a general
validity granted by the symmetry properties of the model as will be shown in the following.

In Fig. 3 we show the behavior of the self-energy as a function of the Fermi energy. The self-energy is
given in units of ℏ/2τ0 = πu2

0D0, D0 being the density of states of the two-dimensional quadratic dispersion.
Hence, πu2

0D0 is the self-energy for the two-dimensional electron gas. In Fig. 3 one sees that, when all bands are
occupied, the self-energy reduces to a unit matrix with Σ11 = Σ22 and Σ12 = 0. When only one band is occupied
all three parameters are different from zero. In particular the self-energy in the empty subband is non zero due
to the mixing of the inter-band SOC.

3.3 The equation for the dressed vertex

In this subsection we solve the vertex equation (4) by using the dressed Green’s function with the self-energy
obtained in the previous section. We begin by introducing the bare current vertex

J0
x(k) =

1

ℏ
∂H(k)

∂kx
=

ℏkx
m

+ JSOC,x, (13)

where JSOC,x is a k-independent matrix arising from the linear-in-momentum terms describing the SOC in
the Hamiltonian from Eq. (1). To solve Eq. (4) one proceeds by iteration i.e., perturbatively in the disorder
correlations represented by dashed lines in the diagrams of Fig. 2. In the first step of iteration, when the bare
vertex from Eq. (13) (the gray dot in Fig. 2 (c)) is inserted in the momentum integral over k′ in the right
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Figure 3. (a1-d1) Self-energy components [i.e., Σ11, Σ22, Σ12, see Eq. (12)] as function of the Fermi energy µ. Each panel
corresponds to the conventional (Cα) or unconventional (Uα) cases, as indicated, and α = ± labels the relative sign of
α1/α2. The gray area for µ > 160 meV indicates the region where all subbands are occupied. (a2-d2) Imaginary part
Γsn = − Im{Esn} of the self-energy in the eigenstates basis considering only occupied subbands for each µ.

hand side of Eq. (4), one obtains the first vertex correction, which turns out to be independent on the external
momentum k. This suggests that a general solution must have the form

Jx(k) =
ℏkx
m

+ Γx, (14)

where Γx is a momentum independent matrix. By using the ansatz from Eq. (14) into the vertex equation (4),
one readily obtains an algebraic equation for Γx

Γx = Γ̄x + u2
0

∫
d2k′

(2π)2
GR(ω,k′)Γx(k

′)GA(ω,k′), (15)

where Γ̄x is an effective bare vertex obtained by combining the pure SOC-induced vertex and the single-line
impurity line dressed ordinary current vertex

Γ̄x = JSOC,x + u2
0

∫
d2k′

(2π)2
GR(ω,k′)

ℏkx
m

GA(ω,k′). (16)

The algebraic structure of Eq. (15) can be made explicit by introducing the basis ζa = λa1
⊗σa2

(subband, spin)
in the space of four by four matrices. The indices (a1, a2) are defined as a1 = ⌊a/4⌋, ⌊· · · ⌋ being the integer part,
and a2 = a Mod 4. Table 1 provides all the indices a for each pair (λ, σ). By introducing the decompositions
Γx =

∑
a Γx,aζa and similarly for Γ̄x, one finds∑

b

(δab − Lab) Γx,b = Γ̄x,a, (17)

with the L-matrix given by

Lab = u2
0

∫
d2k′

(2π)2
1

4
Tr

[
ζa GR(ω,k′)ζb GA(ω,k′)

]
. (18)
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(λ, σ) 0 1 2 3

0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
3 12 13 14 15

Table 1. For each pair of (λ, σ) matrices, the table gives the value of the index a.

Given the four-dimensional structure of the Hamiltonian from Eq. (1), the basis ζa is formed by sixteen
matrices, making a purely analytical approach to Eq. (17) almost impossible. However, even though a numerical
approach is possible, it is useful to investigate how the symmetries of the model allow to reduce the algebraic
system of the vertex equations in a set of independent systems of equations of lesser size. Because each of the
matrix ζa can be connected to an observable, such a reduction allows also to elucidate which physical observables
are connected to one another.

3.4 The symmetry analysis

To illustrate the usefulness of the symmetry analysis, we begin by considering the evaluation of the effective bare
vertex Γ̄x defined in Eq. (16). The ζ-matrices decomposition of the matrix part JSOC,x is easily obtained and
reads

JSOC,x =
α1 + α2

2ℏ
ζ2 −

ηU
ℏ
ζ5 +

ηC
ℏ
ζ6 +

α1 − α2

2ℏ
ζ14. (19)

Notice that by restricting to the cases α1 = ±α2, the matrix part of JSOC,x has only two components associated
to intra- and interband SOC.

In order to obtain the full Γ̄x we need to evaluate the momentum integral of the second term in the right
hand side of Eq. (16). After expressing the Green’s functions in terms of their spectral decomposition, one gets
for that integral

u2
0

∑
sn

∫
d2k

(2π)2
kxPsn(k)

(ℏω − Esn(k) + i0+)(ℏω − Esn(k)− i0+)
, (20)

where the orthogonality of the projectors has been used Psn(k)Ps′n′(k) = δss′δnn′Psn(k). According to the
explicit expression of the projector in Eq. (9), we may represent the angle dependence of Psn(k) as

Psn(k) = P 0
sn(k) + eiθP+

sn(k) + e−iθP−
sn(k). (21)

The angle integration in Eq. (20), due to the cos θ factor of kx, yields P
0
sn(k) and P 1

sn(k) = (1/2)(P+
sn(k)+P−

sn(k)),
whose ζ-matrices decomposition is readily obtained by inspection looking at Eq. (9), yielding

P 0
sn(k) =

1

2N2
s

(
|βs|2 + |δsn|2

2
ζ0 +

|βs|2 − |δsn|2

2
ζ12 +

βnδ
∗
sn + β∗

nδsn
2

ζ4 + i
βnδ

∗
sn − β∗

nδsn
2

ζ8

)
(22)

P 1
sn(k) =

1

4N2
s

s

(
|βs|2 + |δsn|2

2
ζ2 +

|βs|2 − |δsn|2

2
ζ14 + βnδ

∗
sn(ζ6 + iζ10)− β∗

nδsn(ζ6 − iζ10)

)
(23)

in the conventional case and

P 0
sn(k) =

1

2N2
s

(
|βs|2 + |δsn|2

2
ζ0 +

|βs|2 − |δsn|2

2
ζ12 +

βnδ
∗
sn + β∗

nδsn
2

ζ7 + i
βnδ

∗
sn − β∗

nδsn
2

ζ11

)
(24)

P 1
sn(k) =

1

4N2
s

s

(
|βs|2 + |δsn|2

2
ζ14 +

|βs|2 − |δsn|2

2
ζ2 + βnδ

∗
sn(iζ5 − ζ9)− β∗

nδsn(−iζ5 + ζ9)

)
(25)

for the unconventional case. By comparing Eq. (19) with Eqs. (23, 25) one sees that only the sets (ζ2, ζ14, ζ6, ζ10)
and (ζ2, ζ14, ζ5, ζ9) are involved in the conventional and unconventional cases, respectively. This suggests that
in the evaluation of the full vertex Γx one has to deal with an algebraic system of dimension four, which is a
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great simplification with respect to the dimension sixteen expected on general grounds. Finally, by looking at
Eqs. (22, 24) one sees that it involves only the sets (ζ0, ζ12, ζ4, ζ8) and (ζ0, ζ12, ζ7, ζ11) for the conventional and
unconventional cases, respectively. These are precisely the sets that determine the most general structure of the
self-energy obtained in Eq. (10).

We now show that the above reduction of the observables in independent sets is dictated by the symmetry
properties of the model.

3.4.1 The conventional SOC case

In the conventional case, the symmetry group of the model is C2V with generators given by twofold rotations
about the z axis C2(z) = −iλ0⊗R2(z), mirror reflection through the y axis My = −λ0⊗R2(y) and time reversal
T = −iλ0 ⊗ σyK, where Rn(û) = exp(i(π/n)û · σ) is the n-fold spin rotation around the axis given by the unit
vector û and K is complex conjugation. Under any of these symmetry operations, each ζa matrix transforms as
ζa → ±ζa. It is then possible to derive the parity eigenvalues for each ζa matrix and the result is shown in Table
2. We see that the observables ζa divide in four groups referring to the charge and the different spin polarization
degrees of freedom. One may see that the third group, corresponding to the y-axis spin polarization includes
exactly the set of ζa matrices identified in the analysis of the single-impurity line diagram analyzed in Eq. (23).

3.4.2 The unconventional SOC case

In the unconventional case, the symmetry group of the model is C3V with generators given by threefold rotations
about the z axis C3(z) = −iλ0 ⊗ R3(z), mirror reflection through the y axis My = λz ⊗ iσy and time reversal
T = λ0 ⊗ iσyK. In this case, under the My and T symmetry operations above, each ζa matrix transforms as
ζa → ±ζa and we obtain the parity eigenvalues table which is shown in Table 2. Under the C3(z) symmetry
operations, instead, the ζa matrices with spin polarization along the x and y axis transform into one another
and do not have a defined parity. Nonetheless, as it is clear from the Table 2, the ζa matrices split again in four
distinct groups. The last two groups are related to the x and y axes spin polarization, although in a manner
completely different from the conventional case. Indeed, the intraband observables (with the band index λ = 0, 3)
correspond to the given spin polarization components, whereas the interband ones (with the band index λ = 1, 2)
correspond to the other in-plane spin component, responsible for spin admixture. Similarly, the first two groups
in Table 2 describe the charge and z-axis spin polarization, again showing a different symmetry in intra- and
interband terms. Finally, as in the case of the conventional case, the set (ζ2, ζ5, ζ14, ζ9), which is the third group
in Table 2, corresponds to the set which appears in the single-impurity diagram for the effective bare vertex
found in Eq. (25).

3.4.3 Analysis of the Lab -matrix

The solution of the vertex equation (15) is determined by the Lab matrix, whose entries are given by the
momentum integral in Eq. (18). We notice that the Lab matrix is dimensionless and must be of order one, no
matter what is the strength of disorder. Consider the case, for instance, when disorder is vanishingly small (i.
u2
0 → 0). One could naively assume that the Lab should vanish. This is not so because for vanishing disorder, the

poles of the retarded and advanced Green’s functions tend to merge towards the real axis and the momentum
integral diverges as u−2

0 , thus compensating exactly the factor u2
0 in front of the integral. In this case the Green’s

functions become those for the clean system and one can analyze the symmetry properties by relying on the
parity of the ζa matrices.

Under a unitary symmetry transformation the Green’s functions remain invariant, whereas the ζa matrices
transforms accordingly to Table 2. Thus, for the symmetry operations S with well defined parities, the L matrix
transform as Lab → papbLab, where pa and pb are the parity eigenvalues determined in the Table 2. It is clear
that the entry Lab may only differ from zero if and only if papb > 0, i.e. if the two ζ matrices transform with
the same sign of parity. This implies, according to the analysis carried in the previous subsections, that the
L matrix decomposes into independent blocks. Additionally, under time-reversal symmetry GR ↔ GA, thus
Lab → papbLba. Finally, the C3(z) symmetry introduces further constraints to the third and forth blocks from
Table 2, but this analysis is not necessary to identify the four split blocks.

The L matrix or better the combination 1−L, which appears in the vertex equation (17) can be numerically
evaluated. In Fig. 4 we plot the entries of the L matrix using a color code to illustrate the block structure. We
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Conventional: C2V Unconventional: C3V

Set a (λ, σ) C2(z) My T Class a (λ, σ) C3(z) My T Class
0 (0,0) + + + A1(s) 0 (0,0) + + + A1(s)
4 (1,0) + + + A1(s) 11 (2,3) + + + A1(s)
12 (3,0) + + + A1(s) 12 (3,0) + + + A1(s)

1

8 (2,0) + + - A1(s) 7 (1,3) + + - A1(s)
3 (0,3) + - - A2(Rz) 3 (0,3) + - - A2(Rz)
7 (1,3) + - - A2(Rz) 8 (2,0) + - - A2(Rz)
15 (3,3) + - - A2(Rz) 15 (3,3) + - - A2(Rz)

2

11 (2,3) + - + A2(Rz) 4 (1,0) + - + A2(Rz)

2 (0,2) - + - B1(x) 2 (0,2) −
√
3
2 ζ1 − 1

2ζ2 + - E(x, y)

6 (1,2) - + - B1(x) 5 (1,1) +
√
3
2 ζ6 − 1

2ζ5 + - E(x, y)

14 (3,2) - + - B1(x) 14 (3,2) −
√
3
2 ζ13 − 1

2ζ14 + - E(x, y)3

10 (2,2) - + + B1(x) 9 (2,1) +
√
3
2 ζ10 − 1

2ζ9 + + E(x, y)

1 (0,1) - - - B2(y) 1 (0,1) +
√
3
2 ζ2 − 1

2ζ1 - - E(x, y)

5 (1,1) - - - B2(y) 6 (1,2) −
√
3
2 ζ5 − 1

2ζ6 - - E(x, y)

13 (3,1) - - - B2(y) 13 (3,1) +
√
3
2 ζ14 − 1

2ζ13 - - E(x, y)4

9 (2,1) - - + B2(y) 10 (2,2) −
√
3
2 ζ9 − 1

2ζ10 - + E(x, y)

Table 2. Parity of the ζa matrices under the symmetry transformations for the conventional and unconventional Rashba
models. For the conventional model (C2V group), the matrices divide into four sets corresponding to charge σ = 0 and
spin polarization along the i-th axis σ = 1, i = 1, 2, 3. The case of the y polarization, i = 2, selects the matrices ζ2, ζ6, ζ14
and ζ10. For the unconventional model (C3V group), the first and second groups mix charge (σ = 0) and spin-z (σ = 3)
components, while the third and fourth groups mix in-plane spin components. The C3(z) symmetry partners of the irrep
E are split into the last two groups.

consider two typical and distinct cases. In Figs. 4(e-h) the chemical potential lies in the second subband and
both subbands are occupied, whereas in Figs. 4(a-d) only the lowest subband is occupied. The numbers on the
axes refer to the a and b indices of the ζ matrices. Clearly the blocks confirm the symmetry analysis carried out
before.

The symmetry analysis of the L-matrix can be connected to the general structure of the self-energy we
obtained in Eq. (12). By using the identity54 GR −GA = GR(ΣR − ΣA)GA in Eq. (2) we get

ΣR − ΣA = u2
0

∫
d2k′

(2π)2
GR(ω,k′)(ΣR − ΣA)GA(ω,k′). (26)

Since the self-energy does not depend on the momentum, the above equation can be transformed into an algebraic
one as

(ΣR − ΣA)a = Lab(Σ
R − ΣA)b. (27)

This shows that the skew-Hermitian part of the self-energy, which forms a vector of scattering rates with com-
ponents a = 0, . . . , 15, has a vanishing eigenvalue for the matrix 1 − L discussed earlier, i.e. it belongs to the
nullspace of 1− L. When the self-energy is proportional to the identity matrix ζ0 the null space reduces to the
total charge sector and the vanishing eigenvalue of 1 − L is the manifestation of charge conservation. This is
what happens in the absence of SOC. In the presence of SOC, by considering Fig. 4, we may clearly distinguish
the two different regimes corresponding to one (upper row, energy µ = 100 meV) or two (lower row, energy
µ = 200 meV) bands occupied. When only one band is occupied there is a coupling among the set ζ0, ζ4 and ζ12
for the conventional model, or set ζ0, ζ11 and ζ12 for the unconventional models. This implies that the null space
of the 1−L has components in the ζ matrices of the above sets, i.e. the total charge fluctuating mode is coupled
to the charge transfer modes between the subbands. In the case of two bands occupied the total charge sector
decouples from the other charge transfer modes and has a zero eigenvalue as shown in the color code of Fig. 4.
Indeed, this is what is expected based on the self-energy evaluation when the latter reduces to ζ0. The two
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Figure 4. Entries of the matrix δab − La,b with a color scale. (a-d) Top panels are calculated for µ = 100 meV, such that
the chemical potential lies in the first subband and hence only one band is occupied. (e-h) For the bottom panels we use
µ = 200 meV, such that both subbands are occupied. In the bottom row the white square at the (0, 0) position signal the
vanishing eigenvalue associate to the total charge mode.

charge transfer modes in this regime remain coupled among themselves. This is evidenced in the small coloured
square in the top left square in each panel of the bottom row in Fig. 4.

Another noticeable feature in Fig. 4 are the diagonal blocks, which describe the in-plane spin modes. For
instance, in the case of the conventional model, the third diagonal block corresponding to the sets of matrices
ζ2, ζ6, ζ14, ζ10 includes the spin mode with y-axis polarization. One sees that in the case of only one band occupied
(top row, panels (a) and (b)) the spin mode with y-axis polarization is coupled to the spin transfer mode between
the bands with the same y-axis polarization. On the other hand, when both bands are occupied, the spin mode
with y-axis polarization decouples and behaves in a way similar to the single-band case.

In the case of the unconventional model we focus again on third diagonal block with the matrices ζ2, ζ5, ζ14, ζ9.
In the regime when only one band is occupied, the spin mode with y-axis polarization is coupled to two spin
transfer modes between the bands with both y-axis (ζ14)and the x-axis polarization (ζ5), in sharp contrast with
the conventional case. Even when both bands are occupied the spin mode with y-axis polarization remains
coupled with the mode with x-axis polarization (ζ5).

3.5 Numerical evaluation of the current vertex

The numerical evaluation of the charge current vertex begins with the evaluation of the effective bare vertex Γ̄x,
which is the sum of the bare vertex Jsoc,x (19) and of the diagram with a single impurity line corresponding to
the first iteration and whose integral has the matrix structure reported in Eq. (20). In Fig. 5 we show the non
zero components as function of the Fermi energy. As in the case of the self-energy, two distinct regimes appear
depending whether one or two bands are occupied. In the first case, the finite components are the ones that
appear in the Jsoc,x decomposition, Eq. (19), and are coupled by symmetry.
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On the other hand when both bands are occupied, the effective bare vertex vanishes, as it happens in the
single-band case.53,55 The vanishing of the effective bare vertex implies also the vanishing of the dressed vertex
and the full current vertex reduces only to the first term in the right hand side of Eq. (14).

In the regime when only one band is occupied, the effective bare vertex shows a remarkable non-monotonous
behavior when bands coupling is allowed, both for the conventional and unconventional cases. This non-
monotonous behavior could be expected in connection with the one of the density of states, which has a peak in
the lowest band, when the dispersion flattens a bit around 50 meV. The black dashed line in Fig. 5 refers to the
sum of components a = 2 (λ0 ⊗ σ2) and a = 14 (λ3 ⊗ σ2), which describes the spin polarization along the y-axis
in the single-subband block.

As a final general remark on the importance of vertex corrections one may state the following. When
both bands are occupied, the vertex corrections have a dramatic impact in producing the vanishing of the
matrix structure of the current vertex, no matter how weak the disorder scattering may be. This phenomenon
is completely similar to what happens in the single-band case and remains true for both conventional and
unconventional models as a result of the Rashba SOC. On the other hand, when only one band is occupied,
the relevance of the vertex corrections mainly depends on the strength of the disorder scattering. The most
important correction is due to the diagram with a single impurity line, which yields the effective bare vertex Γ̄x.
In Figs. 5(a1-d1) we plot Γ̄x in units of α1/ℏ, which is a typical scale for Jsoc,x, which clearly shows that the
vertex corrections typically leads to |Γ̄x| < |Jsoc,x|. Interestingly, the vertex corrections might even flip the sign
of the effective vertex with respect to Jsoc,x as a function of the Fermi energy. Because we are in the regime of
weak scattering the infinite resummation of ladder diagrams leading to the full vertex Γx does not have a big
impact on its numerical value, thus Γx ≈ Γ̄x, as shown in Fig. 5(a2-d2).

Figure 5. Components of the effective bare Γ̄x,a (a1-d1), and dressed Γx,a (a2-d2), charge current vertex in units of α1/ℏ,
which represents the typical scale for Jsoc,x. For the conventional case the only non zero components are a = 2 (λ0 ⊗ σ2),
a = 14 (λ3 ⊗ σ2), a = 6 (λ1 ⊗ σ2). In the unconventional case instead they are a = 2 (λ0 ⊗ σ2), a = 14 (λ3 ⊗ σ2), a = 5
(λ1 ⊗ σ1). Dashed black lines refer to the sum of components a = 2 (λ0 ⊗ σ2) and a = 14 (λ3 ⊗ σ2) that constitute the
single subband block when only the lower subbands are occupied (µ < 160 meV).

4. CHARGE-SPIN CONVERSION

The current-induced spin polarization (CISP) is given by the response function χyx defined in Eq. (3). In terms
of the ζa matrices we have S0

y = ζ2. Then by recalling the structure of the charge current vertex Eq. (14), the

12



response function reduces to two contributions

χyx = χ(1)
yx + χ(2)

yx , (28)

where the first contribution is the simple bubble diagram with the spin vertex and the spin-independent velocity

χ(1)
yx =

ℏ
2π

(−e)ℏ
2

∫
d2k

(2π)2
Tr

[
ζ2G

R(ω,k)
ℏkx
m

GR(ω,k)

]
, (29)

and the second contribution originates from the spin-dependent part of the charge current vertex

χ(2)
yx =

ℏ
2π

(−e)ℏ
2

∑
b

∫
d2k

(2π)2
Γx,bTr

[
ζ2G

R(ω,k)ζbG
R(ω,k)

]
. (30)

Both integrals in Eqs. (29-30) can be evaluated with the technique previously developed and actually reduced
to integrals already encountered in the derivation of the vertex corrections. The integral appearing in the first

term χ
(1)
yx has been already found in Eq. (16) for the effective bare vertex Γ̄x. On the other hand the integral

appearing in the second term χ
(2)
yx can be expressed in terms of the matrix elements of the L-matrix, which

carries the algebraic vertex corrections in Eq. (17). As a result we get

χyx = − eℏ
πu2

o

(
Γ̄x,2 − JSOC,x,2

)
− eℏ

πu2
0

∑
b

L2bΓx,b = − eℏ
πu2

o

(Γx,2 − JSOC,x,2) . (31)

This is one of the main results of this paper and shows a remarkably compact expression, where only appear the
dressed and bare vertices. Notice that to have the expression without the vertex corrections it is enough to make
the replacement Γx → JSOC,x before the last equality, where the relation from Eq. (17) between the dressed Γx

and effective bare Γ̄x has been used. To appreciate the importance of the vertex corrections, consider that, in the

single-sub-band case, the dressed vertex vanishes exactly and hence the second term χ
(2)
yx is only different from

zero when there are no vertex corrections. This implies that in the absence of vertex corrections one obtains a
result which is smaller by a factor of two. In the present case, the second term of Eq. (28) may differ from zero
even in the presence of vertex corrections, but only when one subband is occupied.

The numerical evaluation of the CISP is shown in Fig. 6 and it shows that the vertex corrections are always
important yielding a factor around 2 between the dressed and bare vertex case. In the regime when both
subbands are occupied, the dressed vertex vanishes (cf. Fig. 5) and then only the first term in Eq. (31) contributes.
Furthermore, by considering the last equality in Eq. (31), the CISP is expressed only in terms of the bare vertex
component JSOC,x,2, which vanishes (see Eq. (13)) when α1 = −α2 as it is evident in panels (b) and (d) in Fig. 6.
In this regime, for general values of the intra-band Rashba SOC one obtains the simple result

χyx = − eℏ
πu2

o

(−JSOC,x,2) = eτD0
α1 + α2

ℏ
, (32)

where the we have used the expression τ−1 = 2πD0u
2
0/ℏ for the scattering time, and the explicit expression

from Eq. (13) of the bare vertex component JSOC,x,2. Hence, Eq. (32) generalizes to two bands the well known
Edelstein result13 with exactly a factor of 2 between the dressed and bare vertex case. We stress that this result
is crucially obtained by considering the occupations of both bands. At lower Fermi energies, when only the first

sub-band is occupied, the second term χ
(2)
yx contributes and the CISP is smaller and ratio between the dressed

and bare vertex case varies around 2. As predicted by the last equality in Eq. (31), the behavior of the CISP
is controlled by the dressed vertex Γx,2. In particular, the non-monotonous behavior observed in the vertex of
Fig. 5 is clearly reproduced in Fig. 6, for panels (b) and (c). Such non-monotonous behavior can be traced
back,as already remarked, to the one observed in density of states in Fig. 1, where in columns two and three
there is a flattening of the dispersion.

In order to evaluate the charge-to-spin conversion efficiency, we need to evaluate the longitudinal electrical
conductivity by the charge current-charge current response function

σ =
ℏe2

2π

∫
d2k

(2π)2
Tr

[
J0
x(k)G

R(ω,k)Jx(k)G
A(ω,k)

]
, (33)
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Figure 6. Current-induced spin polarization with (χyx) and without (χ0
yx) vertex corrections, in units of its single subband

limit, as function of the Fermi energy. In all cases we find χyx ≈ 2χ0
yx due to the vertex corrections.

Figure 7. Dressed (solid) and bare conductivity σ as a function of the Fermi energy.

Figure 8. Dressed and bare IEE relative efficiencies σ/χyx normalized by the ratio in the uncoupled limit (η = 0). Both
dressed and bare efficiencies are normalized by the dressed ratio with η = 0.
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where J0
x(k) and Jx(k) are given by Eqs. (13) and (14), respectively. By evaluating the integrals and using again

the relation between the dressed, bare and effective bare vertex (cf. Eqs. (16, 17)), one finds

σ = e2
∑
sn

ℏ2k2sn(µ)Dsn

4m2Γsn/ℏ
+ 4e2τD0

[∑
a

(Γ̄x,a − JSOC,x,a)(Γx,a + JSOC,x,a) +
∑
ab

JSOC,x,aLabΓx,a

]
, (34)

σ = e2
∑
sn

ℏ2k2sn(µ)Dsn

4m2Γsn/ℏ
+ 4e2τD0

∑
a

(
Γx,aΓ̄x,a − JSOC,x,aJSOC,x,b

)
. (35)

Above, the first expression is general, while to get the second expression we use the relation from Eq. (17), which
is valid only when we account for vertex corrections. To obtain the conductivity without vertex corrections, one
simply has to replace Γx,a → JSOC,x,a in the first expression for σ above. In both cases, the first term is the
usual Drude expression summed over all the bands, as it can be seen by identifying (ℏ2k2sn(µ)/m2)Dsn/(4Γsn/ℏ)
as the diffusion coefficient of band sn. The second term in Eq. (35) shows again a remarkable simplicity when
expressed in terms of the dressed, bare and effective bare vertices. From this expression is also clear that this
second term is at least quadratic in the SOC. The numerical results for σ are shown in Fig. 7, which clearly
shows significant effects from the vertex corrections.

While Eqs. (31, 35) provide clearly the spin polarization response and the electrical current response to an
applied d.c. electric field, the issue of the charge-to-spin conversion efficiency is much less obvious. In the
pioneering experiment by Sanchez et al.,56 where a spin current was pumped from a ferromagnetic metal into a
bismuth-silver bi-layer, the dimensional efficiency λIEE = j2Dc /j3Ds was introduced as the ratio of the induced
two-dimensional interface charge current and the three-dimensional spin current flowing perpendicular to the
interface of the bi-layer. We finally notice that, for the sake of convenience, the spin current is defined as
carrying a unit charge e instead of carrying units of ℏ/2.

In the work by Song et al.,49 a different dimensionful definition of conversion efficiency λIEE = jc/js is
adopted, where both the charge and spin current are two-dimensional quantities and js = e⟨Sy⟩/τF . Also in this
case the efficiency has the dimension of length due to the extra velocity factor in the definition of the charge
current and the inverse momentum relaxation time factor in the spin current. In our opinion the choice of
what conversion efficiency λIEE to adopt cannot be decided in general, but must be selected depending on what
experimental setting is under consideration. In our Fig. 8 we have adopted as a measure of the efficiency the
ratio σ/χyx normalized by the ratio to the uncoupled-band limit (η = 0).

To conclude this section, we report in Fig. 9 the spin relaxation times. These are provided by the eigenvalues
of the (1− L)-matrix of the algebraic vertex equation (17). To appreciate this, consider the vertex equation at
finite external frequency Ω, as due, for instance, to an a.c. electromagnetic field. The retarded and advanced
Green’s function acquire different frequencies, ω → ω+Ω/2 and ω → ω−Ω/2, respectively. When performing the
momentum integral defining the matrix elements of the L-matrix, (cf. Eq. (18)) one obtains a term proportional
to Ωτ0 ≪ 1, which would give rise, after Fourier antitransforming back to real times, to a time derivative. Hence
the eigenvalues of the (1− L)-matrix would yield the relaxation rates in units of the inverse scattering time τ0.

In Fig. 9 we show the eigenvalues of the (1 − L)−1 relative to the block to whom the spin polarization
ζ2 = λ0 ⊗ σ2 belongs. The figure uses a color code such that each observable has a finite weight in each
eigenvalue. For instance in the panel (a) of Fig. 9 there is an eigenvalue with a lifetime around 2, which mostly
coincides with the spin polarization λ0⊗σ2. Such a value of 2 can be understood by recalling the single-band case.
In this latter case, in the presence of the Rashba SOC, the spin relaxation time, τs for the Edelstein polarization is
the well known Dyakonov-Perel spin relaxation time in the diffusive regime.57 In the deep diffusive regime, when
the disorder broadening is larger than the spin splitting due to the SOC, the spin relaxation time is much longer
than the quasiparticle relaxation time τ0, i.e. τs ≫ τ0. This is due to the fact that several impurity scattering
events are necessary to relax the initial spin orientation. For weak scattering, as it is considered here, spin
precession may occur in between two impurity scattering events, and τs becomes of the order of the relaxation
time τ0. In this, almost Elliot-Yafet regime, the single-band model predicts the exact relation τs = 2τ0.

57 In the
conventional model (see panels (a) and (b) of Fig. 9) a spin mode lifetime, consisting mostly of λ0 ⊗ σ2 with
the value of 2 in units of τ0 is always present, signalling that the spin dynamics of the two-band model behaves
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similarly to the single-band case. This is not surprising considering the spin texture for this case as shown in
Fig. 1 in the corresponding panels.

In the unconventional model, on the other hand, there is a again a spin mode with lifetime of 2, but its
composition is markedly different, consisting mostly of an interband spin mode λ3 ⊗ σ2 with spin polarization
along the y-axis, but staggered between subbands. This is an evident signal of a completely different spin
dynamics, a result of the spin admixture of the energy bands.

Figure 9. The relaxation times for the various observables in the block associated to spin polarization. In red the relaxation
rate for the total spin polarization ζ2 = λ0 ⊗ σ2. In all panels, the black line has τS/τ0 = 1, but it was shifted downwards
for clarity.

5. CONCLUSIONS

In this paper we have studied the CISP and the charge-to-spin conversion efficiency in the two-band model in the
presence of both intra- and interband Rashba SOC. We have considered both conventional and unconventional
interband Rashba coupling with the aim to analyze whether non-trivial spin texture may produce a more efficient
charge-to-spin conversion. The CISP is a non-equilibrium phenomenon which is affected by the impurity disorder
scattering relying on the deformation of the Fermi circle in the presence on an applied electric field. For this
reason we have taken into account disorder scattering by means of the standard impurity diagrammatic technique.
The evaluation of the rainbow diagram for the self-energy and the ladder diagram for the vertex has been carried
out by fully exploiting the symmetry properties of the model, which allow to reduce the general algebraic vertex
equation from dimension 16 by 16 to 4 by 4 blocks. We have found that generically vertex corrections, at the
level of the Born approximation, are important when both bands are occupied, whereas they are typically a small
correction at lower Fermi energies when only one band is occupied.

We have found that the conventional or unconventional character of the inter-band SOC plays a role together
with the relative signs of the intra-band SOC in the two subbands. Furthermore, for both types of inter-band
SOC, it is important to take into account the occupation of all the bands for a consistent treatment of disorder
scattering. Hence, from the point of view of the efficiency, the unconventional model does not show itself better
that the conventional one. On the other hand, it is also true that the unconventional model hosts a far richer
spin dynamics that cannot be reduced to the one of the single-band case. This is a marked difference among the
two models. We finally conclude by pointing out possible developments of the present analysis. One direction
is to consider stronger disorder, which is expected to require a fully self-consistent Born approximation, which
can be carried out along the lines shown here, but is expected to be computationally more demanding. A second
interesting direction is to expand the investigation of the complex spin dynamics of the unconventional model.
We leave these promising paths to future work.

APPENDIX A. DERIVATION OF THE MODELS

The conventional case refers to a model that can be derived from two-subbands GaAs quantum wells grown along
the [001] zincblende direction.36 If the quantum well is symmetric, its crystal lattice is invariant under the D2D
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point group. But in general, for an asymmetric well or in the presence of external fields, the structural inversion
asymmetry (SIA) yields the C2V = {C2(z),My} point group. Here C2(z) and My are, respectively, the group
generators referring to a π rotation around the z axis, and the mirror y → −y, with x = [110] and y = [11̄0].
In this case, both subband envelope functions transform as the A1(S)⊕A1(Z) irreps, and including spin we get
2A1 ⊗ D1/2 = 2Γ5, where Γ5 = D1/2 is the pure spinor irrep. Therefore, we can label the basis set |j, σ⟩ and
order it as {|1 ↑⟩ , |1 ↓⟩ , |2 ↑⟩ , |2 ↓⟩}. Here j = {1, 2} labels the subbands, and σ = {↑, ↓} the spin. From these
states, we obtain the representations for the group generators C2(z) = λ0 ⊗ R2(z), My = −λ0 ⊗ R2(y), and for
time-reversal symmetry T = −iλ0 ⊗σyK. Here λ0, λx, λy, λz are the identity and Pauli matrices in the subband
space and Rn(û) = exp(iπn û ·σ) is the spin rotation by 2π/n over the unit vector û. From these representations,
using the method of invariants via the Qsymm code,58 we obtain the conventional case Hamiltonian HC as

HC =


ε1 −iα1k− 0 −iηCk−

iα1k+ ε1 iηCk+ 0
0 −iηCk− ε2 −iα2k−

iηCk+ 0 iα2k+ ε2

 . (36)

Here, for each subband j, εj = ε0j +
ℏ2

2mk2, ε0j are the band edges, the effective mass m is assumed to be the same
in both subands, αj is the intra-subband Rashba SOC, ηC is the inter-subband Rashba SOC, k = (kx, ky) is the
in-plane quasi-momentum, and k± = kx ± iky.

In contrast, the unconventional case occurs in 2D materials that transform as the C3V group at the Γ
point as, for instance, the monolayer OsBi2 discussed in Ref. 49. There, the orbitals of the two relevant bands
transform as the E irrep of the C3V single group, and including spin it splits into 2E ⊗D1/2 = 2(Γ4 ⊕ Γ5 ⊕ Γ6),
where Γ4 = D1/2 is the pure spinor irrep, and Γ5 ⊕ Γ6 are 1D irreps that form Kramer’s pairs under time-
reversal symmetry. More specifically, the single group orbital representations Ej for each subband j = {1, 2} are
E1 = |X±Z⟩ and E2 =

∣∣XY ± i
2 (X

2 − Y 2)
〉
, where X± = X ± iY . Including spin, the E1 orbitals splits into

Γ1
5⊕Γ1

6 = {|X+Z ↑⟩ , |X−Z ↓⟩}, and Γ1
4 = {|X−Z ↑⟩ , |X+Z ↓⟩}. For the other subband, E2 splits into Γ2

5⊕Γ2
6 =

{
∣∣XY + i

2 (X
2 − Y 2) ↑

〉
,
∣∣XY − i

2 (X
2 − Y 2) ↓

〉
}, and Γ2

4 = {
∣∣XY − i

2 (X
2 − Y 2) ↑

〉
,
∣∣XY + i

2 (X
2 − Y 2) ↓

〉
}.

Interestingly, similarly to the conventional case, here the unconventional model also arises from the spinor
irreps Γ1

4 ⊕ Γ2
4, but under different constraints from the C3V group. Sorting this basis set as Γ1

4 ⊕ Γ2
4 =

{|X−Z ↑⟩ , |X+Z ↓⟩ ,
∣∣XY − i

2 (X
2 − Y 2) ↑

〉
,
∣∣XY + i

2 (X
2 − Y 2) ↓

〉
} ≡ {|1 ↑⟩ , |1 ↓⟩ , |2 ↑⟩ , |2 ↓⟩}, the group gen-

erators read as C3(z) = −λ0⊗R3(z), My = λz⊗ (iσy), and the time-reversal operator is T = λ0⊗ (iσy)K. These
lead to the unconventional Hamiltonian HU , which read as

HU =


ε1 −iα1k− 0 ηUk−

iα1k+ ε1 ηUk+ 0
0 ηUk− ε2 −iα2k−

ηUk+ 0 iα2k+ ε2

 . (37)

Here ηU is the intersubband Rashba SOC for the unconventional case, and the other quantities match the
definitions from HC above.

APPENDIX B. THE “BUBBLE” INTEGRALS

When evaluting the vertex corrections and the response functions, one encounters integrals of the type (see
Eq. (18))

Lab = u2
0

∫
d2k

(2π)2
Tr

[
ζaG

R(ω,k)ζbG
A(ω,k)

]
. (38)

By setting g
R(A)
sn (ω, k) = (ω − Esn(k))

−1 and recalling the spectral decomposition shown in Eq. (2) one obtains

Lab = u2
0

∑
sns′n′

∫
d2k

(2π)2
gRsn(ω, k)g

A
s′n′(ω, k)Tr [ζaPsn(k)ζbPs′n′(k)] . (39)
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We notice that all the angle dependence is within the projectors. We may then use the decomposition from
Eq. (21) and perform at once the integral over θ

P ab
sns′n′(k) ≡

∫ 2π

0

dθ

2π
Tr [ζaPsn(k)ζbPs′n′(k)] = Tr

[
ζaP

0
snζbP

0
s′n′ + ζaP

+
snζbP

−
s′n′ + ζaP

−
snζbP

+
s′n′

]
, (40)

where we have omitted for brevity the dependence on the absolute value of the momentum P 0
sn ≡ P 0

sn(k).

The matrix elements L0a = La0 acquire a simpler expression because the closeness of the two Green’s functions
under the trace symbol allows to exploit the property of the projectors and one gets

L0a = u2
0

∑
sn

∫
d2k

(2π)2
gRsn(ω, k)g

A
sn(ω, k)Tr [Psn(k)ζa] = u2

0

∑
sn

∫
kdk

2π
gRsn(ω, k)g

A
sn(ω, k)Tr

[
P 0
sn(k)ζa

]
. (41)

The above matrix element can only differ from zero when the index a belongs to the set of ζ matrices appearing
in the decomposition of P 0

sn(k) as shown in Eqs. (22, 24).

To evaluate the matrix Lab we further need the integral over the absolute value of the momentum

G(2)
sns′n′ =

∫
kdk

2π
gRsn(ω, k)g

A
s′n′(ω, k). (42)

The above integral depends on the comparison between the energy differences Esn − Es′n′ and the disorder-
induced broadening Γsn = −ImΣR

sn, Γs′n′ = −ImΣR
s′n′ , ΣR

sn being the elements of the self-energy in the diagonal
basis. For the case Esn − Es′n′ ≪ Γsn ∼ Γs′n′ , one has

G(2)
sns′n′ =

π

2

(
Dsn

Γsn
+

Ds′n′

Γs′n′

)
. (43)

In the opposite case of large energy separation Esn − Es′n′ ≫ Γsn ∼ Γs′n′ we have instead

G(2)
sns′n′ = −iπ

(
Dsn

∆sn
+

Ds′n′

∆s′n′

)
, (44)

where ∆sn = Esn −Es′n′ with Esn ≡ Esn(ksn(µ)) and Es′n′ ≡ Es′n′(ksn(µ)) and a similar expression for ∆s′n′ .

For the case in Eq. (43), we see that G(2)
sns′n′ ∝ u−2

0 , which exactly cancels the u2
0 prefactor in Lab and gives

its leading order contribution. On the other hand, for the case in Eq. (44), the u2
0 term appears only in the

imaginary part of ∆sn, which is assumed to be small, and the leading contribution of G(2)
sns′n′ in this case is

independent of u2
0. Consequently, its contribution to the Lab matrix is of order u2

0, which we neglect within the
first Born approximation.
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“Optical activity in tellurium induced by a current,” JETP Lett. 29, 441 (Apr. 1979).

[18] Huang, C., Chong, Y. D., and Cazalilla, M. A., “Direct coupling between charge current and spin polariza-
tion by extrinsic mechanisms in graphene,” Phys. Rev. B 94, 085414 (Aug 2016).

[19] Offidani, M., Milletar̀ı, M., Raimondi, R., and Ferreira, A., “Optimal charge-to-spin conversion in graphene
on transition-metal dichalcogenides,” Phys. Rev. Lett. 119, 196801 (Nov 2017).

[20] Lin, Y.-H., Huang, C., Offidani, M., Ferreira, A., and Cazalilla, M. A., “Theory of spin injection in two-
dimensional metals with proximity-induced spin-orbit coupling,” Phys. Rev. B 100, 245424 (Dec 2019).

[21] Ghiasi, T. S., Kaverzin, A. A., Blah, P. J., and van Wees, B. J., “Charge-to-Spin Conversion by the
Rashba–Edelstein Effect in Two-Dimensional van der Waals Heterostructures up to Room Temperature,”
Nano Lett. 19(9), 5959–5966 (2019). PMID: 31408607.
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and Fert, A., “Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic
materials,” Nature Commun. 4, 2944 (2013).

[57] Raimondi, R., Gorini, C., Schwab, P., and Dzierzawa, M., “Quasiclassical approach to the spin Hall effect
in the two-dimensional electron gas,” Phys. Rev. B 74, 035340 (Jul 2006).

[58] Varjas, D., Rosdahl, T. O., and Akhmerov, A. R., “Qsymm: algorithmic symmetry finding and symmetric
Hamiltonian generation,” New J. Phys. 20, 093026 (Sept. 2018).

21


	INTRODUCTION
	Conventional and unconventional Rashba models
	Subband anti-crossings and spin textures in k-space

	The diagrammatic analysis for the Green's and response functions
	Statement of the problem
	The diagonalization of the Hamiltonian and the structure of the self-energy
	The equation for the dressed vertex
	The symmetry analysis
	The conventional SOC case
	The unconventional SOC case
	Analysis of the Lab -matrix

	Numerical evaluation of the current vertex

	Charge-spin conversion
	Conclusions
	Derivation of the models
	The ``bubble'' integrals

