The existence of dark matter is known because of its gravitational effects, and although its nature remains undisclosed, there is a growing indication that the galactic halo could be permeated by weakly interactive massive particles (WIMPs) with mass of the order of 100 GeV. Direct observation of WIMP-nuclear collisions in a laboratory detector plays a key role in dark matter searches. However, it also poses significant challenges, as the expected signals are low in energy and very rare. DarkSide is a project for direct observation of WIMPs in a liquid argon time-projection chamber specifically designed to overtake the difficulties of these challenges. A limiting background for all dark matter detectors is the production in their active volumes of nuclear recoils from the elastic scattering of radiogenic and cosmogenic neutrons. To rule out this background, DarkSide-50 is surrounded by a water tank serving as a Cherenkov detector for muons, and a boron-doped liquid scintillator acting as an active, high-efficiency neutron detector.

Mari, S.M., The Darkside, C. (2015). The DarkSide veto: muon and neutron detectors. IL NUOVO CIMENTO C, 35, 1-5 [10.1393/ncc/i2015-15035-0].

The DarkSide veto: muon and neutron detectors

MARI, Stefano Maria;
2015-01-01

Abstract

The existence of dark matter is known because of its gravitational effects, and although its nature remains undisclosed, there is a growing indication that the galactic halo could be permeated by weakly interactive massive particles (WIMPs) with mass of the order of 100 GeV. Direct observation of WIMP-nuclear collisions in a laboratory detector plays a key role in dark matter searches. However, it also poses significant challenges, as the expected signals are low in energy and very rare. DarkSide is a project for direct observation of WIMPs in a liquid argon time-projection chamber specifically designed to overtake the difficulties of these challenges. A limiting background for all dark matter detectors is the production in their active volumes of nuclear recoils from the elastic scattering of radiogenic and cosmogenic neutrons. To rule out this background, DarkSide-50 is surrounded by a water tank serving as a Cherenkov detector for muons, and a boron-doped liquid scintillator acting as an active, high-efficiency neutron detector.
2015
Mari, S.M., The Darkside, C. (2015). The DarkSide veto: muon and neutron detectors. IL NUOVO CIMENTO C, 35, 1-5 [10.1393/ncc/i2015-15035-0].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/135926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact