The application of palaeomagnetism in fold and thrust belts is a unique way to obtain kinematic information regarding the evolution of these systems. However, since many potential problems can affect the reliability of palaeomagnetic datasets and their interpretations, such data should be used with caution. In this paper, we thoroughly review the sources of error from palaeomagnetism with a particular focus on deciphering vertical-axis rotations and the assumptions behind the method. Recent investigations have demonstrated that the age of the magnetization and syn-folding results from the fold test must also be carefully examined: factors such as internal deformation, deficient isolation of components (i.e. overlapping) or incorrect restoration procedures may produce apparent syn-folding results. In fact, the restoration procedure used to return the palaeomagnetic signal to the palaeogeographic coordinate system may itself inhibit accurate estimations of vertical-axis rotations when complex deformation histories induce different, noncoaxial, deformation axes. We recommend the auxiliary use of the inclination v. dip diagram as an efficient tool for identifying many errors. Finally, to determine accurate vertical axis rotations, the reference direction should honour standard reliability criteria and would ideally be measured within the undeformed foreland of the thrust system. In this paper, we review five decades of palaeomagnetic research in fold and thrust belts by concentrating on maximizing standard reliability criteria procedures to reduce uncertainty and increase confidence when applying palaeomagnetic data to unravel the tectonic evolution of fold and thrust belts.

Pueyo, E.L., Sussman, A.J., Oliva-Urcia, B., Cifelli, F. (2016). Palaeomagnetism in fold and thrust belts: Use with caution. In E.L. Pueyo (a cura di), Geological Society Special Publication (pp. 259-276). Geological Society of London [10.1144/SP425.14].

Palaeomagnetism in fold and thrust belts: Use with caution

Cifelli F.
2016-01-01

Abstract

The application of palaeomagnetism in fold and thrust belts is a unique way to obtain kinematic information regarding the evolution of these systems. However, since many potential problems can affect the reliability of palaeomagnetic datasets and their interpretations, such data should be used with caution. In this paper, we thoroughly review the sources of error from palaeomagnetism with a particular focus on deciphering vertical-axis rotations and the assumptions behind the method. Recent investigations have demonstrated that the age of the magnetization and syn-folding results from the fold test must also be carefully examined: factors such as internal deformation, deficient isolation of components (i.e. overlapping) or incorrect restoration procedures may produce apparent syn-folding results. In fact, the restoration procedure used to return the palaeomagnetic signal to the palaeogeographic coordinate system may itself inhibit accurate estimations of vertical-axis rotations when complex deformation histories induce different, noncoaxial, deformation axes. We recommend the auxiliary use of the inclination v. dip diagram as an efficient tool for identifying many errors. Finally, to determine accurate vertical axis rotations, the reference direction should honour standard reliability criteria and would ideally be measured within the undeformed foreland of the thrust system. In this paper, we review five decades of palaeomagnetic research in fold and thrust belts by concentrating on maximizing standard reliability criteria procedures to reduce uncertainty and increase confidence when applying palaeomagnetic data to unravel the tectonic evolution of fold and thrust belts.
2016
Pueyo, E.L., Sussman, A.J., Oliva-Urcia, B., Cifelli, F. (2016). Palaeomagnetism in fold and thrust belts: Use with caution. In E.L. Pueyo (a cura di), Geological Society Special Publication (pp. 259-276). Geological Society of London [10.1144/SP425.14].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/380773
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? ND
social impact