An important issue in the mechanical industry is the reduction of the time to market, in order to meet quickly the customer needs. This goal is very important for SMEs that produce small lots of customized products. In the context of greenhouse gas emissions reduction, vehicles powered by electric motors seem to be the most suitable alternative to the traditional internal combustion engine vehicles. The market of customized electric vehicles is a niche market suitable for SMEs. Nowadays, the energy storage system of an electric vehicle powertrain consists of several Li-ion cells arranged in a container called battery pack. Particularly, the battery unit is considered as the most critical component in electric vehicle, because it impacts on performance and life cycle cost. Currently, the design of a battery pack mostly depends on the related market size. A longer design time is expected in the case of a large scale production. While a small customized production requires more agility and velocity in the design process. The proposed research focuses on a design methodology to support the designer in the evaluation of the battery thermal behavior. This work has been applied in the context of a customized small production. As test case, an urban electric light commercial vehicle has been analyzed. The designed battery layout has been evaluated and simulated using virtual prototyping tools. A cooling configuration has been analyzed and then prototyped in a physical vehicle. The virtual thermal behavior of a Li-ion battery has been validated at the test bench. The real operational conditions have been analyzed reproducing several ECE-15 driving cycles and many acceleration runs at different load values. Thermocouples have measured the temperature values during the physical experiments, in order to validate the analytical thermal profile evaluated with the proposed design approach.

Landi, D., Cicconi, P., Germani, M. (2014). A methodological approach for supporting the thermal design of Li-ion battery for customized electric vehicles. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). American Society of Mechanical Engineers (ASME) [10.1115/IMECE2014-37931].

A methodological approach for supporting the thermal design of Li-ion battery for customized electric vehicles

Cicconi P.;
2014-01-01

Abstract

An important issue in the mechanical industry is the reduction of the time to market, in order to meet quickly the customer needs. This goal is very important for SMEs that produce small lots of customized products. In the context of greenhouse gas emissions reduction, vehicles powered by electric motors seem to be the most suitable alternative to the traditional internal combustion engine vehicles. The market of customized electric vehicles is a niche market suitable for SMEs. Nowadays, the energy storage system of an electric vehicle powertrain consists of several Li-ion cells arranged in a container called battery pack. Particularly, the battery unit is considered as the most critical component in electric vehicle, because it impacts on performance and life cycle cost. Currently, the design of a battery pack mostly depends on the related market size. A longer design time is expected in the case of a large scale production. While a small customized production requires more agility and velocity in the design process. The proposed research focuses on a design methodology to support the designer in the evaluation of the battery thermal behavior. This work has been applied in the context of a customized small production. As test case, an urban electric light commercial vehicle has been analyzed. The designed battery layout has been evaluated and simulated using virtual prototyping tools. A cooling configuration has been analyzed and then prototyped in a physical vehicle. The virtual thermal behavior of a Li-ion battery has been validated at the test bench. The real operational conditions have been analyzed reproducing several ECE-15 driving cycles and many acceleration runs at different load values. Thermocouples have measured the temperature values during the physical experiments, in order to validate the analytical thermal profile evaluated with the proposed design approach.
2014
978-0-7918-4960-6
Landi, D., Cicconi, P., Germani, M. (2014). A methodological approach for supporting the thermal design of Li-ion battery for customized electric vehicles. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE). American Society of Mechanical Engineers (ASME) [10.1115/IMECE2014-37931].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11590/404644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact