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A B S T R A C T

This study investigates how climate change might impact economic development in the future through its
effects on violence, addressing the gap in research on long-term conflict risk assessment. Using geocoded
data (1◦ resolution) on climate and socio-economic indicators covering 1990–2050, we employ a forecasting
recursive model to examine the probability and intensity of different types of conflict, under various socio-
economic and climate scenarios. Our analysis reveals that climate change has both direct and indirect effects on
violence, highlighting the key role of the agricultural channel, the spillover across neighbouring areas and the
socio-economic context. These findings offer new insights into adaptation strategy and provide implications for
the need to jointly account for the complex interactions between climate conditions, socio-economic factors,
and conflict dynamics.
1. Introduction

Because climate change challenges increasingly threaten both hu-
man society and natural systems, growing attention is dedicated to
understanding how these risks will affect economic well-being, devel-
opment opportunities and, ultimately, social cohesion and peace in
the future (O’Neill et al., 2022). The scientific debate on the potential
role of changes in climatic conditions in influencing the occurrence,
magnitude and persistency of violent events is growing and bene-
fiting from multiple approaches and case studies. However, despite
extensive analysis of the climate-conflict nexus from a backward per-
spective, a research gap remains in the analysis of long-term conflict
risk projections (de Bruin et al., 2022). Several issues are still open,
and uncertainty remains about the impact of different climate-related
variables and the temporal horizon to be investigated (Koubi, 2019).
According to Mach et al. (2019), the design of future scenarios for
the climate-conflict nexus should jointly rely on the extrapolation of
the mechanisms that emerged from historical relationships and the use
of future climate and socioeconomic pathways. This approach aims to
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reduce the high level of uncertainty due to the unpredictable evolution
of human behaviours and reactions to climate change effects that are
fundamentally beyond previous experiences.

Contributions investigating the historical relationships indicate a
link between increasing temperature and/or changing rainfall patterns
and violent conflicts (Fjelde and von Uexkull, 2012), while others find
no significant impacts (Buhaug et al., 2015). Different studies suggest
that both higher (Salehyan and Hendrix, 2014) and lower (Almer
et al., 2017) precipitations, as well as deviation from the normal
rainfall level (La Ferrara and Harari, 2018) could lead to conflicts,
revealing that localized effects of weather variability are gaining rel-
evance due to the increasing availability of high-frequency climate
data (Manotas-Hidalgo et al., 2021). Overall, studies based on fine-
grained geographical data are increasingly suggesting that non-linearity
is a key point to be addressed, as both water scarcity and its rela-
tive abundance might be a source of political instability (Raleigh and
Kniveton, 2012; Salehyan and Hendrix, 2014).
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Economic Modelling 141 (2024) 106911 
While there is not universal agreement about the magnitude or
direction of climate variability’s impact on violence, one point is con-
sistently acknowledged: climate change does not necessarily increase
conflict risk per se, but rather should be considered a threat multiplier.
In this perspective, socio-economic factors and local characteristics are
recognized as strong determinants of conflicts, implying the necessity
of accounting for context-specific aspects which may indirectly enhance
or mitigate the risk of violence.

A prominent example in this regard is given by the agricultural
hannel, an important (indirect) mechanism in the climate-conflicts
exus operating through shocks to agricultural production and in-
omes (La Ferrara and Harari, 2018; Von Uexkull et al., 2016). Agricul-
ural activities follow a seasonal cycle, and crops are more sensitive to
nfavourable conditions during the growing season. Climate anomalies

recorded during those months are more likely to result in lower yields
and reduced agricultural production, which would also lead to lower
agricultural income, higher food prices and food insecurity. These
negative effects on local socio-economic conditions could potentially
fuel violence (Baronchelli, 2022; Caruso et al., 2016; Li et al., 2022).

Furthermore, previous literature agrees on the largely intercon-
ected nature of conflict dynamics across neighbouring regions, and
uggests that the consequences of local weather variability should
lso account for spatial interactions with surrounding territories, the
ain reason being that the consequences of climate-related resource

carcity and competition is likely to spread out of the primary affected
reas (von Uexkull and Buhaug, 2021). This is what La Ferrara and
arari (2018) find when short-term weather stresses are directly linked

to agricultural harvest. van Weezel (2020) adds evidence on the key
ole played by spatial spillovers in determining the influence of long-
erm changes in climatic conditions (mainly temperature) on local
iolence. Similarly, Vesco et al. (2021) identify spatial impacts of

drought on crop production as a cause of civil conflict onset, especially
in agriculture-dependent areas characterized by economic inequalities.

A complimentary stream of evidence is provided by Linke and
uether (2021) suggesting that adverse climate variability increases the

incentives to control scarce crops or facilitates recruitment of militants,
and that violence can be used to control valuable cropland and har-
vests, to prevent opponent groups to access these resources. Because
climate-induced resource scarcity may motivate human displacement
and mobility, leading to additional pressure in areas people move
to, introducing spatial lags of covariates to account for geographical
spillovers is highly recommended. Especially in cases of widespread
climate hazards, this may result in higher resource competition, motiva-
tion and low opportunity cost to engage in violence due to intensifying
fight for water access and land use, ultimately spurring contagion
across space (Benjaminsen et al., 2012).

Whether the estimated impacts are significant or not, might also
result from the inclusion of local-specific controls related to socio-
political features (Klomp and Bulte, 2013). More resilient communi-
ies experience lower risks of violence when facing climate stress or
hocks (Burke et al., 2015), but uncertainties remain about how sources

of local vulnerability and the measurement of local climate-related
effects should be included in the empirical setting (Hsiang, 2016; Ide,
2017).

Despite these various aspects influencing the climate-conflict risk
ave been extensively analysed with a backward perspective (i.e., tak-
ng into account historical information), it has not yet been assessed
if and) how the same indirect channels and mechanisms may shape
ong-term conflict risk. This research gap persists even as projected
own-scaled geocoded data on both climate and socio-economic fea-
ures become increasingly available, providing additional opportunities
o develop scenario analysis, including the occurrence and magnitude
f violence as one of the negative side effects of global warming (O’Neill
t al., 2020). Among the few works that have analysed the climate-

related conflict risk, Hegre et al. (2016) use the Shared Socioeconomic
athways (SSPs) to forecast conflicts over time with a recursive method
 S

2 
at the country level. More recently, Petrova et al. (2023) analyse the in-
cidence of the conflict trap on economic growth along SSPs and suggest
that expected income through the 21st century would be about 25%
lower when accounting the harm to growth caused by conflicts.1 More
fine-grained forecasting exercises are provided by Witmer et al. (2017)
and Hoch et al. (2021). The former compute the conflicts projections
at 1◦ degree resolution for Sub-Saharan Africa up to 2065 accounting
or temperature anomalies under the main socio-economic dimensions
rom SSPs and adopting a plug-in forecasting method. Hoch et al.

(2021) forecast the probability of conflicts in Africa at the level of sub-
ational water provinces between 2015 and 2050, adopting a machine

learning approach and accounting for climate drivers indicators of
water-related environmental stress.2

Along with these attempts, we propose a long-term forecasting
nalysis of armed conflicts applied to the entire African continent based

on a grid of 2,653 cells at 1◦ resolution (each cell covers an area
of around 110 × 110 km). The yearly database covers the time span
1990–2050, thus merging historical information and SSPs projections.

The first novelty of our approach is that we jointly account for
both the intensive (if an area is involved by a conflict onset) and
extensive (the number of conflict events recorded in a given cell in
the reference year) margins, while previous climate-conflict forecasting
studies performed at local scale focus either on whether a local area
experienced a conflict (binary outcome) or on the number of conflicts
registered. Following the intuition developed in Mack et al. (2021),

orking with a count dependent variable rather than a binary one
llows accounting for transition from peace to war but also the relative
osition with respect to the average level of violence. At the same time,
t is crucial to control for factors explaining why a given area may (or
ay not) being prone to experience conflicts onset.

Second, we enrich the modelling of the climate-conflict risk by
disentangling the indirect mechanisms mediated by the agricultural
channel and accounting for geographical spillovers of climate variabil-
ity, while previous forecasting studies only accounted for the direct
effects of climate variations per se. We include local indicators of long-
term temperature increase, non-linear precipitation anomalies (distin-
guishing drying and flooding events), and focus of the agricultural
channel to isolate the indirect effect of climate variability.

Third, given that not all conflictual activities may suffer from the
ame effect of climate, and results might be sensitive to the definition of

conflict (de Bruin et al., 2022), we extract information on violent events
from two alternative and widely diffused sources: the Uppsala Conflict
Data Project - Georeferenced Event Dataset (UCDP), and the Armed
Conflict Location & Event Data Project (ACLED). Although both sources
are often interchanged (e.g., La Ferrara and Harari, 2018; Witmer et al.,
2017), UCDP includes only events with at least one battle-related death,
while ACLED also includes ‘potential’ (or ‘threatened’) violence which
can, but not necessarily, involve human fatalities (e.g. riots, troop
movements).3

Fourth, we develop a recursive forecasting econometric method,
informed year by year by changes in the projected explanatory factors,
thus producing predicted outcomes that are based on a learning pro-
cess. This allows accounting for the dynamics in the forecasting method

1 This confirms previous findings according to which conflicts negatively
ffect both economic growth and development outcomes (Le et al., 2022).

2 Complimentary evidence is provided by a Special Issue (SI) of the journal
nternational Interactions. The SI organized a prediction competition with the
im of collecting works based on the ViEWS system, UCDP-GED data and
achine-learning methods to predict changes in the number of fatalities per
onth from state-based conflicts (Hegre et al., 2022; Vesco et al., 2022),

i.e., (de)escalation of violence. The call (open in March 2020) requested
forecasts for the near future (from October 2020 to March 2021) and test on
historical data.

3 Additional details on the two sources of conflicts data are provided in
ection 2.3.
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Economic Modelling 141 (2024) 106911 
to control for the persistency of violence over time and its influence in
he predicted events (Hegre et al., 2017).

Our results show that our model predicts a higher number of conflict
events compared to previous studies (even higher when accounting for
spatial spillovers). This suggests that when considering how climate
interacts with other factors (e.g., mediated by the agricultural channel
and other socio-economic drivers), its effect is stronger. Indeed, conflict
events are mostly driven by indirect climate effects, here proxied by
the pressure caused by unexpected changes in water availability for
agriculture during the cell-specific months of the crops growing season.

We also find that the socio-economic context can play a crucial role
n determining the effect of climate on conflict. Specifically, the effect is
agnified in scenarios of high degree of spatial inequality and intense

esource exploitation, and reduced in scenarios with a generalized lack
f resource or less resource competition.

The rest of the paper is organized as follows. In Section 2 we present
the database, the count-based econometric model and the forecasting
method applied to build scenarios at the grid level. Section 3 provides
main results on the projections of conflicts events using both UCDP and
ACLED data under different SSPs, and Section 4 concludes.

2. Data and methods

We are interested in understanding the determinants of past vio-
ence in Africa to forecast conflicts at the cell level up to 2050 under
ifferent SSPs and Representative Concentration Pathways (RCPs) sce-
arios. To investigate the implications that future climate and socio-
conomic scenarios may have on violence, we develop an empirical
nalysis which combines an econometric model on historical data
Section 2.1) with a forecasting analysis along different future pathways

(Section 2.2).
We test our model taking as dependent variable the total number of

conflict events recorded in each cell and year, as measured by ACLED
nd UCDP (see Section 2.3 for additional details on conflicts data).

We select the variables of interest to represent the main mechanisms
empirically tested by previous contributions (e.g., population size,
socioeconomic development, ethnic fractionalization, geographical fea-
ures) and define a parsimonious model where time-variant indicators

are available for both historical and future timelines. The description of
he database covering the African continent at 1◦ resolution from 1990
o 2050 by SSPs-RCPs, along with the definition of the indicators used
n the empirical analysis, is presented in Section A.1 of the Appendix.

2.1. The econometric model

A major challenge in our analysis is represented by the fact that
onflict does not arises frequently, but only in selected places and with

different intensities. It follows that our outcome is a count variable
haracterized by overdispersion and excess of zeros (91% of all cell-
ear observations in UCDP and 84% in ACLED). This is an important
eature of our data, which mandates to account both for the probability
o observe a conflict (the extensive margin) and the intensity of the
onflict (the intensive margin).

Accordingly, we model this process of selection based on the histori-
cal information using a zero-inflated negative binomial (ZINB) for count
data following Cappelli et al. (2022). This model allows to properly
account for the existence of structural zeros and to separate this process
rom the count model (Cameron and Trivedi, 2013; Hilbe, 2014). The
INB model consists in two parts: (i) the Count model, here formalized
s a negative binomial, is used to model the number of conflict events;
ii) the Zero model is binary and allows distinguish the causes behind
he occurrence of structural zeros (i.e., cells not experiencing conflicts,
or instance because their territory is covered by desert or water,
hich prevents anthropic activities, resulting in unpopulated places).
he ZINB model is thus particularly useful to study the issue at hand

ecause the event of a conflict is rare, and it is unclear whether the i

3 
preponderance of peace cases typically observed in conflict datasets is
due to inherent rarity of the phenomenon or to heterogeneous mix of
actual and inflated peace observations (Cappelli et al., 2022; Price and
Elu, 2017). Additionally, the ZINB specification is highly recommended
in the case of forecasting exercises (Bagozzi, 2015).

By expressing the negative binomial component with a logistic link,
the conditional mean can be written as a function of a set of covariates
𝑋𝑖𝑡 explaining whether or not some cells experience violent breakouts
(i.e., whether the count variable for each statistical unit is ≥ 0 across
years). The Count model is thus given by:

𝐸(𝑌𝑖𝑡|𝑋𝑖𝑡, 𝑍𝑖𝑡) = (1 − 𝜋𝑖𝑡)𝑒𝑥𝑝(𝛼 +𝑋′
𝑖𝑡𝛽) (1)

In the Zero model, the probability of structural zeros 𝜋𝑖𝑡 is expressed
s a function of a set of covariates 𝑍𝑖𝑡 using the inverse logit function:

𝜋𝑖𝑡 =
𝑒𝑥𝑝(𝛿𝑖 +𝑍′

𝑖𝑡𝛾)
1 + 𝑒𝑥𝑝(𝛿𝑖 +𝑍′

𝑖𝑡𝛾)
(2)

Variables included in the Count and Zero models have been se-
ected based on prior literature and on the requirement to adopt a
arsimonious specification (i.e., climate and socio-economic indicators
vailable both for the past and future timelines). Hence, the covariates
ncluded in the Zero model (set 𝑍𝑖𝑡), representative of structural zeros,

are the demographic dimension (inhabitants at time 𝑡− 1) and the geo-
graphical features of each cell (qualifying the presence of cities, desert
or forest). In the baseline specification of the Count model we include
(set 𝑋𝑖𝑡) the time-variant socio-economic indicators (lagged population,
rowth rate of income per capita, income distribution measured by
he Gini index at the cell level) and literature-based time-invariant
eatures (the degree of ethnic fractionalization and the proximity to the
ational border).4 We then test seven alternative model specifications,

including different indicators for changes in climatic conditions and the
role of the agricultural channel: long-term change in temperature and
precipitation, flooding and drying soil humidity conditions (measured
by positive and negative values of the Standardized Precipitation Evap-
otranspiration Index, SPEI), and the intensity of dry and wet anomalies
ccurring during the main crops’ growing season. We follow Von

Uexkull et al. (2016) and compute our synthetic cell/year measure as
the share of growing-season months in which a drought or an excess in
water has been recorded.5

The Count model also incorporates a vector of fixed effects (FE).
In spatial analysis the observed data usually refer to adjacent units in
an uninterrupted area, and the way FE should be modelled in small-
cale spatial analyses is still controversial. Recent contributions suggest
dopting linear probability models with cell-specific FE (Almer et al.,

2017; Breckner and Sunde, 2019): this would avoid the potential bias
deriving from including a large number of FE into non-linear models
applied to large samples (Fernández-Val and Weidner, 2016). However,
iven the nature of our count dependent variable, a mixture model
pecification is preferable and, to avoid the potential bias derived from
n excessive number of fixed effects, we adopt country rather than cell-
pecific FE in the Count model to control for heterogeneity (Witmer
t al., 2017).

We further extend the static model specification with time dynamic
components to account for serial correlation and improve the model’s

4 We test the robustness of our baseline model against the following alterna-
ive specifications: we employ the change in population rather than population
n level; we replace GREG data on ethnic fractionalization with information
rom the Geo-referencing Ethnic Power Relations (Geo-EPR) dataset; we add a
roxy for institutions at the country level; we replace the forest and desert
ummy variables with the continuous information on the cell’s area (%)
overed by desert and forest; we add in the Count model the distance from
he capital city. In all these cases, our results remain unchanged. See Tables
6 and A7 in Section A.3 in Appendix.
5 See Section A.1 in Appendix for additional details on the covariates

ncluded in the dataset.
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forecasting performance. Accordingly, we adopt a parsimonious speci-
fication by introducing in the Zero model the lagged number of conflict
events recorded in cell 𝑖 in the previous year (𝑌𝑖𝑡−1) to control for
ersistency (Glaser et al., 2022).6 Given that the impact of weather
hocks is not immediate on human activities (La Ferrara and Harari,

2018), all time-variant covariates are lagged by one-year.
Finally, a key factor explaining the climate-conflict nexus is the

presence of spatial dynamics associated with climate and socio-
economic conditions recorded in neighbouring cells (Chica-Olmo et al.,
2019). The introduction of spatial interaction effects is not trivial in
count data models. Indeed, given that the ZINB Count model does not
include a random error term, accounting for the spatial structure in
the unexplained part of the dependent variable is not as straightfor-
ward as in linear regression models. The introduction of endogenous
interaction effects is also controversial in count data models because
there is no direct functional relationship between the regressors and
the dependent variable, but only a relationship between the regressors
and the conditional expectation of the response. On the contrary, the
introduction of exogenous interaction effects raises no particular issues
since spatially lagged regressors can be computed before the actual
regression is performed and treated in the same way as the non-spatial
ones (Simões and Natário, 2016). By introducing exogenous spatial
pillovers, we test whether climate variability is likely to foster tensions

over control for valuable cropland and harvests or water access, fuelling
fights to control scarce crops also in surrounding areas.7

These effects (set 𝑊 𝑋𝑖𝑡−1) can be included in a spatial econometric
setting by means of a non-negative weight matrix 𝑊 , where the generic
element 𝑤𝑖𝑗 describes whether cells 𝑖 and 𝑗 are neighbours, thus repre-
senting the spatial configuration of the units in the sample. The weight

atrix adopted in this work only accounts for spatial spillovers across
neighbouring cells: i.e., those cells located within a given distance from
the considered cell. In other words, a cell is neighbour of another
cell only if the centroid of the former is included within the buffer
surrounding the latter. Given our gridded dataset, where all cells share
the same dimension, the buffer surrounding each cell for the different
cut-offs is computed on the basis of a radius that include all centroids of
the cells belonging to the subsequent ring. This ensures the inclusion of
all cells, allowing for consideration of cells within or tangent to a single
point. Because the results can be sensitive to the choice of the cut-off,
we test five distance radius to define neighbours (178, 266, 355, 444,
533 km), thus obtaining five different weight matrices, referred in the
paper as to 𝑊𝑑 , with 𝑑 ∈ (1, 5), each including the first d-th rings of
neighbours of cell i.

In defining the spatial weight matrix 𝑊 , geographical distances are
omputed by the Mercator’s projection accounting for the spheroidal
orm of the Earth, and measured as inverse (great circle) distances
ia the Haversine formula between the centroids of cells. The normal-
zation procedure is based on Ord (1975) and results in a symmetric

weight matrix obtained by normalizing 𝑊 by 𝐷−−1∕2𝑊 𝐷−−1∕2, where
𝐷 is a diagonal matrix containing the row sums of 𝑊 , ensuring an

6 In a robustness check we include the lagged number of conflict events
in the count model rather than in the zero model, and the results remain
ualitatively unchanged. See Tables A6 and A7 in Section A.3 in Appendix.

7 Spatial interactions have been modelled in different ways by the liter-
ture. Research interested in understanding the intensive margin of conflict

outbreak (thus neglecting its extensive margin) modelled spatial interactions
with (either or both) spatially-lagged dependent and independent variables
see among others (Cappelli et al., 2020, 2024)). On the contrary, Cappelli

et al. (2022), who choose to account for both the intensive and the extensive
margin of conflict outbreak, had to consider exogenous spatial spillovers (as
his was the only possibility offered by the current econometric literature in
his setting), i.e., whether changing climate and socio-economic conditions
ecorded in neighbouring areas have an impact on conflict. We choose to fol-
ow this latter approach, as it allows for a more comprehensive understanding

f conflict dynamics, and we extend it by also considering forecasted data.

4 
economic interpretation of distances due to the mutual proportions
between its elements (Elhorst, 2014).

The introduction in Eqs. (1)–(2) of the exogenous spatial effects,
persistency, temporal dynamics and fixed effects leads to a ZINB spatial
model as follows:

𝐸(𝑌𝑖𝑡|𝐗𝑖𝑡−1,𝐖𝐗𝑖𝑡−1,𝐅𝑖,𝐂𝑐 ,𝐙𝑖𝑡−1,𝐋𝑖, 𝑌𝑖𝑡−1) =
(1 − 𝜋𝑖𝑡)𝑒𝑥𝑝(𝛼 + 𝐗′

𝑖𝑡−1𝛽 +𝐖𝐗′
𝑖𝑡−1𝜃 + 𝐅′

𝑖𝜂 + 𝐂′
𝑐𝜑)

(3)

𝜋𝑖𝑡 =
𝑒𝑥𝑝(𝛿𝑖 + 𝐙′

𝑖𝑡−1𝛾 + 𝐋′
𝑖𝜌 + 𝑌𝑖𝑡−1𝜎)

1 + 𝑒𝑥𝑝(𝛿𝑖 + 𝐙′
𝑖𝑡−1𝛾 + 𝐋′

𝑖𝜌 + 𝑌𝑖𝑡−1𝜎)
(4)

where 𝐙𝑖𝑡−1 and 𝐗𝑖𝑡−1 are lagged time-variant covariates, while 𝐋𝑖 and
𝐅𝑖 are time-invariant cell-based geographical features. In the Count
model Eq. (3), 𝜃 is the coefficient of the exogenous spatial interactions
associated to the covariates of neighbouring cells 𝑗 (with 𝑗 ≠ 𝑖)

eighted by the inverse distance matrix 𝑊 (𝐖𝐗𝑖𝑡−1). Country FE are
iven by 𝐂𝑐 and serial correlation is controlled by the coefficient 𝜎
ssociated to 𝑌𝑖𝑡−1.

2.2. The forecasting approach

Long-term forecasting exercises involve predicting multiple steps
ahead, typically facing growing uncertainty especially in the case of re-
ursive phenomena. Indeed, forecasting handled recursively means that
ach step ahead is computed using prior forecasts as input. Three main
roups of multi-step forecasting methods are available for recursive
stimation.

First, the plug-in method use historical data to estimate the model
coefficients, which are then applied multiple times across the entire
uture time span. Predicted values are obtained by repeatedly using
he fitted model, with unknown future values replaced by their own
orecasts (Ing, 2003).

Second, the direct method involves estimating coefficients of the
h-step prediction model separately at each step model using a rolling
window approach. This method uses specific windows of data to re-
estimate the parameters over the out-of-sample period. Thus, a dis-
tinct model for each forecasting horizon is estimated solely using
the observed data, with forecasts computed as the first out-of-sample
prediction (Chevillon, 2007; Ing, 2003). Given that the direct strategy
does not use approximated values to compute the forecast, it is immune
to the accumulation of errors. However, each h-th model is obtained
ndependently from the others, resulting in conditional independence
f the forecasts that can affect predictive accuracy due to the inability
o account for complex dependencies over time (Ben Taieb et al., 2012).

Third, the recursive method also employs a multi-step strategy,
adopting either a rolling or recursive-window approach. The former
uses fixed-length temporal windows that roll over time to track fore-
casts, while the latter employs increasing temporal windows incorpo-
rating all available historical data plus previous forecasts to re-estimate
the models. The recursive approach combines aspects of both plug-in
and direct methods by using a different model at each step (like the
irect method) and incorporating previous forecasts as input (like the
lug-in method) (Petropoulos et al., 2022).8

Both plug-in and the recursive approaches require previous forecasts
for computing new forecasts, allowing prediction errors to accumulate
(i.e., errors associated to intermediate forecasts will propagate for-
ward). In contrast, direct forecasting is immune to the accumulation
of errors, as it does not require to iterate the forecast, but the different
models that it considers are learned independently, and this induces
a conditional independence of the different forecasts that can affect
the forecasting accuracy. Moreover, the direct approach involves a

8 While the plug-in approach requires estimation of only one model (whose
coefficients are used multiple times to iterate on the forecasting horizon),
direct and recursive forecasting methods require the estimation of multiple
models, thus imposing a heavier computational burden.
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Table 1
Scenario setting.

RCP GHG emissions Estimated average SSP framework
warming (2041–2060)

SSP1 2.6 Low GHG emissions: 1.7 ◦C Green growth paradigm
CO2 emissions cut to net zero around 2075 (van Vuuren et al., 2017)

SSP2 4.5 Intermediate GHG emissions: 2.0 ◦C Middle of the road
CO2 emissions around current levels until 2050 (Fricko et al., 2017)

SSP3 8.5 Very high GHG emissions: 2.4 ◦C Regional rivalry
CO2 emissions triple by 2075 (Fujimori et al., 2017)

SSP4 4.5 Intermediate GHG emissions: 2.0 ◦C A world of deepening inequality
CO2 emissions around current levels until 2050 (Calvin et al., 2017)

SSP5 8.5 Very high GHG emissions: 2.4 ◦C Fossil-fuelled development
CO2 emissions triple by 2075 (Kriegler et al., 2017)
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diminishing sample size as the forecasting horizon increases, leading
to increased variance in the parameter estimates and Mean Square
orecast Errors (MSFE).

Lastly, a bias–variance trade-off exists in choosing between rolling
nd recursive forecasting schemes. Using earliest available data that do
ot conform to present data-generating process may yield biased pa-
ameter estimates and forecasts, may yield biased parameter estimates

and forecasts. However, reducing the sample to minimize heterogeneity
increases variance in parameter estimates and MSFE. Thus, a balance
s needed between using too much or too little data to estimate model
arameters. Notably, a recursive approach based on a rolling window
ould imply at some point the use of only past forecasts (without
istorical data) for model estimation in case of a long forward temporal
orizon and limited backward information (Marcellino et al., 2006).

The recursive strategy with recursive windows seems to be the
best choice in the case of long-term forecasts with a relatively short-
term backward period using historical observations (Ben Taieb and

yndman, 2014). Thus, we apply a recursive approach where, in each
h-step, the forecasted value is obtained by running a distinct one-
step model that incorporates the previous forecasted value as input.
Formally, this is expressed as:

�̂�𝑁+ℎ =

⎧

⎪

⎨

⎪

⎩

𝑓ℎ(𝑦𝑁 , 𝑦𝑁−1,… , 𝑦𝑁−𝑔) if ℎ = 1
𝑓ℎ(�̂�𝑁+1, 𝑦𝑁 , 𝑦𝑁−1,… , 𝑦𝑁−𝑔) if ℎ = 2
𝑓ℎ(�̂�𝑁+𝑇 ,… , �̂�𝑁+1, 𝑦𝑁 , 𝑦𝑁−1,… , 𝑦𝑁−𝑔) if ℎ = 𝑇

(5)

where 𝑔 ∈ (0, 𝑁) represents the historical data (1990–2020), and ℎ ∈
(1, 𝑇 ) denotes the forecasting horizon (2021–2050).9

Similar to Hoch et al. (2021), we consider a forecasting timeline up
to 2050 under different scenarios. Projected climate data are defined
by three RCPs about future Greenhouse Gas (GHG) emissions paths:
RCP 2.6 (mitigation scenario), RCP 4.5 (stabilization scenario) and RCP
8.5 (very high GHG emissions scenario). Projections for socio-economic
indicators (GDP, population, and Gini index) follow SSPs narratives
coherent with the 6th IPCC Assessment Report (Arias et al., 2021),
using the same SSP-RCP combination adopted by Witmer et al. (2017)
o ensure comparability across studies.10 The scenario setting used in
he forecasting exercise is summarized in Table 1.

2.3. Conflict data

Our dependent variable is the total number of conflict events per
cell/year. Given that results might be sensitive to the definition of
conflict (de Bruin et al., 2022), we extract information on violent
events from two sources. The first is the Uppsala Conflict Data Project
- Georeferenced Event Dataset (UCDP), which records violent events

9 Notation in Eq. (5) is simplified by dropping the 𝑖 subscript representing
ifferent statistical units.
10 In this exercise, the RCP coupled with SSP4 represents the intermediate
missions profile, as one the three RCPs suggested by the AR6 to be coupled
ith the socio-economic trends.
 b

5 
from 1990.11 The second source is the Armed Conflict Location & Event
Data Project (ACLED), which similarly provides dyadic conflict data
with a high level of spatial accuracy from 1 January 1997.

The UCDP and ACLED datasets are similar in nature, but differ
n their reporting criteria. First, one inclusion rule in UCDP is to
ecord all events (of all UCDP conflict dyads that crossed the 25-
eaths threshold in a single year) resulting in at least one battle-related

death.12 In contrast, ACLED cover political violence (i.e., the use of
force by a group with a political purpose or motivation) and includes
events without imposing any fatalities threshold (Eck, 2012). Moreover,
he conflicts sides and the types of violence are also partly differ-
nt in the two datasets. In UCDP the actors can be governments or
rganized groups resulting in three types of conflicts: state-based if

one side is the government of an independent state, non-state based
recording violence between formally or informally organized groups)

and violence against civilians. ACLED adopts a different classifica-
ion and includes also non-violent conflict-related events like troop
ovements, demonstrations, riots and disorders among civilians.13 Fi-

nally, the two datasets also source information differently. UCDP relies
primarily on global newswires (about 60%) and English-language re-
ports,14 while ACLED incorporates also traditional media (in over 20
languages, not privileged English), new media (e.g., Twitter, Tele-
gram, WhatsApp), public and private reporting (e.g., Amnesty Inter-
national, official state-reported events), and partnerships with local
onflict observatories (Raleigh and Kishi, 2019).

As a result, the datasets cover partly different events: UCDP is more
conservative, focusing on armed force events, while ACLED includes
potentially violent events such as protests, riots and demonstrations,
which may (but not necessarily do) involve violence.15 Given UCDP’s

11 Global version 22.1. UCDP is built according to the methodology devel-
oped by Sundberg and Melander (2013) with data January 1989 and December
2020 updated by Pettersson et al. (2021).

12 The UCDP GED Codebook (version 22.1) defines an event as ‘‘An incident
where armed force was used by an organized actor against another organized
actor, or against civilians, resulting in at least 1 direct death at a specific
location and a specific date’’ (Hogbladh, 2022). More specifically, the event
ataset traces the events of all UCDP conflict dyads (i.e., two conflicting
rimary parties or party killing unarmed civilians) for both active (i.e., at least
5 battle related deaths recorded) and non-active years.
13 ACLED adopts the following conflict classification: violent events

(e.g., battles and violence against civilians); demonstration (protests and riots);
non-violent actions (activities of violent groups that may contribute to political
instability and future events).

14 UCDP sources include: global newswire reporting (about 60%); global
monitoring and translation of local news performed by the BBC; secondary
sources such as local media, NGO and IGO reports, field reports, books etc.
From the UCDP GED Codebook v22.1: ‘‘The process is done in a ‘‘two-pass’’
system, first by consulting newswire sources for the entire globe then by
consulting local/specialized sources based on information obtained from the
first pass’’.

15 According to Raleigh and Kishi (2019), UCDP captures only events where
arger and organized groups are involved and whole countries with persistent
ut low-level conflict are missing in certain years of coverage.
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stricter event counting compared to ACLED, choosing one dataset over
he other risks underestimating or overestimating forecasted conflict

events.16 Therefore, we use both UCDP and ACLED sources to compute
two alternative dependent variables as the sum of all violent events
(excluding conflicts between two or more states) recorded within each
cell’s boundaries in all the years the conflicts last.

2.4. Climate variability and the agricultural channel

Our primary target variables are derived from monthly data on tem-
erature and precipitation. Historical climate data have been retrieved

from the African Flood and Drought Monitor (AFDM) while climate
rojection data have been collected from the World Climate Research
rogramme’s Coupled Model Intercomparison Project phase 5 (CMIP5)

and across the three aforementioned RCPs.17

We incorporate two set of indicators to measure climate variability
er se. First, we calculate the long-term changes in climatic condi-
ions (temperature and precipitation) relative to the benchmark period
970–1989. Second, we use the Standardized Precipitation Evapotran-
piration Index (SPEI), a composite measure of soil moisture, to account
or relative excess or deficiency of water availability that can affect
he ability to meet the demands of human activities and the environ-
ent (Hayes et al., 2011; Parsons et al., 2019; Pandey and Ramasastri,

2001).
We further identify the agricultural activities as a critical (indirect)

mechanism linking changes in climatic conditions to political stability
and armed conflicts, primarily through implications for food secu-
ity and worsening socio-economic conditions. Consistent with prior

research, we recognize the seasonal nature of agricultural activities
and their varying exposure to climate variability within the growing
season (Jones et al., 2017; La Ferrara and Harari, 2018). Crop losses
due to adverse climate conditions during critical growing periods can
ndeed lead to reduced agricultural production, lower income, and
igher food prices, all of which contribute to local socio-economic
trains. These factors can foster grievances, resource competition, and
ow opportunity costs for engaging in violence, thereby contributing
o political instability.18 Consequently, we compute our indicators by

jointly considering monthly SPEI value, and the growing seasons of
main crops within each grid cell. We adopt the approach of Von Uexkull
t al. (2016), measuring the proportion of growing-season months

affected by drought or excess water. Accordingly, the study provides
insights into the potential pathways through which climate change
may influence conflict dynamics in Africa, highlighting the importance
of considering agricultural vulnerabilities and adaptive capacities in
conflict forecasting models.

In our analysis, we assume that the crops’ growing season remains
unchanged up to 2050, and we do not account for future adaption in
our models. We acknowledge that this is a strong assumption, imply-
ing that economic agents do not adjust their behaviour in response
to changing environmental or socio-economic conditions. The main
motivation behind this choice is given by data constrained, i.e. it is
due to the lack of cell-specific information on anticipated adaptation
efforts.

For instance, adaptations in response to changes in the agricultural
growing season, shifts in cultivated crops due to adverse climate con-
ditions, the adoption of more advanced agricultural practices (e.g., ir-
rigation, other farmers-supporting measures) could boost agricultural

16 Figure A1 in appendix compares the total number of ACLED and UCDP
conflicts events over the period 1997–2020, highlighting a growing gap in
recent years. Observe that in order to have more reliable estimates across time
and space, and more comparable results across data sources, we restrict ACLED
data to deadly events.

17 More details on the climate and agricultural indicators are presented in
ection A.1 of the Appendix.
18 This is consistent with previous studies suggesting that increases in local

food prices are associated with increases in violence (Gutiérrez-Romero, 2022).
 a

6 
productivity (Montaud et al., 2017) and mitigate the impact of climate
change on food security and livelihoods, potentially reducing the risk of
conflict. Furthermore, adaptation strategies promoting environmental
peacebuilding, such as natural resource management initiatives or con-
flict resolution mechanisms, may play a pivotal role in mitigating the
climate change’s indirect effects on conflict dynamics. In the absence
of such data, it is challenging to incorporate cell-specific adaptation
strategies into our forecasting model.

3. Results

3.1. Identification strategy

We test a baseline specification, which does not includes climate
variables,19 along with seven additional models with alternative cli-
mate covariates. These variables either capture direct effects of climate
variability on violence (Models 1–4) or the indirect effects through the
agricultural channel mediated by the crops growing season (Models
5–7).20

To identify the empirical design that minimizes model residuals
ased on the historical data (1990–2020 for UCDP;1997–2020 for

ACLED), given the non-linearity of the ZINB count model, we use the
earson residuals that correct for the unequal variance by dividing by

the standard deviation of �̂�. In analytical terms:

𝑝𝑖𝑡 =
𝑦𝑖𝑡 − �̂�𝑖𝑡

(

1 − �̂�𝑖𝑡
)

√

�̂�𝑖𝑡
(

1 − �̂�𝑖𝑡
) [

1 + �̂�𝑖𝑡 (1 + �̂�)
]

(6)

where 𝑦𝑖𝑡 is the observed conflict event in cell 𝑖 at time 𝑡 and �̂�𝑖𝑡
(

1 − �̂�𝑖𝑡
)

is the expected value estimated by the model. In Eq. (6)�̂�𝑖𝑡 represents
the negative binomial component, �̂�𝑖𝑡 is the logistic link function and �̂�
s the negative binomial overdispersion parameter.

We run the different models considering both UCDP and ACLED
ata, finding that the mean squared Pearson residuals per year in-
icate similar error terms across tested models (Figures A9a–A9b).
otably, the baseline model (without climate variables) underestimates

he number of conflicts and generates the highest residuals over the
ong run.21

Following the methodology proposed by Colaresi and Mahmood
(2017), we conduct a validation experiment to compare the forecasting
apabilities of the recursive method (Eq. (5)) against the direct method
ith rolling windows. In doing so, we select Model 7 for its compre-
ensive representation of vulnerability to climate impacts on human

activities. Three reasons are behind this choice: (i) it includes the
long-term changes in climatic conditions, represented by the average
temperature change over the past five years relative to the 1970–
1989 benchmark period (see Eq. (8) in section A.1 in Appendix); (ii)
it accounts for the indirect effects, quantified by the proportion of
the growing-season months experiencing severe droughts (𝑆 𝑃 𝐸 𝐼36 <
−0.99) or significant excess of water (𝑆 𝑃 𝐸 𝐼36 > 0.99) occurred; (iii)
for both UCDP and ACLED data it is associated to the lowest AIC and
BIC values.22

19 Alternative specifications and robustness checks on the baseline model are
eported in Tables A6 and A7 in Section A.3 .
20 Results are reported in Tables A1–A2 for UCDP and ACLED, respectively.
21 When very large or outlier errors are squared, the score gives worse

performance to those models that make large wrong predictions. In what
follows we adopt the mean squared Pearson errors for both the identification
strategy and the evaluation of forecasting capacity in the form of MSFE.
Pearson residuals are available from 1992 for UCDP and from 1998 for ACLED
due to the lagged structure of the base model as in Eqs. (3)–(4).

22 We perform a battery of robustness exercises to test for: (i) potential
ivergences associated to the choice of the baseline scenario used for the
eriod 2017–2020; (ii) robustness of statistical significance of coefficients in
ecursive windows for the validation period 2017–2020; (iii) robustness to
lternative fixed effects (see Section A.3 in Appendix).
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Fig. 1. MSFE with Pearson residuals (model 7 with SSP2 baseline).
Note: A refers to the training period for which the black lines represent mean squared of Pearson residuals. B refers to the validation period with coloured lines reporting the
MSFE computed as Pearson residual.
In Fig. 1 we present the MSFE computed on Pearson residuals per
year from the recursive and direct methods, considering different train-
ing (A) and validation (B) periods for both UCDP and ACLED.23 Short-
term forecasting (i.e., short validation periods B as in Figs. 1(e)–1(f))
show overlapping MSFE paths for direct and recursive methods in both

23 The training period uses historical observation for all covariates, while
the validation period includes observed values for the response variable and
projected covariates.
7 
UCDP (solid lines) and ACLED (dashed lines). However, longer valida-
tion periods (Figs. 1(a)–1(b)) exhibit more heterogeneous MSFE values,
indicating increased forecasting uncertainty. Given such mixed results
on prediction capacity and the limitations of the direct method (short-
term availability of historical information for the backward rolling
windows), in what follows we apply the ZINB estimator and a recursive
model with recursive windows approach for forecasting up to 2050, as
given by Eq. (5) applied to Eqs. (3)–(4) with 𝑊 = 0 (spatial interactions
excluded).

To compare the predictive capacity of the direct and recursive
approaches, we group the forecasted number of conflicts events into
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Fig. 2. Alternative forecasting methods (year 2020). Note: Number of conflicts events are expressed as three-year average (2017–2020).
classes. Given that the socio-economic and climate variables for the
period 2017–2020 are derived from future scenarios, we account for
this dimension of uncertainty and test potential divergences associated
to the choice of the SSP-RCP baseline scenario used. Accordingly, we
evaluate Model 7 across five SSP-RCP scenarios for both UCDP and
ACLED, presenting the results in terms of average number of conflict
events per cell across scenarios. The visual representation of the differ-
ence between the direct and recursive methods in terms of class-based
distribution of observed and predicted conflicts events is provided by
Fig. 2. Considering the experiment with the longest validation period
(𝐵 ∈ (2012, 2020)) as in Fig. 1(a), cells are classified based on the
average predicted number of conflict events into the following classes:
[0,1), [1,5], (5,10], (10,20], (20,50], (50, ∞).

In UCDP data, the percentage of cells falling into a different class
compared to observed data ranges from 12% in 2012 to 25% in 2020
when using the recursive method, and from 11% to 33% with the direct
method. Similar results are observed in ACLED, where the percentages
are slightly higher for both methods. Overall, the recursive method
achieves an average accuracy of around 80% for UCDP and 75% for
ACLED. This suggests that forecasts based on the more conservative and
homogeneous UCDP dependent variable are generally more accurate.

3.2. Conflicts projections under SSPs by 2050

Models in Tables A1–A2 are used to forecast conflicts events by
2050. Figs. 3(a)–3(b) compare the sum of cell-based conflict events per
year across all seven models, applied to both UCDP and ACLED data
under the five SSPs. Solid lines depict results from Model 7 (long-term
indirect impact of climate change via agricultural activities), dashed
lines show forecast from Models 5–6 (shorter-term indirect impact),
8 
and dot lines represent models accounting only for the direct effect of
changes in climatic conditions (Models 1–4). Different colours denote
the five SSP-RCP scenarios.

Three results are worth noting. First, the forecasted number of
events using UCDP is substantially lower than ACLED, primarily due
to the difference in historical values, especially after 2010 where the
gap between the two data sources becomes larger (see Figure A1).

Second, worse socio-economic scenarios (SSP3 and SSP4) corre-
sponds to higher violence intensity, with varying trends in conflict
events across scenarios, dependent on the conflict data source. Overall,
our results suggest that within similar socio-economic context, the
number of forecasted UCDP conflicts remains similar regardless of the
climatic scenario, while ACLED conflicts are amplified under worse
climatic conditions. In the case of UCDP (Fig. 3(a)) SSP3 and SSP4
present the highest and overlapping trend, and an overlap also occurs
between SSP1 and SSP5, characterized by relative higher economic
growth and lower population growth, but associated to very different
climate scenario (the most optimistic RCP 2.6 for SSP1 and the most
pessimistic RCP 8.5 for SSP5). Conflicts events predicted by SSP2 are
in the middle of the road as expected. This coupling evidence seems
driven more by socio-economic variables rather than climate-related
patterns. Conversely, ACLED forecasts (Fig. 3(b)) are more responsive
to worsening climatic conditions, and no overlapping between different
scenarios emerges in this case. These results suggest that ACLED data,
which adopt a less conservative approach in the definition of conflict
events, seem to better represent the relative vulnerability of disadvan-
taged social groups to external climatic shocks. Accordingly, worsening
climatic conditions may bring to a larger number of lower-intensity
conflictual episodes over years.

Third, across all SSPs scenarios, Model 7 (solid lines), which in-
cludes long-term indirect climate impacts mediated by the agricultural
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Fig. 3. Conflicts projections by 2050 under SSPs (UCDP and ACLED).
channel, consistently predicts the highest number of conflict events. In
contrast, in models accounting for direct climate effects (Models 1–4,
dot lines) the number of predicted conflict events is sensibly lower. To
further stress this point,we examine SSP3 (highest conflict risk) and
SSP1 (lowest conflict risk), highlighting the range of variation in the
number of conflict events predicted from models accounting for direct
(Models 1–4) and indirect (Models 5–7) climate indicators. Figs. 3(c)–
3(d) show the results for UCDP and ACLED. Models capturing direct
climate effects generally imply lower conflict risk and a larger range
of variation compared to those incorporating indirect effects via the
agricultural channel. Consistent with previous literature, our findings
confirm that accounting for climate variability alone can either amplify
or mitigate conflict risk relative to current observations. However,
when indirect mechanisms are considered and climatic changes are not
accompanied by adaptation measures, the risk of violence escalates.

Overall, these results confirm that forecasting exercises can be
strongly affected by the methodology used to collect data on conflicts,
independently from the robustness of the estimation approach, and by
the modelling of variables capturing climate variability.

3.3. The role of spatial dynamics

The recursive forecasting model is then applied to the ZINB spec-
ification that includes spatial interactions. We compute the Global
Moran’s I index on Pearson residuals from Eqs. (3)–(4), in the time span
1990–2020 with 𝑊 = 0, as follows:

𝐼 = 𝑁
∑𝑁

𝑖=1
∑𝑁

𝑗=1 𝑤𝑖𝑗

∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝑤𝑖𝑗

(

𝑝𝑖 − �̄�
) (

𝑝𝑗 − �̄�
)

∑𝑁
𝑖=1

(

𝑝𝑖 − �̄�
)2

(7)

where 𝑁 is the number of spatial units (i.e. 2,653 cells), 𝑝𝑖 and 𝑝𝑗 are
the Pearson residuals for spatial unit 𝑖 and 𝑗, �̄� is the mean value of
9 
residuals per year and 𝑤𝑖𝑗 is the bilateral inverse distance between 𝑖
and 𝑗 based on the five 𝑊𝑑 symmetrically normalized weight matrices.
We compute the Global Moran’s I on Pearson residuals for most recent
years for both data sources accounting for different spatial weights. Our
results confirm that the spatial correlation of the residual term is always
statistically significant, and a matrix 𝑊𝑑 ≠ 0 should be considered (see
Table A3).

Since no a priori information guides the selection of the best weight
matrix, we adopt the same model selection strategy described in Sec-
tion 3.1 and compare Pearson residuals (Eq. (6)) obtained from Model
7. Since the results reveal that there is no unique indication on a spatial
weight to be preferred across all years (Figure A12), we apply the
widest range (𝑊5 = 533 k m) to map the distribution of conflicting
events across cells by 2050, while testing alternative weights for robust-
ness. Notably, the projected number of conflict events is larger when
accounting for spatial interactions and a change in pattern across SSPs
also emerges with respect to our previous results (see Figs. 4(a)–4(b)).24

Five specific results are worth mentioning when comparing forecasts
with and without spatial correlation.

First, results confirm our previous findings: violent conflict events
are mostly driven by the indirect impact of changes in long-term cli-
matic conditions on human activities, as proxied by the pressure played
by unexpected changes in water availability on agricultural harvest and
food security, even in the case of local spillovers. This pattern is evident
in Figs. 4(c)–4(d) where we select the scenario associated to the highest

24 We use the same graphical representation as in Figs. 3(a)–3(b): solid lines
represent results from model 7; dashed lines result from models 5–6 (shorter-
term indirect impact of climate change); dot lines result from models 1–4
(direct impact of climate change).
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Fig. 4. Conflicts projections by 2050 with spatial interaction (UCDP and ACLED).
Note: The matrices 𝑊1, 𝑊3 and 𝑊5 are calculated based on the great circle formula, Queen approach, and a threshold equal to, respectively, 178, 355, and 533 km.
(SSP5) and lowest (SSP1) conflict risk. Similarly to Figs. 3(c)–3(d),
Models 1–4 (direct climate effects) consistently predict fewer conflict
events compared to Models 5–7 (indirect effects via the agricultural
channel), while exhibiting a wider range of variation.

Second, when considering the role of spatial dynamics, SSP5
emerges as the worst case scenario in the long-term. It thus emerges
a clear change in the patterns of total conflict events estimated from
UCDP (Fig. 4(e)) and ACLED (Fig. 4(f)) with respect to results that do
not incorporate spatial relations. As previously discussed, in this latter
case there is a large divergence across the five SSPs over time, with the
SSP3, related to the hardest impact of climate change and vulnerability,
being the worst case. In contrast, when spatial correlation is accounted
10 
for, the highest frequency of violence is associated with SSP5, the
socio-economic pattern based on large exploitation of natural resources
fuelling economic growth at the expense of an increasing inequality
in welfare distribution. This is particularly pronounced in ACLED data
(Fig. 4(f)) from 2040 onward. Since both SSP3 and SSP5 share the same
climate trend (RCP 8.5), differences in conflict patterns are mainly
driven by cell-based economic growth and income distribution. Despite
SSP5 showing higher aggregate GDP across Africa if compared to the
other scenarios, it is also coupled with the largest (and increasing in
time) concentration of income. Indeed, while in the short-term in the
SSP5 the spatial concentration of wealth across neighbouring cells is
decreasing, from 2035–2040 this trend is reversed, signalling that the
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large increase in income is concentrated in fewer cells.25 This seems
to suggest that while in the short-term higher GDP growth (SSP5)
an compensate for climate damages and mitigate potential violence
utbreak, in a longer horizon increasing income concentration and the
nequal access to welfare resources across spatial neighbours could
ctivate vicious cycles of resource competition and conflicts.

The third result emerges from the comparison of selected SSPs
cross different spatial distances. We focus on the number of conflict
vents predicted from the three most pessimistic models (i.e., Models
, 6, 7) and test different spatial weights matrices. In Figs. 4(e)–4(f)

we select SSP3 and SSP5 and, for each scenario, the darker the colour
f the graph area, the wider the radius of spatial relations (i.e., 178,
55, 533 km). For both UCDP and ACLED data, the upper and lower
ounds of forecasted event frequencies are given by the two extreme
istances, albeit with opposite trends. In ALCED, the less conservative
ata including also riots and disorders, the highest distance corresponds
o the upper bound and the shortest distance to the lower bound of
orecasted events. The opposite result is obtained by considering as
 response variable violent events according to a more conservative
pproach, as in UCDP (with some exception for SSP5). This further
onfirm the different sensitivity of forecasts to changes in climatic
nd socio-economic conditions occurring at the local scale, strongly
nfluenced by the nature of the response variable adopted.

The changes in ranking across SSPs is also impacting the geogra-
hy of violence, as emerged from mapping the number of predicted

conflict events by 2050 when spatial correlation with 𝑊5 is accounted
or (Figs. 5–6), using the same classes as for testing the prediction

capacity of the model (as in Fig. 2). Spatial spillovers drive violence
and disorders to be geographically widespread and more intense in
requency, especially in densely populated areas with potentially higher

economic growth prospects. Intensive resources exploitation combined
with high income inequality could intensify the competition for rent,
thereby fuelling the conflicts.

Conversely, scenarios characterized by intensified climate change
ressure along with worsening well-being conditions (i.e., SSP3-SSP4)
orrespond to a relative decrease in the frequency of forecasted con-

flicts events compared to models without spatial spillovers (see Figures
A10–A11). This last result could be interpreted as indicative of reduced
resource competition when challenging livelihood conditions lead to
a generalized lack of basic needs, with long-distance migration being
among the primary adaptation strategies.

4. Conclusions

In this paper we present a forecasting analysis on violent conflict
events in Africa up to 2050 along different climate-related future
cenario, and accounting for multiple socio-economic drivers and vul-
erability. We apply a forecasting dynamic recursive approach to a
on-linear model designed for count response variables with many
eros. We further develop a model that accounts for spatial correlation
n order to investigate the role of geographical spillovers in the diffu-
ion of violence. Climate-induced changes in agricultural productivity,
or instance, can trigger resource competition and exacerbate existing
ocio-economic disparities, leading to stronger tensions and conflict
scalation. By incorporating spatial dependencies into our analysis, we
etter capture the diffusion of conflict spillovers and the propagation of
limate-related impacts across contiguous areas. This approach enables

25 We calculate the Herfindahl index of concentration based on GCP per
apita across neighbouring cells for different distance matrix. In all cases,

the index for SSP5 follows a U-shape pattern: it decreases up to 2035–2040
(on average by 0.25% per year) and then it starts increasing (on average by
0.10% per year). A similar U-shape pattern is associated also to SSP1, and this
evidence explains the increased number of conflict events predicted during
the last decade 2040–2050 in SSP1 if compared to the results without spatial

relations. See Figure A13. (

11 
us to explore how climate conditions recorded in one geographic cell
may influence conflict outcomes in neighbouring cells, thereby provid-
ing a more comprehensive understanding of the spatial dynamics of
violent conflicts. Importantly, our results confirm that these effects are
not confined to isolated areas but can spill over into adjacent regions,
amplifying the overall impact of climate change on conflict dynamics
across the African continent up to 2050.

We compare the results obtained by applying the same forecasting
ethod to two widely-used conflict data sources, i.e., UCDP (which

ends to be more conservative, focusing on events involving armed
orce and resulting in at least one battle-related death) and ACLED
which captures a wider spectrum of potential or threatened violence).
hree main results are worth mentioning.

First, exposure to environmental risk caused by pessimistic scenarios
on climate change impacts is strictly connected with an increase in
the frequency of violent events. Nonetheless, not all conflictual activ-
ities respond equally to climate shocks, and the quantification (and
distribution) of the predicted events diverge between the two data
sources. Model forecasts based on UCDP conflicts differ across SSPs
according to the projected dynamics mainly based on socio-economic
vulnerability. On the opposite, forecasts based on ACLED data seem
to better capture the direct impact of long-term change in climatic
conditions. Accordingly, we find that predictions on the climate-conflict
nexus are significantly affected by the type of data used for measuring
the breakout of disorders (e.g., actual or threatened violence), and one
way to reduce uncertainty is to account for such divergence in mod-
elling exercises with multiple models and datasets. These insights into
the nuances of the climate-conflict nexus emphasize the importance
of accounting for such discrepancies in modelling exercises to reduce
uncertainty and improve the robustness of forecasts.

Second, violence is mostly driven by the indirect effects of climate
ariability through the so-called agricultural channel. The forecasted

number of conflicts events is magnified when we jointly account for
the pressure played by long-term climatic conditions and for the local
agricultural system. In our exercise we proxy this dimension with the
ressure played by unexpected changes in water availability recorded

during the growing season of local agricultural crops. Whatever SSP
scenario is tested, and independently from the conflict data source
sed, when assessing this agriculture-related indirect impact of climate
hange the number of forecasted events is higher, confirming that
he agricultural sector may play a crucial role in the future. Overall,
his result underscores the need for comprehensive approaches that
ntegrate climate adaptation strategies with efforts to promote sustain-
ble agricultural practices and enhance resilience among vulnerable
ommunities.

Third, the introduction of geographical spillovers allows detecting
a different sensitivity of forecasts to changes in climatic and socio-
economic conditions occurring at the local scale. In the case of UCDP
data (e.g., actual violence), the impact of spatial interactions is higher
or short distances. This suggests that these conflicts react more strongly
o more localized threats, with near-neighbouring areas being more
usceptible to the spread of violence. This could be due to factors
uch as proximity to or shared resources (e.g., water sources or arable
and), which facilitate the transmission of conflict-related dynamics. On
he opposite, when accounting for all types of disorders irrespective
f any selection criteria on the magnitude of violence, as in the case
f ACLED data (e.g., threatened violence), the impact of climatic and
ocio-economic conditions of neighbouring areas increases with the
eographical distance. This indicates that the effects of these conditions
xtend beyond immediate neighbours and have a broader spatial reach.
e also find that, when accounting for the geographical spillovers, the

ocio-economic context plays a crucial role in determining the climate-
elated conflict risk: the effect is magnified in scenarios characterized
y high degree of spatial inequality and intense resource exploitation

SSP5), and downsized in cases of generalized lack of resource (SSP3).
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Fig. 5. Conflicts by cell in 2050 with spatial interaction (UCDP).
Taken together, these findings highlight the importance of consider-
ing geographical spillovers in understanding the sensitivity of conflict
forecasts to changes in environmental and socio-economic conditions.

Overall, these results suggest that changes in the socio-economic
context will play a determinant role in defining how strongly climate
variability is likely to affect violence, and stronger effects may emerge
when accounting for the geographical spillovers. These findings have
important policy implications for the design and implementation of
conflict prevention and resolution strategies, emphasizing the need for
context-specific interventions that should also address the underlying
drivers of climate vulnerability and promote resilient practices. At
the same time, this evidence underlines the importance of coordi-
nating policies and support efforts across broader geographical areas,
which implies that addressing the climate-conflicts risk and its un-
derlying causes requires more than just localized interventions. Due
to the existence of spatial spillovers, the effects on conflicts extend
12 
beyond immediate locations, impacting neighbouring regions. This in-
terconnectedness emphasizes the need for collaborative efforts across
regions to effectively address and mitigate the impacts of conflicts.
In other words, climate shocks can have far-reaching consequences,
and addressing them comprehensively requires coordinated action and
cooperation across different geographical scales.

We also observe that our forecasts are higher with respect to pre-
vious literature (Hoch et al., 2021), and even higher when accounting
for spatial spillovers. This may suggest that the effect of climate on
conflicts reported in other works represent a lower bound with respect
to the present study (i.e., when considering how climate indirectly
interacts with other factors and in absence of adaptation actions, its
effect increases). It has to be noted that our modelling approach, taking
climate indicators as exogenous and without imposing any expectation
about future adaptation, is mostly reflecting historical dynamics and
the status quo. This further highlights the importance of implementing
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Fig. 6. Conflicts by cell in 2050 with spatial interaction (ACLED).
adaptive measures to mitigate the adverse effects of climate change,
especially on agricultural systems and livelihoods.

The (data-constrained) parsimonious specification adopted in this
paper could be further enriched in future research by accounting for
local forms of adaptation in terms of, for instance, changes in institu-
tional and technological aspects or in human behaviour in response to
climate events (e.g., migration/mobility, adoption of livelihood coping
strategies). For example, adaptations in response to changes in the
agricultural growing season or shifts in cultivated crops due to adverse
climate conditions could significantly influence conflict dynamics. The
adoption of more advanced agricultural practices, such as irrigation or
other farmers-supporting measures, may also mitigate the impact of
climate change on food security and livelihoods, potentially reducing
conflict risk. Furthermore, adaptation strategies aimed at promoting
environmental peacebuilding, such as natural resource management
initiatives or conflict resolution mechanisms, could play a crucial role
13 
in mitigating the indirect effects of climate change on conflict dynam-
ics. Future research should explicitly tackle this limitation, and explore
the potential influence of adaptation strategies on the relationship
between climate change and armed conflict. Indeed, by incorporating
such considerations, future studies can provide a more comprehensive
understanding of the complex interactions between climate conditions,
socio-economic factors, and conflict dynamics.

Finally, two additional limitations should be noted. First, as for the
choice of the considered time frequency of the data (yearly, instead of,
e.g., monthly), we acknowledge that this approach may raise concerns
about the accuracy of the conclusions when predicting a large number
of observations. However, the lack of higher-frequency data about
historical and future socio-economic conditions constitutes a strong
constraints in this regard. Hence, instead of adopting discretionary
assumptions (e.g., to transform yearly data in monthly data), our
preferred approach is to maintain the original time frequency of raw
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data (which is annual for most of the data sources), while exploiting the
monthly variations when available (i.e., as in the case of climate and
gricultural indicators). Second, while our empirical framework aligns
ith previous studies and relies on established econometric methods,

uture research should further investigate the applicability of (and com-
arison across) different methodologies. Among other things, future
esearch should: explore the potential benefits of employing higher-
requency observations; model (endogenous) spillover effects using
ount data models (provided that these will be made available from the
iterature in the future); adopt combinations of (geographic and non-
eographic) weight matrices (when more granular data to model spatial
nteractions will become available);26 exploit alternative forecasting
echniques (such as machine learning algorithms) and provide explicit

comparisons across these different methodologies.
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