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Appendix 1: Proof of Theorem 1. (“Mini-theorems”)

We denote with αγ the projection of y on the space spanned by the columns of Xγ . Assume that
all variables have been standardized, so that

α00 =

(
0
0

)
, α10 =

(
a
0

)
, α01 =

(
b
c

)
, α11 =

(
a
d

)
,

with

a = r1y, b = r12 r2y, c = (1− r212)1/2 r2y, d =
r2y − r12 r1y
(1− r212)1/2

,

where r12 = Corr(x1, x2), r1y = Corr(x1, y) and r2y = Corr(x2, y). Actually the original expres-
sion of each coordinate has an irrelevant common factor equal to

√
n, which has been ignored. The

model average point ᾱ has coordinates ᾱ1 and ᾱ2 given by(
ᾱ1

ᾱ2

)
= p10

(
a
0

)
+ p01

(
b
c

)
+ p11

(
a
d

)
where pγ is the posterior probability of model Mγ .

Suppose that we would like to check if the model average point ᾱ lies inside a particular
triangular subregion of the space {α00,α10,α01,α11}. To this aim, we express the coordinates
of ᾱ as a linear combination of the coordinates of the vertexes of the triangular subregion. The
model average point is inside the triangular subregion if the weights of the vertexes result to be
all positive.

In particular, when we refer to the triangular subregion S1 = {α00,α10,α11}, we write the
model average point as (

ᾱ1

ᾱ2

)
= w

(1)
10

(
a
0

)
+ w

(1)
11

(
a
d

)
,

with w
(1)
00 + w

(1)
10 + w

(1)
11 = 1, and we may find that:

w
(1)
00 = 1− ᾱ1

a

w
(1)
10 =

ᾱ1

a
− ᾱ2

d

w
(1)
11 =

ᾱ2

d
.

Note that the sign of each weight gives us information on the position of ᾱ with respect to the
segment joining the other two vertexes. In fact if one of the weight is positive, say w

(1)
10 , this means
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Figure S.1: Subregions

that ᾱ lies on the side of α10 with respect to the line through α00 and α11. If w
(1)
10 < 0 then ᾱ lies

on the other side, while if w
(1)
10 = 0 it lies on the segment.

In the same way, when we consider the triangular subregion S2 = {α00,α01,α11}, we write the
model average point as (

ᾱ1

ᾱ2

)
= w

(2)
01

(
b
c

)
+ w

(2)
11

(
a
d

)
with w

(2)
00 + w

(2)
01 + w

(2)
11 = 1 and

w
(2)
00 = 1 +

(d− c) ᾱ1 + (b− a) ᾱ2

ac− bd

w
(2)
01 =

a ᾱ2 − d ᾱ1

ac− bd

w
(2)
11 =

c ᾱ1 − b ᾱ2

ac− bd
.

In case 1 and 2 the triangular subregions S1 and S2 are disjoint and their union covers the
entire space {α00,α10,α01,α11} (see Figure S.1).

Note also that to locate the position of the point inside S1 or S2 we just need to check the
values of the weights w(1) or w(2). In fact in the nested models case the optimal model is the
median. Thus, taking into account S1, we know that if w

(1)
00 > 1/2 then ᾱ lies inside {ᾱ00, A,E},

if w
(1)
11 > 1/2 inside {ᾱ11, B,E}, otherwise inside {ᾱ10, A,E,B}.
In case 3 the triangular subregions S1 and S2 overlap and their union does not cover the

entire space {α00,α10,α01,α11} (see Figure 2(a) and 2(b)). However in this case we may refer

to S3 = {α10,α01, E}, S4 = {α00,α10, E} and S5 = {α01,α11, E}, where E =

(
a/2
d/2

)
is the

midpoint of the edge linking α00 and α11 (see Figure 2(c)). To locate the position of the point
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Figure S.2: Subregions: Case 3

inside S3, S4 or S5 we just need to check the value of which of the weights of the two vertexes
different from E is the largest.

In the rest of the section, the weights for these new subregions are reported. In particular,
when we refer to the triangular subregion S3 = {α10,α01, E}, from(

ᾱ1

ᾱ2

)
= w

(3)
10

(
a
0

)
+ w

(3)
01

(
b
c

)
+ w

(3)
E

(
a/2
d/2

)
and w

(3)
E + w

(3)
10 + w

(3)
01 = 1, we obtain

w
(3)
10 =

(2c− d) ᾱ1 − (2b− a) ᾱ2 − ac+ bd

ac+ bd− ad

w
(3)
01 =

d ᾱ1 + a ᾱ2 − ad
ac+ bd− ad

w
(3)
E = 2

ac− c ᾱ1 − (a− b) ᾱ2

ac+ bd− ad
.

When we refer to the triangular subregion S4 = {α00,α10, E}, from(
ᾱ1

ᾱ2

)
= w

(4)
10

(
a
0

)
+ w

(4)
E

(
a/2
d/2

)
and w

(4)
E + w

(4)
00 + w

(3)
10 = 1, we obtain

w
(4)
00 = 1− ᾱ1

a
− ᾱ2

d

w
(4)
10 =

ᾱ1

a
− ᾱ2

d

w
(4)
E = 2

ᾱ2

d
.

When we refer to the triangular subregion S5 = {α01,α11, E}, from(
ᾱ1

ᾱ2

)
= w

(5)
01

(
b
c

)
+ w

(5)
11

(
a
d

)
+ w

(5)
E

(
a/2
d/2

)
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and w
(5)
E + w

(5)
01 + w

(5)
11 = 1, we obtain

w
(5)
01 =

a ᾱ2 − d ᾱ1

ac− bd

w
(5)
11 =

(2c− d) ᾱ1 − (2b− a) ᾱ2

ac− bd
− 1

w
(5)
E = 2

(d− c) ᾱ1 + (b− a) ᾱ2

ac− bd
+ 2.

Conditions under which each model is optimal may be derived using the sets of w’s weights.
In particular, M00 is optimal if:

w
(1)
00 ≥

1

2
w

(2)
00 ≥

1

2
w

(4)
00 ≥ w

(4)
10 .

However, since w
(4)
00 = w

(4)
10 + 2w

(1)
00 − 1, the third condition is equivalent to the first and the first

two give:

p1 + p01 r12
r2y
r1y
≤ 1

2

p2 + p10 r12
r1y
r2y
≤ 1

2
,

where p1 = p10+p11 and p2 = p01+p11 are the posterior inclusion probabilities of the two covariates.
Model M10 is optimal if:

w
(1)
00 ≤

1

2
w

(1)
00 + w

(1)
10 = 1− w(1)

11 ≥
1

2
w

(3)
10 ≥ w

(3)
01 w

(4)
10 ≥ w

(4)
00 .

Where, as before, the last condition is equivalent to the first and the other three may be restated
as:

p1 + p01 r12
r2y
r1y
≥ 1

2

p2 + p01 r12
r1y
r2y

1− r12 r2yr1y

1− r12 r1yr2y

≤ 1

2(
r1y
r2y

)2 [(
1− r12

r2y
r1y

)
p1 −

1

2

]
≥
[(

1− r12
r1y
r2y

)
p2 −

1

2

]
.

Model M01 is optimal if:

w
(2)
00 ≤

1

2
w

(2)
00 + w

(2)
01 = 1− w(2)

11 ≥
1

2
w

(3)
10 ≤ w

(3)
01 w

(5)
01 ≥ w

(5)
11 .

Since w
(5)
11 = 2w

(2)
11 +w

(5)
01 −1, the last condition is equivalent to the second and the first three give:

p1 + p10 r12
r2y
r1y

1− r12 r1yr2y

1− r12 r2yr1y

≤ 1

2

p2 + p10 r12
r1y
r2y
≥ 1

2(
r1y
r2y

)2 [(
1− r12

r2y
r1y

)
p1 −

1

2

]
≤
[(

1− r12
r1y
r2y

)
p2 −

1

2

]
.
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Finally M11 is optimal if:

w
(1)
11 ≥

1

2
w

(2)
11 ≥

1

2
w

(5)
01 ≤ w

(5)
11 .

Where, as before, the third is equivalent to the second and the first two may be restated as:

p2 + p01 r12
r1y
r2y

1− r12 r2yr1y

1− r12 r1yr2y

≥ 1

2

p1 + p10 r12
r2y
r1y

1− r12 r1yr2y

1− r12 r2yr1y

≥ 1

2
.

The same conclusions may be obtained using the risks. In fact:

R(M10)−R(M00) = 2 a2
(
w

(1)
00 −

1

2

)
R(M01)−R(M00) = 2 (b2 + c2)

(
w

(2)
00 −

1

2

)
R(M11)−R(M10) = 2 d2

(
1

2
− w(1)

11

)
R(M11)−R(M01) = 2 (a2 + d2 − b2 − c2)

(
1

2
− w(2)

11

)
R(M01)−R(M10) = 2 (ac+ bd− ad)

(
w

(3)
10 − w

(3)
01

)
where all multiplying constants are positive.

After setting

A1 = r12
r1y
r2y

and A2 = r12
r2y
r1y

,

we may restate the optimality conditions of each model as follows.
M00 is optimal if

p1 + p01A2 ≤
1

2

p2 + p10A1 ≤
1

2
, (1)

M10 is optimal if

p1 + p01A2 ≥
1

2

p2 + p01A1
1− A2

1− A1

≤ 1

2
(2)(

r1y
r2y

)2 [
(1− A2) p1 −

1

2

]
≥
[
(1− A1) p2 −

1

2

]
,

M01 is optimal if

p1 + p10A2
1− A1

1− A2

≤ 1

2

p2 + p10A1 ≥
1

2
(3)(

r1y
r2y

)2 [
(1− rA2) p1 −

1

2

]
≤
[
(1− A1) p2 −

1

2

]
,
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M11 is optimal if

p2 + p01A1
1− A2

1− A1

≥ 1

2

p1 + p10A2
1− A1

1− A2

≥ 1

2
. (4)

Case 1 Case 2 Case 3

A1 < 0 0 < A1 < 1 0 < A1 < 1
A2 < 0 0 < A2 < 1 1 < A1

B1 < 0 0 < B1 B1 < 0
B2 < 0 0 < B2 B2 < 0

Table S.1: Characterization of possible scenarios in term of A1, A2, B1 and B2.

From the optimality conditions and the results in Table S.1, where

B1 = A1
1− A2

1− A1

and B2 = A2
1− A1

1− A2

,

the results follow.

Appendix 2: Details from the Numerical Study

We first discuss the choice of the correlation ranges adopted in the numerical studies. The idea is
to find, for each possible true model – null, one-variable and full – the natural ranges of r1y and
r2y, in the sense of spanning the high probability region of data arising from the true model.

We do the computations in this appendix without standardizing variables, so that β1 and β2 in
the true model do not change with n. Thus r12 = x1

′x2/[‖x1‖‖x2‖]. Note that, with ε ∼ Nn(0, I),
Zi = xi

′ε ∼ N(0, ‖xi‖2), Z∗i = Zi

‖xi‖ ∼ N(0, 1), and ε′ε ∼ χ2
n,

‖y‖2 = ‖Xβ + ε‖2 = ‖x1‖2β2
1 + ‖x2‖2β2

2 + 2r12‖x1‖‖x2‖β1β2 + 2Z1β1 + 2Z2β2 + χ2
n ,

r1y =
x1
′y

‖x1‖‖y‖
=
x1
′[Xβ + ε]

‖x1‖‖y‖
=
‖x1‖2β1 + r12‖x1‖‖x2‖β2 + Z1

‖x1‖‖y‖
=

=
‖x1‖β1 + r12‖x2‖β2 + Z∗1

‖y‖
,

r2y =
x2
′y

‖x2‖‖y‖
=
x2
′[Xβ + ε]

‖x2‖‖y‖
=
‖x2‖2β2 + r12‖x1‖‖x2‖β1 + Z2

‖x2‖‖y‖
=

=
‖x2‖β2 + r12‖x1‖β1 + Z∗2

‖y‖
.

When the full model is true: There is nothing unusual about the behavior of r1y and r2y, so
they are allowed to vary independently over the grid {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, but with
r1y ≤ r2y to eliminate duplicates. Also, only correlations for which the resulting correlation matrix
is positive definite are considered.
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When the null model is true: Now the expressions above become

‖y‖2 = χ2
n, r1y =

Z∗1√
χ2
n

, r2y =
Z∗2√
χ2
n

.

So, if we want to cover, say, 90% of the probability range of the riy, we should use a grid such as

{ 0.2√
n
,

0.4√
n
,

0.6√
n
,

0.8√
n
,

1.0√
n
,

1.2√
n
,

1.4√
n
,

1.6√
n
,

1.8√
n
} ,

again with r1y ≤ r2y and keeping only those for which the resulting correlation matrix is positive
definite. (For small n, one would want to use a grid from the t-distribution with n degrees of
freedom, since that is the distribution of the riy but, for the numerical study, this is not necessary.)

When β1 = 0 and β2 6= 0: Now the expressions above become

‖y‖2 = ‖x2‖2β2
2 + 2Z2β2 + χ2

n ,

r1y =
r12‖x2‖β2 + Z∗1√

|‖x2‖2β2
2 + 2Z2β2 + χ2

n|
u

r12‖x2‖β2√
|‖x2‖2β2

2 + 2Z2β2 + χ2
n|
,

r2y =
‖x2‖β2 + Z∗2√

|‖x2‖2β2
2 + 2Z2β2 + χ2

n|
u

‖x2‖β2√
|‖x2‖2β2

2 + 2Z2β2 + χ2
n|
,

the last approximations following because the Z∗i are O(1) and the other terms are O(
√
n). As in

the full model case, both correlations are O(1), so nothing has to go to zero. But note that

r1y u r12r2y .

Since the error in the approximation is O(1/
√
n) (and looks to be smaller than 1/

√
n), this suggests

gridding r2y in the usual way (from 0.1 to 0.9) and then using a grid for r1y such as{(
r12r2y +

h√
n

)
, h ∈ {−0.9,−0.7,−0.5,−0.3,−0.1, 0.1, 0.3, 0.5, 0.7, 0.9}

}
,

again with r1y ≤ r2y and keeping only those for which the resulting correlation matrix is positive
definite.
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number MPM=MAP MPM=MAP MPM=OP MAP=OP MAP>MPM MPM>MAP

of both=OP both 6=OP MAP 6=OP MPM6=OP both 6=OP both 6=OP GMR(MPM)
R(OP )

GMR(MAP )
R(OP )

cases (a) % (b) % (c) % (d) % (e) % (f) %

Case 1

n=10 180 87.8 2.8 7.8 1.7 0.0 0.0 1.008 1.029
n=50 180 98.3 0.6 1.1 0.0 0.0 0.0 1.001 1.005
n=100 180 98.9 0.0 1.1 0.0 0.0 0.0 1.000 1.003

Case 2

n=10 222 70.3 23.4 4.5 0.0 1.8? 0.0 1.110 1.154
n=50 222 90.1 1.4 5.0 0.0 3.6? 0.0 1.036 1.129
n=100 222 92.8 1.8 5.4 0.0 0.0 0.0 1.006 1.130

Case 3

n=10 132 68.2 27.3 2.3 0.0 0.0 2.3? 1.126 1.152
n=50 132 97.0 3.0 0.0 0.0 0.0 0.0 1.007 1.007
n=100 132 97.0 3.0 0.0 0.0 0.0 0.0 1.017 1.017

Cases combined

n=10 534 75.7 17.4 5.1 0.6 0.7? 0.6? 1.078 1.110
n=50 534 94.6 1.5 2.4 0.0 1.5? 0.0 1.017 1.056
n=100 534 95.9 1.5 2.6 0.0 0.0 0.0 1.006 1.058

Overall 1602 88.7 6.8 3.4 0.2 0.7? 0.2? 1.033 1.074

Table S.2: The case of two covariates: performance of MPM and MAP under the full model.
Legend: columns (a) to (f) contain percentages of cases, over combinations of different values of the correlations

among variables; OP denotes the optimal predictive model; MPM>MAP (resp. MAP>MPM) means that MPM

(resp. MAP) has a smaller value of risk defined in (1.2) than MAP (resp. MPM); GM is the geometric mean of

relative risks (to the optimal model) when MPM or MAP is not optimal.
∗ denotes cases when OP is the lowest probability model.

number MPM=MAP MPM=MAP MPM=OP MAP=OP MAP>MPM MPM>MAP

of both=OP both 6=OP MAP 6=OP MPM6=OP both 6=OP both 6=OP GMR(MPM)
R(OP )

GMR(MAP )
R(OP )

cases (a) (b) (c) (d) (e) (f)

Case 1

n=10 130 91.5 1.5 5.4 1.5 0.0 0.0 1.007 1.012
n=50 75 100.0 0.0 0.0 0.0 0.0 0.0 1.000 1.000
n=100 45 100.0 0.0 0.0 0.0 0.0 0.0 1.000 1.000

Case 2

n=10 247 65.6 32.0 1.2 0.0 1.2? 0.0 1.136 1.136
n=50 328 87.8 8.8 0.6 0.3 2.4? 0.0 1.095 1.085
n=100 350 92.9 7.1 0.0 0.0 0.0 0.0 1.058 1.058

Case 3

n=10 243 58.8 36.2 3.3 0.0 0.0 1.6? 1.126 1.151
n=50 328 90.9 8.5 0.3 0.0 0.3 0.0 1.028 1.026
n=100 354 88.1 11.3 0.3 0.0 0.0 0.3? 1.037 1.039

Cases combined

n=10 620 68.4 27.3 2.9 0.3 0.5? 0.6? 1.030 1.032
n=50 731 90.4 7.8 0.4 0.1 1.2 0.0 1.019 1.017
n=100 749 91.1 8.7 0.1 0.0 0.0 0.1? 1.016 1.016

Overall 2100 84.1 13.9 1.0 0.1 0.6 0.2? 1.021 1.022

Table S.3: The case of two covariates: performance of MPM and MAP under the one-variable
(β1 = 0 and β2 6= 0) model.
Legend: columns (a) to (f) contain percentages of cases, over combinations of different values of the correlations

among variables; OP denotes the optimal predictive model; MPM>MAP (resp. MAP>MPM) means that MPM

(resp. MAP) has a smaller value of risk defined in (1.2) than MAP (resp. MPM); GM is the geometric mean of

relative risks (to the optimal model) when MPM or MAP is not optimal.
∗ denotes cases when OP is the lowest probability model.
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number MPM=MAP MPM=MAP MPM=OP MAP=OP MAP>MPM MPM>MAP

of both=OP both 6=OP MAP 6=OP MPM6=OP both 6=OP both 6=OP GMR(MPM)
R(OP )

GMR(MAP )
R(OP )

cases (a) (b) (c) (d) (e) (f)

Case 1

n=10 321 83.5 5.0 10.9 0.6 0.0 0.0 1.011 1.038
n=50 401 95.3 1.2 2.7 0.7 0.0 0.0 1.002 1.008
n=100 405 98.0 0.5 1.0 0.2 0.0 0.2 1.001 1.004

Case 2

n=10 239 66.5 29.3 1.3 0.0 2.9? 0.0 1.124 1.090
n=50 239 97.5 2.5 0.0 0.0 0.0 0.0 1.006 1.006
n=100 239 100.0 0.0 0.0 0.0 0.0 0.0 1.000 1.000

Case 3

n=10 159 29.6 57.9 7.5 0.0 0.6 4.4? 1.293 1.356
n=50 159 42.8 54.7 1.3 0.0 0.0 1.3? 1.198 1.209
n=100 161 63.4 36.0 0.6 0.0 0.0 0.0 1.116 1.118

Cases combined

n=10 719 65.9 24.8 7.0 0.3 1.1 1.0? 1.032 1.036
n=50 799 85.5 12.3 1.6 0.4 0.0 0.3? 1.013 1.015
n=100 805 91.7 7.5 0.6 0.1 0.0 0.1 1.008 1.008

Overall 2323 81.6 14.5 2.9 0.3 0.3 0.4 1.018 1.020

Table S.4: The case of two covariates: performance of MPM and MAP models under the null
model.
Legend: columns (a) to (f) contain percentages of cases, over combinations of different values of the correlations

among variables; OP denotes the optimal predictive model; MPM>MAP (resp. MAP>MPM) means that MPM

(resp. MAP) has a smaller value of risk defined in (1.2) than MAP (resp. MPM); GM is the geometric mean of

relative risks (to the optimal model) when MPM or MAP is not optimal.
∗ denotes cases when OP is the lowest probability model.
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Appendix 3: A Simulation Study

To glean more insights into the predictive optimality of the MPM model, we conduct a simulation
study with q = 5 covariates. We consider three setups: (1) the full model with b = (1, 1, 1, 1, 1)′,
(2) a sparse model with b = (1, 1, 1, 0, 0)′ and (3) the null model with b = (0, 0, 0, 0, 0)′. We assume

xi
ind∼ N5(05,Σ), where Σ = (σij)

5,5
i,j=1 is an equi-correlated matrix with σij = ρ×I(i 6= j)+I(i = j).

We also consider various degrees of correlation ρ ∈ {0, 0.5, 0.9, 0.99}. For each degree of correlation
and a model setting, we generate 1 000 datasets (Y ,X) assuming σ2 = 1. For each dataset we
record whether MAP (MPM) was optimal etc. The predictors are recentered and rescaled to have
mean 0 and an ‖ · ‖ norm

√
n. We assign the unit-information g-prior with g = n and the inverse

gamma prior (2.9) with η = λ = 1. We consider two model priors (1) the uniform prior assigning
a probability 1/32 on each model (results reported in Table S.6) and (2) the beta-binomial prior
with a = b = 1 (results reported in Table S.5).

Table S.6 summarizes findings obtained with equal prior model probabilities. We reiterate some
of the conclusions obtained earlier in Section 3.3. Again, simpler models are more challenging
and both MPM and MAP perform (a) better with larger sample sizes and (b) worse with larger
correlations. Note that, unlike when the predictors are orthogonal, MPM is not guaranteed to
be optimal when ρ = 0. MPM and MAP are seen to agree very often and, again, when they
do not agree MPM is better more often. It is interesting to compare Table S.6 with Table S.5
which summarizes results for the beta-binomial prior with a = b = 1. We have seen in Section
2.4 that the beta-binomial prior can cope better with variable redundancy. We can see a robust
performance for spare and null settings. Interestingly, in all simulated datasets for our setups, the
MAP model was the same as the MPM model.

MPM=MAP MPM=MAP MPM=OP MAP=OP MAP>MPM MPM>MAP MPM=MAP MPM=MAP MPM=OP MAP=OP MAP>MPM MPM>MAP
both=OP both 6=OP MAP 6=OP MPM 6=OP both 6=OP both 6=OP both=OP both 6=OP MAP 6=OP MPM 6=OP both 6=OP both 6=OP

Full model scenario: b = (1, 1, 1, 1, 1)′

ρ = 0 ρ = 0.5
n=10 96.4 3.6 0 0 0 0 86.3 13.7 0 0 0 0
n=50 100 0 0 0 0 0 100 0 0 0 0 0
n=100 100 0 0 0 0 0 100 0 0 0 0 0

ρ = 0.9 ρ = 0.99

n=10 36.6 63.4 0 0 0 0 13.8 86.2 0 0 0 0
n=50 98.4 1.6 0 0 0 0 56.2 43.8 0 0 0 0
n=100 100 0 0 0 0 0 78.3 21.7 0 0 0 0

Sparse scenario: b = (1, 1, 1, 0, 0)′

ρ = 0 ρ = 0.5
n=10 88.3 11.7 0 0 0 0 75.6 24.4 0 0 0 0
n=50 89.4 10.6 0 0 0 0 60.6 39.4 0 0 0 0
n=100 98.7 1.3 0 0 0 0 96.9 3.1 0 0 0 0

ρ = 0.9 ρ = 0.99

n=10 44.7 55.3 0 0 0 0 29.4 70.6 0 0 0 0
n=50 89.4 10.6 0 0 0 0 60.6 39.4 0 0 0 0
n=100 94.9 5.1 0 0 0 0 66.9 33.1 0 0 0 0

Null model scenario: b = (0, 0, 0, 0, 0)′

ρ = 0 ρ = 0.5
n=10 57.8 42.2 0 0 0 0 51.4 48.6 0 0 0 0
n=50 74.6 25.4 0 0 0 0 60.3 39.7 0 0 0 0
n=100 75.5 24.5 0 0 0 0 65 35 0 0 0 0

ρ = 0.9 ρ = 0.99

n=10 52.6 47.4 0 0 0 0 52 48 0 0 0 0
n=50 60.9 39.1 0 0 0 0 62.7 37.3 0 0 0 0
n=100 60.5 39.5 0 0 0 0 67.6 32.4 0 0 0 0

Table S.5: The case of q = 5. Performance of MPM and MAP models under the full, one-variable
and null models using the beta-binomial prior on the model space with a = b = 1 (percentage of
cases, out of 1 000 simulated datasets).
Legend: OP = optimal predictive model; MPM>MAP (resp. MAP>MPM) means that MPM (resp. MAP) has a

smaller value of risk defined in (1.2) than MAP (resp. MPM).
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MPM=MAP MPM=MAP MPM=OP MAP=OP MAP>MPM MPM>MAP MPM=MAP MPM=MAP MPM=OP MAP=OP MAP>MPM MPM>MAP
both=OP both 6=OP MAP 6=OP MPM 6=OP both 6=OP both 6=OP both=OP both 6=OP MAP 6=OP MPM 6=OP both 6=OP both 6=OP

Full model scenario: b = (1, 1, 1, 1, 1)′

ρ = 0 ρ = 0.5
n=10 43.4 30.3 15.2 1.9 1.8 7.4 10 34.8 27.7 1 2.7 23.8
n=50 100 0 0 0 0 0 100 0 0 0 0 0
n=100 100 0 0 0 0 0 100 0 0 0 0 0

ρ = 0.9 ρ = 0.99

n=10 1.5 45.1 8.5 .4 13.9 30.6 8.6 35.9 3.2 1.4 49.3 1.6
n=50 40.6 33.8 23 .1 .1 2.4 4.3 51.8 12 .1 6 25.8
n=100 95.4 2.9 1.7 0 0 0 5.3 52.7 17.5 .1 1.8 22.6

Sparse scenario: b = (1, 1, 1, 0, 0)′

ρ = 0 ρ = 0.5
n=10 30.1 45.2 13.1 1.1 3.3 7.2 15.3 45.7 15.2 .8 4.5 18.5
n=50 86.3 11.2 .8 1.6 .1 0 72.4 23.5 2 1.3 .7 .1
n=100 90.7 7.3 .7 .9 .4 0 75.6 20.4 1.9 1.1 .8 .2

ρ = 0.9 ρ = 0.99

n=10 6.4 49.5 12.7 .3 8.6 22.5 14.3 38.1 6.4 2.1 32.3 6.8
n=50 29.3 49.4 12.8 0 1.3 7.2 7.4 57.4 14.4 .4 4 16.4
n=100 53.3 36.9 6.5 .4 1 1.9 10.2 54.8 15.8 .2 4.4 14.6

Null model scenario: b = (0, 0, 0, 0, 0)′

ρ = 0 ρ = 0.5
n=10 12.5 56.1 6.8 .7 7.9 16 10.1 57.1 6.4 .7 10 15.7
n=50 36.4 50.7 3.9 1.8 3.6 3.6 16.5 58 7.5 1 8.4 8.6
n=100 52 39.7 3.6 1.6 1.1 2 15.9 61.2 6.5 1.3 6.6 8.5

ρ = 0.9 ρ = 0.99

n=10 9.1 53.7 7.1 1.9 13.3 14.9 8 51.2 8.8 3.7 12.5 15.8
n=50 10.7 52.3 13.8 2.1 9.9 11.2 7.4 55.5 10.3 4.8 8.9 13.1
n=100 13.4 53.2 12.9 1.7 10 8.8 8.4 57.5 9.1 4.6 8.4 12

Table S.6: The case of q = 5. Performance of MPM and MAP models under the full, sparse
and null settings using the uniform prior on the model space (percentage of cases, out of 1 000
simulated datasets).
Legend: OP = optimal predictive model; MPM>MAP (resp. MAP>MPM) means that MPM (resp. MAP) has a

smaller value of risk defined in (1.2) than MAP (resp. MPM).
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