Hydrogen sulfide production does not affect antibiotic resistance in Pseudomonas aeruginosa

Lorenzo Caruso^{1*}, Marta Mellini^{1*}, Ortensia Catalano Gonzaga^{1§}, Alessandra Astegno², Elena Forte³, Adele Di Matteo⁴, Alessandro Giuffrè⁴, Paolo Visca^{1,5,6}, Francesco Imperi^{1,5,6}, Livia Leoni¹, Giordano Rampioni^{1,5#}

¹ Department of Science, University Roma Tre, Rome, Italy

- ² Department of Biotechnology, University of Verona, Verona, Italy
- ³ Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- ⁴ CNR Institute of Molecular Biology and Pathology, Rome, Italy
- ⁵ IRCCS Fondazione Santa Lucia, Rome, Italy
- ⁶ NBFC, National Biodiversity Future Center, Palermo, Italy

SUPPLEMENTAL MATERIAL

Figure S1. H₂S calibration curve

- Figure S2. The plastic sheets used in this study are not permeable to H₂S
- Figure S3. H₂S production under conditions used for MIC assays
- Figure S4. Growth curves in the presence of antibiotics at sub-MIC concentration
- Table S1. Bacterial strains used in this study
- Table S2. Plasmids used in this study
- Table S3. Oligonucleotides used in this study
- **Detailed Materials and Methods**
- References

Figure S1. H₂S calibration curve

Relative densitometric analysis of lead acetate-soaked paper strips after 10-min reaction with H₂S released at increasing concentrations of NaHS in LB. The average values of three independent experiments, each performed on eight samples, are reported with standard deviations. The average value obtained with 2.5 mM NaHS was considered as 100%.

Figure S2. The plastic sheets used in this study are not permeable to H₂S

Schematic representation of the control experiment performed to test possible permeability to H₂S of the adhesive plastic sheets used to seal the 96-well microtiter plates (top panels), and the relative lead acetate-soaked paper strips after 10-min reaction with H₂S released at increasing concentrations of NaHS in LB (bottom panels). (A) The lead acetate-soaked paper strips were placed onto the microtiter plate, and the adhesive plastic sheet was placed on top of them to seal the microtiter plate. (B) The adhesive plastic sheet was used to seal the microtiter plate, and the lead acetate-soaked paper strips were placed on top of the microtiter plate. The adhesive plastic sheet was used to seal the microtiter plate, and the lead acetate-soaked paper strips were placed on top of the plastic sheet. Images are representative of three independent experiments.

Figure S3

Figure S3. H₂S production under conditions used for MIC assays

Lead acetate-soaked paper strips after reaction with the H₂S released from the PAO1, $\Delta 3syn$, and $\Delta 3ox$ strains grown for 20 hours in the indicated media under the same experimental conditions used for the MIC assays. Representative data from three independent experiments, each performed on eight bacterial cultures, are shown. MHB-II, Cation-Adjusted Mueller-Hinton Broth; MHB-II wps, MHB-II sealed with plastic sheet; LB, Lysogeny Broth; TSB-cys, Tryptic Soy Broth supplemented with 200 μ M L-cysteine.

Figure S4

Figure S4. Growth curves in the presence of antibiotics at sub-MIC concentration

Growth curves of PAO1 (solid lines, full circles), $\Delta 3syn$ (dotted lines, empty circles), and $\Delta 3ox$ (solid lines, empty triangles) in LB supplemented with either **(A)** 200 μ M L-cysteine or **(B)** 200 μ M NaHS, in the absence (mock; gray lines) or in the presence of the following antibiotics at sub-MIC concentrations (1/4 MIC): Cb, carbenicillin (blue lines); ChI, chloramphenicol (purple lines); Cip, ciprofloxacin (red lines); Gen, gentamicin (yellow lines); Nor, norfloxacin (orange lines); Tet, tetracycline (green lines). The average of three independent experiments is reported with standard deviations.

Strains	Relevant characteristics	Reference/sources
Escherichia coli		
DH5a	Cloning strain	[S1]
S17.1λpir	Conjugative strain for suicide plasmids	[S2]
Pseudomonas aeruginos	a	
PAO1	ATCC 15692 type strain	ATCC
∆3mst	PAO1 derivative strain carrying a deletion of the 3mst gene	This study
	(PA1292), obtained by mutagenesis using plasmid pDM4 $\Delta 3mst$	
	(Table S2).	
∆3syn	PAO1 Δ 3mst derivative strain carrying a deletion of the cbs-cse	This study
	gene locus (PA0399-PA0400), obtained by mutagenesis using	
	plasmid pDM4∆ <i>cbs∆cse</i> (Table S2).	
∆sqr2	PAO1 derivative strain carrying a deletion of the sqr2 gene	This study
	(PA2345), obtained by mutagenesis using plasmid pDM4 $\Delta sqr2$	
	(Table S2).	
∆sqr2∆pdo	PAO1 $\Delta sqr2$ derivative strain carrying a deletion of the <i>pdo</i> gene	This study
	(PA2915), obtained by mutagenesis using plasmid pDM4 Δpdo	
	(Table S2).	
Δ <i>3o</i> x	PAO1 $\Delta sqr2\Delta pdo$ derivative strain carrying a deletion of the sqr1	This study
	gene (PA2566), obtained by mutagenesis using plasmid	
	pDM4 Δ <i>sqr1</i> (Table S2).	

Table S1. Bacterial strains used in this study

Table S2. Plasmids used in this study

Plasmids	Relevant characteristics and plasmids construction	Reference/sources
pBluescript II KS(+)	Cloning vector; ColE1 replicon; Amp ^R .	Stratagene
pDM4	Suicide vector; <i>sacBR</i> ; <i>oriR6K</i> ; Chl ^R .	[\$3]
pBS- <i>3mst</i> UP	The DNA fragment encompassing the upstream region of the 3mst	This study
	gene (PA1292), originated with primers FW3mstUP and RV3mstUP,	
	was cloned in pBluescript II KS(+) by Xhol-EcoRI restriction; Amp ^R .	
pBS-3mstUP-DOWN	The DNA fragment encompassing the downstream region of the	This study
	3mst gene (PA1292), originated with primers FW3mstDW and	
	RV3mstDW, was cloned in pBS-3mstUP by EcoRI-Xbal restriction;	
	Amp ^R .	
pBS- <i>cse</i> DOWN	The DNA fragment encompassing the downstream region of the cse	This study
	gene (PA0400), originated with primers FWcseDW and RVcseDW,	
	was cloned in pBluescript II KS(+) by NotI-SpeI restriction; Amp ^R .	
pBS- <i>cbs</i> UP-	The DNA fragment encompassing the upstream region of the cbs	This study
cseDOWN	gene (PA0399), originated with primers FWcbsUP and RVcbsUP,	
	was cloned in pBS- <i>cse</i> DOWN by SacI-NotI restriction; Amp ^R .	
pBS- <i>pdo</i> UP	The DNA fragment encompassing the upstream region of the pdo	This study
	gene (PA2915), originated with primers FWpdoUP and RVpdoUP,	
	was cloned in pBluescript II KS(+) by Xhol-EcoRI; Amp ^R .	
pBS- <i>pdo</i> UP-DOWN	The DNA fragment encompassing the downstream region of the	This study
	pdo gene (PA2915), originated with primers FWpdoDW and	
	RVpdoDW, was cloned in pBS-pdoUP by EcoRI-Xbal restriction;	
	Amp ^R .	
pBS- <i>sqr2</i> UP	The DNA fragment encompassing the upstream region of the sqr2	This study
	gene (PA2345), originated with primers FWsqr2UP and RVsqr2UP,	
	was cloned in pBluescript II KS(+) by XhoI-EcoRI restriction; Amp ^R .	
pBS- <i>sqr2</i> UP-DOWN	The DNA fragment encompassing the downstream region of the	This study
	sqr2 gene (PA2345), originated with primers FWsqr2DW and	
	RV <i>sqr2</i> DW, was cloned in pBS- <i>sqr2</i> UP by EcoRI-Xbal restriction;	
	Amp ⁸ .	
pBS- <i>sqr1</i> UP	The DNA fragment encompassing the upstream region of the sqr1	This study
	gene (PA2566), originated with primers FWsqr1UP and RVsqr1UP,	
	was cloned in pBluescript II KS(+) by SacI-NotI restriction; Amp ^R .	
pBS- <i>sqr1</i> UP-DOWN	The DNA fragment encompassing the downstream region of the	This study
	sqr1 gene (PA2566), originated with primers FWsqr1DW and	

	RVsqr1DW, was cloned in pBSsqr1UP by NotI-SpeI restriction;	
	Amp ^R .	
pDM4∆3 <i>mst</i>	pDM4-derived plasmid used to introduce the 3mst mutation in P.	This study
	aeruginosa PAO1. The DNA fragments encompassing the upstream	
	and downstream regions of the 3mst gene were extracted from	
	pBS-3mstUP-DOWN and cloned in pDM4 by XhoI-XbaI restriction;	
	Chl ^R .	
pDM4∆ <i>cbs∆cse</i>	pDM4-derived plasmid used to introduce the mutation of the cbs-	This study
	cse gene locus in P. aeruginosa $\Delta 3mst$. The DNA fragments	
	encompassing the upstream region of the cbs gene and the	
	downstream region of cse gene were extracted from pBS-cbsUP-	
	cseDOWN and cloned in pDM4 by Sacl-Spel restriction; Chl ^R .	
pDM4∆ <i>pdo</i>	pDM4-derived plasmid used to introduce the pdo mutation in P.	This study
	aeruginosa PAO1. The DNA fragments encompassing the upstream	
	and the downstream regions of the pdo gene were extracted from	
	pBS-pdoUP-DOWN and cloned in pDM4 by Xhol-Xbal restriction;	
	Chl ^R .	
pDM4∆ <i>sqr2</i>	pDM4-derived plasmid used to introduce the sqr2 mutation in P.	This study
	<i>aeruginosa</i> Δpdo . The DNA fragments encompassing the upstream	
	and downstream regions of the <i>sqr2</i> gene were extracted from pBS-	
	<i>sqr2</i> UP-DOWN and cloned in pDM4 by SacI-SpeI restriction; Chl ^R .	
pDM4∆ <i>sqr1</i>	pDM4-derived plasmid used to introduce the sqr1 mutation in P.	This study
	aeruginosa $\Delta sqr 2\Delta pdo$. The DNA fragments encompassing the	
	upstream and downstream regions of the <i>sqr1</i> gene were extracted	
	from pBS-sqr1UP-DOWN and cloned in pDM4 by Xho-Xbal	
	restriction; Chl ^R .	

Table S3. Oligonucleotides used in this study

Name	Sequence (5′→3′)³	Restriction site
FW3mstUP	CCG <u>CTCGAG</u> CGGCATCCCTGGCTGAAG	Xhol
RV <i>3mst</i> UP	G <u>GAATTC</u> GGACGACATCGCGGACT	EcoRI
FW3mstDW	G <u>GAATTC</u> ATCACCGACCCGCGCCG	EcoRI
RV <i>3mst</i> DW	GC <u>TCTAGA</u> TTGAGCGGCGCGCGTT	Xbal
FWcseDW	ATAAGAAT <u>GCGGCCGC</u> AAGATCTGAGGCTCCGCAG	Notl
RV <i>cse</i> DW	GG <u>ACTAGT</u> AGCCGGGCATCAGCGGC	Spel
FWcbsUP	C <u>GAGCTC</u> CTTCACCTTCGGCCTGTTC	Sacl
RV <i>cbs</i> UP	ATAAGAAT <u>GCGGCCGC</u> GGAAGTCATCTTTTCTCCTTTC	Notl
FWpdoUP	CCG <u>CTCGAG</u> GTTGCTGCGACGCCATCC	Xhol
RV <i>pdo</i> UP	G <u>GAATTC</u> TTTCAACATGGAGGTTCCTTG	EcoRI
FW <i>pdo</i> DW	G <u>GAATTC</u> CCGCCGGTGGAAGGCAAC	EcoRI
RV <i>pdo</i> DW	GC <u>TCTAGA</u> GGCGACCACCGCGCCG	Xbal
FWsqr2UP	CCG <u>CTCGAG</u> CCGGCTACCTCGTGGGC	Xhol
RV <i>sqr2</i> UP	G <u>GAATTC</u> GCTCTGCATGGGAGTTCC	EcoRI
FWsqr2DW	G <u>GAATTC</u> ACTGGAACGCCATGCTCAAG	EcoRI
RV <i>sqr2</i> DW	GC <u>TCTAGA</u> CGACCCGCAGCCGGACAT	Xbal
FWsqr1UP	C <u>GAGCTC</u> CATGCCGGTACGGCCTTC	Sacl
RV <i>sqr1</i> UP	ATAAGAAT <u>GCGGCCGC</u> TCGTTGCATGACTTCTCCTTA	Notl
FWsqr1DW	ATAAGAAT <u>GCGGCCGC</u> CCGACCAAGCTTGGCGGG	Notl
RV <i>sqr1</i> DW	G <u>ACTAGT</u> GATCTCGGAGAAGGTCATGC	Spel

^a restriction sites included in the oligonucleotides are underlined.

Detailed Materials and Methods

Bacterial strains and media

Bacterial strains used in this work are listed in **Table S1**. All *E. coli* and *P. aeruginosa* strains were routinely grown at 37°C in Lysogeny Broth (LB), in Cation-adjusted Mueller-Hinton Broth (MHB-II), or in Tryptic Soy Broth (TSB), in static or shaking conditions (200 rpm), or in LB supplemented with 15 g/L agar. When required, media were supplemented with 200 μ M L-cysteine or 200 μ M NaHS (these concentrations of L-cysteine and NaHS were selected based on previous studies [S4, S5]). Unless otherwise stated, antibiotics were added at the following concentrations: ampicillin (Amp) 100 μ g/mL (*E. coli*); nalidixic acid (NaI) 15 μ g/mL (*E. coli*); chloramphenicol (ChI) 30 μ g/mL (*E. coli*) or 375 μ g/mL (*P. aeruginosa*).

Recombinant DNA techniques

Plasmids and oligonucleotides used in this study are listed in **Table S2** and **Table S3**, respectively. Plasmid DNA extraction, purification of DNA fragments, restriction enzyme digestions, ligations, and transformations in *E. coli* DH5 α or S17.1 λ *pir* competent cells were performed by using standard protocols [S6]. DNA amplification *via* PCR was performed using the GoTaq Polymerase (Promega, Madison, WI). FastDigest restriction enzymes were purchased from Thermo Fisher Scientific (Waltham, MA). DNA fragments ligation was performed using T4 DNA Ligase (Promega). Plasmids were introduced into *P. aeruginosa* by transformation or bi-parental conjugation using *E. coli* S17.1 λ *pir* as the donor strain [S6]. Restriction analysis and DNA sequencing were performed to check the plasmids generated in this work (details on plasmids construction are reported in **Table S2**).

Construction of deletion mutants

P. aeruginosa mutant strains were generated by allelic exchange using pDM4-derivative plasmids, as previously described [S3,S7]. Details on pDM4-derivative plasmids construction are provided in **Table S2**. Plasmids were independently introduced into *P. aeruginosa* strains following conjugal mating with *E. coli* S17.1 λ *pir* as the donor strain [S6]. Clones with a chromosomal insertion of the pDM4-derivative plasmids were selected on LB agar plates supplemented with 375 µg/mL Chl and 15 µg/mL Nal. Plasmid excision from the chromosome was subsequently selected on LB agar plates supplemented with 10% (w/v) sucrose. Resulting mutant strains were confirmed by PCR analysis.

H₂S detection

To monitor H_2S released by PAO1, its isogenic mutants or *P. aeruginosa* clinical isolates from cystic fibrosis patients, lead acetate-soaked paper strips were used as previously described [S4,S5,S8]. Paper strips saturated with 2% Pb(Ac)₂ were affixed over the wells of a 96-well microtiter plate, in the gas phase above the liquid cultures (100 µL). When indicated, an adhesive plastic sheet (AriaMx Adhesive Plate Seals, Agilent) not permeable to H_2S (**Figure S2**) was used to seal the wells and limit possible H_2S leakage. Overnight cultures were diluted 1:100 in LB, MHB-II or TSB supplemented with 200 µM L-cysteine (TSB-cys), and incubated for 20 hours at 37°C in static conditions. After incubation, paper strips were gently removed, scanned, and analysed by densitometry with ImageJ. Relative H_2S release was determined from the densitometric value obtained for each culture after correction for the background value (*i.e.* the densitometric value obtained for the non-inoculated medium) and normalization to the OD₆₀₀ of the corresponding culture. Relative H_2S level were determined in three independent experiments.

MIC assays

The Minimal Inhibitory Concentration (MIC) of the antibiotics carbenicillin (Cb), chloramphenicol (Chl), ciprofloxacin (Cip), colistin (Col), gentamicin (Gen), meropenem (Mer), norfloxacin (Nor), tetracycline (Tet), and tobramycin (Tob) was determined by the standard broth microdilution method in MHB-II, LB and TSB-cys according to the Clinical and Laboratory Standards Institute guidelines [S9], or with minor modifications of the standard protocol. Briefly, *P. aeruginosa* PAO1 and its isogenic mutants were grown at 37°C with shaking in MHB-II, LB, or TSB. After 16 hours, cultures were diluted in 96-well microtiter plates to an OD₆₀₀ of \approx 0.0005 (ca. 5 × 10⁵ CFU/mL) in 100 µL of MHB-II, LB or TSB-cys, supplemented with increasing concentrations of the antibiotics indicated in the main text. Since H₂S is a volatile molecule, the PAO1, Δ 3*syn*, and Δ 3*ox* strains were grown in distinct 96-well microtiter plates, and adhesive plastic sheets (AriaMx Adhesive Plate Seals, Agilent) were used to seal the wells when specified in the text (wps). MIC was visually defined as the lowest concentration of antibiotic able to inhibit bacterial growth after 20 hours of incubation at 37°C under static conditions. All strains were tested in all conditions in at least three independent experiments.

Generation of growth curves

Growth curves of *P. aeruginosa* PAO1 and the isogenic $\Delta 3syn$ and $\Delta 3ox$ mutants were generated as follows. Bacterial cultures were grown at 37°C with shaking in LB. After 16 hours, cultures were

diluted in 96-well microtiter plates to an OD₆₀₀ of ≈ 0.0005 (ca. 5 × 10⁵ CFU/mL) in 100 µL of LB (supplemented or not with 200 µM L-cysteine or 200 µM NaHS). Antibiotics (*i.e.*, Cb, Chl, Cip, Gen, Nor, or Tet) were added at concentrations corresponding to 1/4 of the MIC value obtained in LB (refer to **Table 1** in the main text). As detailed for MIC assays, the PAO1, Δ 3*syn*, and Δ 3*ox* strains were grown in distinct 96-well microtiter plates to avoid possible effects of H₂S produced by the PAO1 and Δ 3*ox* strains on the Δ 3*syn* strain; comparable results were obtained when the PAO1, Δ 3*syn*, and Δ 3*ox* strains were grown in the same microtiter plate. OD₆₀₀ values were recorded every hour for 20 hours using an automated luminometer-spectrophotometer plate reader Spark10M (Tecan). All strains were performed with and without an adhesive plastic sheet (AriaMx Adhesive Plate Seals, Agilent) used to seal the wells, yielding comparable results.

Statistical analyses

Statistical analyses were performed using the GraphPad Prism 6.01 software (https://www.graphpad.com/). Unpaired *t*-test (single comparison) was used for comparisons between two groups. Differences in data distributions of H₂S production in *P. aeruginosa* clinical strains were statistically tested using the non-parametric Kolmogorov-Smirnov test. In all cases, *P* values lower than 0.05 were considered statistically significant.

References

- Grant SG, Jessee J, Bloom FR, Hanahan D. 1990. Differential plasmid rescue from transgenic mouse DNAs into *Escherichia coli* methylation-restriction mutants. Proc Natl Acad Sci USA 87:4645-4649.
- S2. Simon R, Priefer U, Pühler A. 1983. A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nat Biotechnol 1:784-791.
- S3. Milton DL, O'Toole R, Horstedt P, Wolf-Watz H. 1996. Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178:1310-1319.
- S4. Shatalin K, Shatalina E, Mironov A, Nudler E. 2011. H₂S: a universal defense against antibiotics in bacteria. Science 334:986-890.
- S5. Shatalin K, Nuthanakanti A, Kaushik A, Shishov D, Peselis A, Shamovsky I, Pani B, Lechpammer M, Vasilyev N, Shatalina E, Rebatchouk D, Mironov A, Fedichev P, Serganov A, Nudler E. 2021. Inhibitors of bacterial H₂S biogenesis targeting antibiotic resistance and tolerance. Science 372:1169-1175.
- S6. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
- S7. Letizia M, Mellini M, Fortuna A, Visca P, Imperi F, Leoni L, Rampioni G. 2022. PqsE expands and differentially modulates the RhIR quorum sensing regulon in *Pseudomonas aeruginosa*. Microbiol Spectr 10:e0096122.
- S8. Forbes BA, Sahm DF, Weissfeld AS. 1998. Bailey and Scott's Diagnostic Microbiology. Mosby Inc, 10th ed.
- S9. Clinical and Laboratory Standards Institute. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Wayne PA: CLSI (Approved standard M07-A9), 9th ed.