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A R T I C L E I N F O A B S T R A C T

Communicated by Antonio Filippone This paper presents the development of an algorithm for open-loop transfer functions identification and reduced-

order modelling of a dynamical system, from closed-loop data with highly correlated inputs. Suitable for 
aeronautical applications (particularly for intrinsically unstable vehicles such as helicopters), it allows the 
identification of aircraft transfer functions from the knowledge of the time histories of arbitrary external inputs 
and the corresponding actuated controls and responses. After a numerical verification of the proposed approach 
considering a simple analytical aircraft dynamical system, it is successfully applied to a realistic engineering 
problem consisting of identifying the transfer functions of the AW-09 helicopter that relate pilot inputs to 
vehicle attitude and kinematics. It is shown that helicopter responses to arbitrary pilot inputs predicted by 
the reduced-order model representation of the helicopter dynamics based on the rational approximation of the 
identified transfer functions are in good agreement with those determined through the high-fidelity nonlinear 
flight dynamics solver used to evaluate the closed-loop database.
1. Introduction

Helicopter design and performance analysis are complex tasks that 
require the interaction of disciplines such as flight mechanics, structural 
analysis, aerodynamics, dynamics and control, aeroelasticity, power 
systems, avionics, and aeroacoustics. Due to this highly complex mul-
tiphysics interaction, complete and detailed helicopter simulation re-
quires a significant computational effort, which is not always compatible 
with the designers’ activity. By accepting a limited loss of precision and 
detail, it is possible to greatly reduce the computational effort required 
for simulation through the introduction of reduced-order models that 
describe the response of the entire helicopter or, depending on the spe-
cific needs, some of the physical phenomena involved (i.e.: the dynamics 
of the main rotor [1], the aerodynamic loads [2,3], or the wake inflow 
[4,5]). These yield simplified state-space representations of helicopter 
dynamics or physical phenomena involved, through which the system 
response is determined at a low computational cost [6,7].

Different approaches have been developed during the last decades 
to identify the reduced-order models of a given dynamic system. They 
can be generally divided into parametric and non-parametric methods. 
Parametric methods may identify the dynamics of a system in both the 
time and frequency domains and apply optimisation algorithms to eval-
uate the coefficients of a predefined reduced-order model [8]. If part 
of the involved physics phenomena can be suitably described a priori, 
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it is possible to set preliminarily the value of some of the model coeffi-
cients, thus making the optimisation simpler. Non-parametric methods 
do not require initial assumptions about the form of the system gov-
erning equations, are applied in the frequency domain, and lead to a 
black-box model once the system dynamic is identified, [9]. Today, 
one of the most complete and advanced software for system identifi-
cation in aeronautics is CIFER® [6,10]. It is a commercial code based 
on a comprehensive frequency-response approach widely used in the 
research community for system identification of full-scale and model-
scale helicopters and aeroplanes [11–15]. Due to the poor stability of 
their dynamics, helicopters are often equipped with stability augmen-
tation systems. Thus, it is impossible to identify the frequency response 
functions that relate the pilot input to vehicle responses through numer-
ical or experimental data that do not include the controller action, and 
closed-loop data are the only available data.

This paper presents a novel methodology for reduced-order dynamic 
modelling of helicopters, based on the knowledge of closed-loop data 
with highly correlated inputs, which suitably combines different ele-
ments of the available dataset to obtain reliable and accurate identi-
fication of the open-loop transfer functions. It consists of a two-step 
process that begins with the identification of the open-loop transfer 
functions from closed-loop time domain responses provided by simu-
lations or experiments, followed by their rational approximation [16]
(similarly to [17] where the data set is obtained from flight tests). This 
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Nomenclature

𝐀,𝐁,𝐂 Matrices of the Rational Approximation
𝐅(𝑗𝜔) Closed-loop transfer functions matrix
𝐆𝑥𝑥(𝑗𝜔) Inputs auto-spectra matrix
𝐆𝑦𝑦(𝑗𝜔) Outputs auto-spectra matrix
𝐆𝑥𝑦(𝑗𝜔) Input/Output cross-spectra matrix
𝐇(𝑗𝜔) Open-loop transfer functions matrix
𝐊(𝑗𝜔) Feedback controller transfer functions matrix
𝑘
𝑝

() Coefficient of the controller proportional gain

𝑘𝑖() Coefficient of the controller integrative gain

(𝑝, 𝑞, 𝑟) Angular velocities in the body frame
𝐫 Vector of the additional states from rational matrix approx-

imation
(𝑢, 𝑣,𝑤) Centre of mass velocity components in the body frame

𝐱𝑐𝑜𝑛𝑡𝑟𝑜𝑙 Vector of the control inputs from the controller

𝐱𝑝𝑖𝑙𝑜𝑡 Vector of the pilot inputs

𝐱𝑡𝑜𝑡𝑎𝑙 Vector of the total inputs

𝐲 Vector of the outputs

𝛾 Scaling factor of non-linear terms

𝛾2
𝑥𝑦

Ordinary coherence

𝛾2
𝑥𝑦𝑚

Multiple coherence

(Φ,Θ,Ψ) Euler angles

𝜃0, 𝜃𝑠, 𝜃𝑐 Main rotor collective, longitudinal and lateral pitches

𝜃𝑎𝑖𝑙, 𝜃𝑟𝑢𝑑 Airplane aileron and rudder angles

𝜃𝑝 Tail rotor collective pitch

𝜃𝑝𝑒𝑟𝑡 Perturbations of the pilot inputs

𝜔 Frequency
system identification method is implemented in the in-house developed 
tool Qopter, which uses the 𝑧-transform of responses to chirp inputs to 
derive the transfer functions, while their rational approximation is ob-
tained through a least square optimization scheme [16].

The present methodology is first validated by assessing its capability 
to identify the transfer functions of two simplified vehicles (an aeroplane 
and a helicopter) from outputs obtained through analytical represen-
tations of their controlled dynamics. Then, it is applied to a realistic 
problem of engineering interest regarding the controlled dynamics of the 
AW09 helicopter. The reduced-order helicopter model determined by 
exploiting a data set of responses obtained through high-fidelity simula-
tions is validated by comparing the corresponding responses to arbitrary 
pilot inputs with those directly given by the high-fidelity flight-dynamics 
model.

Finally, note that the proposed algorithm, although developed for 
rotorcraft analysis and design purposes, is still general and can be conve-
niently used in all those applications where the identification of unstable 
systems from controlled closed-loop data is necessary (see, for example, 
[18] and [19]).

2. Transfer function identification and reduced-order modelling

The methodology proposed for the identification of reduced-order 
models of multi-input/multi-output (MIMO) systems, like a helicopter, 
from closed-loop data, consists of the following steps:

• evaluation of samples within a given frequency domain of the un-
controlled system transfer functions, extracted from time-domain, 
small-perturbation closed-loop (controlled) responses;

• rational approximation of the sampled transfer functions by appli-
cation of a least-square technique.

This work focuses specifically on the first step of the identification 
procedure for the case where a MIMO data set from a controlled system 
is available instead of a set of single-input/multiple-output responses. 
Fig. 1 depicts the general scheme of a helicopter response problem when 
a stability augmentation system is included. The identification of the 
vehicle transfer functions is essential to perform flight dynamics anal-
ysis like the assessment of flying qualities, but it is a non-trivial task 
in this case. Indeed, in this case, due to the presence of a controller 
that stabilises the system, it is impossible to perform numerical simula-
tions that provide the responses to a single input perturbation because 
the outputs are the result of combinations of multiple inputs (as dic-
tated by the control law). Similarly, if the data come from flight tests, 
they are necessarily affected both by pilot action and stability augmen-
tation system multi-input control action. Therefore, a technique capable 
of dealing with MIMO datasets must be introduced to identify the system 
2

transfer functions from available numerical or experimental responses. 
For 𝐅(𝑗𝜔) and 𝐇(𝑗𝜔) which denote, respectively, the closed-loop and 
aircraft transfer matrices, and for 𝐊(𝑗𝜔) which denotes the matrix of 
the feedback controller, the following relationship can be analytically 
derived [20].

𝐇(𝑗𝜔) = 𝐅(𝑗𝜔)[𝐈+𝐊(𝑗𝜔)𝐅(𝑗𝜔)]−1 (1)

In this case, once the 𝐅 matrix is identified, the 𝐇 matrix is straight-

forwardly derived. However, the feedback control system may not be 
known and/or be too complex and may include strongly nonlinear 
terms. Thus, a more general and convenient way for determining the 
open-loop transfer functions consists of the application of the approach 
explained below, which is based on the availability of a suitable dataset 
of closed-loop system responses.

2.1. Aircraft transfer functions from uncorrelated noise-free database 
signals

Let us introduce, for the dynamic system representing a controlled 
helicopter, the vectors 𝐲 and 𝐱 which collect, respectively, the 𝑀 out-

puts and the 𝑁 inputs of the helicopter subsystem. Therefore, as indi-

cated in Fig. 1, the 𝑁 inputs are derived from the combination of pilot 
commands and controller feedback, that is, 𝐱 = 𝐱𝑡𝑜𝑡𝑎𝑙 = 𝐱𝑝𝑖𝑙𝑜𝑡 − 𝐱𝑐𝑜𝑛𝑡𝑟𝑜𝑙 .

Then, let us also assume that the available numerical or experimen-

tal input/output dataset consists of noise-free, small-perturbation time 
histories of all inputs and corresponding outputs, 𝐱𝑘(𝑡) and 𝐲𝑘(𝑡) with 
𝑘 = 1, ..., 𝑁̂ (database composed of 𝑁̂ elements). Hence, it is formally 
possible to define the following relation among their harmonic compo-

nents

𝐲̃𝑘(𝑗𝜔) =𝐇(𝑗𝜔) 𝐱̃𝑘(𝑗𝜔) (2)

If 𝑁̂ ≥ 𝑁 and at least 𝑁 elements of the input/output database 
are linearly independent (uncorrelated), Equation (2) can be defined 
𝑁 times at a discrete number of points within a frequency range of in-

terest, and for each point these linear relations can be combined in the 
following compact form

𝐘 =𝐇𝐗 (3)

with

𝐘 =
⎡⎢⎢⎣
𝑦̃11 ... 𝑦̃𝑁1
⋮ ⋱ ⋮
𝑦̃1
𝑀

... 𝑦̃𝑁
𝑀

⎤⎥⎥⎦ ; 𝐗 =
⎡⎢⎢⎣
𝑥̃11 ... 𝑥̃𝑁1
⋮ ⋱ ⋮
𝑥̃1
𝑁

... 𝑥̃𝑁
𝑁

⎤⎥⎥⎦ (4)

where each column is derived from one of the 𝑁̂ database elements and 
each row is an input/output channel. Thus, samples of the transfer func-

tions at the discrete number of points considered within the frequency 

range of interest can be easily determined as
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Fig. 1. Block diagram representation of helicopter dynamics.
𝐇 =𝐘𝐗−1 (5)

and these values are the inputs for the application of the second and 
third steps of the process providing the reduced-order modelling of the 
helicopter transfer functions.

2.2. Aircraft transfer functions from correlated noisy database signals

Database signals may be generated by correlated inputs and/or af-

fected by disturbances and measurement noise (in particular, those 
given by experimental measurements).

A general approach aimed at determining the frequency samples of 
the aircraft transfer functions requires the introduction of the following 
cross-spectra for each element of the database:

𝐺𝑛𝑖
𝑥𝑥
(𝑗𝜔) = 2

𝑇
|𝑥̃∗

𝑛
(𝑗𝜔)𝑥̃𝑖(𝑗𝜔)| (6)

and

𝐺𝑖𝑚
𝑥𝑦
(𝑗𝜔) = 2

𝑇
|𝑥̃∗

𝑖
(𝑗𝜔)𝑦̃𝑚(𝑗𝜔)| (7)

where 𝐺𝑛𝑖
𝑥𝑥

denotes the cross-spectrum between the 𝑛-th and the 𝑖-th 
inputs, 𝐺𝑖𝑚

𝑥𝑦
denotes the cross-spectrum between the 𝑖-th input and the 

𝑚-th output, and 𝑇 represents the signal observation time window. In 
fact, it is possible to show that for each element of the database, the 
frequency samples of the [𝑀 ×𝑁] transfer function matrix, 𝐇̂(𝑗𝜔), can 
be evaluated through the following relation [21]

𝐇̂𝑇 =𝐆−1
𝑥𝑥

𝐆𝑥𝑦 (8)

where 𝐆𝑥𝑥 and 𝐆𝑥𝑦 represent the matrices which collect the cross spec-

tra in Equations (6) and (7).

However, effective application of this relation requires that the total 
inputs (combination of pilot commands and controller action, in flight 
dynamics problems) are not correlated or weakly correlated [22]. In our 
problem, where the multi-variable vectors 𝐱𝑘 are affected by the control 
system feedback, considerable correlation among the total inputs typi-

cally occurs (see Fig. 1). To overcome this difficulty, in the proposed 
approach, the transfer functions are determined averaging the outputs 
of identification problems of the type of Equation (8) relating to several 
(at least 2) elements of the database. Specifically, if 𝐆̂𝑥𝑥 and 𝐆̂𝑥𝑦, re-

spectively, represent the [(𝑁 ×𝐾) ×𝑁] and the [(𝑁 ×𝐾) ×𝑀] matrices 
obtained by sequentially ordering by column the matrices 𝐆𝑘

𝑥𝑥
and 𝐆𝑘

𝑥𝑦

determined for any 𝑘-th database element considered, namely

𝐆̂𝑥𝑥 =

⎡⎢⎢⎢⎢
𝐆1
𝑥𝑥

⋮
𝐆𝑘
𝑥𝑥

⋮

⎤⎥⎥⎥⎥ ; 𝐆̂𝑥𝑦 =

⎡⎢⎢⎢⎢
𝐆1
𝑥𝑦

⋮
𝐆𝑘
𝑥𝑦

⋮

⎤⎥⎥⎥⎥ (9)
3

⎢⎣𝐆𝐾
𝑥𝑥

⎥⎦ ⎢⎣𝐆𝐾
𝑥𝑦

⎥⎦
the compact form of the identification problems of the type of that in 
Equation (8) repeated for all the considered 𝐾 database elements is 
given by

𝐆̂𝑥𝑥𝐇𝑇 = 𝐆̂𝑥𝑦 (10)

where 𝐇 denotes the [𝑀 ×𝑁] solution matrix of these problems.

Then, by introducing the Moore-Penrose pseudo-inverse of the ma-

trix 𝐆̂𝑥𝑥 which is given by

𝐆̂+
𝑥𝑥

= (𝐆̂𝑇
𝑥𝑥
𝐆̂𝑥𝑥)−1𝐆̂𝑇

𝑥𝑥

the transfer matrix is determined, for each frequency, by the following 
expression

𝐇𝑇 = 𝐆̂+
𝑥𝑥

𝐆̂𝑥𝑦 (11)

This novel approach yields the transfer matrix as the least square ap-

proximation of the different solutions of Equation (8) written for each 
of the 𝐾 database elements considered, which differ due to the noise 
affecting the signals.

It should be noted that, although this formulation is formally equiv-

alent to that proposed by Bendat [21], it does not require that the inputs 
in each element of the database are linearly independent. Note also that 
the required value of 𝐾 depends on the perturbations 𝐱𝑝𝑖𝑙𝑜𝑡 considered 
in the available database: if, for instance, each element of the database 
derives from the perturbation of a single pilot command, the definition 
of a well-conditioned problem is ensured for 𝐾 =𝑁 .

Finally, it is important to note that the quality of the results obtained 
by the proposed algorithm can be assessed by the evaluation of the co-

herence function, which is a measure of the linearity of the relationship 
between the outputs and inputs collected in the dataset. For instance, 
considering a single-input/single-output problem, the coherence is de-

fined as follows (ordinary coherence)

𝛾2
𝑥𝑦

=
|𝐺𝑥𝑦|2
𝐺𝑥𝑥𝐺𝑦𝑦

(12)

In the case of a noiseless input, unit coherence means that the output 
is fully linearly dependent on the input. For MIMO systems, indications 
similar to those provided for SISO problems by the ordinary coherence 
are given by the multiple coherence which is defined as [23]

𝛾2
𝑥𝑦𝑚

=
𝐆𝑇
𝑥𝑦
𝐆−1
𝑥𝑥
𝐆𝑥𝑦

𝐺𝑦𝑦

(13)

where 𝐺𝑦𝑦 is the auto-spectrum of the 𝑦̃𝑚 output. The closer this value 
is to unity, the more the output considered is linearly dependent on the 

set of inputs [23].
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2.3. Reduced-order model

As indicated by the aforementioned two-step identification proce-

dure, to determine the reduced-order model of the aircraft dynamics, the 
transfer matrix sampled in the range of frequency of interest is approxi-

mated in a rational-matrix form through the application of a least-square 
procedure [16]

𝐇 ≈𝐂[𝑠𝐈−𝐀]−1𝐁 (14)

where 𝐀, 𝐁 and 𝐂 are real, fully populated matrices, and 𝑠 denotes the 
Laplace-domain variable. The matrix 𝐀 is a [𝑃 × 𝑃 ] matrix containing 
the 𝑃 poles of the rational expression, 𝐁, is a [𝑃 ×𝑁] matrix, and 𝐂 has 
dimensions [𝑀 × 𝑃 ].

Finally, combining the i/o relation 𝐲̃ =𝐇 ̃𝐱, with Equation (14) and 
transforming into time domain provides the following differential model 
that describes the helicopter dynamics, as derived from the transfer 
function matrix identified from the closed-loop dataset{

𝐲 =𝐂𝐫
𝐫̇ =𝐀𝐫 +𝐁𝐱

(15)

where 𝐫 is the vector of the states introduced by the poles of the approx-

imated transfer function matrix. The number of these states defines the 
order of the identified model.

3. Numerical investigation

The numerical investigation aims to validate the proposed algorithm 
for the identification of open-loop transfer functions and reduced-order 
modelling of vehicle dynamics based on knowledge of a database of 
closed-loop controlled responses to highly correlated command inputs, 
such as those obtainable from numerical simulations or in-flight data.

First, we consider two problems for which a simplified analytical 
representation of the dynamics of the vehicle is available. Specifically, 
the first case deals with the lateral-directional dynamics of an aero-

plane, whereas the second one concerns the description of the dynamics 
of the mid-weight Bo-105 helicopter. The datasets of closed-loop con-

trolled responses of the vehicles to input perturbations are determined 
by numerical time integration of known analytical models. The proposed 
identification algorithm is then applied, and the obtained open-loop 
transfer functions are compared with the analytical ones.

Next, we examine the problem of determining the computational 
tool for open loop transfer functions and reduced-order model of the 
AW-09 helicopter from a dataset of responses provided by a nonlinear, 
comprehensive computational tool for helicopter flight simulation.

3.1. Controlled lateral-directional dynamics of the LJ25-D aeroplane

This application of the proposed identification procedure is pre-

sented to prove its effectiveness when controlled MIMO system datasets 
with highly correlated inputs are available. To this purpose, we consider 
the stabilized lateral-directional dynamics of the LJ-25D aeroplane pre-

sented by Berger et al. in [14,24] which includes the action of a complex 
and realistic controller.

Following [24], a Simulink model of the aeroplane, including filters, 
sensors and actuators, is implemented and used to simulate the time re-

sponses to arbitrary pilot inputs. Once the time histories of outputs and 
control surface positions are collected, the proposed algorithm is ap-

plied to identify the open-loop transfer functions from closed-loop data. 
In particular, aileron deflections (𝛼𝑎) and rudder deflections (𝛼𝑟) are 
recorded and used as inputs, and a database of two elements is deter-

mined by numerical simulations: one set of inputs and controlled out-

puts is obtained by perturbing the pilot aileron control, and the second 
one is obtained by perturbing the pilot rudder control; both perturba-
4

tions are done following a chirp-type signal as in Fig. 2.
Aerospace Science and Technology 153 (2024) 109419

Fig. 2. Example of chirp-type signal used as input in the transfer function iden-

tification process.

Figs. 3 and 4 show the comparison between the transfer func-

tions regarding roll angular velocity, 𝑝, and sideslip angle, 𝛽), given 
by the known analytic model, identified through the proposed proce-

dure which combines both elements of the dataset (see Equation (11), 
MIMO-modified-AR in Figs. 3 and 4), and determined by the conven-

tional approach that uses, separately, the responses triggered by aileron 
and rudder perturbations (respectively MIMO-A and MIMO-R in Figs. 3

and 4, see Equation (8)).

Note that the conventional approach is strongly affected by the cross-

correlation between inputs. In [6] a threshold of the cross-correlation 
equal to 0.5 is indicated as a threshold above which the identified 
transfer functions are not sufficiently accurate since the contribution 
of each input to a given output cannot be distinguished. This issue is 
overcome by the proposed method, which combines data from different 
experiments to obtain the system’s transfer functions. Fig. 5 shows the 
cross-correlation between the inputs in the two elements of the database 
considered for the lateral-directional dynamics of the LJ-25D aircraft. 
The red curve represents the cross-correlation between inputs of the 
first element of the database (MIMO-A). It has an average value equal 
to 0.8, which is well beyond the threshold value and, as expected, the 
transfer functions corresponding to the conventional approach (i.e., by 
Equation (8)) are quite inaccurate, as depicted in Figs. 3 and 4. Regard-

ing the cross-correlation between the inputs of the second element of 
the database (MIMO-R), it has a low average value (0.5) in a frequency 
range 0 − 15 rad/s, but is quite high at low frequencies. Consequently, 
the transfer functions identified by the conventional approach (MIMO-

R) and depicted in Figs. 3 and 4 show a better accuracy than those 
obtained by MIMO-A, but still present significant discrepancies with re-

spect to the analytical ones. Instead, although using the same database 
elements with significantly correlated inputs, Figs. 3 and 4 prove that the 
proposed approach (MIMO-modified-AR) provides very accurate trans-

fer functions.

3.2. Bo-105 helicopter dynamics

This section examines the application of the proposed identification 
algorithm to an analytical representation of the dynamics of the Bo-

105 mid-weight helicopter. The investigation focuses on the evaluation 
of the capability of the proposed methodology to extract the linearised 
open-loop rotorcraft model starting from the responses given by a con-

trolled nonlinear representation of it. Specifically, considering the lin-

earised representation of the Bo-105 given in [25] stabilised through 
a simple proportional-integrative (PI) controller acting on (𝑝, 𝑞, 𝑟), the 
proposed approach is applied to an extended version of it obtained by 
arbitrarily adding nonlinearities to the system. It reads

𝐲̇ =𝐀𝐲 + 𝐟(𝐲) +𝐁𝐱
(16)
𝐱 =𝐱𝑝𝑖𝑙𝑜𝑡 +𝐊𝐲
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Fig. 3. LJ25-D aeroplane transfer functions, aileron input. Solid line: analytical model; dotted cyan line: MIMO-A; dotted orange line: MIMO-R; dash-dotted line: 
MIMO-modified-AR.

Fig. 4. LJ25-D aeroplane transfer functions, rudder input. Solid line: analytical model; dotted cyan line: MIMO-A; dotted orange line: MIMO-R; dash-dotted line: 

MIMO-modified-AR.

Fig. 5. Cross-correlation between control inputs.

where y = {𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, Θ, Φ}𝑇 collects the flight dynamics variables, 
the pilot inputs include collective pitch, cyclic pitch and pedal, x𝑝𝑖𝑙𝑜𝑡 =
{𝜃0, 𝜃𝑠, 𝜃𝑐 , 𝜃𝑝}𝑇 , whereas 𝐟(𝐲) denotes the nonlinear contributions which 
are defined as

𝑓𝑖 = 𝛾
∑
𝑗

𝑟𝑎𝑛𝑑(0 ∶ 1)𝑖𝑗 𝑦𝑗 (17)

The nonlinear controlled helicopter model in Equation (16) is imple-
mented in Matlab Simulink and the time responses to a set of chirp-type 
5

perturbations of the pilot inputs are evaluated. Several values of the in-
put perturbation and scaling factor, 𝛾 , of nonlinear term are considered: 
𝛾 = 10−2, 10−3, 10−4 and 𝜃0 = 𝜃𝑠 = 𝜃𝑐 = 𝜃𝑝 = 𝜃𝑝𝑒𝑟𝑡 = 0.25◦, 0.5◦.

For some of the relevant longitudinal dynamics transfer functions, 
Figs. 6 to 9 show the comparisons between the uncontrolled linear ana-

lytical model given in [25] and two models identified by the proposed 
approach. These results show that as nonlinear terms and input per-

turbations decrease, the identified transfer functions tend to those of 
the analytical model, even though the process seems to identify some-

what more damped poles. In the presence of higher nonlinear terms and 
for greater input perturbations, the identification process captures the

asymptotic behaviour of the transfer functions, whereas fails to correctly 
place poles and zeros of the systems. These observations are confirmed 
by the rest of the results obtained by the numerical investigation accord-

ing to the variation of the parameters 𝛾 and 𝜃𝑝𝑒𝑟𝑡, which are not shown 
for the sake of conciseness.

Then, the identified transfer functions are collected in a matrix 𝐇, 
approximated in the rational form of the type of Equation (14), and a 
time-domain reduced-order model of the helicopter is obtained by in-

verse transformation into the time domain.

For inputs consisting of step functions, Fig. 10 and Fig. 11 depict 
the corresponding kinematic responses of the uncontrolled helicopter 
determined by the analytical linear model given in [25] and by the 
reduced-order models based on the identified transfer functions pre-

sented in Figs. 6 to 9. These figures clearly show the presence of unstable 
poles in uncontrolled helicopter dynamics and show that small nonlin-

ear disturbances do not significantly affect the proposed identification 

procedure (see dotted lines in Figs. 6 to 9). However, because of the 
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Fig. 6. Bo-105 helicopter transfer functions, 𝑢 output. Solid line: analytical model [25]; dotted line: identified model for 𝛾 = 10−3, 𝜃𝑝𝑒𝑟𝑡 = 0.5◦; dot-dashed line: 
identified model for 𝛾 = 10−4, 𝜃𝑝𝑒𝑟𝑡 = 0.25◦.

Fig. 7. Bo-105 helicopter transfer functions, 𝑤 output. Solid line: analytical model [25]; dotted line: identified model for 𝛾 = 10−3, 𝜃𝑝𝑒𝑟𝑡 = 0.5◦; dot-dashed line: 
identified model for 𝛾 = 10−4, 𝜃𝑝𝑒𝑟𝑡 = 0.25◦.

Fig. 8. Bo-105 helicopter transfer functions, 𝑞 output. Solid line: analytical model [25]; dotted line: identified model for 𝛾 = 10−3, 𝜃𝑝𝑒𝑟𝑡 = 0.5◦; dot-dashed line: 
identified model for 𝛾 = 10−4, 𝜃 = 0.25◦.
𝑝𝑒𝑟𝑡

instability of the uncontrolled system, the discrepancies increase with 
time.

In order to have an asymptotically decreasing response the reference 
and the identified helicopter models are combined with a proportional-

integral feedback control law to stabilise helicopter dynamics. For the 
control gains assumed to be equal to 𝑘𝑝

𝜃𝐶−𝑝
= 0.01, 𝑘𝑝

𝜃𝑆−𝑞
= 0.1, 𝑘𝑝

𝜃𝑃 −𝑟
=

−0.4, 𝑘𝑖
𝜃𝐶−𝑝

= −0.01, 𝑘𝑖
𝜃𝑆−𝑞

= 1.0 (where superscripts indicate if the gain 
6

is related to proportional or integral feedback), Fig. 12 shows the an-
gular velocity responses to the same inputs considered in Fig. 11 and 
confirms the fidelity of the identified model.

3.3. Simulation of the AW09 helicopter dynamics

The proposed approach for aircraft transfer function identification is 
now applied to a more realistic problem regarding the flight dynamics 

of the AW09 helicopter. The main characteristics of this helicopter are 



Aerospace Science and Technology 153 (2024) 109419C. Pasquali, J. Serafini, M. Gennaretti et al.

Fig. 9. Bo-105 helicopter transfer functions, Θ output. Solid line: analytical model [25]; dotted line: identified model for 𝛾 = 10−3, 𝜃𝑝𝑒𝑟𝑡 = 0.5◦; dot-dashed line: 
identified model for 𝛾 = 10−4, 𝜃𝑝𝑒𝑟𝑡 = 0.25◦.

Fig. 10. Uncontrolled Bo-105 helicopter velocity responses to pilot inputs. Solid line: analytical model in [25]; dashed line: identified reduced-order model for 
𝛾 = 10−4; dotted line: identified reduced-order model for 𝛾 = 10−3.
Table 1

AW09 main characteristics.

mass 2500 kg

MR type articulated

MR radius 5.5 m

MR number of blades 5
TR radius 0.6 m

TR number of blades 10

reported in Table 1. The linear reduced-order model to be identified is 
in the form of the standard helicopter dynamics representation which 
relates the four pilot control inputs (namely, collective, longitudinal and 
7

lateral cyclic pitch, and pedal, 𝜃0, 𝜃𝑠, 𝜃𝑐 , 𝜃𝑝) to the centre-of-mass veloc-
ities (𝑢, 𝑣, 𝑤), angular velocities (𝑝, 𝑞, 𝑟) in the body frame, and attitude 
angles (Φ, Θ, Ψ) [25].

The trim speed is 60 kn, and the dataset used for the identification 
of the open-loop transfer function matrix consists of a set of responses 
to chirp perturbations of the pilot inputs that are applied while keeping 
the stability augmentation system active. These responses are evaluated 
using a high-fidelity aeromechanic solver (see Sec. 3.3.1). Although one 
command at a time is perturbed, the controller produces perturbations 
to all commands and, hence, the response is generated by a full input 
vector, 𝐱𝑡𝑜𝑡𝑎𝑙 . The transfer functions are identified within the frequency 
range 0.2 ≤ 𝜔 ≤ 8 rad/s.

The reduced-order helicopter model obtained following the proce-
dure described in Sec. 2 is then validated through comparison of the 

predicted responses to arbitrary inputs with those directly evaluated by 
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Fig. 11. Uncontrolled Bo-105 helicopter angular velocity responses to pilot inputs. Solid line: analytical model in [25]; dashed line: identified reduced-order model 
for 𝛾 = 10−4; dotted line: identified reduced-order model for 𝛾 = 10−3.

Fig. 12. Controlled Bo-105 helicopter angular velocity responses to pilot inputs. Solid line: analytical model in [25]; dashed line: identified reduced-order model for 
8

𝛾 = 10−4; dotted line: identified reduced-order model for 𝛾 = 10−3.
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Fig. 13. Uncontrolled AW09 helicopter responses to 𝜃0 input. Solid line: identified reduced-order model; dashed line: FlightLab.

Fig. 14. Uncontrolled AW09 helicopter responses to 𝜃 input. Solid line: identified reduced-order model; dashed line: FlightLab.
0

the high-fidelity aeromechanic solver (see Sec. 3.3.1). The predictions 
concern both uncontrolled and controlled helicopter flight and are given 
in terms of the model kinematic output. The arbitrary input applied for 
the simulations is the following single-harmonic, windowed signal

𝑦(𝑡) =𝐴 sin(𝜔𝑡)[𝐻(𝑡) −𝐻(𝑡− 2𝜋∕𝜔)] (18)

where 𝐻 is the Heaviside function, 𝜔 = 1.3 rad/s and two different am-

plitudes (𝐴 = 0.5◦ and 𝐴 = 1.0◦) are used to assess the accuracy of the 
linearized helicopter model identified as a function of the input ampli-

tude.

3.3.1. High-fidelity aeromechanic solver

The dataset used for model identification is obtained by FlightLab 
simulations [26]. The computational model consists of a fully coupled, 
nonlinear, aeromechanic solver. The aerodynamic modelling is based 
on a quasi-steady strip-theory approach, with Pitt-Peters dynamic wake 
inflow model. The aerodynamic coefficients (lift, drag, and pitching mo-

ment) are derived from sectional look-up tables. The structural degrees 
of freedom include the six fuselage rigid body motion DOFs, and the 
multi-blade flap and lag angles. The structural DOFs of the tail rotor 
blades are not included in the model, as it is intended for flight dynam-

ics purposes.

The body motion observed by the inertial frame is described through 
the components of the centre of mass velocity and the angular velocity 
expressed in a body frame.

The model features a conventional control system with collective, 
lateral, and longitudinal cyclic and pedal control. The main rotor swash-

plate routine computes the feathering angle, rate, and acceleration for 
each blade, starting from azimuth and rotor speed. The motion of each 
blade is imposed on the feathering hinges. Two flight configurations are 
considered, one with and one without feedback control. The model with 
9

feedback control includes rate controllers for 𝑝, 𝑞 and 𝑟, using three in-
dependent proportional and integral (PI) feedback controllers on the 
lateral cyclic, longitudinal cyclic, and pedal channels; feedback control 
is not considered for the collective pitch.

3.3.2. Response of uncontrolled helicopter

The validation of the reduced-order open-loop helicopter model 
identified from closed-loop data begins with the analysis of the time 
response of the uncontrolled rotorcraft to arbitrary pilot inputs.

A single pilot command is perturbed in each test. Two different am-
plitudes of the pilot inputs are considered, as mentioned above (see 
Equation (18)). The predictions provided by the reduced-order model 
are compared with those directly obtained by the high-fidelity compu-
tational tool, given in terms of data normalized to the maximum value 
of the examined set of curves (thus, the range of all graphs is [−1 ∶ 1]). 
For the sake of conciseness, only the results which are most represen-
tative of the overall quality of the reduced-order model are presented. 
Specifically, Figs. 13 and 14 depict the helicopter response to collective 
in terms of linear and angular velocities, respectively. Fig. 15 shows the 
angular velocities generated by the lateral cyclic input. These results 
demonstrate satisfactory agreement between the predictions obtained 
by the identified model and those determined by the high-fidelity com-
putational tool, particularly (as expected) for outputs with the greatest 
amplitude and when the smallest input is considered.

3.3.3. Responses of controlled helicopter

Next, the response of the reduced-order helicopter model combined 
with a controller is examined. The same pilot inputs considered for the 
uncontrolled helicopter case are applied, and two sets of control gains 
are introduced. The first set of gains coincides with that considered for 
the evaluation of the database (see above) and is referred to as normal 
gains, whereas the second set of gains is ten times smaller than the first 
one (referred to as low gain). Similarly to the investigation concerning 

the uncontrolled helicopter, the predictions given by the reduced-order 
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Fig. 15. Uncontrolled W09 helicopter responses to 𝜃𝑐 input. Solid line: identified reduced-order model; dashed line: FlightLab.

Fig. 16. Normal-gain, controlled AW09 helicopter responses to 𝜃0 input. Solid line: identified reduced-order model; dashed line: FlightLab.

Fig. 17. Normal-gain, controlled AW09 helicopter responses to 𝜃0 input. Solid line: identified reduced-order model; dashed line: FlightLab.
helicopter model combined with the controller are compared with those 
obtained by FlightLab simulations.

Normal Gain. The kinematic outputs obtained for the controlled he-

licopter when normal gains are applied are presented in Figs. 16 to 18. 
These figures show that the presence of the controller produces a clear 
improvement of the agreement between the results given by the ap-

plication of the reduced-order helicopter model and those provided by 
FlightLab. In particular, the agreement is very good when the smallest 
pilot inputs are considered, whereas some discrepancies arise for larger 
pilot inputs (however, this operating condition has to be considered as 
an out-of-design application of the proposed, linear, model).

These results prove that the proposed reduced-order helicopter 
model can be effectively applied to the design of reliable control laws, 
10

thus replacing more complex high-fidelity computational tools.
Low Gain. The predicted helicopter responses with low-gain control 
actuation are presented in Fig. 19-21.

The objective of this analysis is to assess the reliability of the identi-

fied reduced-order helicopter model by testing its prediction capability 
in the presence of a significantly different controller than the one ap-

plied for the determination of the database used in the identification 
process.

Overall, the predictions based on the reduced-order model are con-

firmed to be in good agreement with FlightLab simulations, particularly 
when related to the smallest pilot inputs. It is worth noting that, as 
expected, the predictions relating to reduced values of gains yield less 
damped (although stabilized) helicopter outputs, which present a more 
wavy behaviour than in the normal-gain control case (see, for instance, 

Figs. 16 and 19).
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Fig. 18. Normal-gain, controlled AW09 helicopter responses to 𝜃𝑐 input. Solid line: identified reduced-order model; dashed line: FlightLab.

Fig. 19. Low-gain, controlled AW09 helicopter responses to 𝜃0 input. Solid line: identified reduced-order model; dashed line: FlightLab.

Fig. 20. Low-gain, controlled AW09 helicopter responses to 𝜃0 input. Solid line: identified reduced-order model; dashed line: FlightLab.
11

Fig. 21. Low-gain, controlled AW09 helicopter responses to 𝜃𝑐 input. Solid line: identified reduced-order model; dashed line: FlightLab.



C. Pasquali, J. Serafini, M. Gennaretti et al.

4. Conclusions

A novel methodology for the identification of an open-loop, reduced-
order model of a dynamical system based on the knowledge of closed-
loop, highly-correlated, data has been developed and applied to differ-
ent test cases with an increasing level of complexity. It is particularly 
suitable for unstable systems for which the database that can be used 
to identify the open-loop transfer functions is necessarily related to 
controlled responses, and hence produced by highly-correlated inputs. 
Two different types of numerical investigations have been presented to 
validate the proposed methodology. First, it is applied to two simpli-
fied analytical aircraft dynamics models: the lateral-directional dynam-
ics model of the LJ25-D aircraft combined with a realistic controller, 
and the Bo-105 helicopter flight dynamics model including the stability 
augmentation system. In these cases, the identified open-loop transfer 
functions have been successfully compared with analytical ones, thus 
demonstrating the capability of the proposed method to successfully 
overcome the problem of highly correlated inputs in system identifi-
cation. Since nonlinear artificial terms were included in the helicopter 
model, the obtained results have also proven the capability of the pro-
posed identification algorithm to extract the linear part of the system 
dynamics. As expected, the identification accuracy decreases as the in-
put perturbations used to determine the closed-loop database and/or the 
relevance of the nonlinear terms increase. Then, the proposed method-
ology has been applied to identify the transfer functions of the AW09 
helicopter and the corresponding reduced-order model, exploiting a 
database of controlled responses to pilot commands obtained by the 
high-fidelity FlightLab computational tool. The accuracy of the iden-
tified AW09 model has been assessed by comparing its predictions of 
vehicle kinematics due to arbitrary pilot inputs with those provided di-
rectly by FlightLab. Some responses have been examined for both the 
uncontrolled (unstable) and controlled helicopters. Although the agree-
ment between the results given by the identified reduced-order model 
and FlightLab is quite good in the case of an uncontrolled vehicle, it 
presents some small discrepancies due to the difficulty in capturing the 
exact placement of the unstable poles. The correlation becomes of excel-
lent quality when the helicopter is controlled (particularly, when a high 
value of proportional gain is used). The comparison with FlightLab simu-
lations proves that the helicopter reduced-order model identified from a 
database of controlled responses provides accurate flight dynamics sim-
ulations and, in particular, is capable of providing a reliable estimation 
of the effects produced by the actuation of an arbitrary controller. Sum-
marising the outcomes of the validation analysis, the algorithm can suc-
cessfully identify the open-loop transfer function from closed-loop data 
also in the case of highly-correlated inputs but it begins to fail in pre-
diction accuracy when the non-linear content of the model and/or the 
input perturbations used to determine the closed-loop database increase. 
In particular, the presence of a relevant non-linear content directly im-
pacts the evaluation of the system’s poles, and hence it should be care of 
the user to verify with some time-domain validation signals the accuracy 
of the obtained reduced-order model. Future improvements will follow 
two lines of research: (i) the inclusion of a grey-box scheme to make use 
of prior knowledge of the system dynamics and characteristic param-
eters (like, for instance, mass parameters, flight velocity, relationship 
between degrees of freedom), and (ii) the extension to nonlinear identi-
fication in order to overcome the weak points highlighted in this work 
and develop more general dynamic models.
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