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Abstract

The study aims to highlight the differences between growth-by-diffusion, based on the
elastic stretch of the polymeric network, and growth-by-activity, based on the remodel-
ing of the network, in polymer gels. The study is based on a multiphysics continuum
model, which allows to describe the interactions between mechanics, diffusion and growth
through a system of nonlinear partial differential equations. We discuss the differences
between growth-by-diffusion and growth-by-activity and evidence the role of the cor-
responding characteristic times in the case of homogeneous activation source. We also
show as a huge variety of three-dimensional shapes can be generated by controlling the
distribution of the activation sources.

Keywords: bulk contraction, active gels, stress-diffusion, mechanics.

1. Introduction

Active gels are an inspiration for the development of biomimetic active materials
from components that act as local stress or strain actuators. The combination of activ-
ity and elasticity can open to new technological applications which can also be supported
by 4D printed techniques. Nevertheless, active gels remain largely unexplored and more
experiments and more models are needed to discover and discuss their actuation perfor-
mances.
In designing-actuation-by-modeling, Nature is a great source of inspiration as it offers
a wide range of situations where the synergy between activity and elasticity produces
impressive effects [1, 2, 3, 4, 5]. In [5], a study on leaves growing on a liquid substrate
or in absence of it is presented and it is shown how the morphology of the leaf strongly
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depends on the interplay between internal growth-induced residual stresses and the pres-
ence (absence) of water which works as a support for leaves and also can diffuse in the
leaves.
On the other hand, Technology continues its improvement by mimicking and also ex-
ceeding Nature. In [6, 7, 8], internally driven contractile gels have been generated by
polymerizing actin in the presence of cross-linker and clusters of myosin as molecular
motors. Successive experiments have suggested how boundaries affect morphing [6], how
three-dimensional shapes can be driven from flat active gel sheets [8] and how mechanics
of the sheets is affected by activation intensity [9], measured by molecular motor con-
centration.
The studies above inspired the analysis we present and discuss here which aims to
highlight the differences between growth-by-diffusion and growth-by-activity, which is
sketched in the cartoon in figure 1. Shortly, activity acts on the actin filaments and
changes the chain free lengths by remodeling the reference network; on the other side,
diffusion elastically stretches the chains by swelling the remodeled network. Based on a
continuum model of remodeling and diffusion recently presented and discussed by some
of the Authors [10, 11, 12], based on the multiplicative decomposition in an elastic and
an active component of the deformation gradient, we explore the morphing of soft struc-
tures, in the form of plate-like three-dimensional bodies. Actuation of homogeneous
bodies is firstly discussed to evidence the key differences between growth-by-diffusion
and growth-by-activity. Then, we consider inhomogeneous bodies in the form of assem-
blies of two components with different levels of activity. We demonstrate with numerical
simulations performed in Comsol multiphysics as differential growth-by-activity causes
a geometric incompatibility resolved by curving. Differently from what occurs in pas-
sive gels under growth-by-swelling, the composite structure curves to accomodate the
geometric mismatch until a stress-free shape is produced. We also show as tuning the
intensity of activation source leads to get an extreme morphing which couldn’t be pro-
duced without remodeling the network.
In the end, the study aims to provide an interpretation of some interesting morphologies
which can be found in Nature [5], to suggest further experiments to produce the extreme
actuation performances which can be attained by active gels, and to evidence a few open
issues which would be worthy of attention.

2. Passive and active homogeneous gels

We start from reviewing a few basic aspects of the swelling exhibited by both passive
and active gels: a gel placed in a liquid changes its volume by absorbing or desorbing the
liquid and eventually reaches thermodynamic equilibrium; for active gels, an external
source is needed to maintain this equilibrium.

For now, we focus on the change in volume suffered by gels, which are considered
constraint-free, unloaded and at a steady state. Let us introduce the key volume ratios:
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Figure 1: The characteristic states of an active gel. a) Dry-reference state of the polymer network (red)
with crosslinks (blue dots). b) Dry-contracted network: mean free-length is reduced and polymer chains
are still un-stretched whereas the crosslink density has changed. c) Swollen state: liquid molecules (blue
dots) swell the dry-contracted network.

Jd =
swollen volume

dry volume
, Ja =

remodeled volume

dry volume
, Je =

Jd
Ja

=
swollen volume

remodeled volume
.

(2.1)
As the dry volume is the volume of the continuum occupied by the polymer, the polymer
fraction is given by 1/Je; the classical model for passive gel is recovered by setting Ja = 1.
Within the Flory-Rehner thermodynamics, we consider the free-energy density per unit
dry volume:

ψd = Ja ψm(Ce) + Ja ψc(Je)− p (Jd − Ĵd). (2.2)

In (2.2), ψm is the Neo-Hookean elastic energy per unit remodeled volume. Denoted
with Fd the deformation gradient, and with Fa the remodeling tensor, Fe = FdF

−1
a is

the elastic deformation and Ce = FTe Fe the elastic strain. We assume:

ψm(Ce) =
1

2
Gd (Ce · I− 3) . (2.3)

On the other side, ψc is the mixing energy density per unit remodeled volume, which
can be written in terms of the polymer fraction 1/Je as:

ψc(Je) =
RT

Ω

(
(Je − 1) ln

(Je − 1

Je

)
︸ ︷︷ ︸

entropic

+ χ
Je − 1

Je︸ ︷︷ ︸
enthalpic

)
. (2.4)

Finally, the last summand in (2.2) is the enforcement of the volumetric constraint which
maintains the volume change J = detFd, due to displacement, equal to the volume
change Ĵ(cd, Ja) = Ja+ Ωcd, due to the contribution of the remodeling, measured by Ja,
and of the solvent, measured through the solvent molar concentration cd ([cd] =mol/m3)
times the molar volume Ω ([Ω] =m3/mol) of the solvent.
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In (2.2) there are only three materials parameters, which are the molar volume Ω, the
dis-affinity χ between solvent and polymer that is a non-dimensional parameter called
Flory parameter and the shear modulus Gd of the gel measured at dry state ([Gd] =
J/m3). Actually, it is important the ratio ε = (Gd Ω)/(RT ) between the elastic energy
density, represented by Gd, and the chemical energy density RT/Ω, where R (J/(K mol)
is the universal gas constant, and T (K) the temperature.

From (2.2), we obtain the prescriptions for the reference stress Sd and the chemical
potential µ:

Sd = Ŝ(Fd,Fa)− pF?d and µ = µ̂(Je) + pΩ , (2.5)

with

Ŝ(Fd,Fa) = GFe JaF
−T
a and µ̂(Je) = RT

[
log

(
Je − 1

Je

)
+
χ+ Je
J2
e

]
. (2.6)

Moreover, from the dissipation inequality we obtain a representation of the solvent flux
hd:

hd = −Dd∇
(
µ̂(Je) + pΩ

)
, with Dd =

D cd
RT

(FTd Fd)
−1 (2.7)

the diffusion tensor ([Dd] = mol2/(J m s)), and D (m2/s) the diffusivity constant. Fi-
nally, we get the Eshelby tensor Ê, that can be represented as the sum of a mechanical
Êm and a chemical Êc contribution

Ê = Ê(cd,Fd,Fa, p) = Êm(Fd,Fa, p) + Êc(cd, Ja, p) , (2.8)

with

Êm(Fd,Fa, p) = Jaψm I− FTe SdF
T
a , Êc(cd, Ja, p) = (Jaψc − cd µ) I . (2.9)

It is worth noting that

FTe SdF
T
a = 2JaCe

∂ψm
∂Ce

. (2.10)

In Literature, the quantity SM = Ce∂ψm/∂Ce is known as Mandel stress and it can be
shown that in isotropic material, Mandel stress is symmetric as Ce and ∂ψm/∂Ce are
coaxial. Then, Ê is a symmetric tensor.

2.1. Passive homogeneous gels

Energy (2.2) with Ja = 1 describes passive gels. Let us consider a homogeneous
circular gel plate Cd with dry-reference radius and thickness rd and hd (and dry-volume
Vd) placed in a bath of chemical potential µo. In this simple context, the state of the gel
is completely described by Jd: the stress–free swollen state Co has radius and thickness

(J
1/3
d )rd and (J

1/3
d )hd. The change in volume Jd is entirely due to the liquid uptake,

that is,
Jd = Ĵd(1, cd) = 1 + Ω cd , (2.11)
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corresponding to take Ja = 1. So, a dry gel of volume Vd soaks up a liquid volume
Vl = Ω cd Vd = (Jd−1)Vd. The evolution of Jd towards the thermodynamical equilibrium
is governed by the diffusion time τd = l2/D, where l = rd or l = hd, depending on the
aspect ratio hd/rd

1. The steady state, that is the thermodynamic equilibrium, is attained
after a time τe � τd, when all the fields have attained their steady values.

In this situation, it can be shown that the equilibrium value Jd is determined by
solving for p the equation Sd = 0 in (2.5)1, and inserting this value in the equation of
chemical equilibrium (2.5)2, which can be written as

F (Jd; ε, χ) =
µo
RT

= µ̄o , (2.12)

with

F (Jd; ε, χ) = εJ
−1/3
d + log

Jd − 1

Jd
+

1

Jd
+

χ

J2
d

. (2.13)

Equations (2.12)-(2.13) show that liquid uptake can be controlled by µ̄o and depends on
the two parameters ε and χ. As an example, for a typical hydrogel [13] in a water bath,
we have Gd = 104 Pa, χ = 0.4, Ω = 1.8 · 10−5 m3/mol, and at ambient temperature
T = 293 K we get ε = 7.4 · 10−7. At µo = µ̄o = 0 J/mol, the change in volume from the
dry Cd to the swollen state Co is Jd = 77.6, that is, the swollen volume is 77.6 times the
dry volume.

2.2. Active homogeneous gels

The description of the physics of active gels needs one more balance law [10], which,
in the simplest case, govern the state variable Ja, and involves an activation source β
that controls the state evolution.

For active gels, the change in volume Jd is due to both Ω cd and Ja, as already written,
and the gel state is described by Jd and Ja. The evolution of Jd and Ja towards the
thermodynamical equilibrium is governed also by the remodeling time τm = mΩ/RT
other than by τd, with m (J s/m3) the resistance of the gel to remodel. Moreover, active
gels have one more control, the activation source β (J/m3) which drives the changes of
their ground states. This source is meant to represent in our continuum model, that is,
at the macroscale, the effects of the molecular motors acting at the microscale. In the
model, we assume that it evolve towards a final constant value βf which is attained at
the time τβ.
When we look at the solution for t ' τe � τm, τd, the fields Ja and Jd have attained
their thermodynamical equilibrium values. In this situation, it can be shown that the
equilibrium solution of the problem is given by the chemical equilibrium equation (2.12),
rewritten in terms of Je as

F (Je; ε, χ) = µ̄o , (2.14)

1For hd/rd << 1, the characteristic length is determined by hd; on the contrary, for hd/rd >> 1, the
characteristic length is determined by rd.
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and by the balance of remodeling actions2, which can be written as

Ja

(3

2
ε(J2/3

e − 1) + (Je − 1)log
Je − 1

Je
+ χ(1− 1

Je
)− (Je − 1)F (Je; ε, χ)) = β̄ , (2.15)

with β̄ = β/(RT/Ω) the non dimensional activation source. By using (2.14) and (2.15),
this last equation simplifies in

Ja

(3

2
ε(J2/3

e − 1) +
Je − 1

Je

(Je − 1

Je
χ− 1

)
− ε(Je − 1)J−1/3

e

)
= β̄ . (2.16)
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Figure 2: Swelling-contraction diagram. Steady and stress-free states at constant µ̄o lie on the line
Ja = Je Jd with Je determined by µ̄o through equation (2.14)). For µ̄o = −∞ we have Je = 1 and thus
the line Ja = Jd corresponds to dry states. In the diagram, the dry state at Ja = 1 is identified by a
red dot; blue dots identify three free-swollen states on the line µ̄o = 0 maintained by different activation
sources β̄: as an example, S (blue) is the free-swollen state corresponding to µ̄o = 0 and β̄ = βs.

The important class of homogeneous, steady and stress-free states can be represented
in the plane (Jd, Ja) through the swelling-contraction diagram, introduced in [10] and
successively exploited in [11, 12]. These states are controlled by the (dimensionless)
chemical potential µ̄o and activation source β̄: to each pair (µ̄o, β̄) there corresponds
a point (Jd, Ja) in the swelling-contraction diagram. The isolines of (2.14) and (2.16)
yield a clue on the effects of these two controls: the states at constant µ̄o lie on the line
Ja = Jd/Je with Je determined by µ̄o, while the states at constant β̄ lie on a hyperbola
whose asymptotes are the line Ja = 0 and Ja = Jd, represented as a black line in figure
1. For (µ̄o, β̄) → (−∞, 0) we have the line Ja = Jd, corresponding to dry states, with
the change in volume Jd only driven by activation.
Equation (2.16) reveals that, within this continuum model, any swollen state with µ̄o >
−∞ requires a bulk source β̄ 6= 0 to remain steady.

Back to our previous example, equation (2.14) delivers Je = 77.6 when µ̄o = 0. From
equation (2.16), it follows that to maintain Ja = 1 we need β̄ = −8 · 107RT/Ω = −0.5,

2See [10, 11, 12] for details.
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that is, the value corresponding to β̄s in the figure. As expected, we also measure the
same amount of total stored energy in the passive and active gel bodies when Ja = 1
and the visible change in volume Jd is the same. Indeed, given the function

ψ(Jd; ε, χ) =
RT
Ω

(3

2
ε(J

2/3
d − 1) + (Jd − 1)log

Jd − 1

Jd
+ χ

Jd − 1

Jd

)
, (2.17)

which is the energy density per unit dry volume in passive gels suffering volumetric
deformations, when active gels are considered, the energy density ψd is

ψd = Jaψ(Je; ε, χ) , (2.18)

and for Ja = 1 and Je = Jd the two energy densities are the same. The total stored
energy takes the value Ψ ' (−8 · 107)Vd J which is almost completely due to the mixing
part of the free energy. It is worth noting that equation (2.18) says that the value of ψ
changes with Ja: the value of Ψ stored in the deformation process, as well as the final
value Jd of swollen volume, linearly change with Ja.

3. Transient states of homogeneous active gels

We discuss a few issues related to the time evolution of the state of active homoge-
neous gels. The idea is to discuss a few noteworthy solutions of the equations which drive
the evolution of the state of active gels and to send back to the appropriate references
[10, 11, 12] for details about the origin of those equations.
The time evolution of Ja and Jd which describe the state of homogeneous active gels
is driven by a remodeling equation and a diffusion equation, coupled with the balance
of forces equation which is always used in its quasi-static form, that is, neglecting the
contribution of inertial forces.3 Following the style of the previous section, we only focus
on the time rate of active Ja and visible Jd changes in volume.
The time rate J̇a is governed by a remodeling equation which takes the form

τm
J̇a
Ja

= β̄ − Ja
(1

2
(ε(J2/3

e − 3) +
Je − 1

Je

(Je − 1

Je
χ− 1

)
+ p̄
)
, (3.19)

where p̄ is the reactive pressure which maintains the volumetric constraint. On the other
hand, the diffusion equation can be written, by exploiting the volumetric constraint, in
the form

J̇d = J̇a +Ddiv
[
(Jd − Ja)J

−2/3
d ∇(µ̄+ p̄)

]
, (3.20)

where

µ̄ = log
Je − 1

Je
+

1

Je
+

χ

J2
e

. (3.21)

3The derivation of the three equations and the origins of their coupling have been largely discussed
in the papers cited above.
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Finally, the balance of forces must hold at any time and prescribe that the dimensionless
reference Piola-Kirchhoff spherical stress Sd = σI must be balanced, that is,

∇σ̄ = 0 with σ̄ = ε J
1/3
d (J1/3

a − J1/3
d p̄) , (3.22)

under zero boundary traction. The solution (Ja, Jd, p̄) of the problem comes from solving
the equations (3.19)-(3.22) with the appropriate boundary conditions. Assuming free-
embedding of the body in a bath of chemical potential µ̄o, we set

σ̄ = 0 and µ̄+ p̄ = µ̄o , (3.23)

on the boundary ∂Cd, corresponding to have zero traction and assigned chemical poten-
tial, respectively. Finally, initial conditions for the triplet (Ja, Jd, p̄) have to be consid-
ered.4

On the other hand, at equilibrium also J̇d = 0 and we get µ̄+ p̄ equal to a constant value
which is determined by the boundary condition (3.23)2.

Flory parameter χ = 0.4

Water molar volume Ω = 1.8× 10−5 m3/mol

Temperature T = 293K

Resistance to remodeling m = 106 Js/m3

Shear modulus Gd ∈ [103, 105] Pa

Temperature T = 293K

Diffusivity D ∈ [10−4, 10−2] m2/s

Table 1: Values of parameters used in numerical experiments.

Even if homogeneous, the problem is usually numerically solved and we can stress a few
issues by looking at the dependence of the numerical solutions represented in figure 3 on
some key parameters such as the diffusivity D, which determines the time τd, and the
time τβ which determines how fast the activation source gets its final value. The other
parameters have been assigned as in Table 1 with Gd = 103 Pa. Finally, it is assumed
rd = 1.5 mm and hd = 0.4 rd.
Firstly, figure 3 (left) shows as the change in volume Ja (solid lines) due to remodeling

strictly follows the time pattern of the activation source5 β̄ (marked lines), independently
on τβ which is chosen equal to 5·102 s (blue), 5·103 s (green) and 5·104 s (red). Actually,
if we introduce the dimensionless time τ = t/τβ and rewrite equation (3.19) as

τm
τβ

d

dτ
Ja = Jaβ̄ − J2

a

(1

2
(ε(J2/3

e − 3) +
Je − 1

Je

(Je − 1

Je
χ− 1

)
+ p̄
)
, (3.24)

4It is worth noting that equation (2.16) comes from the equation (3.19) assuming that J̇a = 0 and

p̄ = ε J
−1/3
e , as a consequence of the equations (3.23) and (3.22).

5Note that there are two different vertical scales in the panel.
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Figure 3: Effects of remodeling time τβ (measured in hours) at constant diffusivity D = 10−3 m2/s.
Left) Ja (solid) and β̄ (markers) versus time for three values of τβ : τβ = 5 · 102 s (blue), τβ = 5 · 103 s
(green) and τβ = 5 · 104 s (red); the remodeled volume Ja is superimposed to the remodeling action β̄
for each value of τβ . Right) Jd (solid) and β̄ (markers) versus time for three values of τβ : the evolution
of the swollen volume Jd might have a delay due to the diffusion of the solvent within the gel. For both
plots, values of β̄ are at right y-axis.

we note that when we look at the solution for t� τe and τm/τβ << 1, we can approxi-
mate the dynamical process governed by the equation (3.24) as a sequence of equilibrium
states by assuming τm/τβdJa/dτ ' 0. The sequence of equilibrium problems we solve is
controlled by β̄ and says that, at any time, the active change in volume Ja ∝ β̄ with the
proportionality factor depending on the solution (Je, p̄) of the equations (3.20)-(3.22).
This is exactly what figure 3 shows, as in our case τm/τβ varies from 10−6 (for τβ = 5·102

s) to 10−8 (for τβ = 5 · 104 s).
Secondly, figure 3 (right) shows that the time evolution of Jd (solid lines) is slightly
delayed with respect to the time evolution of β̄, even if the delay is more evident when
τβ is smaller. On the other hand, figure 4 (left) shows as for τβ = 5 · 103 s, the delay
decreases if the diffusivity constant increases, so decreasing the diffusion time τd. Indeed,
a qualitative analysis of the equation (3.20) says that the time evolution of Jd is damped
with respect to Ja by the diffusion which is less effective in case of fast diffusion, as the
second addend in the right side of the equation (3.20) shows.

Finally, figure 4 (right) shows as following the curve Ja versus Jd in the swelling-
contraction diagram during the time evolution, we can go from an initial state (Jao =
1, Jdo = 303) towards the final state (0.5, 150) following an equilibrium path (red line)
for high values of τβ (τβ = 5 · 104 s) or staying far (green line) or very far (blue line)
for medium values of τβ (τβ = 5 · 103 s) and for small values of τβ (τβ = 5 · 102 s),
respectively.
In any case, the final state is not affected by the time rate of the activation source but
only by its final value which is taken always equal to β̄f .

3.1. Time-rate dependent final state

Following the evolution of the changes in volume Ja and Jd does not explain how
active gels can get final states, which depend on the time-rate of the activation source.
To discuss this delicate point, which makes the active gel like a material with memory
of the load (activation source) history, it is mandatory to exploit the evolution of the
growth tensor Fa and not only of its volumetric component determined by Ja.
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Figure 4: Effects of diffusivity D at constant τβ = 5 ·102 s. Left) Jd (solid) and β̄ (markers) versus time
for three values of diffusivity D: D = 1 · 10−4 m2/s (blue), D = 1 · 10−3 m2/s (green) and D = 1 · 10−2

m2/s (red); the smaller the diffusivity, the larger the delay between the remodeling action β̄ and the
swollen volume Jd. The values of β̄ are at right y-axis. Right) Swelling-contraction diagram showing Ja
versus Jd during the time evolution for three different values of diffusivity D. The smaller the diffusivity,
the larger the difference between the actual paths (solid) and the stress-free path (dashed) represented
by a straight line joining the initial state to the final one.

We stress the issue with reference to the circular gel disk Cd which is activated and
swell under axisymmetric cylindrical conditions.6 Under these hypotheses, we assume
u = (ur, 0, uζ). Moreover, the deformation tensor Fd and the stress tensor Sd take in
the cylindrical basis the form:

Fd =


1 + ur,r 0 ur,ζ

0 ur
r 0

uζ ,r 0 uζ ,ζ

 and [Sd] =


Srr Srθ Srζ

0 Sθθ 0

Sζr Sζθ Sζζ

 . (3.25)

u = (ur, 0, uζ) According to the axisymmetric cylindrical hypothesis and taking into
account the issues discussed in [14], we assume the following symmetric representation
of the growth tensor Fa:

7

Fa =


γr 0 γrζ

· γθ 0

· · γζ

 . (3.26)

The choice (3.26) corresponds to assume that the rotational component Ra of Fa, de-
livered by the polar decomposition of Fa, is equal to the identity and Fa ≡ Ua. and the
symmetric field Fa has a cylindrical axisymmetric form. Under these assumptions, the
balance equations of forces take the form

Srr,r +
(Srr − Sθθ)

r
+ Srζ ,ζ = 0 and Sζζ ,ζ +Sζr,r = 0 . (3.27)

6For details, look at Refs.[10, 11, 12].
7The moltiplicative decomposition of the deformation gradient in an elastic and an inelastic (here,

active) active component has been largely discussed in the Literature, as it hids an indeterminacy issue
about the contracted reference state (see [15, 16, 17, 18, 19].
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On the other hand, the solvent flux hd = (hr, 0, hζ) and the balance of solvent mass
takes the form

ċd = −(hr,r +
hr
r

+ hζ ,ζ ) . (3.28)

Finally, the symmetric component of the remodeling balance equation is considered

MDa = βI− Ê with Da = sym (ḞaF
−1
a ) , (3.29)

which deliver 4 not trivial equations which govern the evolution of the scalar components
(γr, γθ, γζ , γrζ). It holds:

Da =


γrζ γ̇rζ−γ̇rγζ
γ2rζ−γrγζ

0
−γ̇rζ(γr+γζ)+γrζ(γ̇r+γ̇ζ)

2(γ2rζ−γrγζ)

· γ̇θ
γθ

0

· 0
γrζ γ̇rζ−γr γ̇ζ
γ2rζ−γrγζ

 =


Dr 0 Drζ

· Dθ 0

· 0 Dζ

 . (3.30)

Finally, the Eshelby tensor can be written as

Ê = (Ja(ψm + ψc)− cdµ)I− 2JaS
M . (3.31)

Then, assuming that M = mI, we get the 4 evolution equations in the form:

mDr = β − (Ja(ψm + ψc)− cdµ)− 2JaS
M
r ,

mDθ = β − (Ja(ψm + ψc)− cdµ)− 2JaS
M
θ ,

mDζ = β − (Ja(ψm + ψc)− cdµ)− 2JaS
M
ζ ,

mDrζ = −2JaS
M
rζ . (3.32)

These equations are supplemented by boundary mechanical and chemical conditions
which prescribe

Sdm = 0 and µ(Je) + pΩ = µo , (3.33)

respectively, on the boundary ∂Cd. Finally, the initial conditions are: Fa = I, cd =

(Jdo − 1)/Ω, ur = (J
1/3
do − 1)r, uζ = (J

1/3
do − 1)ζ.

3.2. Slow versus fast remodeling

We study the active swelling dynamics of a circular gel disk Cd with dry-reference
radius rd = 1.5 mm and thickness hd = 0.4 rd; materials parameters are those in Table
1, with Gd = 103 Pa.

In our experiment, we assume as initial state a free-swelling state with Jd = 303 and
Ja = 1, which is steady with µ̄o = 0 and β̄ = β̄0 = −0.60. The remodeling is initiated
by changing the value of the external remodeling source according to the law

β̄(t) = β̄0 + (β̄f − β̄0) s(t/τβ), (3.34)
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with s(.) a smoothed step function such that s(0) = 0, and s(1) = 1. The final value
of the remodeling source is set to β̄f = −0.18, corresponding to Ja = 0.3 and Jd = 90.
During the evolution, solvent is exchanged with the environment.
To explore the effect of the remodeling on the final state of the contracted gel, we consider
a slow activation with τβ = 5 · 103 s, and a fast one with τβ = 50 s.
The slow activation yields a contraction which is almost homogeneous and stress-free; the
tensor Fa remains almost diagonal, that is Fa ' γ I, with γr ' γθ ' γz ' γ and γrz ' 0.
This behavior can be appreciated in figure 5. In figure 5, left, we see the time evolution
of Jd (solid, green), which shows a small delay with respect to the time evolution of β̄
(dashed, green, markers). In the right panel, we show the swelling-contraction diagram;
therein, the path (Jd, Ja) (solid, green) is close to the straight line representing the
stress-free path (dashed, black); the three components γr, γθ, γz maintains the same
values during the evolution (dashed, green, markers).
The fast activation yields a contraction which is far from homogeneous and quite stressed;
while γrz ' 0, the three diagonal components of Fa have different values during the
evolution. In figure 5, left, we see that time evolution of Jd (solid, blue) has a large
delay with respect to the time evolution of β̄ (dashed, blue, markers). In the right
panel, the path (Jd, Ja) (solid, blue) is distant to the stress-free path (dashed, black);
the three components γr, γθ, γz have different values during the evolution (dashed, blue,
markers). The final shapes of the gel are shown in figure 6 for fast, panel a) and c),
and slow, panel b) and d) remodeling time τβ. Colour code refers to γζ values in the
panels a) and b) and to Jd in the panels c) and d). It can be appreciated from the figure
how the not isotropic evolution of the remodeling tensor, evidenced in the right panel
of figure 5, yields a not uniform final state. A noteworthy finding is that both the final
states which correspond to a slow or a fast time τβ are stress-free.

Figure 5: Left) Average Jd (solid) and β̄ (dashed) versus time for fast (blue) and slow (green) remodeling
time τβ . Under fast remodeling, the swollen volume Jd lags behind the remodeling action β̄. Right)
Swelling-contraction diagram showing average Ja versus average Jd (solid) during the time evolution for
fast (green) and slow (blue) remodeling time τβ ; the diagram shows also the path of the diagonal terms
(averaged) of Fa: γr (dashed, circle) γθ (dashed, triangle), γz (dashed, square). The slow path is close
to the stress-free straight line (dashed, black) and the remodeling is almost isotropic. For both plots:
values of β̄ are at right y-axis; τβ = 50 s (blue), τβ = 5 · 103 s (green); D = 10−3 m2/s.
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a) b) c) d)

Figure 6: Final shapes of the disk corresponding to a fast a) and c) and to a slow b) and d) remodeling.
Left) colour code refers to γζ values. Right) colour code refers to Jd values. For fast remodeling, τβ = 50
s; for slow remodeling, τβ = 5 · 103 s.

4. Extreme deformation of active gels under not uniform activation

Combining active gel disks differently activated, we can produce shapes that largely
differ from those corresponding to the disks homogeneously activated discussed in the
previous sections. To evidence the combined effects of swelling and remodeling on the
morphing, we study both soft and hard gel disks. We study the active swelling dynamics
of a thin disk Cd, fixing rd = 1.5 mm and hd = 0.05 rd. The departure from the initial
free-swelling state is produced by choosing a change in the bulk activation source only
in the half bottom layer. Two different cases are studied: the first corresponds to an
impermeable hard disk with Gd = 105 Pa which actively expands in the half bottom
region; the second is a permeable soft disk with Gd = 103 Pa which actively contracts
in the half bottom region. The diffusivity D = 10−3 m2/s and the remodeling time
τβ = 1500 s is the same for the two layers. The other materials parameters are those in
Table 1.

The remodeling is initiated by changing the value of the external remodeling source

a

b

c 
d

a) b)

c) d)

Figure 7: Hard disk under expansion at bottom half. Left) Average Jd (solid, blue) and activation
source β̄b probed at bottom (marked, green) versus time. Right) Snapshots of the shape at different
stages during the evolution: t = 25s (a), t = 50s (b), t = 100s (c), and t = 250s (d), (right); color code
refers to the swollen volume Jd.

according to the law β̄(t, z) = β̄(t) sz((z − hd/2) 10/hd), with β̄(t) given by (3.34) and
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sz(.) a smoothed step function.
In the first case study, the initial condition of the hard disk is a stress-free swelling state
with Jd = 20.8 and Ja = 1, which is steady with µ̄o = 0 and β̄ = β̄o = −0.59. The final
value of the remodeling source is β̄ = β̄f = −1.78, corresponding to a target final Ja = 3.
The boundary is assumed not permeable, thus, during the evolution solvent cannot be
exchanged with the environment; due to remodeling, solvent migrates from the passive
top layer to the active bottom layer.
Figure 7 shows the shape change of the disk under the active expansion of the bottom
layer to Ja = 3. The left panel shows the time-course of the average swollen volume
Jd (solid, blue) and activation source β̄ probed at the bottom half of the disc (marked,
green). The two paths are superimposed, meaning that the remodeling is slow with
respect to diffusion characteristic time. The right panel shows snapshots of the current
configuration at t = 25 s (a), t = 50 s (b), t = 100 s (c), and t = 250 s (d). Expansion
at the bottom drains solvent from the top half, which is drying, to the bottom half that
increases its solvent content; the colour code refers to the swollen volume Jd, with red
corresponding to more dry and blue to more wet. The incompatibility of the remodeling
yields a curved dome-like shape, having higher curvature at the periphery. A noteworthy
finding is that the final shape is steady and stress-free.
In the second case study, the initial condition of the soft disk is a stress-free swelling
state with Jd = 303 and Ja = 1, which is steady with µ̄o = 0 and β̄ = β̄o = −0.60. The
final value of the remodeling source is β̄ = β̄f = −0.30, corresponding to a final target
Ja = 0.5. The boundary is assumed permeable, thus, during the evolution solvent can
be exchanged with the environment.
Figure 8 shows shape change of the disk under the active contraction of the bottom layer
toJa = .5. The left panel shows the time-course of the average swollen volume Jd (solid,
blue) and activation source β̄ probed at the bottom half of the disc (marked, green).
The right panel shows snapshots of the current configuration at t = 500 s (a), t = 1000
s (b), t = 1500 s (c), and t = 2000 s (d). Contraction at the bottom expels solvent from
this region, which is drying; meanwhile, the top half increases its solvent content; the
colour code refers to the swollen volume Jd, with red corresponding to more dry and
blue to more wet. As in the previous case, the incompatibility of the remodeling yields a
curved dome-like shape, having higher curvature at the periphery. Also in this case, the
final shape is steady and stress-free. Let us note that these solutions have been obtained
under the hypothesis of cylindrical symmetry; we expect that a fully 3D solution would
exhibit an hyperbolic shape instead of a parabolic one.

5. Conclusions

Active gels have all the noteworthy characteristics of the gels plus the capability
to remodel their networks when appropriately activated, as shown in [8]. Typically,
the double-active nature of these gels, which can change their shape due to growth-
by-diffusion and growth-by-activity, makes the morphing capabilities extremely wider if
compared with standard gels.
This work explore the morphing of soft active gel disks under uniform and not uniform
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a) b)

c) d)

a

b

c d

Figure 8: Soft disk under contraction at bottom half. Left) Average Jd (solid, blue) and activation
source β̄b probed at bottom (marked, green) versus time. Right) Snapshots of shape at different stages
during the evolution: t = 500s (a), t = 100s (b), t = 1500s (c), and t = 2000s (d); color bar is the swollen
volume Jd.

actuation, by setting up a series of numerical experiments which highlight a few key
performances of the gels. As it has been shown, many parameters affect the morph-
ing. In particular, the focus here has been on the remodeling time which depends on
the time rate of the bulk activation source and may affect the final state of the active gels.
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