
A variable neighbourhood search

for fast train scheduling and routing

during disturbed railway traffic situations

Marcella Samà 1, Andrea D’Ariano 1∗, Francesco Corman2, Dario Pacciarelli 1

November 3, 2015

1 Roma Tre University, Department of Engineering, Section of Computer Science and Automation, via della

Vasca Navale, 79 – 00146 Rome, Italy. * Corresponding author email: dariano@ing.uniroma3.it

2 Delft University of Technology, Department of Maritime and Transport Technology, Section of Transport

Engineering and Logistics, Mekelweg, 2 – 2628CD Delft, The Netherlands.

Abstract

This paper focuses on the development of metaheuristic algorithms for the real-time traffic management

problem of scheduling and routing trains in complex and busy railway networks. This key optimization

problem can be formulated as a mixed integer linear program. However, since the problem is strongly

NP-hard, heuristic algorithms are typically adopted in practice to compute good quality solutions in a

short computation time. This paper presents a number of algorithmic improvements implemented in the

AGLIBRARY optimization solver in order to improve the possibility of finding good quality solutions quickly.

The optimization solver manages trains at the microscopic level of block sections and at a precision of seconds.

The solver outcome is a detailed conflict-free train schedule, being able to avoid deadlock situations and to

minimize train delays. The proposed algorithmic framework starts from a good initial solution for the

train scheduling problem with fixed routes, obtained via a truncated branch-and-bound algorithm. Variable

neighbourhood search or tabu search algorithms are then applied to improve the solution by re-routing some

trains. The neighbourhood of a solution is characterized by the set of candidate trains to be re-routed and

the available routes. Computational experiments are performed on railway networks from different countries

and various sources of disturbance. The new algorithms often outperform a state-of-the-art tabu search

algorithm and a commercial solver in terms of reduced computation times and/or train delays.

Keywords: Real-Time Railway Traffic Management; Train Scheduling and Routing; Alternative Graph;

Disjunctive Programming; Branch-and-Bound; Variable Neighbourhood Search; Tabu Search.

1

1 Introduction

In the last years, European railway companies are experiencing increasing difficulties to face the ever increas-

ing transport demand while ensuring good quality of service to passengers, also due to the limited space and

funds to build new infrastructure in bottleneck areas. These facts stimulated the interest for new effective

Operations Research (OR) solutions for real-time train scheduling. This problem is faced by dispatchers,

which have to modify orders, passing times and routes of trains (on-line train dispatching problem) in order

to counter delays and keep traffic smooth.

In the train scheduling literature, there is a well-known difference between the level of sophistication of

the theoretical results and algorithms and that of the methods that are employed in practice. While the

theory typically address simplified problems, achieving optimal or near-optimal performance, the practice

must face all the complexity of real-time operations, often with little attention to the performance level.

This difference is especially evident for real-time scheduling, and train scheduling is not an exception. As a

result, the poorly performing scheduling methods that are used in practice has a direct impact on the quality

of service offered to the passengers, and the negative effects of disruptions on the regularity of railway traffic

may last for hours after the end of the disruption (Kecman et al. [32]). However, there are recently many

signals that the scheduling gap could be drastically reduced in the next few years. On the theoretical side,

recent approaches to train scheduling tend to incorporate an increasing level of detail and realism in the

models while keeping the computation time of the algorithms at an acceptable level. On the practical side,

the railway industry is interested in assessing the suitability of these methods to the practical needs of

real-time railway traffic management.

The design and implementation of advanced mathematical models is a prerequisite to the development of

innovative decision support systems for solving the on-line train dispatching problem. This paper is concerned

with the modeling of the conflict detection and resolution (CDR) problem for railway networks. The CDR

problem is the real-time problem of computing a conflict-free and deadlock-free schedule compatible with

the actual status of the network and such that the circulating trains arrive and depart with the smallest

possible delay. To solve the CDR problem, a number of algorithmic improvements are implemented in the

AGLIBRARY solver, a set of OR-based models and algorithms for complex practical scheduling problems

developed at Roma Tre University. This solver is the main solution engine of the ROMA dispatching support

system [22], used for instance in the EU project ON-TIME [20]. The solver is based on the alternative graph

model introduced by Mascis and Pacciarelli [38] and on the following framework: a good initial solution

for the scheduling problem with fixed routes is computed by the (truncated) branch-and-bound algorithm

in [25]. Metaheuristics are then applied to improve the solution by re-routing some trains. This action

corresponds to the concept of a move, from a metaheuristics perspective. In [13], a tabu search algorithm

has been applied to solve practical-size railway instances for a Dutch test case in the Netherlands.

Previous research left open a number of relevant algorithmic issues. The first issue concerns the extent

at which different search strategies and alternative solution methods might outperform the tabu search algo-

2

rithm. A second issue is to quantify the algorithmic improvements, looking at a reduction of the computation

time and at an improvement of solution quality. Both these issues motivate the development of the new

metaheuristics proposed in this paper. The paper contributions are next outlined:

• We present routing neighbourhoods that differ from each other for the set of candidate trains to be

re-routed in each move and for the available routing alternatives.

• We alternate the search for promising moves via systematic changes of a combination of neighbourhood

structures, similarly to Moreno Pérez et al. [41], and present strategies for searching within these

neighbourhoods based on variable neighbourhood search schemes [30].

• We use fast train scheduling heuristics for the evaluation of each neighbour.

• We apply the proposed algorithms to the management of complex CDR problems, characterized by busy

traffic, multiple delayed trains and temporarily disrupted railway resources. The new metaheuristics are

compared with a state-of-the-art tabu search algorithm [13] and with a commercial solver. Significantly

better results are obtained in terms of a reduced time to compute the best-known (sometimes proven

optimal) solutions, and for some CDR instances also in terms of an improved solution quality.

• We evaluate the algorithms over various real-world test cases, which feature different railway network

characteristics and traffic flows.

Section 2 gives an overview of the literature related to the real-time railway traffic management. Section

3 formally defines the CDR problem and Section 4 presents mathematical formulations for this problem.

Section 5 describes the algorithms of AGLIBRARY and the new metaheuristics proposed in this paper.

Section 6 reports on the performance of the algorithms on various practical case studies from Italy, the

Netherlands and UK. Section 7 summarizes the main paper findings and outlines future research directions.

An appendix illustrates the neighbourhoods investigated in this work with a numerical example.

2 Literature review

The study of real-time train scheduling and routing problems received increasing attention in the literature

in the last years. Early approaches (starting from the pioneering work of [50]) tend to solve very simplified

problems that ignore the constraints of railway signalling, and that are only applicable for specific traffic

situations or network configurations (e.g. a single line or a single junction), see the literature reviews in the

following papers: Ahuja et al. [1]; Cacchiani et al. [5]; Cordeau et al. [10]; Fang et al. [29]; Hansen and Pachl

[31]; Lusby et al. [36]; Meng and Zhou [40]; Pellegrini and Rodriguez [44]; Pellegrini et al. [43]; Törnquist

and Persson [51]. Among the reasons for this gap between early theoretical works and practical needs are the

inherent complexity of the real-time process and the strict time limits for taking and implementing decisions,

which leave small margins to a computerized Decision Support System (DSS).

3

Effective DSSs must be able to provide the dispatcher with a conflict-free disposition schedule, which

assigns a travel path and a start time to each train movement inside the considered time horizon and,

additionally, minimizes the delays (and possibly the main broken connections) that could occur in the

network. The main pre-requisite of a good DSS is the real-time ability to deal with actual traffic conditions

and safety rules for practical networks. In other words, the solution provided by a DSS must be feasible in

practice, since the human dispatcher may have not enough time to check and eventually adjust the schedule

suggested by the DSS. A recognized approach to represent the feasibility of a railway schedule is provided by

the blocking time theory, acknowledged as standard capacity estimation method by UIC in 2004 (Hansen and

Pachl [31]), which represents a safe sequence of train movements in the railway network with the so-called

blocking time stairways.

With the blocking time theory approach, the schedule of a train is individually feasible if a blocking time

stairway is provided for it, starting from its current position and leaving each station (or each other relevant

point in the network) not before the departure time prescribed by the timetable. A set of individually feasible

blocking time stairways (one for each train) is globally feasible if no two blocking time stairways overlap.

The timetable prescribes the set of trains that are expected to travel in the network within a certain time

window, the stops for each train and a pair of (arrival, departure) times for each train and each stop. At

other relevant points (e.g. at the exit from the network or specific relevant points between two consecutive

stations) can be defined minimum and/or maximum pass through times.

Many models and algorithms for train re-scheduling have already been proposed in the literature, but only

a few of them with successful application in practice. So far, the most successful attempt in the literature

to incorporate the blocking time theory in an optimization model is based on the alternative graph model

introduced by Mascis and Pacciarelli [38]. This model is a generalization of the disjunctive graph for job

shop scheduling, in which each operation denotes the traversal of a resource of the network by a job (train).

Effective applications to real-time train scheduling are described in D’Ariano et al. [25], Mannino and

Mascis [37], Mazzarello and Ottaviani [39]. However, other promising approaches have been provided in the

literature, either based on mathematical formulations (Cadarso and Maŕın [3]; Caimi et al. [7]; Lamorgese

and Mannino [34]; Pellegrini et al. [43]; Rodriguez [46]; Şahin [47]; Törnquist and Persson [51]; Wegele et

al.[54]) or on algorithmic approaches (Almodovar et al. [2], Cai and Goh [6]; Cheng [8]; Chiu et al. [9]; Liu

and Kozan [35]; Törnquist Krasemann [52]; Wegele and Schnieder [53]). Another important aspect when

dealing with rail operations is the passenger behaviour (Cadarso et al. [4]; Corman et al. [19]; Dollevoet et

al. [28]; Kroon et al. [33]), even if this latter aspect is not considered explicitly in this paper.

The alternative graph model allows to directly model the individual and global train schedule feasibility

concepts expressed by the blocking time theory. This enables the detailed recognition of timetable conflicts

in a general railway network with mixed traffic for a given look-ahead horizon, even in presence of heavy

disturbances and network disruptions. Several later studies have confirmed the ability of the model to take

into account different practical needs, such as train priorities (Corman et al. [11]), energy consumption issues

4

(Corman et al. [12]), passenger and rolling stock transfer connections (Corman et al. [15]; D’Ariano et al.

[23]), train re-routing (Corman et al. [13]; D’Ariano et al. [23]), management of complex and busy stations

(Corman et al. [17, 18]), traffic coordination between dispatching areas (Corman et al. [14, 16]). Clearly, an

alternative graph model of the CDR problem can be easily translated into a mixed integer program, and then

solved with a commercial or academic software. However, the CDR problem is inherently strongly NP-hard,

so it is often not possible to compute a feasible solution quickly via any commercial software for practical-

size CDR instances. Such NP-hard problems are typically solved via heuristic algorithms, that enable the

computation of good quality solutions in a computation time compatible with real-time operations.

This paper presents a number of algorithmic improvements implemented in the AGLIBRARY optimiza-

tion solver in order to improve the possibility of finding good quality solutions quickly. A set of specialized

algorithms based on the alternative graph model is included in AGLIBRARY. This re-scheduling system

includes solution algorithms ranging from fast heuristic procedures that can be chosen by the user to so-

phisticated branch-and-bound algorithms for train scheduling [25] or metaheuristics for train re-routing

[13, 16, 23]. AGLIBRARY has been tested on various railway networks managed by the Dutch infrastruc-

ture manager ProRail (the railway networks Leiden-Schiphol-Amsterdam; Utrecht-Den Bosch; Utrecht-Den

Bosch-Nijmegen-Arnhem), by the British infrastructure manager NetworkRail (part of the east coast main-

line nearby London) and by the Italian infrastructure manager RFI (the regional line Campoleone-Nettuno),

even if in principle the software can tackle any national or international traffic management system stan-

dard. AGLIBRARY has also been used in other application contexts, including steelmaking-continuous

casting production scheduling [42], real-time air traffic scheduling and routing at a terminal control area

[24, 26, 48, 49], real-time management of containers at a container terminal [21, 55].

The new AGLIBRARY algorithms proposed in this paper can be potentially applied to improve the

results obtained both in railway traffic management and in the other application contexts. However, the

algorithmic structures and parameters would need to be customized for each particular railway network

and test case from other application fields. This work is focused on the customization and application of

the new algorithms to solve the CDR problem in various railway networks, including issues related to the

management of complex station areas, connection constraints, train re-scheduling and re-routing variables.

The new algorithms are compared with previously-published algorithms and with a commercial solver.

3 Problem definition

Signals, interlocking and Automatic Train Protection (ATP) systems control the train traffic by imposing

safety constraints between trains, setting up train routes and enforcing speed restrictions on running trains.

Fixed block ATP systems ensure safety through the concept of block section, a part of the infrastructure

that is exclusively assigned to at most one train at a time. Train movements can be modeled by a set of

characteristic times, as follows. The running time of a train on a block section starts when its head (the first

5

axle) enters the block section and ends when the head of the train reaches the end of the block section.

Safety regulations impose a minimum separation between consecutive trains traveling on the same block

section, which translates into a minimum headway time between the start of the running times of two

consecutive trains on the same block section. This time depends on the length of the block section, as well

as on other factors like the speed and length of the trains and includes the time between the entrance of the

train head in a block section and the exit of its tail (the last axle) from the previous one, plus additional

time margins to release the occupied block section and to take into account the sighting distance.

Proactive re-scheduling of railway traffic must take into account several facts. The network is composed

by block sections and platform stops at stations. A train is not allowed to depart from a platform stop

before its scheduled departure time and is considered late if arriving at the platform later than its scheduled

arrival time. At a platform stop, the scheduled stopping time of each train is called dwell time.

Disturbances affect rail traffic. We can distinguish between light traffic perturbations from neighbouring

dispatching areas and heavy traffic disruptions. The former are light disturbances caused by a set of delayed

trains in a dispatching area, while the latter are much stronger disturbances of the scheduled times and routes

(e.g. due to some block sections being unavailable for a certain amount of time). Other kinds of disturbances

include extensions to dwell times due to passengers boarding, connection constraints, or technical problems;

and running time prolongation because of headway conflicts between trains or technical failures.

Moreover, the railway infrastructure is increasingly becoming utilised, towards a saturation level. This

results in a strong sensitivity to initial delays, which are due to breakdowns, failures, extended dwell time

at stations due to passengers; those phenomena are almost unavoidable. In saturated networks, those initial

delays are particularly hard to be managed, and easily generate knock-on (or consecutive) delays which

spread over the network in time and space, affecting more trains.

Delays propagate between trains when solving potential conflicting routes. Namely, a potential conflict

between two trains arises if the trains request a same block section within a time interval smaller than

the minimum time headway between them, which is needed for safety reasons and smooth running. The

solution of the potential conflict is to fix the order of trains over the block section; in that case, one of

the approaching trains might be forced to decelerate and thus experiencing a knock-on delay. Unscheduled

braking and stopping of trains increases the running time and may cause an additional delay. Similarly,

trains can be held at stations due to unavailability of outbound routes, or conversely prevented to enter

stations as far as platforms and inbound routes are not available. In general, delays may propagate to other

trains causing a domino effect of increasing traffic disturbances.

The conflict detection and resolution (CDR) problem studied in this paper can be defined as follows: given

a railway network, a set of train routes and passing/stopping times at each relevant point in the network,

and the position and speed of each train being known at a given starting time t0 of traffic prediction, find

an optimized plan of operations that solves all potential conflicts between trains, does not result in deadlock

situations (i.e. a set of trains that are circularly waiting for each other, making any planned movement

6

impossible), it is compatible with initial positions of trains, and such that the selected train timing, ordering

and routing decisions are feasible, no train appears in the network before its expected entrance time (including

the initial delays), no train departs from a relevant point before its scheduled departure time, and trains

arrive at the relevant points with the smallest possible consecutive delay.

4 Problem formulation

The CDR problem is characterized by train routing and scheduling decisions. The general problem can

thus be divided into two sub-problems: (i) the selection of a route for each train, and (ii) the scheduling

decisions once the routes have been fixed for each train. This section describes the problem decomposition

in scheduling and routing variables. The general alternative graph model is given for the CDR problem

with fixed routes. A Mixed Integer Linear Programming (MILP) formulation is proposed for the alternative

graph model. An extended MILP formulation is then given for the overall CDR problem. Binary variables

are introduced both for the train scheduling and routing decisions. An illustrative example of the alternative

graph model is reported in the appendix of this paper.

4.1 Alternative graph model

The alternative graph (AG) generalizes the classical disjunctive graph in order to take into account con-

straints arising in real-world scheduling applications. Regarding the CDR problem, AG allows to easily

and efficiently check the feasibility of a train scheduling solution (all operations are to be processed with

no deadlock and conflict situations), as well as the quality of a train scheduling solution (the maximum

consecutive delay collected at each relevant location). The CDR problem is based on fixed and alternative

constraints.

Fixed constraints model the individual feasibility of a train schedule, i.e. the blocking time stairway. A

timing variable is associated to the entrance of each train in each resource (block section, platform of station

route). The schedule is individually feasible if the entrance in a resource is at least a sufficient amount of time

after the entrance in the former resource, respecting all the safety and operational constraints. Assuming

that the route of a train has been fixed, if at the current time the train occupies a certain resource, it cannot

enter the next resource in its route before the time needed to traverse the remaining part of the current

resource. Since the timetable prescribes a departure (or a pass through) time for the train at each relevant

point in its route, the train cannot enter the next resource of the route before a minimum prescribed time.

Alternative constraints model the global feasibility of a set of blocking time stairways (one for each

circulating train). Given a resource traversed by two trains, the second train cannot enter the resource

before the entrance time of the previous train plus its blocking time, i.e. the time interval in which the

resource is reserved for the first train. If a precedence constraint has not been fixed between the two trains

on that resource (either by the timetable, or the dispatcher, or the physical network topology), then two

7

orderings are possible and one of them has to be chosen in a train scheduling solution. This fact is represented

in the alternative graph by a pair of alternative constraints, one of which must be chosen in a solution.

The AG formulation of the CDR problem with fixed routes (i.e. in which the route is prescribed and

cannot be changed) is a triple G = (N,F,A) where N = {0, 1, ..., n− 1, n} is a set of n+ 1 nodes, F is a set

of fixed directed arcs and A a set of pairs of alternative directed arcs.

Each node, except the start 0 and end n nodes, is associated with the start of an operation krj, where k

indicates the train, r the route chosen and j the resource it traverses. The start time tkrj of operation krj

is the entrance time of train k with route r in resource j.

The fixed arcs are used to model running, dwell, connection, arrival, departure, and pass through times

of trains. Let the resources p and j be two consecutive resources processed by train k with route r, the fixed

arc (krp, krj) ∈ F models a job constraint between the nodes krp and krj. The weight wF
krp krj represents

a minimum time constraint between tkrp and tkrj : tkrj − tkrp ≥ wF
krp krj . A fixed arc (umv, krz) ∈ F

is used to enforce a connection constraint between train k with route r and train u with route m, i.e.

tkrz − tumv ≥ wF
umv krz .

The alternative arcs are used to model the headway times between two consecutive trains. Each pair

of alternative arcs ((krj, ump), (umi, krp)) ∈ A models train ordering decisions between train k with route

r and train u with route m on resource p. Note that j [respectively i] is the next resource processed by

train k [u] when using route r [m]. The two arcs of the pair are associated with the weights wA
krj ump and

wA
umi krp. In any solution, only one arc of each pair can be selected. If alternative arc (krj, ump) [(umi, krp)]

is selected in a solution, the constraint tump − tkrj ≥ wA
krj ump [tkrp − tumi ≥ wA

umi krp] has to be satisfied.

This corresponds to fixing the order of trains, first k and then u [first u and then k].

A solution to the CDR problem with fixed routes is represented by the following graph structure. A

graph selection S is a set of alternative arcs obtained by selecting exactly one arc from each alternative pair

in A and such that the resulting graph G(F, S) = (N,F ∪ S) does not contain positive weight cycles. This

allows to associate train orders and times to all operations.

The objective function is the minimization of the maximum consecutive delay, i.e. the largest positive

deviation from the scheduled times at relevant locations. In the alternative graph, the maximum consecutive

delay minimization is measured as a makespan minimization. Given a selection S and any two nodes krp

and uml, we let lS(krp, uml) be the weight of the longest path from krp to uml in G(F, S). By definition,

the start time tkrp of krp ∈ N is the quantity lS(0, krp), which implies t0 = 0 and tn = lS(0, n).

To summarize, the alternative graph model corresponds to the following mathematical formulation:

min tn

s.t. tkrj − tkrp ≥ wF
krp krj (krp, krj) ∈ F

tkrz − tumv ≥ wF
umv krz (umv, krz) ∈ F

(tump − tkrj ≥ wA
krj ump) ∨ (tkrp − tumi ≥ wA

umi krp) ((krj, ump), (umi, krp)) ∈ A

(1)

8

4.2 MILP formulations

A natural mathematical formulation of the CDR problem with fixed routes can be obtained from the alterna-

tive graph formulation (1) by translating each alternative pair into a pair of constraints and by introducing

a binary variable representing the choice of one of the two constraints. The CDR problem with fixed routes

can be viewed as a particular disjunctive program.

min tn

s.t. tkrj − tkrp ≥ wF
krp krj (krp, krj) ∈ F

tkrz − tumv ≥ wF
umv krz (umv, krz) ∈ F

tump − tkrj ≥ wA
krj ump +Mx(krj,ump),(umi,krp) ((krj, ump), (umi, krp)) ∈ A

(tkrp − tumi ≥ wA
umi krp +M(1− x(krj,ump),(umi,krp)) ((krj, ump), (umi, krp)) ∈ A

x(krj,ump),(umi,krp) ∈ {0, 1}

(2)

The variables are the following: |N | real variables tkrj associated to the start time of each operation krj ∈

N , and |A| binary variables x(krj,ump),(umi,krp) associated to each alternative pair ((krj, ump), (umi, krp)) ∈

A. The constant M is a sufficiently large number, e.g. the sum of all arc weights.

We model the variables and constraints of the CDR problem for the different routes of each train as

follows. The formulation (2) can be extended to the problem with routing flexibility by enlarging sets N ,

F and A to contain all possible train routes. In addition to the |N | + |A| variables of the CDR problem,

|C| binary variables y are associated to the routes of the set of trains considered. The CDR problem with

routing flexibility can also be viewed as a particular disjunctive program.

min tn

s.t. tkrj − tkrp ≥ wF
krp krj +M(1− ykr) (krp, krj) ∈ F

tkrz − tumv ≥ wF
umv krz +M(2− yum − ykr) (umv, krz) ∈ F

tump − tkrj ≥ wA
krj ump +M(2− yum − ykr)

+Mx(krj,ump),(umi,krp) ((krj, ump), (umi, krp)) ∈ A

tkrp − tumi ≥ wA
umi krp +M(2− yum − ykr)

+M(1− x(krj,ump),(umi,krp)) ((krj, ump), (umi, krp)) ∈ A

∑Rb

a=1 yab = 1 b = 1, ..., Z

yab ∈ {0, 1}

x(krj,ump),(umi,krp) ∈ {0, 1}

(3)

In the CDR problem formulation (3), Z is the number of trains, and Rb the number of routes for each

9

train b = 1, ..., Z. The binary variable yab indicates if route a is chosen (1) or not (0) for train b. For

each train b, only a single route, among the Rb routes, can be chosen in any CDR solution. The following

constraint holds for train b:
∑Rb

a=1 yab = 1.

When a route r is chosen for train k (i.e. ykr = 1), each fixed constraint related to route r and train

k must be satisfied. For each fixed arc ((krp, krj)) ∈ F , tkrj − tkrp ≥ wF
krp krj must hold. A fixed arc

(umv, krz) ∈ F enforces a connection constraint between train k with route r and train u with route m.

Regarding the alternative constraints, if yum = ykr = 1 and the routes of trains u and k use the

same infrastructure resource p, a potential conflict exists on that resource and an ordering decision has

to be taken. This is modelled by introducing the binary variable x(krj,ump),(umi,krp) for the alternative

pair ((krj, ump), (umi, krp)) ∈ A. There are two possible scheduling decisions for each alternative pair

((krj, ump), (umi, krp)) ∈ A: if x(krj,ump),(umi,krp) = 1 then tkrp − tumi ≥ wA
umi krp must be satisfied (i.e.

(umi, krp) ∈ S); if x(krj,ump),(umi,krp) = 0 then tump−tkrj ≥ wA
krj ump must be satisfied (i.e. (krj, ump) ∈ S).

5 Train scheduling and re-routing algorithms

This section describes the algorithmic approaches proposed in this paper to solve the CDR problem. Section

5.1 presents the general framework of the AGLIBRARY solver that is based on a combination of train

scheduling and re-routing algorithms. Section 5.2 presents the algorithms used to compute a train schedule

for given routes. Section 5.3 describes the neighbourhoods for the search of new train routes starting from

a routing and scheduling solution. Section 5.4 is devoted to the scheduling heuristic procedures used to

evaluate the neighbours (the new routing combinations). The routing neighbourhoods and the scheduling

algorithms are then used in Sections 5.5 and 5.6 that describe the former and new re-routing metaheuristics

of the AGLIBRARY solver.

5.1 Solution framework

Figure 1 shows the architecture of the AGLIBRARY solver. The input data are given via an XML file,

defining the timetable of scheduled arrival and departure times, the current status of the infrastructure

components (block sections and platforms), the running time of each train, an off-line defined default route

and a set of re-routing options for each train, and a set of disturbances (initial delays and, eventually,

disruptions). Given the input data, the AGLIBRARY solver iterates between the computation of a train

schedule for a given set of routes, and the selection of a new set of routes. The basic idea is to first compute

a train scheduling solution given fixed routes, and then search for better train routes. The solver solution is

provided with another XML file, describing the CDR solution in terms of train orders and routes.

If no feasible train schedule is found in a given computation time, the human dispatcher must recover

infeasibility manually by taking some decisions that are not allowed to the solver, e.g. the cancelation of a

train service. When a feasible train schedule is found, the train re-routing module verifies whether a new set

10

Train

scheduling

Train

rerouting

Stopping

reached?

Timetable

Infrastructure

Travel times

Feasible

schedule

No

Yes
Optimal

train

orders

&

routes

New routes

Infeasible schedule

Train routes

Disturbances

XML input:

XML

output:
criteria

Figure 1: Architecture of the AGLIBRARY solver

of routes, leading to a potentially better solution, exists or not. Whenever re-routing is performed, the train

scheduling module computes a new schedule. The iterative procedure continues till a stopping criterion is

met and returns the best CDR solution. We next describe the algorithms we use for each module.

5.2 Branch-and-bound scheduling algorithm

The CDR problem with fixed routes is solved by the branch-and-bound (BB) algorithm of D’Ariano et al.

[25], truncated at a given maximum computation time. A near-optimal solution is computed in a short time

by this algorithm for practical-size instances. In particular, the algorithm is based on a binary branching

scheme in which the branching decision is a sequencing order between two trains in a resource. In the

alternative graph, this sequencing decision corresponds to the selection of an alternative arc from each pair

((krj, ump), (umi, krp)) ∈ A. The branching decision is thus on the arcs (krj, ump) and (umi, krp).

5.3 Routing neighbourhoods

Metaheuristic algorithms are generic solution procedures based on exploring the solution space by means of

considering an incumbent solution and iteratively changing it in favor of a new incumbent solution. This

action corresponds to the concept of amove from a solution to a possibly better one, and it is in general guided

by some approximation or evaluation of the objective value, and/or properties of the solution. Commonly

more tentative solutions are considered, and a single one is chosen as incumbent. The neighbourhood describes

11

the moves that will be considered, based on a certain incumbent solution.

This subsection describes the neighbourhood structures used by the CDR algorithms presented in this

paper. To this aim, we need to introduce the following notations. Let S(F) be a CDR solution with

the routes defined in F and the sequencing decisions defined in S, and let G(F, S) be the graph of this

solution. The search for a better solution is based on the computation of a new graph G′(F ′, S′). This

graph differs from the former G(F, S) by a different route for some trains, and different orders and times

of operations. This corresponds to a neighbour, in metaheuristics terms. The longest path in G′(F ′, S′)

is denoted as lS
′(F ′)(0, n). We observe that F ′ improves over F in terms of the objective function value if

lS
′(F ′)(0, n) < lS(F)(0, n).

The neighbourhoods studied in this paper are based on observations on the graph G(F, S) regarding the

nodes that represent train operations delayed due to the resolution of potential conflicts between trains.

These nodes are critical when they are on the longest path from the start node 0 to the end node n in the

graph G(F, S), that is called the critical path set C(F, S). Given a solution S(F), krp ∈ N(F) \ {0, n} is a

critical node of train k with route r if lS(F)(0, krp) + lS(F)(krp, n) = lS(F)(0, n). A critical node krp is a

waiting node if lS(F)(0, krp) > lS(F)(0, ν(krp)) + wF
ν(krp),krp, where the node ν(krp) precedes the node krp

on route r. For each waiting node krp, there is at least one hindering node η(krp) in G(F, S), different from

node ν(krp), such that lS(F)(0, krp) = lS(F)(0, η(krp)) + wF
η(krp),krp.

Given a node krp ∈ N(F) \ {0, n}, we recursively define the backward ramification RB(krp) as follows. If

node krp is waiting, then RB(krp) = RB(ν(krp)) ∪RB(η(krp) ∪ {krp}, otherwise RB(krp) = RB(ν(krp)) ∪

{krp}. Similarly, we recursively define the forward ramification RF (krp) as follows. If node krp is the

hindering of a waiting node abc, then RF (krp) = RF (σ(krp)) ∪ RF (abc) ∪ {krp}, where the node σ(krp)

follows the node krp on route r. Otherwise, RF (krp) = RF (σ(krp)) ∪ {krp}. By definition, RB(0) =

RF (0) = {0} and RB(n) = RF (n) = {n}. Given C(F, S), we define a ramified critical path set as F(F, S) =
⋃

krp∈C(F,S)[RB(krp)∪RF (krp)], and a backward ramified critical path set as B(F, S) =
⋃

krp∈C(F,S)[RB(krp)].

We study the following five neighbourhood structures.

• Complete K-Route neighbourhood NCKR contains all the feasible solutions to the CDR problem in

which K trains follow a different route compared to the incumbent solution. To limit the number

of neighbours to be evaluated, NCKR is only partially explored as follows. A move is obtained by

choosing different routes from the ones of the current solution at random (i.e. all alternative routes

having the same probability) forK trains, until a number ψ (parameter) of alternative routing solutions

is obtained.

• Ramified Critical Path Operations neighbourhood NRCPO considers only the routing alternatives for

the trains associated to the nodes in B(F, S) plus F(F, S). The idea is that the maximum consecutive

delay of a solution to the CDR problem can be reduced by removing some train conflicts causing

it. This requires either removing, anticipating or postponing some train operations from the ramified

12

critical path set. The latter result can be obtained by re-routing the trains associated with the ramified

critical path operations through different resources (i.e. by re-routing some trains associated to the

nodes in B(F, S) or F(F, S)), and then re-scheduling train movements.

• Waiting Operations Critical Path neighbourhood NWOCP is a restriction of NRCPO that considers the

routing alternatives for the trains associated to the waiting nodes in C(F, S).

• Delayed Jobs neighbourhood NDJ considers only the trains (jobs) that have a consecutive delay at some

relevant locations on the incumbent solution.

• Free-Net Waiting Operations Jobs neighbourhood NFNWJ considers only the trains (jobs) that have

some waiting nodes in the graph of the incumbent solution in which all alternative arcs are unselected.

The alternative graph with no alternative arc selected corresponds to the free-net traffic situation in

which each train travels in the absence of conflicts.

The appendix of this paper will illustrate some neighbourhood structures for an illustrative example.

5.4 Heuristic evaluation of routing neighbours

The choice of a best neighbour in the neighbourhood requires the computation of a new CDR solution S′(F ′)

starting from an incumbent solution S(F), that is characterized by the train routing decisions in F ′ and

the train sequencing decisions in S′. To this aim, we use fast heuristics based on a two-step graph building

procedure in which the graph G(F, S) is translated into the graph G′(F ′, S′). In the first step, a sub-graph of

G′(F ′, S′) is generated by considering all the nodes in N(F I) associated to the routes modelled by the arcs

in F I = F
⋂
F ′, all the fixed arcs ∈ F I and all the alternative arcs in S(F) incident in nodes in N(F I).

This corresponds to keeping a subset of decisions from the incumbent solution into the neighbour solution.

In the second step, the fixed arcs in FR = F ′ \ F I and the nodes in N(FR) are added to the sub-graph.

Finally, G′(F ′, S′) is obtained by adding a selection of alternative arcs S′(FR) to the sub-graph.

The selection S′(FR) is computed by selecting the best solution among two greedy algorithms based on

the idea of repeatedly enlarging a selection by choosing an unselected pair at a time from the set A and

by selecting one of the two arcs until a feasible schedule is found or an infeasibility (i.e. a positive weight

cycle in the graph) is detected [45]. The first greedy algorithm AMSP (Avoid Most Similar Pair) chooses an

unselected alternative pair ((krj, ump), (umi, krp)) ∈ Amaximizing the quantity lS
′(FR)(0, krj)+wA

krj,ump +

lS
′(FR)(ump, n) + lS

′(FR)(0, umi) + wA
umi,krp + lS

′(FR)(krp, n). The other greedy algorithm AMCC (Avoid

Most Critical Completion Time) chooses the alternative pair ((krj, ump), (umi, krp)) ∈ A such that the

quantity lS
′(FR)(0, krj)+wA

krj,ump + lS
′(FR)(ump, n) is maximum among all the unselected alternative arcs.

Both algorithms select the arc of the pair causing the minimum consecutive delay.

13

5.5 Tabu search re-routing algorithm

The Tabu Search (TS) is a deterministic metaheuristic based on local search, which makes extensive use of

memory for guiding the search. A basic ingredient is the tabu list, that is used to avoid being trapped in

local optima and revisiting the same solution. From the incumbent solution, non-tabu moves define a set of

solutions, named the incumbent solution neighbourhood. At each step, the best solution in this set is chosen

as the new incumbent solution. Some attributes of the former incumbent are then stored in the tabu list.

The moves in the tabu list are forbidden as long as these are in the list, unless an aspiration criterion is

satisfied. The tabu list length can remain constant or be dynamically modified during the search.

The Tabu Search (TS) used in this paper for the CDR problem is the algorithm of Corman et al. [13].

Two neighbourhood strategies for the maximum consecutive delay minimization problem are investigated

named Restart and Complete. Each neighbourhood strategy restricts the set of moves to be explored in

order to speed up the search of the best move. In particular, the Complete strategy explores ψ (parameter)

randomly chosen neighbours in NCKR with K = 1, while the Restart strategy selects at most ψ promising

moves in NRCPO, unless this neighbourhood is empty. When no potentially better solution is found on the

incumbent solution neighbourhood, the search alternates the neighbourhood strategy with a diversification

strategy, which consists of changing at random the route of µ (parameter) trains at the same time.

In this paper, all neighbours are evaluated via the scheduling heuristics of Section 5.4. The best neighbour

is set as the move to be made, and re-evaluated via the branch-and-bound scheduling algorithm of Section

5.2; the resulting best CDR solution is set as the new incumbent solution. The inverse of the chosen move is

stored in a tabu list of length λ (parameter). The moves in the tabu list are forbidden for λ iterations and

no aspiration criteria is used. From the tuning performed in [13], the best exploration strategies have the

following parameters: for the Complete strategy the best values of (ψ, λ, µ) are (8; 3; 5); for the Restart

strategy the best values of (ψ, λ, µ) are (8; 27; 5).

5.6 Variable neighbourhood search re-routing algorithms

Variable Neighbourhood Search (VNS) metaheuristics are presented in order to efficiently solve the CDR

problem. This type of metaheuristic is based on the combination of neighbourhood structures. Systematic

changes of the neighbourhood structures are proposed both in a local search phase in order to compute a

local minimum, and in a perturbation phase in order to escape from a local minimum [30].

In this work, the classic ingredients of the VNS algorithm are combined with new routing neighbourhood

structures and new specific neighbourhood search strategies to search for better train routing combinations.

A move is obtained by choosing a set of routes different from the ones of the incumbent solution. Various

variable neighbourhood schemes from [30] and routing neighbourhoods of Section 5.3 are implemented,

differing in the set of candidate trains that are re-routed in each move.

The choice of investigating these search methods is motivated by the following facts: (i) the train schedul-

14

ing solution with fixed routes can be improved in terms of multiple train routing modifications, (ii) there is

a need of improving upon the local minima found by local search. From (i), we need to explore possibilities

to generate new solutions starting from some reference solutions. From (ii), we need to develop strategies

to spread the search for better quality solutions. For these reasons, we investigate VNS intensification and

diversification strategies. The main algorithmic ingredients are next introduced and optionally incorporated

in various versions of the variable neighbourhood search algorithm.

Build Neighbourhood. Starting from an incumbent solution, the NCKR neighbourhood is generated,

in which exactly K trains are re-routed in the graph G(F, S) of the incumbent solution.

Shaking procedure. This is a typical diversification procedure that consists in changing the route of

K trains randomly in the NCKR neighbourhood of the incumbent solution (IncSol), and in computing a

new incumbent solution (IncSol′) via the scheduling heuristics of Section 5.4 and the new set of routes.

Neighbourhood Search Strategy. This procedure is proposed in order to limit the local search to

the evaluation of up to L neighbours in the current neighbourhood. Starting from an incumbent solution

and the NCKR neighbourhood of this solution, a restricted neighbourhood is generated by using a given

neighbourhood structure Ni. The selection of L neighbours is achieved in the following steps:

1. train ranking : Each train gets a score based on the criterion specified in Ni. The train ranking is based

on one of the neighbourhood structures of Section 5.3. In NRCPO, each train on the ramified critical

path gets a score based on the maximum value lS
′(FR)(0, krp) + lS

′(FR)(krp, n) ∀ (krp) in the ramified

critical path of the graph of the incumbent solution. In NWOCP , each train gets a score based on the

sum of the consecutive delays collected at each critical node in the graph of the incumbent solution.

In NDJ , each train gets a score based on the maximum consecutive delay collected at some relevant

locations for each job. In NFNWJ , each train gets a score based on the sum of the consecutive delays

collected at each waiting node in the graph of the incumbent routing solution in which all alternative

arcs are unselected (i.e. free-net traffic situation) but the one generating the waiting node. The scores

are used to decide how many times each train has to be re-routed in the L neighbours.

2. route ranking : The routes of each train get a score based on the distance from the route of the

incumbent solution. The larger is the difference between the routes, the higher is the score. The route

ranking thus suggests for each train to select the most different routes.

3. neighbour generation : This is the assignment of the routes to the trains in each neighbour. The trains

to be re-routed are selected via the train ranking and the train routes are selected via the route ranking.

A combinatorial combination of the routes is used in order to generate L different neighbours. In each

neighbour, exactly K trains are re-routed compared to the incumbent solution. The neighbours are

ordered based on the train ranking, and in case of tie on the route ranking.

15

Numerical example regarding the Neighbourhood Search Strategy. Figure 2 presents a numer-

ical example of the neighbourhood search strategy, in which four trains (J = {A, B, C, D}) can be re-routed

in a railway network. Trains A and D have a default route and three alternative routes, while trains B and

C have a default route and five alternative routes. As an example, the routes of B are named B1, B2, B3,

B4, B5, B6, with the first one B1 being the default route. Detailed information regarding the traffic flows

and the example network is reported in the paper appendix.

In the given incumbent CDR solution, the default route is used by all trains (i.e. the routesA1, B1, C1, D1).

The parameters of the procedure are set to the following values: L = 4 and K = 2 (i.e. the neighbourhood

is restricted to 4 neighbours and 2 trains are re-routed in each neighbour).

Figure 2: Example of neighbourhood search strategy with |J | = 4, L = 4 and K = 2

The train ranking procedure determines a score matrix in which each row represents a train and each

column reports a score used to compute the number of times each train should be considered for re-routing.

This score matrix is depicted in the left-hand side of Figure 2. Specifically, the first column reports the score

for each train based on the neighbourhood structure NDJ (e.g. the value 14 in this example is the maximum

consecutive delay collected for A1, see Appendix). The other columns report the score of the first column

divided by the number of column, e.g. 14/2 = 7, 14/3 = 4.6, 14/4 = 3.5.

The procedure takes the highest KL scores that are provided in the score matrix (the scores in bold in

Figure 2). In other words, from the largest values in the score matrix we obtain the number of times each

train has to be re-routed in the four neighbours (e.g. train A will be re-routed in all four neighbours). This

information is reported in the center table of Figure 2, in which the four trains are ordered according to the

number of times they will be re-routed.

The route ranking orders the list of re-routing alternatives for each train based on maximizing the

difference with the incumbent route, in terms of the number of different operations between the train routes.

As an example, the route ranking of A is A2, A3, A4 and the most different route is A2; the route ranking

16

of D is D2, D3, D4 and the most different route is D2; the most different route for train B is B2.

The neighbour generation procedure assigns the routes to the trains in each neighbour. In this example,

train A appears in all the neighbours with one of its alternative routes; trains D and B appear with

respectively three routes and one route. The neighbours are obtained as follows. We first re-route the two

trains with higher train ranking (A and D) and then re-route the remaining train (B) with the train with

the highest train ranking (A). Among the neighbours with the same re-routed trains, we first consider the

current most different route for the train with the current higher train ranking, and then consider the current

most different route for the next train with the current higher train ranking, and so on. Every row of the

table in right-hand side of Figure 2 corresponds to a candidate move.

Best Improvement Strategy. This is a local search procedure in the restricted neighbourhood in

which all the candidate moves are evaluated via the train scheduling heuristics. This procedure lasts until

all L neighbours in the restricted neighbourhood have been evaluated. At each step of the procedure, a

neighbour is considered, a new graph is built with the new routes of the neighbour, and a new CDR solution

is computed via the scheduling heuristics for the new set of routes. The best neighbour is set as the move to

be made, and re-evaluated via the branch-and-bound scheduling algorithm of [25]; the resulting best CDR

solution is set as the new incumbent solution.

Move Or Not Procedure. This procedure is responsible for possibly performing a move. In case the

best solution found in the neighbourhood is better than the incumbent, the resulting train scheduling problem

is solved by the branch-and-bound algorithm of [25], and the best solution is set as the new incumbent

solution. Otherwise, the best solution in the neighbourhood is chosen as incumbent, or some diversification

strategy is employed depending on the adopted VNS scheme.

Neighbourhood Change. This procedure is used to diversify the search by alternating Kmax appli-

cations of the neighbourhood search strategy with N1 and Kmax applications of the neighbourhood search

strategy with N2.

The metaheuristics proposed in this paper are an adaptation of the VNS schemes described in Hansen et

al. [30]. Specifically, we consider the four algorithmic schemes named “VND”, “General VNS”, “Basic VNS”,

“Reduced VNS”. The general structure of the studied metaheuristics is the following. The metaheuristics

start from an incumbent solution IncSol of the CDR problem, computed via the branch-and-bound schedul-

ing algorithm of [25] by assigning a default (off-line) route to each train. In each metaheuristic, a counter

K is adopted to fix the number of trains that are re-routed in each move. The initial value of K is set to 1,

i.e. a single train is re-routed in IncSol. The metaheuristics iterate the search for better solutions starting

from IncSol until a stopping criteria is reached.

The stopping criterion of all the metaheuristics is a maximum computation time Tmax or the particular

17

situation in which the maximum consecutive delay (i.e. the best objective function value f(IncSol∗)) is

equal to 0. Additionally, VND stops the search when no improvement is obtained during a local search.

At each iteration, a neighbourhood of IncSol is generated and a new solution IncSol′ is selected. Then,

theMove Or Not function is performed as follows. In case an improving move IncSol′ is obtained via the local

search (i.e. f(IncSol′) < f(IncSol)), a new iteration is performed by setting IncSol′ as the new incumbent

solution and K is set to 1. Otherwise, the parameter K is set to K + 1 and a new iteration is performed

until K ≤ Kmax. When K = Kmax the algorithm diversifies the search with a change of neighbourhood

structure (if the algorithm works with a single neighbourhood structure this step is not performed).

The general pseudo-code of the variable neighbourhood search algorithms is reported in Figure 3. Each

metaheuristic returns the best CDR solution (IncSol∗) and the objective function value (f(IncSol∗)).

Algorithm Variable Neighbourhood Search

Input: IncSol G(F, S), Kmax, Tmax, L, N1, N2

Ni ← N1,

While (T < Tmax) & (f(IncSol) > 0) & (OtherStoppingCriterion) do

Begin

K ← 1,

While (K ≤ Kmax) do

Begin

BuildNeighbourhood(IncSol, K),

IncSol′ ← GenerateNewIncumbentSolution(IncSol, K, L, Ni),

(IncSol, K) ← MoveOrNot(IncSol, IncSol′, K),

If (K = Kmax) do

Begin

Ni ← NeighbourhoodChange(IncSol, Ni, N1, N2),

End

T ← CPU time()

End

End

Figure 3: General sketch of the metaheuristics

The iterative step of the metaheuristics studied in this paper differs in the choice of IncSol′:

VND : This is a deterministic version of variable neighbourhood search in which a local search is performed

in a restricted neighbourhood of IncSol, via the neighbourhood search strategy (for a given value of

parameters L and Ni) and the best improvement strategy. The best neighbour is set as IncSol′.

General VNS : This is a generalization of the VND in which the neighbourhood of IncSol is generated and a solution

18

IncSol′′ is selected via the shaking procedure (for a given value of parameterK), that takes a neighbour

of IncSol at random. The VND algorithm is applied starting from the solution IncSol′′. The resulting

solution is IncSol′.

Basic VNS : This version of VNS combines the deterministic and random changes of neighbourhoods. This

algorithm first performs the shaking procedure (for a given value of parameter K) on the incumbent

solution IncSol, obtaining a solution IncSol′′. Then, a local search is performed in a restricted

neighbourhood of IncSol′′, via the neighbourhood search strategy (for a given value of parameter L

and neighbourhood structure Ni) and the best improvement strategy. The best neighbour is set as

IncSol′.

Reduced VNS : This is a completely randomized version of the VNS metaheuristic. The shaking procedure (for a

given value of parameter K) is performed starting from the incumbent solution IncSol. The resulting

solution is set as IncSol′. This VNS can be viewed as a reduction of Basic VNS in which the local

search is not performed. The rationale is to look at a larger number of neighbours compared to Basic

VNS, even if these are randomly selected. However, we note that this metaheuristic scheme has a high

risk of re-evaluating the same solutions several times, and thus being trapped into a local optimum.

6 Computational experiments

This section presents the experimental results on the TS, VND and VNS metaheuristics of Section 5.

Four practical railway test cases are investigated in a laboratory environment:

• an Italian single-track network (named “Italian (I) test case”);

• a Dutch double-track network between Utrecht and Den Bosch (named “First Dutch (FD) test case”);

• a Dutch busy and complex area around Utrecht central station (named “Second Dutch (SD) test case”);

• a British double-track network nearby the city of London (named “British (B) test case”).

All the studied test cases are modelled with a microscopic level of detail, which means that switches,

signals, block sections, and track segments in complex station areas are considered (yielding several hundreds

of resources per test case). Furthermore, train movements are described with a precision of seconds.

For each test case, we consider a set of 20 traffic disturbance instances, varying the initial delays of

trains. The experiments are executed on a workstation Power Mac with processor Intel Xeon E5 quad-core

(3.7 GHz), 12 GB of RAM. The algorithms are implemented in AGLIBRARY and use a total computation

time Tmax = 180 seconds. The MILP formulation of the CDR problem is solved by using the commercial

solver: IBM LOG CPLEX MIP 12.0, that is executed with a time limit of 2 hours.

Table 1 presents the parameters studied for the variable neighbourhood search algorithms. Regarding

the TS algorithm, the parameters are set as described in Section 5.5 (according to the parameter tuning in

19

[13]), expect for the BB computation time limit that is set as for the VND/VNS algorithms. In Table 1, the

assessment of the new algorithms is based on a set of pilot CDR instances with Tmax = 180 sec.

Regarding the information provided in Table 1, Column 1 reports the maximum computation time (in

seconds), Column 2 the computation time given to the branch-and-bound scheduling algorithm (BB Time,

in seconds), Column 3 the number of trains that are rerouted in the current neighbourhood (Kmax), Column

4 the size of the restricted neighbourhood (L). The best value of each parameter is reported in bold.

Table 1: Experimental setting of the algorithmic parameters

Tmax BB Time (sec) Kmax L

180 2/4/8/12 3/4/5/7 5/10/15/20

Table 2 presents the best configuration of each CDR algorithm for each test case. For the TS algorithm

we report the best search strategy, while for the VND and VNS algorithms we report the best combination of

the neighbourhood structures. In Table 2, the assessment of the TS, VND and VNS algorithms is performed

with Tmax = 180 sec, and is based on the set 20 traffic disturbance instances for each test case. We used the

following two criteria in lexicographic order of importance to establish the best algorithmic configuration: 1)

the average value of the objective function of the CDR problem; 2) the average time required to find the best

CDR solution. Figure 4 presents these two key performance indicators that are used to evaluate logically

the performance of the algorithms. For each test case we show the two best search strategies for TS, the

best combinations of the neighbourhood structures for VND and VNS. Specifically, the best neighbourhood

structures are: WOCP, DJ for the I test case, DJ+WOCP, WOCP+FNWJ, DJ+FNWJ, FNWJ for the FD

test case, DJ, WOCP+DJ, FNWJ+DJ for the SD test case, WOCP, FNWJ, DJ for the B test case.

Table 2: Best configurations of the CDR algorithms for each test case

Test Best Best Best Best Best

Case TS [13] VND VNS General VNS Basic VNS Reduced

Italian (I) Complete DJ WOCP WOCP WOCP

First Dutch (FD) Restart WOCP+FNWJ FNWJ DJ+WOCP DJ+FNWJ

Second Dutch (SD) Complete DJ WOCP+DJ DJ FNWJ+DJ

British (B) Restart DJ WOCP WOCP FNWJ

In the next subsections, we use the best configuration of each algorithm as indicated in Tables 1 and 2.

Specifically, we present a detailed assessment of the computational results obtained for each CDR instance by

the best TS, VND and VNS algorithms and by the commercial MILP solver. The computational experiments

are reported per test case, together with additional information on the tested CDR instances. We conclude

the section with some general discussion and observation on the obtained results.

20

!"#

$"#

%""#

%%"#

%&"#

!
"
#$
%&
'
(
)$
%*
+
,'
-
%.
/-
)0
%

1-)2(3%4'5)6%

"#

'"#

("#

$"#

%&"#

%)"#

%!"#

7
2
8
9
$%
:
;8

-
%.
/-
)0
%

*""#

*")#

*%"#

*%)#

*&"#

!
"
#$
%&
'
(
)$
%*
+
,'
-
%.
/-
)0
%

<5+,;+(%

"#

'"#

("#

$"#

%&"#

%)"#

%!"#

7
2
8
9
$%
:
;8

-
%.
/-
)0
%

%"""#

%&""#

%*""#

%(""#

%!""#

!
"
#$
%&
'
(
)$
%*
+
,'
-
%.
/-
)0
%

=>;?/6%

"#

'"#

("#

$"#

%&"#

%)"#

%!"#

7
2
8
9
$%
:
;8

-
%.
-
)0
%

%""#

%&"#

%*"#

%("#

%!"#

!
"
#$
%&
'
(
)$
%*
+
,'
-
%.
/-
)0
%

&;>/5%4'5)6%

"#

'"#

("#

$"#

%&"#

%)"#

%!"#

7
2
8
9
$%
:
;8

-
%.
/-
)0
%

Figure 4: Quantitative comparison between configurations of the CDR algorithms.

21

6.1 Results on the Italian test case

Figure 5 shows a schematic view of the dispatching area of Campoleone-Nettuno, (i.e. the regional line

FR8) with the amount of tracks per branch, and stations or minor stops. The railway network consists

of 10 stations and 9 bidirectional single-track segments between stations. Most stations have two parallel

platform tracks to allow re-routing and meet-pass operations. The railway infrastructure is around 26 km

long. There are potential conflict points (where the dispatcher takes ordering and routing decisions) at the

entrance and exit of each station. In Campoleone, there is a connection with the regional line FR7 and with

the line towards Roma Termini station, the main station in Rome.

Campoleone NettunoPadiglione Marechiaro

Figure 5: Italian test case - the Campoleone Nettuno line.

We consider a daily timetable which describes the movement of all trains running in the line during day

hours, specifying, for each train, planned arrival/passing times at each station platform along its route. At

stations, a train is not allowed to depart from a platform stop before its scheduled departure time and is

considered late if arriving at the platform after its scheduled arrival time. The current daily timetable has

42 trains, with an average travel time for passengers of 42 minutes. Traffic disturbances are studied in which

a set of trains is delayed at their entrance in the network.

Table 3 reports on the CDR instances of the Italian test case. Column 1 reports the time horizon of

traffic prediction (in minutes), Column 2 the approximate length of the railway network (in kilometers),

Column 3 the number of trains in the network during the entire horizon of traffic prediction, Column 4 the

average number of routes assigned to each train (including the default route), Column 4 the average number

of resources traversed by each train, Columns 5–7 the average size of the MILP formulation in terms of the

number of timing variables (i.e. the set |N |), the number of train scheduling variables (i.e. the set |A|) and

the number of train routing variables (i.e. the set |C|).

Table 3: Characteristics of the Italian test case instances

Time Network Num Num Routes Num Resources MILP Variables

Horizon (min) Length (km) Trains Per Train Per Train |N | |A| |C|

720 26 42 8 18 1094 752307 336

This single-track railway network presents several alternative routings, since each train can be routed in

several stations, where two parallel platform tracks are available.

22

Table 4 gives the computational results for 20 CDR instances of the Italian test case. In Column 1, each

CDR instance is identified by a three-field code [α β γ], in which α identifies the network, β is the maximum

initial delay (in seconds), and γ is the average initial delay (in seconds). We recall that the initial delay

is caused by disturbances and cannot be recovered by re-scheduling train movements, except by using the

available time reserves in the timetable. In the other columns, the performance of each algorithm/solver is

presented in terms of the objective function value (i.e. the maximum consecutive delay, in seconds) and the

time to compute the best solution (in seconds). The best average objective function values are reported in

bold. For each CDR algorithm, we only present the results obtained for the best configuration of Table 2.

Table 4: Results obtained for the Italian (I) test case instances

TS [13] VND VNS General VNS Basic VNS Reduced CPLEX

CDR Instance Value Time Value Time Value Time Value Time Value Time Value Time

(sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)

I 4000 986.3 237 0.6 237 0.6 237 89.3 237 0.6 237 4.6 79390 364.2

I 3864 965.6 262 0.6 262 0.6 262 0.6 262 0.6 262 0.6 458 7189.2

I 3883 983.3 270 0.6 270 0.6 270 0.6 270 0.6 270 0.6 83848 1042.1

I 4000 981.4 249 0.6 249 0.6 249 0.7 249 0.6 249 0.6 56463 6826.8

I 3976 1077.8 276 0.6 276 0.6 276 0.6 276 0.6 276 0.6 83471 1644.9

I 3646 949.3 261 0.6 261 0.6 261 164.6 261 0.6 261 0.6 62933 6023.6

I 4000 979.8 300 0.6 300 0.6 300 0.6 300 0.6 300 0.6 80187 4833.1

I 4000 971.8 297 0.6 297 0.6 297 0.6 297 0.6 297 0.6 84282 1325.7

I 3981 981.9 385 1.0 385 1.0 385 1.0 385 1.0 385 1.0 396 5537.1

I 10000 2618.3 436 7.2 436 13.9 436 129.1 436 3.8 436 5.9 64808 6828.3

I 10000 2629.8 605 23.2 605 0.7 605 0.6 605 0.6 605 0.7 76458 5547.3

I 9553 2579.1 539 67.6 539 7.7 539 9.0 539 4.6 539 8.0 83781 1175.5

I 10000 2688 577 135.2 626 3.8 577 174.4 577 19.9 577 7.9 51731 6457.6

I 10000 2600.1 467 0.6 467 0.7 467 7.6 467 0.6 467 0.7 66631 6059.3

I 9739 2689.4 345 0.6 345 0.7 345 0.6 345 0.6 345 0.7 55803 6552.6

I 9008 2504.5 787 33.8 787 0.6 787 0.6 787 0.6 787 0.7 59847 5822.8

I 9489 2607.9 638 7.1 638 3.6 638 147.4 638 2.8 638 13.9 84785 900.9

I 10000 2615.3 486 151.4 486 6.4 486 133.4 486 16.4 486 7.7 84002 1343.1

I 10000 2618.3 448 1.3 448 1.3 448 1.2 448 1.2 448 1.3 448 6456.1

I 10000 2584.3 338 0.7 338 0.7 338 0.6 338 0.6 338 0.8 344 7190.1

Avg Results 410.2 21.7 412.6 2.3 410.2 43.1 410.2 2.9 410.2 2.9 58003.3 4456.0

From the results of Table 4, VNS Basic and VNS Reduced are the best algorithms in terms of both

indicators, while the other algorithms either present a larger delay or a larger computation time. VND is

often the fastest algorithm but it does not provide the best-known solutions, while VNS Reduced uses VND

combined with the shaking procedure and is able to compute the best-known solutions. TS and VNS General

are, on average, much slower than VNS Basic and VNS Reduced. CPLEX is always outperformed by the

CDR algorithms in terms of both indicators, expect for instance I 10000 2618.3. Furthermore, the lover

bound returned by CPLEX is very low and does not certify the optimality of any CDR solution. For this set

of CDR instances the low quality of CPLEX is probably due to the fact that the single-track train scheduling

problem presents several infeasible train timing and ordering solutions, resulting in deadlock situations.

23

6.2 Results on the first Dutch test case

Figure 6 presents the Utrecht - Den Bosch dispatching area, that consists of 191 block sections and 21

platforms. The railway network is around 50 km long, connecting the cities of Utrecht and Den Bosch.

There are two main tracks, a long corridor for each traffic direction, a dedicated stop for freight trains

nearby Zaltbommel and 7 passenger stations.

Utrecht Lunetten Geldermalsen Den Bosch

Oss

ZaltbommelCulemborgHouten

Figure 6: First Dutch test case - the Utrecht - Den Bosch area.

The infrastructure offers some possibility of train re-ordering and re-routing. Each train has a default

route and a set of local re-routing options. Re-routing options can be applied along corridors or within a

station, in which a train may be allowed to stop at different nearby platforms. Only standard train routes

are considered and some less important switches have been omitted. Considering all possible alternative re-

routing options yields a set of 356 routes. Figure 6 shows the dispatching area considered with the amount

of tracks per area, and the indication of minor/major stations.

We consider a provisional hourly timetable for 2007 extended to the entire railway area. During peak

hours, 26 passenger and freight trains are scheduled, in both directions, for the area around Geldermalsen.

A more complex situation occurs at Den Bosch station, where up to 40 trains are scheduled each hour.

Additional constraints are included on the minimum transfer time between connected train services.

Connections of the rolling stock are provided in Zaltbommel and Den Bosch stations. Passenger connections

are located at Den Bosch station for the traffic directions from Oss to Utrecht and vice versa. The minimum

time for passenger transfer connections varies from two to five minutes, depending on the distance to be

travelled between the arrival platforms.

Table 5 presents average information on the CDR instances of this test case, with trains subject to

random initial delays. This network presents a huge number of |A| variables, since these are defined for each

pair of trains that have routes sharing resources of the 50-km-long railway network.

Table 5: Characteristics of the first Dutch test case instances

Time Network Num Num Routes Num Resources MILP Variables

Horizon (min) Lenght (km) Trains Per Train Per Train |N | |A| |C|

60 50 40 9 31 1615 1092557 356

24

Table 6 reports on the computational results for 20 CDR instances of the Utrecht - Den Bosch test case.

The instance code is as for Table 4. The best average results are obtained for VNS Basic in terms of the

objective function value (as reported in bold). Specifically the best-known solution for instance FD 738 256.1

is only computed by VNS Basic and VNS General. The computation time of VNS Basic is decreased by

more than half compared to TS. However, TS, VND and VNS Reduced are faster to compute the best-known

solution for some instances. VNS General is the slowest algorithm to compute the best-known solution.

Table 6: Results obtained for the First Dutch (FD) test case instances

TS [13] VND VNS General VNS Basic VNS Reduced CPLEX

CDR Instance Value Time Value Time Value Time Value Time Value Time Value Time

(sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)

FD 770 273.4 151 1.5 191 4.2 151 175.8 151 10.4 151 82.3 3900 6836.1

FD 738 256.1 68 59.0 78 0.4 64 176.2 64 45.3 71 11.9 91 6972.5

FD 991 401.1 154 1.2 154 0.3 154 177.6 154 0.7 154 2.7 307 6954.0

FD 1356 495.7 106* 86.9 187 0.0 117 177.9 106* 63.1 106* 57.9 3552 7195.4

FD 1249 534.0 119 117.5 301 0.7 130 180.0 119 81.9 130 48.0 3630 1903.9

FD 972 306.8 202 164.6 257 0.1 225 179.2 202 172.8 208 104.6 4349 7047.0

FD 1321 412.1 68 28.1 113 1.3 68 177.7 68 54.1 68 26.6 197 5872.0

FD 1372 379.6 291 6.4 278 25.9 291 167.5 291 4.0 291 4.0 4239 6292.5

FD 1776 607.0 135 9.5 181 0.1 135 180.2 135 1.9 135 4.5 410 1545.4

FD 659 133.1 94 144.1 142 0.5 98 179.7 94 30.7 94 5.8 111 6047.0

FD 816 158.2 114* 56.0 137 0.3 114* 179.1 114* 17.0 114* 32.6 114* 5272.0

FD 977 191.4 91* 27.4 176 0.4 91* 178.8 91* 92.4 91* 8.9 211 7064.4

FD 1017 201.3 85 42.4 97 0.4 85 179.5 85 0.5 85 2.0 4539 7018.0

FD 1240 293.5 103 143.9 103 1.2 103 178.5 103 2.0 103 14.5 4577 1969.3

FD 1312 294.6 123 116.6 123 2.4 123 178.3 123 12.3 123 10.1 3847 6780.6

FD 888 84.9 71 112.1 116 0.6 102 176.7 71 41.7 98 11.1 916 7132.6

FD 872 117.2 148 0.0 148 0.0 148 158.6 148 0.0 148 0.1 148 4418.1

FD 1371 182.8 122 60.5 150 0.5 122 177.2 122 4.2 122 0.6 3630 1898.1

FD 1769 216.2 99 55.2 99 0.3 99 172.6 99 0.3 99 3.3 99 6661.7

FD 1788 313.3 116* 96.1 116* 0.3 116* 172.9 116* 6.4 116* 0.4 116* 5909.3

Avg Results 123.0 66.5 157.4 2.0 126.8 176.2 122.8 32.1 125.4 21.6 1949.2 5539.5

Regarding the results obtained by the CPLEX solver, the lower bound is used to certify the optimality of

some CDR solutions, while the upper bound is sometime good, even if those bounds are computed in a very

long computation time. In Table 6, four CDR instances are solved to proven-optimum by some algorithms.

The optimal solutions are identified with an asterisk in the columns regarding the objective function value.

Two optimal solutions are also computed by CPLEX, while the other two are only certified by CPLEX.

Overall, the optimality of several CDR instances is not proved by CPLEX, since the overall problem has a

huge number of train ordering (|A|) variables required when combining all possible routing alternatives.

6.3 Results on the second Dutch test case

This test case is based on the railway network around the central station of Utrecht, the busiest station in

the Netherlands. Figure 7 shows the overall network layout that has a diameter of around 20 km and 600

25

block sections, with the amount of tracks per branch, and the indication of minor/major stations considered.

The main station area (known as Utrecht Central) provides 20 platform tracks, more than 100 switches and

around 200 block sections. There are 5 main traffic directions that are delimited by the following minor

stations: Utrecht Overvecht (on the line towards Amersfoort), Driebergen-Zeist (on the line towards Arnhem

and Germany), Culemborg (on the line towards Den Bosch), Maarssen (on the line towards Amsterdam),

and Vleuten (on the line towards Rotterdam and The Hague).

Utrecht Central
Culemborg

Maarssen

Driebergen

Vleuten

Utrecht Overvecht

Figure 7: Second Dutch test case - the Utrecht Central Station area

The reference timetable is periodic with a cycle length of one hour. The timetable schedules 79 trains

in a peak hour, with mixed passenger and freight traffic flows. The passenger trains are divided into

International services going from the Netherlands to Germany and vice versa, Intercity services, Local trains

and Sprinter services (faster local trains). The timetable provides connections between passenger services,

coupling and splitting of rolling stock for intercity and local services coming from/going to Rotterdam, the

Hague or Amersfoort, as well as re-use of rolling stock for commuter services towards Utrecht Overvecht and

Culemborg. The alternative graph model of the traffic running on this complex station area is based on the

aggregated formulation of the station routings at the interlocking areas described in [18].

Table 7 presents average information on the CDR instances tested for this network. For this network, the

routing alternatives are platforming options within the main station area of Utrecht. We limit the number of

stop platforms for all trains to a set of adjacent station platforms, thus limiting the connection time between

two connected trains, i.e. the transfer time of passengers from one platform to another one.

Table 7: Characteristics of the second Dutch test case instances

Time Network Num Num Routes Num Resources MILP Variables

Horizon (min) Length (km) Trains Per Train Per Train |N | |A| |C|

75 20 79 3 22 2549 44730 228

The train delays are based on a statistical fitting procedure of the different train categories (similar to

the one presented by Yuan [56]), based on the arrival and departure data recorded by ProRail at Utrecht

26

Central in April 2008. Here we consider a set of 20 timetable perturbation instances. For each instance, all

trains suffer an entrance deviation, and multiple trains have a positive delay at their entrance in the network.

Table 8 reports on the results for 20 CDR instances of the Utrecht Central test case. The instance code

is as for Table 4. For this set of instances, VND is the best algorithm since the best-known solution is, on

average, computed in a shorter computation time (the computation time is up to 4 seconds) compared to

the other algorithms. VNS Basic is, on average, the second best algorithm. Overall, the improvement of

VND and VNS algorithms versus both the TS algorithm and the commercial solver is a strongly reduced

computation time. Specifically, CPLEX is always outperformed by VND, VNS Basic and VNS Reduced.

CPLEX is useful to certify the optimality for 8 CDR instances (see the values with asterisk). However, the

optimality for the other 12 CDR instances is still not certified by CPLEX after 2 hours of computation.

Table 8: Results obtained for the Second Dutch (SD) test case instances

TS [13] VND VNS General VNS Basic VNS Reduced CPLEX

CDR Instance Value Time Value Time Value Time Value Time Value Time Value Time

(sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)

SD 360 48.4 88 8.3 88 1.1 88 153.9 88 0.5 88 6.9 88 180.0

SD 510 48.8 95 25.1 95 0.9 95 175.7 95 26.9 95 3.7 95 168.0

SD 259 45.8 99 1.5 99 0.1 99 1.2 99 0.1 99 0.2 99 152.3

SD 253 42 90 135.4 90 2.0 90 174.7 90 2.1 90 51.4 90 255.9

SD 273 48.1 83 0.1 83 0.1 83 180 83 0.1 83 0.1 83 298.7

SD 382 48.6 51* 59.8 51* 1.2 51* 15.4 51* 0.5 51* 5.7 51* 263.5

SD 286 44.2 51* 0.1 51* 0.1 51* 2.1 51* 0.1 51* 0.1 51* 39.8

SD 502 37.2 51* 0.1 51* 0.1 51* 2.2 51* 0.1 51* 0.2 51* 155.3

SD 377 44.3 51* 158.2 51* 2.1 51* 174.3 51* 6.3 51* 27.9 51* 62.8

SD 310 29.7 51* 1.5 51* 1.0 51* 180 51* 0.6 51* 2.3 51* 148.2

SD 418 43.5 160 2.8 160 2.5 160 180 160 3.0 160 9.5 160 190.0

SD 528 34.3 232 4.0 232 4.0 232 180 232 4.0 232 4.0 232 402.5

SD 740 38.1 93 13.9 93 0.1 93 178.5 93 0.1 93 0.1 93 390.5

SD 493 32.3 66 0.2 66 0.2 66 1.2 66 0.2 66 0.2 66 37.9

SD 411 33.4 153 43.7 153 1.1 153 171.8 153 28.4 153 10.2 153 240.0

SD 1165 47.1 51* 3.1 51* 1.8 51* 179.5 51* 6.1 51* 3.2 51* 178.9

SD 493 23.4 51* 0.8 51* 0.7 51* 160.5 51* 0.4 51* 3.4 51* 43.4

SD 370 34.6 51* 30.4 51* 3.5 51* 180 51* 13.1 51* 30.3 51* 129.5

SD 675 28.6 70 12.1 70 2.1 70 175.2 70 6.0 70 113.1 70 619.5

SD 475 27.2 133 6.7 133 0.9 133 180 133 4.3 133 7.9 133 178.1

Avg Results 88.5 25.4 88.5 1.3 88.5 132.3 88.5 5.1 88.5 14.0 88.5 206.7

6.4 Results on the British test case

The test bed is a mixed-traffic railway network nearby the city of London, approximately from King’s Cross

station to Huntingdon station, on the East Coast Main Line of The United Kingdom. Figure 8 shows a

layout of the studied network with the amount of tracks per branch, and the indication of minor/major

stations. In this set of experiments the scheduler has to deal with strongly disrupted traffic situations in

which some trains have speed restrictions and others are re-routed.

27

London King´s Cross

Moorgate

Finsbury
Park

Hertford North

Stevenage

Huntingdon

Figure 8: British test case - the East Coast Main Line nearby London

Table 9: Characteristics of the British (B) test case instances

Time Network Num Num Routes Num Resources MILP Variables

Horizon (min) Length (km) Trains Per Train Per Train |N | |A| |C|

60 80 90 2 69 5565 46219 128

Table 10: Results obtained for the British test case instances

TS [13] VND VNS General VNS Basic VNS Reduced CPLEX

CDR Instance Value Time Value Time Value Time Value Time Value Time Value Time

(sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec) (sec)

B 4558 113.0 2236* 61.9 2236* 0.2 2236* 176.4 2236* 0.1 2236* 0.1 2236* 11.8

B 474 48.1 108* 6.3 108* 3.2 108* 180 108* 16.2 108* 4.6 108* 75.0

B 452 49.6 379* 4.8 979 1.5 379* 179.6 379* 45.2 379* 4.4 379* 111.8

B 2577 152.4 532* 114.0 813 1.9 532* 176.4 532* 6.4 532* 2.3 532* 350.0

B 852 67.4 412* 3.1 412* 1.3 672 179.3 412* 1.8 672 0.7 412* 25.5

B 716 59.9 277* 0.1 277* 0.1 277* 180 277* 0.1 277* 0.1 277* 4.1

B 437 55.1 3151* 118.0 3151* 0.1 3151* 0.1 3151* 0.1 3151* 0.1 3151* 79.9

B 520 54.1 353* 12.4 353* 4.7 353* 180 353* 4.3 353* 1.4 353* 13.6

B 556 56.9 451* 23.3 451* 0.9 901 178.5 451* 0.6 901 1.6 451* 22.0

B 2374 77.4 3199* 68.3 3199* 1.7 3199* 180 3199* 2.4 3199* 0.5 3199* 2410.3

B 1218 77.1 491 157.0 2626 2.1 408* 174.2 408* 70.3 408* 43.6 408* 2434.1

B 561 46.7 3499* 0.1 3499* 0.1 3499* 176.2 3499* 0.1 3499* 0.1 3499* 131.9

B 2194 59.2 1426* 35.3 1426* 0.1 1426* 0.1 1426* 0.1 1426* 0.1 1426* 2489.9

B 2255 65.1 1992* 80.3 1992* 0.2 1992* 0.2 1992* 0.2 1992* 0.2 1992* 2750.8

B 487 49.8 421* 25.4 421* 12.9 421* 153.8 421* 142.0 421* 3.5 421* 1667.3

B 452 46.2 408* 34.6 3030 0.1 1579 159.9 408* 118.7 1579 2.1 408* 352.2

B 1349 98.3 597* 14.6 597* 7.9 597* 180 597* 6.1 597* 6.6 597* 1751.1

B 512 52.9 2788* 103.0 2788* 1.9 2788* 177.6 2838 0.1 2788* 0.8 2788* 14.7

B 540 50.1 1202* 110.6 1266 98.6 1202* 170.5 1202* 40.3 1202* 82.5 2244 2263.0

B 556 52.0 508* 97.8 508* 8.6 508* 179.9 508* 3.1 723 7.1 508* 493.6

Avg Results 1221.5 53.6 1506.6 7.4 1311.4 149.4 1219.9 22.9 1322.2 8.1 1269.5 872.6

28

Table 9 presents information on the largest CDR instances tested for the British test case. For this set

of CDR instances we only consider two routes per train, as provided by an industrial partner in [27].

Table 10 reports on the computational results for 20 CDR instances of the British railway network. The

instance code is as for Table 4. For this set of instances, we know the optimal solution for all CDR instance,

as certified by the lower bound of CPLEX. Regarding the performance of the various algorithms, VNS Basic

is the best algorithm in terms of the average objective function value (as reported in bold), even if the other

algorithms and the commercial solver compute a better solution for instance British 512 52.9. Furthermore,

VNS Basic is often the fastest algorithm to compute the optimal solution. However, some CDR instances

are solved to optimality in a shorter time by VND, VNS Reduced and TS.

6.5 Discussion on the obtained results

This section gives a brief overview of the average performance of the algorithms described in this paper.

• Comparing TS and VNS Basic, the latter outperforms the former in terms of the average objective

function value and also provides an average strong reduction of the time to compute the best-known

solutions. A motivation is that TS mostly performs single routing changes in RCPO, while VNS Basic

is based on multiple simultaneous routing changes in a combination of neighbourhood structures.

• VNS Basic is the best variable neighbourhood search algorithm in terms of the average objective

function value, since it combines the local search and the shaking procedures.

• VNS Basic is better than VNS Reduced, since the former is also guided by the local search procedure,

helping to intensify the search of better quality solutions in specific regions of the search space.

• Comparing VND and VNS General, the latter algorithm sometimes improves the performance of VND

via the shaking procedure, that can be a profitable attempt to escape from a local optimum.

• DJ, WOCP and their combination are the best neighbourhood structures when incorporated in VNS

Basic. These neighbourhood structures are new promising ingredients to solve the CDR problem.

• Different CDR instances result in rather unsimilar average trends regarding the quality of the solutions

computed by the various algorithms. In general a small amount of train traffic, in terms of trains/hour,

makes the CDR algorithms rapidly converge to almost the same solution. When the traffic is more dense

and multiple re-routing options are available, the CDR algorithms compute more diverse solutions.

• The computational speed of AGLIBRARY is mostly depending on the algorithmic structure and con-

figuration, but it also depends on the railway infrastructure and traffic flow characteristics.

• The complexity of the CDR instance depends on the type of the re-ordering and re-routing alternatives

available for each train. For instance, a train can avoid a conflict with another train by changing the

stop platform in a station area, while a train can only slighly anticipate or posticipate a conflict with

29

another train on a corridor by performing a local re-routing. In the latter case, the train ordering is the

key decision variable to solve the conflicting traffic situation. In general, the interdependence between

train scheduling and routing variables plays a key role in the resolution of the CDR problem.

• The commercial solver is not able to compute a good quality solution for most of the CDR instances

in a short computation time, and therefore cannot be part of a DSS for real-time train traffic control.

7 Conclusions and future research

This paper proposes fast scheduling and routing metaheuristics for real-time railway traffic management in

busy networks, with particular focus on the efficient control of strong traffic disturbances (such as multiple

train delays and temporarily unavailable block sections). The CDR problem is modelled via the alternative

graph, that is a generalization of the disjunctive graph, and as a MILP formulation for simultaneous train

scheduling and routing. To solve the CDR problem, several algorithmic innovations are considered, which

relate to design of effective metaheuristics based on a problem decomposition into train scheduling and

routing decisions. Variable neighbourhood search schemes (VND, Reduced VNS, Basic VNS and General

VNS) are proposed based on systematic changes of a combination of neighbourhood structures.

The new metaheuristic algorithms are benchmarked against a state-of-the-art tabu search algorithm

[13] and a commercial MILP solver. The evaluation is performed over multiple networks with varying

traffic and infrastructure characteristics. The algorithms proposed in this paper, with various combinations

of neighbourhood structures, improve the effectiveness of the previously developed CDR algorithms and

outperform the commercial MILP solver. The main contributions of the variable neighbourhood search are

a general significant reduction of the time required to compute good quality (sometimes proven optimal)

solutions, and the computation of new best known solutions for some CDR instances.

Further research should be focused on a number of issues: the assessment of the proposed methodology

to solve the CDR problem for different railway networks, traffic flows and types of demand or disturbance

that could be described by some metric, in order to find an approximate relation between the instance

characteristics and the expected algorithmic performance; the development and evaluation of alternative

CDR heuristics, metaheuristics and exact approaches; the customization and application of the models and

algorithms proposed in this paper to other transportation and logistics problems.

Acknowledgements

We acknowledge the support from Ing. Giacomo Zaninotto and Ing. Alessandro Toli. We also would like to

thank the anonymous reviewers for their helpful and constructive remarks. The CDR instances are available

upon request for research purposes by sending an email to the corresponding author of this paper.

30

References

[1] Ahuja, R., Cunha, C., Şahin, G. (2005) Network models in railroad planning and scheduling. In: Green-

berg, H., Smith, J. (Eds.), TutORials in Operations Research, vol. 1, pp. 54–101.

[2] Almodóvar, M., Garćıa-Ródenas, R. (2013). On-line reschedule optimization for passenger railways in

case of emergencies, Computers and Operations Research 40 (3), 725–736.

[3] Cadarso, L., Maŕın, Á. (2014) Improving robustness of rolling stock circulations in rapid transit net-

works. Computers and Operations Research, 51, 146–159.

[4] Cadarso, L., Maŕın, Á., Maróti, G. (2013) Recovery of disruptions in rapid transit networks. Trans-

portation Research Part E, 53, 15-33.

[5] Cacchiani, V., Huisman, D., Kidd, M., Kroon, L., Toth, P., Veelenturf, L., Wagenaar, J. (2014) An

overview of recovery models and algorithms for real-time railway rescheduling. Transportation Research

Part B, 63, 15–37.

[6] Cai, X., and Goh, C.J. (1994) A fast heuristic for the train scheduling problem. Computers and Opera-

tions Research, 21 (5), 499–510.

[7] Caimi, G., Fuchsberger, M., Laumanns, M., Lüthi, M. (2012). A model predictive control approach for

discrete-time rescheduling in complex central railway station areas. Computers and Operations Research

39 (11), 2578–2593.

[8] Cheng, Y. (1998) Hybrid simulation for resolving resource conflicts in train traffic rescheduling. Com-

puters in Industry 35 (3), 233–246.

[9] Chiu, C. , C. Chou, J. Lee, H. Leung, Leung, Y. (2002) A constraint-based interactive train rescheduling

tool. Constraints 7, 167–198.

[10] Cordeau, J. F., Toth, P., Vigo, D. (1998) A Survey of Optimization Models for Train Routing and

Scheduling. Transportation Science, 32 (4), 380–404.

[11] Corman, F., D’Ariano, A., Hansen, I.A., Pacciarelli, D. (2011) Optimal multi-class rescheduling of

railway traffic, Journal of Rail Transport Planning and Management, 1 (1), 14–24.

[12] Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M. (2009) Evaluation of green wave policy in real-

time railway traffic management. Transportation Research Part C, 17, 607–616.

[13] Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M. (2010) A tabu search algorithm for rerouting

trains during rail operations. Transp. Res. Part B 44 (1), 175–192.

[14] Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M. (2012) Optimal inter-area coordination of train

rescheduling decisions, Transp. Res. Part E 48 (1), 71–88.

31

[15] Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M. (2012) Bi-objective conflict detection and reso-

lution in railway traffic management. Transportation Research Part C, 20 (1), 79–94.

[16] Corman, F., D’Ariano, A., Pacciarelli, D., Pranzo, M. (2014) Dispatching and coordination in multi-area

railway traffic management. Computers and Operations Research 44, 146–160.

[17] Corman, F., D’Ariano, A., Pranzo, M., Hansen, I.A. (2011) Effectiveness of dynamic reordering and

rerouting of trains in a complicated and densely occupied station area. Transport. Planning and Tech-

nology 34 (4), 341–362.

[18] Corman, F., Goverde, R.M.P., D’Ariano, A. (2009) Rescheduling dense train traffic over complex station

interlocking areas. In R.K. Ahuja, R. Moehring, and C. Zaroliagis, editors, Robust and Online Large-

Scale Optimization, Springer. Lecture Notes in Computer Science, 5868, 369–386.

[19] Corman, F., Pacciarelli, D., D’Ariano, A., Samà, M. (2015) Railway Traffic Rescheduling Taking into

Account Minimization of Passengers Discomfort, In: F. Corman, S. Voss and R.R. Negenborn (Eds.),

Computational Logistics, Springer. Lecture Notes in Computer Science 9335, 602–616.

[20] Corman, F., Quaglietta, E. (2015) Closing the loop in railway traffic control: framework design and

impacts on operations. Transportation Research C, 54 (1), 15–39.

[21] Corman, F., Xin, J., Toli, A., Negenborn, R.R., D’Ariano, A., Samà, M., Lodweijks, G. (2015) Optimiz-

ing hybrid operations at large-scale automated container terminals, Proceedings of the 4th International

Conference on Models and Technology for Intelligent Transportation Systems, Budapest, Hungary.

[22] D’Ariano, A. (2009) Innovative Decision Support System for Railway Traffic Control. IEEE Intelligent

Transportation Systems Magazine 1 (4), 8–16.

[23] D’Ariano, A., Corman, F., Pacciarelli, D., Pranzo, M. (2008) Reordering and local rerouting strategies

to manage train traffic in real-time. Transportation Science 42 (4), 405–419.

[24] D’Ariano, A. Pacciarelli, D., Pistelli, M., Pranzo, M. (2015) Real-time scheduling of aircraft arrivals

and departures in a terminal maneuvering area. Networks 65 (3) 212–227.

[25] D’Ariano, A., Pacciarelli, D., Pranzo, M. (2007) A branch and bound algorithm for scheduling trains

in a railway network. European Journal of Operational Research 183 (2), 643–657.

[26] D’Ariano, A., Pistelli, M., Pacciarelli, D. (2012) Aircraft retiming and rerouting in vicinity of airports.

IET Intelligent Transport Systems Journal 6 (4), 433–443.

[27] D’Ariano, A., Samà, M., D’Ariano, P., Pacciarelli, D. (2014) Evaluating the applicability of advanced

techniques for practical real-time train scheduling, Transportation Research Procedia, 3, 279–288.

32

[28] Dollevoet, T., Corman, F., D’Ariano, A., Huisman, D. (2014) An Iterative Optimization Framework for

Delay Management and Train Scheduling. Flexible Services and Manufacturing Journal 26 (4), 490–515.

[29] Fang, W., Yang, S., Yao, X. (2015) A Survey on Problem Models and Solution Approaches to

Rescheduling in Railway Networks. IEEE Trans. on Intelligent Transportation Systems To appear.

DOI: 10.1109/TITS.2015.2446985.

[30] Hansen, P., Mladenović, N., Moreno Pérez, J.A. (2008) Variable neighbourhood search: methods and

applications. 4OR – Quarterly Journal of Operations Research 6 (4), 319–360.

[31] Hansen, I.A. and Pachl, J. (2014) Railway Timetabling & Operations. Eurailpress, Hamburg, Germany.

[32] Kecman P., Corman, F., D’Ariano, A., Goverde, R.M.P. (2013) Rescheduling models for railway traffic

management in large-scale networks. Public Transport: Planning and Operations 5 (1-2), 95–123.

[33] Kroon, L.G., Maróti, G., Nielsen, L.K., (2014) Rescheduling of railway rolling stock with dynamic

passenger flows. Erasmus Research Institute of Management, Transportation Science, 49 (2), 165–184.

[34] Lamorgese L., Mannino C. (2013) The track formulation for the Train Dispatching problem. Electronic

Notes in Discrete Mathematics 41, 559–566.

[35] Liu, S.Q., Kozan, E. (2009) Scheduling trains as a blocking parallel-machine job shop scheduling prob-

lem. Computers and Operations Research 36, 2840–2852.

[36] Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D.M. (2013). A set packing inspired method for real-time

junction train routing. Computers and Operations Research 40 (3), 713–724.

[37] Mannino, C., Mascis, A. (2009) Optimal real-time traffic control in metro stations. Operations Research

57 (4), 1026–1039.

[38] Mascis, A., Pacciarelli, D. (2002) Job shop scheduling with blocking and no-wait constraints. European

Journal of Operational Research 143 (3), 498–517.

[39] Mazzarello, M., Ottaviani, E. (2007) A traffic management system for real-time traffic optimization in

railways. Transp. Res. Part B 41 (2), 246–274.

[40] Meng, L., Zhou, X. (2011) Robust single-track train dispatching model under a dynamic and stochastic

environment: a scenario-based rolling horizon solution approach. Transp. Res. Part B 45 (7), 1080–1102.

[41] Moreno Pérez, J.A., Moreno-Vega, J.M., Rodŕıguez Mart́ın, I. (2003). Variable neighborhood tabu

search and its application to the median cycle problem. European Journal of Operational Research 151

(2) 365–378.

[42] Pacciarelli, D., Pranzo, M. (2004) Production scheduling in a steelmaking-continuous casting plant.

Computers & Chemical Engineering 28(12), 2823–2835.

33

[43] Pellegrini, P., Marlière, G., Rodriguez, J. (2014) Optimal train routing and scheduling for managing

traffic perturbations in complex junctions. Transp. Res. Part B 59, 58–80.

[44] Pellegrini, P., Rodriguez, J. (2013) Single European sky and single European railway area: A system

level analysis of air and rail transportation. Transp. Res. Part A 57 (1), 64–86.

[45] Pranzo, M., Meloni, C., Pacciarelli, D. (2003) A new class of greedy heuristics for job shop scheduling

problems. Lecture Notes in Computer Science 2647, 223–236.

[46] Rodriguez, J. (2007) A constraint programming model for real-time train scheduling at junctions.

Transp. Res. Part B 41 (2), 231–245.

[47] Şahin, İ. (1999) Railway traffic control and train scheduling based on inter-train conflict management.

Transp. Res. Part B 33 (7), 511–534.

[48] Samà, M., D’Ariano, A., D’Ariano, P., Pacciarelli, D. (2014) Optimal aircraft scheduling and routing

at a terminal control area during disturbances. Transp. Res. Part C 47 (1), 61–85.

[49] Samà, M., D’Ariano, A., Pacciarelli, D. (2013) Rolling Horizon Approach for Aircraft Scheduling in the

Terminal Control Area of Busy Airports. Transp. Res. Part E 60 (1), 140–155.

[50] Szpigel, B. (1973). Optimal Train Scheduling on a Single Track Railway. InM. Ross, editor, Operational

Research 72, pages 343–352, Amsterdam, The Netherlands.

[51] Törnquist, J., Persson, J.A. (2007) N-tracked railway traffic re-scheduling during disturbances. Transp.

Res. Part B 41 (3), 342–362.

[52] Törnquist Krasemann, J. (2012) Design of an effective algorithm for fast response to the re-scheduling

of railway traffic during disturbances, Transportation Research Part C, 20 (1), 62–78.

[53] Wegele, S., Schnieder, E. (2004) Automated dispatching of train operations using genetic algorithms.

Computers in Railways IX. WIT Press, Southampton, UK, 2004, 775–784.

[54] Wegele, S., Slovák, R., Schnieder, E. (2007) Real-time decision support for optimal dispatching of train

operation. In: I.A. Hansen, A. Radtke, J. Pachl, E. Wendler (Ed.), Proc. of the 2nd Internat. Conf. on

Railway Operations Modelling and Analysis, Hannover, Germany.

[55] Xin, J., Negenborn, R.R., Corman, F., Lodewijks, G. (2015) Control of interacting machines in auto-

mated container terminals using a sequential planning approach for collision avoidance. Transp. Res.

Part C 60 (1), 377–396.

[56] Yuan, J. (2006) Stochastic Modelling of Train Delays and Delay Propagation in Stations. PhD Thesis,

TRAIL Thesis Series T2006/6, Delft University of Technology, Delft, The Netherlands.

34

APPENDIX

A small illustrative example is proposed to explain the basic characteristics of the model, the neighbourhoods,

the neighbours and their evaluations. We consider 4 trains (A, B, C, D) that are running on the railway

network of Figure 9; those can be identified by different colors. Trains A and B cross the network from left

to right, while trains C and D run in the opposite direction. Moreover, A and D are local services which

stop at the stations R and Q, while the other trains have no planned stop in the network.

The network is composed by 8 resources (block sections), labeled from 1 to 8 in the top part of Figure 9.

Signals delimit the block sections. Moreover, the two stations R and Q (respectively resources 2, 7, 8; and

4, 6) are associated with additional platform resources, reported as 2R and 8R (station R); and as 4Q and

6Q (station Q). Those resources model the dwell process, for the trains that have a scheduled stop at the

stations (i.e. trains A and D).

D D

C
C

B B

A A2

8

7

4

6

4

6

4

6

4

6

2

8

7

2

8

2

8

R Q

1 2

8

7

3 4

6

5

Figure 9: Railway network and the routing alternatives for the four trains

Each train has to be routed in the network and there are multiple alternative routes. Trains B and C

can use any of the resources 2, 7, 8 in the area of station R, and any of the resources 4 and 6 in the area of

station Q. As any route in the first station area can be combined with any route in the second station area,

a total of 6 routing options are available for trains B and C. Due to the need to stop at station R, trains A

and D can use only resources 2 and 8. They cannot use resource 7, since there is no platform available in

that resource. So trains A and D can only be routed between resources 2 and 8, and between resources 4

and 6, for a total of 4 routing options. The full set of train routes, including the default ones, is reported

schematically on the bottom side of Figure 9. The default routes, reported in dotted lines, are as follows.

35

Between brackets is the running time (dwell time for the station stop): A1: 1(1), 8(2), 8R(1), 3(3), 4(2),

4Q(1), 5(2); B1: 1(1), 2(2), 3(3), 4(2), 5(2); C1: 5(2), 6(3), 3(5), 7(3), 1(2); D1: 5(2), 6(3), 6Q(1), 3(5),

8(3), 8R(1), 1(2).

D1
8R

C1
5

D1
5

D1
3

C1
3

C1
7

D1
8

C1
1

D1
1

A1
8R

A1
out

B1
out

B1
5

A1
5

A1
3

B1
3

B1
2

n

D1
6

C1
6

A1
4Q

D1
6Q

A1
4

B1
4

0

A1
8

A1
1

B1
1

C1
out

D1
out

Figure 10: Alternative graph of the example with default train routes

Figure 10 shows the alternative graph model of the CDR problem with the default routes. Each train

results in a sequence of nodes (operations) reported horizontally. Each node (e.g. A1-8) is identified by the

name of the train and routing (e.g. A1) plus the resource over which the operation is performed (e.g. 8).

In the alternative graph model, the fixed arcs are reported in solid color, while the alternative arcs are

reported in dotted gray. The latter arcs are given for each shared resource, namely resources 1, 3, 5 for all

trains; resource 8 for trains A, D; resource 4 for trains A, B; resource 6 for trains C, D. Moreover, a number

of fixed arcs exit node 0, in relation with the entrance time (including the initial delay) in the network and

the minimum departure time from the station platforms. Analogously, a number of fixed arcs enter node

n, in relation with the exit time from the network, and the arrival time at the station platforms. For this

illustrative example, the headway time between consecutive trains is always equal to 1 time unit.

A solution to the CDR problem is reported in Figure 11 as a time distance path (top) and alternative

graph (bottom). For the time distance graph, space is along the x-axis, time (increasing downwards) is along

the y-axis. In this solution, train C goes first over resource 3, followed by trains B, A and D. The minimum

headway time (one time unit) over the sections constrains the departure of train A from station R, as well as

the departure time (in the opposite direction) of train D. Those trains are assumed to be waiting at station

R until the resource 3 becomes available. In the dotted lines of Figure 11, the original plan is reported. The

train B suffers an initial delay of 9 time units, while the other trains have no initial delays. In Figure 11,

the scheduled arrival times of the trains are: A1: 6 at station R (no delay); 12 at station Q (the delay is

14, as the realised arrival time is 26); 19 at exit of the network (the delay is 10, as the realised exit time is

29). B1: 12 at the exit of the network (the realised exit time is 24; the consecutive delay is 3). C1: 21 at

36

D1
8R

C1
5

D1
5

D1
3

C1
3

C1
7

D1
8

C1
1

D1
1

A1
8R

A1
out

B1
out

B1
5

A1
5

A1
3

B1
3

B1
2

n

D1
6

C1
6

A1
4Q

D1
6Q

A1
4

B1
4

0

A1
8

A1
1

B1
1

C1
out

D1
out

time

A

B

D

C
5

10

15

20

25

30

time

5

10

15

20

25

30

R Q

1 2

8

7

3 4

6

5

35 35

Figure 11: A CDR solution shown as a time-distance plot, and the associated alternative graph

37

the exit of the network (no delay); D1: 18 at station Q (no delay); 27 at station R (the delay is 6, as the

realised arrival time is 33); 30 at the exit of network (the delay is 6 as the realised exit time is 36).

In the alternative graph model of the CDR solution reported at the bottom of Figure 11, exactly one arc

from each alternative pair has been selected, i.e. a train ordering decision has been taken for each potential

conflict. For instance, the chosen train order over resource 3 (i.e. C-B-A-D) results in the following arc

selection: (C1-7, A1-3); (C1-7, B1-3); (C1-7, D1-3); (B1-4, A1-3); (B1-4, D1-3); (A1-4, D1-3). This is a

scheduling solution with fixed routes, with a maximum consecutive delay of 14.

We next discuss the four neighbourhoods explained in Section 5.3 in terms of the train and route rankings.

Free-Net Waiting Operations Jobs neighbourhood NFNWJ : The NFNWJ ranking is based on the

sum of the consecutive delays collected at each waiting node in the graph of the incumbent routing solution

in which all alternative arcs are unselected (i.e. free-net traffic situation) but the one generating the waiting

node. For example, let’s consider the pair ((B1-4, C1-3),(C1-7, B1-3)) that concerns the order of trains B

and C over resource 3. We next refer to the time distance graph of Figure 12.

time

B
C

5

10

15

20

25

time

5

10

15

20

25

R Q

Figure 12: Free-net waiting operation - ranking computation

If the arc (B1-4, C1-3) is selected, the order reported in solid style in Figure 12 lines is implemented.

Train C arrives at the end of resource 3 at time 11, and has to wait for the exit of train B from resource 3,

that happens at time 16, plus 1 time unit of headway time making it 17. This results in a delay to train C

of 6 time units. Train B suffers no additional delay. The max consecutive delay is thus 6.

If the other arc of the pair (C1-7, B1-3) is selected, the other train order is considered, as reported via

the dotted lines in Figure 12. Train B has to wait from time 12, for the exit of train C from resource 3, that

38

happens at time 16, plus 1 time unit of headway time. Train B then exits the network at time 24, with a

consecutive delay of 3 time units. Differently, train C can enter resource 3 at time 11 without additional

delay, and exit the network without any delay. The maximum consecutive delay is thus 3.

The NFNWJ ranking computes the score as the minimum consecutive delay generated on the two waiting

nodes related to each alternative pair, i.e. min(3, 6) = 3 is assigned to B1 and C1 due to the alternative pair

((B1-4, C1-3),(C1-7, B1-3)). The complete score of each train is computed by summing up the minimum

consecutive delay generated by each alternative pair. In this example, no other alternative pair generates

any additional score, i.e. if only two trains at a time are considered in the network (free-net situation) no

other conflict arises. The NFNWJ ranking values are thus 3 for B1 and C1, 0 for the other trains.

Ramified Critical Path Operations neighbourhood NRCPO: For the solution of Figure 11, the critical

path is highlighted in Figure 13 in color and black. The operations on the critical path are as follows: B1-1,

B1-2, B1-3, B1-4, A1-3, A1-4, A1-4Q. The ramified critical path is an extension of the critical path including

also the waiting operations preceding or following the ones on the critical path. In this case the ramified

critical path corresponds to all operations of trains A1 and B1, highlighted in the thicker lines (gray or

black). In NRCPO, the ranking values for each train are computed as the maximum value lS
′(FR)(0, krp)

+ lS
′(FR)(krp, n) ∀ (krp) in the ramified critical path of the graph of the incumbent solution. This value

corresponds exactly to the makespan, i.e. the maximum consecutive delay of 14, for all nodes in the critical

path. For each train route, the maximum of its ranking values is the ranking score. The score of A1 and B1

is 14, the soore for C1 and D1 is 0.

D1
8R

C1
5

D1
5

D1
3

C1
3

C1
7

D1
8

C1
1

D1
1

A1
8R

A1
out

B1
out

B1
5

A1
5

A1
3

B1
3

B1
2

n

D1
6

C1
6

A1
4Q

D1
6Q

A1
4

B1
4

0

A1
8

A1
1

B1
1

C1
out

D1
out

Figure 13: Ramified critical path

Waiting Operations Critical Path neighbourhood NWOCP : The NWOCP ranking is based on the sum

of the consecutive delays collected on the waiting operations on the critical path of the incumbent solution.

We refer to Figure 14 for a graphical illustration. In this example, there is a single waiting operation (A1-3)

in which a consecutive delay of value 14 time units is collected for A1. The consecutive delay (14) of A1-3

39

is computed as follows: the weight of the path lS
′(FR)(0, B1− 4) = 20, corresponding to the time needed by

train B1 to exit B1-3 (and to enter B1-4); plus the weight wF
(B1−4),(A1−3) = 1, corresponding to the headway

time; minus the weight of lS
′(FR)(0, B1 − 3)) = 7, corresponding to the time at which train A1 would be

able to enter A1-3, without any other potential conflict. This yields a score of 14. There is no other waiting

operation on the critical path. The ranking of NWOCP is thus 14 for train A1, 0 for the others.

D1
8R

C1
5

D1
5

D1
3

C1
3

C1
7

D1
8

C1
1

D1
1

A1
8R

A1
out

B1
out

B1
5

A1
5

A1
3

B1
3

B1
2

n

D1
6

C1
6

A1
4Q

D1
6Q

A1
4

B1
4

0

A1
8

A1
1

B1
1

C1
out

D1
out

Figure 14: Waiting operations on the critical path

Delayed Jobs neighbourhood NDJ : The NDJ ranking is based on the maximum consecutive delays at

some relevant locations for each train. Figure 15 highlights the fixed arcs going into node n, in which some

consecutive delays are experienced. Train C1 is not delayed and its score is thus 0. The other trains have

the following consecutive delays: A1-8R: 0 A1-4Q: 14; A1-out: 10; B1-out: 3; D1-4Q: 0; D1-8R:6; D1-out:

6. For each job, the largest delay is taken, which corresponds to a rank of 14 for train A1, 3 for B1, 0 for

C1, 6 for D1. Figure 15 highlights the arcs going into node n in which consecutive delays are collected.

D1
8R

C1
5

D1
5

D1
3

C1
3

C1
7

D1
8

C1
1

D1
1

A1
8R

A1
out

B1
out

B1
5

A1
5

A1
3

B1
3

B1
2

n

D1
6

C1
6

A1
4Q

D1
6Q

A1
4

B1
4

0

A1
8

A1
1

B1
1

C1
out

D1
out

Figure 15: Delayed jobs

40

