
1.  Introduction
Over the last few years, Machine Learning (ML) has been used for predicting laboratory earthquakes in diverse 
experimental settings (Bergen et al., 2019; Ren et al., 2020). The majority of these studies have used ML to 
decrypt the acoustic signals emitted by a laboratory fault analog in double direct shear experiments (e.g., Bolton 
et al., 2019; Johnson et al., 2021; Lubbers et al., 2018; Rouet-Leduc et al., 2017, 2018; Wang et al., 2022). The 
predictive capability of ML seems to be related to asperity-scale processes (Shreedharan et al., 2021), which 
result in an exponential acoustic power increase observed prior to laboratory failures (Trugman et al., 2020). ML 
approaches applied to laboratory shearing experiments generally employed domain-specific features calculated 
in shifting windows (e.g., Rouet Leduc et al., 2017) or in temporal sequences (Shokouhi et al., 2021) to learn 
the evolution of acoustic properties during laboratory earthquake cycles. In these experiments, features (e.g., 
Jasperson et al., 2021) are extracted from one-dimensional arrays of acoustic emissions or shear stress measure-
ments, thus no spatial information is taken into account. The prediction of laboratory earthquakes (i.e., labquakes) 
has been achieved through regression by predicting the time to failure and/or the instantaneous fault friction of 
the rock sample as a prediction label, that is, a one-dimensional target. Similarly, for seismotectonic analog 
subduction models, the time to failure has been successfully predicted (Corbi et al., 2019). In contrast to shear 
tests, analog models are three-dimensional (3D), downscaled replicas of the natural prototype which provide 
real-world-equivalent observational data by means of laboratory geodesy and seismology (Rosenau et al., 2017). 
When monitored by digital image correlation techniques (e.g., particle image velocimetry, PIV) a geodetic-like 
network is simulated (e.g., Kosari et al., 2020). Such a network tracks the spatial deformation of the model surface 
quantitatively in 2D (and potentially also in 3D) over time. To incorporate the resulting spatiotemporal patterns 
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into a prediction framework, Corbi et al.  (2019) used both cumulative features and spatially-averaged instan-
taneous features from the deformation field to predict the time to the next labquake. Later, Corbi et al. (2020) 
proposed an alternative framework with a binary classification, where ML determines if failure occurs or not 
within an imminence time window.

These studies, both in shear experiments and in seismotectonic models, shed light and shadows on ML in 
labquake prediction. On one hand they highlight the capability of ML to predict different features of an upcom-
ing labquake, providing new insights into fault physics (Hulbert et al., 2018, 2019). On the other hand, they rely 
on the subjective preparation of features that may depend on analog fault micromechanics and materials (Van 
Klaveren et al., 2020), and are potentially biased by the need of setting thresholds such as velocity for defining 
the time to failure or imminence window for the binary classification.

A breakthrough step in labquake prediction has been recently proposed by Laurenti et al. (2022), who introduced 
a forecasting procedure to infer the future shear stress of a laboratory fault. This strategy allows forecasting 
indefinitely in the future without employing labeling. By following a similar procedure, we profit here from 
geodetic-like surface deformation data from two different analog setups of megathrust seismic cycles to introduce 
a different forecasting scheme: a spatiotemporal regression that forecasts surface velocity fields from past ones. 
This method does not need to define an arbitrary threshold to identify labquakes, allowing simultaneously to fore-
cast the onset of labquakes, their magnitude and to illuminate their space-time propagations at different prediction 
horizons. Moreover, the whole seismic cycle surface deformation is forecasted. The forecasting of velocity fields 
needs to incorporate memory effects in a spatial context. This task is a spatiotemporal problem and can be treated 
as a video sequence prediction problem (Reichstein et al., 2019). To perform the forecasting, we employ Deep 
Learning-based (DL) models from the Computer Vision field, a subfield of ML dedicated to interpreting images 
and video (Voulodimos et al., 2018). These algorithms are semi-supervised, meaning that feature extraction is not 
required. By comparing the performances obtained with baselines, such as the Persistence model and a Random 
Forest (RF) regressor, we quantify forecasting improvements that can be achieved with DL.

2.  A Testbed for Labquakes Forecasting: Experimental Setups, Data and Methods
2.1.  Experimental Setups and Data

In this study, we employ 4 datasets derived from two different experimental setups that mimic the key features of 
megathrust seismic cycles in a scaled fashion (see Rosenau et al. (2017) for a review on analog seismotectonic 
models): Gelquake (Corbi et al., 2013) and Foamquake (Mastella et al., 2022) (Figures 1a and 1b). Both setups 
share the same following characteristics: the subduction forearc is represented by a homogeneous and isotropic 
elastic wedge (of gelatin and foam rubber respectively, analogous of the upper plate) which is compressed by 
continuous kinematic loading at its base (subduction interface). Spontaneously nucleating frictional instabilities 
that propagate along the wedge base mimic megathrust earthquakes. The analog megathrust frictional properties 
can be tuned in different configurations such as double asperities (i.e., velocity weakening behaviors) along the 
strike. Asperities' interaction controls the recurrence behavior, causing sequences of full and partial ruptures 
(single or double asperities ruptures) with nested rupture cascades and superimposed cycles, similar to patterns 
observed at natural megathrusts (Philibosian & Meltzner, 2020). Given their remarkable capability to reproduce 
key features of natural megathrust seismic cycles (e.g., Corbi et al., 2022), Foamquake and Gelquake represent an 
ideal tool to test new prediction strategies.

From Gelquake we use one data set from a model with two equal (in terms of size and normal load) asperities. 
From Foamquake we use three datasets, one from a single asperity setup, one from a double-asperity model with 
two equal-sized asperities with the same load, and one from a model with the same configuration but different 
loads above asperities. Gelquake and Foamquake differ in wedge sizes, wedge properties, and deformation rates, 
but are both monitored with high-resolution (1,600 × 1,200 and 2,048 × 1,536 𝐴𝐴 𝐴𝐴𝐴𝐴2 , respectively) top-view video 
cameras. Imaging frequencies are 7.5 Frames Per Second (fps) for Gelquake and 50 fps for Foamquake. Data sets 
consist of instantaneous surface velocity maps obtained through image cross-correlation between consecutive 
images using the particle image velocimetry (PIV) technique (Sveen, 2004). PIV analysis resulted in 30 × 45 
measurement (“GNSS'') points for Gelquake and 18 × 29 for Foamquake. PIV mimics a homogeneously distrib-
uted geodetic network with 5 and 17 km spaced stations for Gelquake and Foamquake, respectively. Foamquake 
experiments run for 2 min, during which between 92 and 155 labquakes of 0.02–0.08 s duration (1–4 frames) 
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Figure 1.  Experimental setups, data, and prediction strategy: oblique view of Foamquake (a) and Gelquake (b). Time series of the average velocity field 
(trench-orthogonal component) (c, d). Colored shades depict the fraction of data used for training, validation, and testing. Dashed gray rectangles highlight 80 frames 
represented in subplots (e, f) which include the labquakes marked by green stairs. Subplots e and f represent an outline of our forecasting strategy. The gray shaded area 
is the image sequence F = (Ft−n, ..., Ft−1, Ft), with n = number of frames, used as an input to forecast the frame Y at the time (t + ph). Panels (g) and (h) represent the 
temporal sequence of velocity frames F used to train Deep Learning (DL) models to forecast the frame Y.
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occur. The Gelquake experiment was 7 min-long during which 40 labquakes occur with an average duration of 
around 1.5 s (10 frames). The time ratio between average interseismic and coseismic phases is therefore relatively 
different between Foamquake (∼17:1) and Gelquake (∼5.25:1) allowing us to test the sensitivity of our approach 
to different model behaviors.

2.2.  Forecasting Strategies

Because our data consist of sequential maps (frames), in this study we exploit techniques derived from the frame 
predictive learning, a tool to understand and model the dynamics of natural scenes (Zhou et al., 2020). Predictive 
learning foresees plausible future outcomes by learning meaningful representations of the underlying patterns in 
a set of historical frame inputs (e.g., Oprea et al., 2020).

Our regression task of predicting future velocity maps can be formally defined as follows (Figures  1e–1h). 
Consider Ft ∈ R X×Y×c as the t-th frame in the image sequence F = (Ft−n, ..., Ft−1, Ft) with n = number of frames, 
where X and Y denote the width and length of surface velocity maps, while c represents the components, that 
is, trench parallel and trench orthogonal (e.g., the number of channels in computer vision nomenclature). The 
target is to predict only one frame in the future at a given Prediction Horizon (ph), Ŷ = (Ŷt+1, Ŷt+2, ..., Ŷt + p_h) from 
the input F. In this study we employ 3 different Deep Neural Networks (DNNs) for predicting Ŷ: Convolutional 
Neural Network (CNN), Convolutional Long-Short-Term Memory Network (ConvLSTM) and a combination of 
CNN with LSTM (CNN-LSTM).

CNNs are a class of DNNs commonly applied to images to automatically learn hidden spatial patterns through 
backpropagation (Goodfellow et al., 2016). CNNs have been recently applied in seismological problems (e.g., 
Blank & Morgan, 2021; Jozinović et al., 2020; Münchmeyer et al., 2021; Rouet-Leduc et al., 2021; Zhu and 
Beroza, 2019) as well as in predictive learning tasks in meteorology and climatology (Chattopadhyay et al., 2020; 
Ham et al., 2019). We developed a CNN network expanding the LeNet architecture (LeCun et al., 1989) (Figure 
S1a, Text S1 in Supporting Information S1). As predictive CNNs, our network concatenates the previous n frames 
(each of which includes the 2 velocity components) as a sequence of tensors on the channel dimension (dimen-
sion = 2n): the convolution is thus applied both in the temporal and spatial domain to capture correlations in past 
inputs (e.g., Zhou et al., 2020).

ConvLSTM is a Recurrent Neural Network (RNN) developed to solve spatiotemporal forecasting problems. 
RNNs recursively update an internal status to process sequences of inputs. In labquake prediction, this internal 
status may represent the instantaneous state of the analog fault (Laurenti et al., 2022). ConvLSTM redesigns the 
architecture of fully-connected LSTM (Long Short-Term Model) (Hochreiter & Schmidhuber, 1997), allowing 
to receive and output multidimensional tensors. We adopted an architecture (Figure S1b, Text S1 in Supporting 
Information S1) akin to the encoding-forecasting model originally proposed by Shi et al. (2015) for precipitation 
forecasting.

The CNN-LSTM integrates the visual learning ability of CNNs with the effectiveness of LSTMs in learning 
short- and long-term temporal dependencies. In that sense, CNN-LSTM is “doubly deep,” both in space and time 
and can be applied to a variety of visual problems (Donahue et al., 2017). This architecture can be conveniently 
thought of as the union of two sub-models: an encoder CNN model for feature extraction and a LSTM model 
for interpreting features across time steps (Vinyals et al., 2015). Our CNN-LSTM model applies a simple CNN 
architecture independently to each input frame, to build a sequence of internal vector representations that track 
the kinematic evolution of the wedge. This sequence is subsequently used by a two-layer LSTM that learns 
temporal dependencies thanks to feedback connections and gate techniques (Figure S1c, Text S1 in Supporting 
Information S1).

The predictive performances obtained with the three DL models are compared to those obtained with forecasting 
baselines: the Random Forest (Breiman, 2001) (Text S2 in Supporting Information S1) and the Persistence and 
Moving Average Models (MAV) (Text S2 in Supporting Information S1). RF is chosen as a baseline because it 
has shown promising results in labquakes prediction (e.g., Rouet-Leduc et al., 2017). Unlike the DNNs (which 
have tensor inputs), our RF is fed by 1D arrays representing single flattened velocity frames: each PIV velocity 
vector is an input feature. Therefore, our RF does not receive information related to the evolution of surface 
velocities.
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For each tested algorithm, we define a custom model architecture independently on Foamquake and Gelquake 
data sets, setting the training hyperparameters after extensive tuning (Text S1 in Supporting Information S1). We 
train a separate model for each prediction horizon. Each experimental data set is split into 60% for training, 20% 
for validation, and 20% for testing (Figures 1c and 1d). Training data sequences have been randomly shuffled to 
prevent overfitting and promote generalization, without breaking the temporal coherence (Text S1 in Support-
ing Information S1). For all DNNs we test model performances as a function of the temporal lengths of input 
sequences (i.e., number of input frames). During the model training the mean squared error (MSE) has been set 
as the loss function applied for gradient descent (Text S1 in Supporting Information S1), with the Adam optimizer 
(Kingma & Ba, 2015).

Forecasting performances are quantified through the normalized root mean squared error and the structural 
similarity index (NRMSE and SSIM, Text S3 in Supporting Information  S1). Both metrics are useful being 
complementary: NRMSE represents an absolute error (i.e., point by point comparison) while SSIM quantifies 
the similarity between spatial patterns (Sara et al., 2019). Both metrics are scale-independent allowing to equally 
evaluate the forecasts of interseismic and coseismic frames despite their different magnitudes and to compare 
performances of different datasets. Forecasting results are calculated considering both validation and testing 
sets. The forecasts have been additionally evaluated using classification metrics (Text S3 in Supporting Informa-
tion S1). These classification metrics are not central for our study but facilitate the quantification of prediction 
performances. We did not apply any independent normalization on the two velocity components: this was tried 
but was found to increase ∼10% the NRMSE.

3.  Results
3.1.  Comparison Between Different ML and DL Algorithms and Between Different Analog Experiments

For all datasets, DL algorithms outperform forecasting baselines. The forecasting performances of each tested 
algorithm are represented for the Foamquake experiment characterized by different normal loads over the two 
seismic asperities (Figures 2a and 2b). This experiment has been selected as a reference being the most similar 
with respect to interplate seismicity in nature and ideally the most difficult to be predicted due to the larger 
variability of rupture sizes, locations, and recurrence time (Mastella et al., 2022). The same analysis has been 
performed for all other experiments: (a) experiments from the same setup (i.e., Foamquake), but with different 
configurations; (b) experiments from a different setup (i.e., Gelquake). Results are summarized in Tables S1, S2 
and Figures S2, S3 in Supporting Information S1.

We implement two prediction performance evaluation scenarios: scenario C where only coseismic frames predic-
tions are evaluated and scenario IC where both interseismic and coseismic are considered.

For each prediction horizon, we report the average NRMSEs of the model with the input sequence length that 
provides the best performance for each scenario (Figures 2a and 2b). All algorithms show degrading prediction 
performances with increasing prediction horizons. Generally, in scenario IC, the performances of the different 
DL algorithms are similar, while differences become clear when considering only scenario C. For a ph  =  1 
frame, the ConvLSTM reveals the best forecasting prowess. Going further into the future, the ConvLSTM tends 
to produce overly smoothed predictions and the CNN-LSTM instead shows the best predictions (Figures  2a 
and 2b). Coseismic errors obtained with the CNN are significantly higher when compared with CNN-LSTM 
ones. Compared to all tested DL algorithms, RF shows generally the worst predictions (Figures 2a and 2b).

The CNN-LSTM is capable of forecasting analog earthquakes up to 3–4 frames in advance (i.e., 0.06–0.08 s): 
until this horizon, coseismic predictions coincide with real velocity maps both in amplitude, direction, and spatial 
distribution (Figure 3). The number of frames used as input influences the forecasting performances but without 
any clear relations (Figure S4 in Supporting Information S1). The NRMSE is similar considering both scenarios 
(Figures 2a and 2b) at short horizons (1–2–3 frame). The discrepancy between coseismic and interseismic predic-
tions becomes clear at longer horizons (i.e., 4–5 frames), where the error is correlated with velocity amplitudes. 
Indeed, at ph > 3–4 frames all architectures prefer “conservative” (i.e., slower) predictions for coseismic frames 
(Figure S5 in Supporting Information S1). Generally, interseismic velocities are not well predicted, owing to 
fluctuations of spatial noise through time (Movie S1). Only trench orthogonal velocities are correctly predicted 
while for trench-parallel velocities the forecasts fail.
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The forecasting performances achieved with the Gelquake experiment are shown in Figure S6 in Supporting 
Information S1. The ConvLSTM is the more efficient architecture in both scenario IC and C for short horizons, 
while for scenario C and long horizons, the CNN-LSTM outperforms all the other architectures. The RF shows 
a larger error, but predictions are still acceptable. As for Foamquake, predictions degrade with the prediction 
horizon, but in this experiment not only the trench-orthogonal velocity component but also the trench-parallel 
one is well predicted (Figure S7 in Supporting Information S1). The maximum predictable horizon of gelquakes 
is around 6–7 frames (0.8–0.93 s) (Figure S8 in Supporting Information S1). Performances are influenced by the 

Figure 2.  Prediction errors (NRMSE) for all employed algorithms as a function of the prediction horizon (a, b). The results from the double-asperity Foamquake 
experiment with different normal loads above asperities are reported. Comparison of errors between different experimental configurations of Foamquake obtained with 
the CNN-LSTM architecture (c, d). The first row refers to errors calculated considering all frames (a–c) while the second row shows only coseismic frames errors (b–d). 
For each horizon, the forecasts are obtained with the best performing model which uses a number n of frames as input.
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number of frames used as input but without any direct relations. Coseismic predictions show smaller NRMSEs 
than interseismic ones (Video S2).

Figures 2c and 2d show the NRMSE obtained with the CNN-LSTM for the three different Foamquake exper-
iments. Considering scenario IC (Figure 2c), the lowest error is observed for the experiment with two asper-
ities with different normal loads, while the highest error is observed for the single-asperity experiment. In 
contrast, in scenario C, the single-asperity experiment shows the lowest NRMSE (Figure 2d). With respect to 

Figure 3.  Velocity fields forecasting example obtained with the CNN-LSTM architecture. Reference Foamquake experiment. Asperities' projections are represented by 
colored rectangles (in cyan is the asperity with 𝐴𝐴 𝐴𝐴𝑛𝑛  = 40 Pa, in green is the asperity with 𝐴𝐴 𝐴𝐴𝑛𝑛  = 100 Pa). Each column shows the forecast of 8 frames at different prediction 
horizons. For each horizon, the forecasts are obtained with the best performing model which uses a number n of frames as input. Forecasting errors (NRMSE and 
SSIM) are reported for each frame.
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Foamquake, the Gelquake experiment shows a considerably lower error (i.e., difference between NRMSE of the 
two models≃0.08), especially for scenario C.

3.2.  Forecasting Labquake Rupture Characteristics

Our regression method allows us to assess the onset and evolution of slip in advance. Slip distribution at depth can 
be constrained by inversion (e.g., Kosari et al., 2020) but to avoid additional inversion-related bias, we estimate 
analog earthquake source parameters, (i.e., average slip, rupture area and therefore magnitude) directly from the 
surface measurements in analogy with Mastella et al. (2022) and Corbi et al. (2013).

For both Foamquake and Gelquake we compare predicted versus observed source parameters (Figures S9a and 
S9b in Supporting Information S1). For short horizons, foamquakes are almost perfectly predicted with a percent-
age higher than the 90%, and source parameters are adequately estimated (details in Text S3 in Supporting Infor-
mation S1). The percentage of successful predictions of labquakes decreases to 36% for a 5-frames horizon, and 
it is primarily the labquakes from the asperity with the highest load that are forecasted less well, likely due to the 
paucity of this type of events in the data set. Gelquakes are predicted with a percentage higher than the 60% up 
to a horizon of 6 frames.

For both Gelquake and Foamquake, Accuracy and Specificity remain higher than 0.90 for each of the investigated 
prediction horizons (Figure S10 in Supporting Information S1). Recall and Precision, which measure the cover-
age of the coseismic minority class, oscillates from 0.2 to 0.9 depending on the prediction horizon. Regarding 
Foamquake experiments, coherent with regression results, the double-asperity configuration with different loads 
depicts the highest scores until a ph = 3 frames. Around ph = 4–5, scores suffer a sharp drop reaching values 
lower than 0.2. With Gelquake, Recall and Precision are higher (always >0.5), and no clear drops are observed.

4.  Discussion
Aware that prediction performances obtained with different algorithms depend on hyperparameters exploration, 
our analysis shows that computer vision DNNs significantly outperform RF and Moving Average Models, which 
provide from the 10% to the 50% higher NRMSEs depending on the experiment. Why is this the case? The DNNs 
are different to RF in that the convolutional operations are tailored toward learning spatial patterns of analog seis-
mic cycles. Furthermore, the DNNs are fed by a series of input frames (rather than just one frame for the RF) and 
so there is additional sequential information that can potentially be improving the prediction. The discrepancy 
in prediction performances between the two experimental setups suggests that the choice of the DL algorithm 
as well as the tuning of the hyperparameters depends on the experimental data set. With Gelquake, RF shows 
a predictive power almost as good as DL algorithms despite the lower computational effort. For other systems, 
such as Foamquake, an overly-simplified representation may limit the prediction of challenging spatiotemporal 
data. The application of recurrent convolutional neural networks, networks that emphasize the spatiotemporal 
sequentiality of the input, strongly improve predictions. This suggests that the predictive knowledge gained by 
the DL architecture is embedded in the temporal sequence structure rather than in its individual frames. Our 
spatiotemporal approach allows us to forecast all phases of laboratory seismic cycles: interseismic, coseismic 
and postseismic (if present). Our DNNs forecast with reliable fidelity the magnitude and evolution of analog 
earthquakes based on the kinematic deformation of analog wedge surfaces, without the need to extract features. 
Labquakes can be predicted up to a horizon on the order of their durations, similar to the maximum predictability 
estimated for slow earthquakes along the Cascadia margin (Gualandi et al., 2020). The maximum predictable 
horizon in Gelquake is around 6–7 frames (equivalent to 0.8/0.93 s, or around 10% of the interseismic phase dura-
tion) while for Foamquake is only around 3 frames (equivalent to 0.06 s, or ∼4% of the interseismic time length). 
Upscaling these temporal horizons to the natural prototype is a critical and at the same time not straightforward 
task. This is because the choice of the time scaling factor in analog experiments depends on whether the incre-
ment is considered to be part of the dynamic coseismic rupture phase or instead of the quasi-static interseismic 
phase, which are differently scaled (Rosenau et al., 2009, 2017). Considering the frames as part of the short-term 
nucleation phase (i.e., as part of the coseismic phase and scaled as such), the maximum predictable horizons of 
foamquakes and gelquakes upscale to ∼36 and 745 s, respectively. If the frames are instead considered as part of 
the long-term loading phase and the interseismic scaling is employed, prediction horizons of ∼6 and 220 years 
could be expected.
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Regarding Foamquake, we observe differences between individual experimental datasets, suggesting that the 
spatial variability of the properties of physical systems under consideration influence the predictive perfor-
mance of DNNs. Foamquakes are easier to forecast in single-asperity configurations than in double-asperity 
due to complexity created by asperities interaction. In contrast, the interseismic deformation is more confidently 
predicted in the double-asperity experiment with different loads as this experiment is characterized by the highest 
load (with respect to the other experiments) and the higher load causes larger interseismic displacement, and in 
turn less noisy time series. On the contrary, in Gelquake the interseismic deformation is successfully predicted 
and predictions are accurate considering both the two components of the velocity field. These results could seem 
counterintuitive given that for Gelquake the seismic cycles employed during the training are around ⅓ of cycles 
used for Foamquake experiments, but we must also consider the experimental monitoring rate and the duration 
of interseismic phases: despite Gelquake and Foamquake being interseismically deformed with the same rate, the 
lower frame rate of Gelquake allows PIV to retrieve velocities more precisely than in Foamquake.

Differently from classic ML (e.g., RF), DNNs are often considered black boxes, due to the difficulty to identify 
features that allowed successful predictions. For this reason, we detailed the interseismic phase, aiming to recog-
nize possible informative patterns. We found that foamquakes are anticipated by a 2-stage preparatory phase: late 
interseismic phases characterized by subtle landward acceleration followed by a reversal during the last frames 
before the occurrence of main slip episodes. Reversals have “slower than coseismic” seaward velocities and 
appear at greater depths than asperities. Such slow, deep slip loads the shallower interseismically locked regions, 
triggering the subsequent shallow slip within the asperities (Figure 3), like what is proposed for real megathrust 
earthquakes (Burgmann et al., 2005; Moreno et al., 2014). For Gelquake, the late interseismic landward accelera-
tion, a transient increase in locking, is not observed. However, also for Gelquake anticipatory “slower than coseis-
mic” slip nucleates in the deeper asperity region, which in fact is the most informative for labquake prediction 
(Corbi et al., 2020). The presence of a preparatory phase to analog ruptures is compatible with the loading view 
of earthquake nucleation, which suggests that earthquakes are anticipated by tectonic loading processes associ-
ated with aseismic slip and shear localization (e.g., Kato & Ben-Zion, 2021; Ohnaka, 1992). This observation 
opens the subsequent question: do DNNs recognize, learn, and exploit only such a preparatory phase to forecast 
future surface velocities? Or alternatively, is it the entire training data set that allows successful predictions? 
To tackle this problem, we select the reference Foamquake experiment as a testbed and we train a CNN-LSTM 
model excluding the 5 frames that anticipate each rupture (i.e., the average duration of the preparatory phase). 
This model can still forecast labquakes, but with less precision on their location, magnitude, and propagation (i.e., 
NRMSE increases of ∼15% with respect to the original model). This result underlines that successful predictions 
are not achieved only due to the peculiarity of the late preparatory phase.

5.  What Can We Learn From Analog Earthquakes Forecasting?
The models introduced here are purely deterministic as is the case for most existing DL-based models proposed 
in literature for video prediction (Oprea et  al.,  2020) and also as generally proposed for labquake prediction 
(e.g., Ren et  al.,  2020). Deterministic prediction would suffice for well-controlled laboratory settings. These 
experiments lack the geological complexity of the Earth (Beroza et al., 2021), when multiple predictions could 
be equally likely due to epistemic and/or aleatory uncertainties (Kiureghian et al., 2009). For this reason, the 
proposed methods can be considered as baseline approaches, which are improvable by providing confidence 
intervals on predictions, for example, by introducing Bayesian Neural Networks (Shridhar et al., 2019). Incorpo-
rating uncertainty becomes even more essential if learning capabilities developed originally with laboratory data 
are extrapolated to the natural prototype through Transfer Learning applications. Pioneering studies of Trans-
fer Learning have recently been proposed using numerical simulations to predict labquakes (Wang et al., 2021) 
and for predicting off-fault deformation of natural faults from strike-slip analog experiments (Chaipornkaew 
et al., 2021). Our study paves the path to the application of transfer learning from analog experiments to the natu-
ral prototype. Given the straightforward analogies between space-time rupture behaviors observed along natural 
subduction zones with the patterns generated by megathrust analog models (e.g., Caniven & Dominguez, 2021; 
Corbi et al., 2022), learning in the laboratory how to predict fast and/or slow earthquakes from geodetic data is the 
challenging evolution of this study. Cascadia (North America) and Hikurangi (New Zealand) subduction zones, 
where the geodetic records contain multiple cycles of slow earthquakes (e.g., Michel et al., 2019; Wallace, 2020), 
are potential candidates to test our approach on, even though the physical mechanism of slow earthquakes might 
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be different from large megathrust earthquakes. Our methods can be potentially applied in the Continuous Train-
ing context, where models are continuously retrained to respond to changes in input data. In that sense, our 
models could enable the spatiotemporal forecasting of the geodetic deformation in real time.

Data Availability Statement
All input data used for the analysis are available through GFZ Data Services and published open access in Corbi 
et al. (2019) and Mastella et al. (2021). Models' implementations are developed with the Python packages Tensor-
flow 2 (Abadi et al., 2016) and Scikit-learn (Pedregosa et al., 2011). The training is run on a computer with a 
single NVIDIA 435-21 GeForce RTX2070 GPU. All figures were made using the Python package Matplotlib 
v.3.1.0 (Hunter, 2007).
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