
Citation: Orsini, A.; Barettin, D.;

Pettinato, S.; Salvatori, S.; Polini, R.;

Rossi, M.C.; Bellucci, A.; Bolli, E.;

Girolami, M.; Mastellone, M.; et al.

Frenkel-Poole Mechanism Unveils

Black Diamond as

Quasi-Epsilon-Near-Zero Surface.

Nanomaterials 2023, 13, 240. https://

doi.org/10.3390/nano13020240

Academic Editor: Jose L.

Luque-Garcia

Received: 16 December 2022

Revised: 31 December 2022

Accepted: 3 January 2023

Published: 5 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Frenkel-Poole Mechanism Unveils Black Diamond as
Quasi-Epsilon-Near-Zero Surface
Andrea Orsini 1,* , Daniele Barettin 1 , Sara Pettinato 1,2, Stefano Salvatori 1,2, Riccardo Polini 2,3 ,
Maria Cristina Rossi 4, Alessandro Bellucci 2 , Eleonora Bolli 2, Marco Girolami 2 , Matteo Mastellone 2 ,
Stefano Orlando 2 , Valerio Serpente 2 , Veronica Valentini 2 and Daniele Maria Trucchi 2

1 Università degli Studi Niccolò Cusano, “ATHENA” European University, Via don Carlo Gnocchi, 3,
00166 Roma, Italy

2 Istituto di Struttura della Materia, ISM-CNR, 00015 Monterotondo Stazione, Italy
3 Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma “Tor Vergata”, Via della

Ricerca Scientifica, 00133 Rome, Italy
4 Department of Electronic Engineering, Università degli Studi di Roma Tre, Via Vito Volterra 62—Ex Vasca

Navale, 00154 Roma, Italy
* Correspondence: andrea.orsini@unicusano.it

Abstract: A recent innovation in diamond technology has been the development of the “black
diamond” (BD), a material with very high optical absorption generated by processing the diamond
surface with a femtosecond laser. In this work, we investigate the optical behavior of the BD samples
to prove a near to zero dielectric permittivity in the high electric field condition, where the Frenkel-
Poole (FP) effect takes place. Zero-epsilon materials (ENZ), which represent a singularity in optical
materials, are expected to lead to remarkable developments in the fields of integrated photonic
devices and optical interconnections. Such a result opens the route to the development of BD-based,
novel, functional photonic devices.

Keywords: diamond; LIPSS; Frenkel-Poole effect; ENZ

1. Introduction

Since the first report in 2014 [1] about the enhanced optical absorption property in
the visible range of the fs-laser treated diamond surface, considerable studies have been
performed to analyze and optimize the treatments inducing surface nanostructuring (see
Figure 1) [2,3]. This material, called “Black Diamond” (BD), is able to combine a very
high optical absorptance, due to the formation of regular nanostructures over its surface,
with a high mobility of the charge carriers [4], thus conceiving BD as a possible choice to
photo-thermionic cathodes in high-temperature solar cells [5]. Furthermore, the possibil-
ity of deploying nanostructured diamonds for new applications as near-IR antireflection
coatings [6,7] was demonstrated. On the other hand, this treatment introduces irregulari-
ties in the atomic arrangement of carbon atoms, and therefore the strain in its lattice, as
it happens also in partially graphitized diamond substrates [8,9]. In optimized BD sam-
ples, where surface nanostructuring has a pseudo-bidimensional periodicity, an increased
number of defects are present in the surface, as demonstrated by the increase of optical
absorbance [10], and, correspondingly, the surface becomes orders of magnitude higher
conductive than the bulk. Through thermal annealing up to 800 K and stress relaxation, it
is possible to observe sheet resistance down to about 25 kΩ at high temperature and spin-
tronic effects through the sequential current measurements in the cryogenic temperature
range [11,12]. By enhancing the laser energy further, the spatial arrangement of the created
defects percolation path breaks up and the black diamond surface becomes more insulating.
On such highly defective BD samples it is possible to perform high electric field current
measurements and observe FP conduction mechanism.
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to lead to remarkable developments in the fields of integrated photonic devices and 
optical interconnections through the modulation of the Purcell effect [22] (i.e., the increase 
in spontaneous emission rate generally used to classify nanoantennas). Thanks to the 
presence of NV-centers, simple diamond nanoparticles also act as active dielectric 
nanoantennas with a high Purcell-factor [23]. Importantly, we note that NV-centers are 
also allocable by controlled surface laser writing [24], and it is, therefore, possible to 
combine in diamonds new electromagnetic effects to quantum properties of single photon 
emitters, making diamonds a leading contender as election material for the future 
quantum computer industry. 

Furthermore, the demonstrated strong reduction of the dielectric polarizability 
through surface nanostructuring and the defects ordering on a wide band-gap material, 
like a diamond, in which n-type doping is physically very difficult, opens the way to a 
new procedure to realize the ENZ surface for photonic devices. In fact, ENZ materials 

Figure 1. Schematic of the “Black Diamond” fabrication process.

The application of large electric fields induces a considerable bending of the conduction
band before reaching the breakdown condition. According to the Frenkel-Poole effect (FP),
under a high electric field E, a trapped electron can jump to the conduction band without
large thermal energy contributions. This induces a consequent measurable nonlinear
enhancement of the current density J, following the equations:

J = J0(T)·eβ
√

E , β =
q3/2

/
kBT
√

πε0εr, E = V/d (1)

where, apart from well-known physical and mathematical constants (kB the Boltzmann
constant, q the electron charge and pi), and easily measurable experimental parameters
(T the absolute temperature and d the electrodes distance), the only unknown parameter
influencing the current/voltage relation is εr, the material dielectric permittivity [13].

In this paper, we demonstrate through the FP effect that by enhancing the surface
nanostructuring of a diamond (bulk relative permittivity equal to 5.5), it is possible to
obtain its value diminution up to about 10−2. This is equivalent to considering the black
diamond surface almost as an Epsilon Near Zero material (ENZ), representing a singularity
in optical materials [14–18]. As observed for other ENZ surfaces [19–21], the coupling of
such surfaces with nanoantennas allows us to obtain optical non-linearities and strongly
improve the directionality of the emitted electromagnetic field; it is expected to lead to
remarkable developments in the fields of integrated photonic devices and optical intercon-
nections through the modulation of the Purcell effect [22] (i.e., the increase in spontaneous
emission rate generally used to classify nanoantennas). Thanks to the presence of NV-
centers, simple diamond nanoparticles also act as active dielectric nanoantennas with a
high Purcell-factor [23]. Importantly, we note that NV-centers are also allocable by con-
trolled surface laser writing [24], and it is, therefore, possible to combine in diamonds new
electromagnetic effects to quantum properties of single photon emitters, making diamonds
a leading contender as election material for the future quantum computer industry.

Furthermore, the demonstrated strong reduction of the dielectric polarizability through
surface nanostructuring and the defects ordering on a wide band-gap material, like a dia-
mond, in which n-type doping is physically very difficult, opens the way to a new procedure
to realize the ENZ surface for photonic devices. In fact, ENZ materials have different fab-
rication techniques [25], but the most widely adopted and technologically convenient
technique is to strongly enhance the free carrier concentration by heavy n-type doping
of silicon or III-V semiconductors and to deploy the charges’ collective motion at plasma
frequency [26–28]. We infer that highly defected surfaces with shallow electron traps may
behave towards electromagnetic waves in a similar manner to the previously mentioned
degenerated semiconductors. Even if this physical phenomenon should be confirmed by
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specific electromagnetic experiments, this is the first scientific report on quasi-ENZ effect
on a diamond substrate up to our knowledge, and it can be useful to the large community
of scientists working on diamond devices, from biosensors [29–32] to dosimeters [33,34]
and to quantum computing [35,36]. In fact, as easy examples, the localized implementation
of ENZ surfaces on diamonds gives the opportunity to improve optical interconnections
between individual quantum building blocks (see Figure 2) or to improve nanoantennas
radiation emission efficiency [19].
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Figure 2. Sketch of the possible combination of quantum blocks on diamond substrates through
spatially controlled laser induced ENZ waveguides.

2. Materials and Methods

Polycrystalline diamond substrates with a lateral dimension of 10 × 10 mm2 and
a thickness of 250 µm were purchased by Element Six Ltd. The sample surface was
treated with a laser Spectra-Physics Spitfire Pro 100 F 1 K XP (pulse duration about 100 fs,
wavelength 800 nm, repetition rate up to 1 kHz). The horizontally polarized laser beam
was focused perpendicularly to the diamond plate surface in a high-vacuum chamber
(pressure < 10−7 mbar) with a spot size on the sample of 150 µm diameter. The pulse
energy was kept constant at 3.6 mJ/pulse, corresponding to a power density one hundred
times larger than the diamond damage threshold (200 MW/µm2). The black diamond was
created with double-nanotexturing with a total accumulated laser fluence of 6.25 kJ/cm2

on the diamond surface along the X-Y directions, and was obtained following the two-step
bustrophedic procedure described in [37], by means of a computer-controlled micrometric
X-Y translational stage. In the first step, a one-dimensional LIPSS structure was defined
along the X direction. In the second step, the LIPSS structure was redefined along the
Y direction thanks to the incubation effect guaranteeing a higher laser light absorption
than the sample before the first treatment step. After the laser treatment, both samples
were immersed in a strongly oxidizing solution (H2SO4:HClO4:HNO3 in the 1:1:1 ratio)
for 15 min at the boiling point in order to remove any debris, as well as non-diamond
carbon phases. Finally, the samples were cleaned by ultrasound sonication and rinsed in
deionized water.

Surface morphology was studied by a Zeiss LEO Supra 35 field emission gun scanning
electron microscope (FEG SEM). Secondary electron micrographs were acquired with an
in-lens detector. The electron beam energy was set to 10 keV.

Scanning Kelvin probe measurements of the central part of the black diamond sample
were performed by an OmegaScope platform integrated into a LabRAM HR Evolution
Raman microscope (HORIBA Ltd., Kyoto, Japan). Morphology and KPFM imaging were
performed in tapping mode, setting the operational amplitude at 20 nm, and using a
conductive Cr-Au coating silicon pyramidal tip (MikroMasch HQ: NSC14/Al BS, Wetzlar,
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Germany) with a characteristic radius of ~35 nm and about 110 kHz as the resonance
frequency. The scan rate was fixed at 0.5 Hz. All the microscopies were acquired in kelvin
probe mode and analyzed using the AIST-NT SPM control software.

Raman spectroscopy was performed in back-scattering geometry by using a Dilor XY
triple spectrometer (1 cm−1 resolution) equipped with an Ar+ laser (514.5 nm), a cooled
CCD detector, and an adapted Olympus microscope arranged in confocal mode. The spot
size was 2 mm, and 20 intensity points were collected to provide a suitable statistic. Line
widths and intensities were determined using the Thermo-Grams Suite v9.2 software.

After Raman spectroscopy experiments, a windowed stainless-steel sheet that was
50 µm thick was used as shadow-mask for thermal evaporation of Aluminum contacts on
each sample. The distance between contacts was fixed at 1 mm for two parallel rectangles
(see Figure 3).
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Figure 3. Sketch of the current measurements experimental setup.

Conductivity measurements up to 500 V in both bias voltage polarities were per-
formed in a vacuum chamber with substrate temperature regulation performed by hot
wires heating a copper hot-plate, on which the diamond plate is glued by silver paste
to maximize the thermal flux. The current was acquired by a Keithley 487 Picoamme-
ter/Voltage Source through two screwed molybdenum metal tips adhered in the central
region of both Aluminum pads, both glued always by silver paste, by the application of a
first ramp from 0 V→ 500 V→ 0 V (instrument maximum source voltage) and a second
ramp with reversed electric field direction from 0 V→−500 V→ 0 V.

3. Results
3.1. Morphological and Chemical Characterization

The sample analyzed in this paper is produced through a double-texturing technique
with the target to maximize the largest total accumulated absorbed laser fluence, since the
accumulated laser fluence of the second step was kept as large as the first: i.e., 50–50%.
Indeed, the increase of absorptance after the first treatment is coupled with a decrease of
the diamond ablation threshold. Therefore, the total accumulated absorbed laser fluence,
defined as the product of the diamond absorptance at the laser wavelength and the deliv-
ered fluence, is characterized by a greater weight in the second treatment. As can be seen
in Figure 4a, the diamond sample shows almost regular LIPSS, but is oriented according to
the direction expected from the polarization direction of the second treatment, even if it
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is possible to observe perpendicular shallow lines deriving from the first treatment light
polarization direction. Clearly, even if we did not perform an SEM session in the middle of
the two steps of the BD fabrication, it is reasonable to assume that LIPSS formed horizon-
tally after the first treatment, but thanks to the largest absorptance of the diamond surface
during the second step, they were swept away during the formation of the new LIPSS in
the second treatment. Traces of the LIPSS formed during the first step are evident in the
inset zoom. The LIPSS periodicity related to the ratio of laser wavelength and the material
refractive index does not appreciably change between the first texturing (First-step LIPSS)
and the second one (Second-step LIPSS). A strong reduction of the dielectric permittivity
may change the LIPSS periodicity, however:

• The εr change is supposed to be almost 2D. Therefore, it is unable to significantly
contribute to the overall laser-diamond substrate interaction of the second texturing.

• The first treatment is performed at half of the standard power to produce a high-quality
black-diamond surface. Therefore, the superficial εr change is also limited in value.

• The εr reduction is further enhanced by the two-stage texturing due to the incubation
effect (see Appendix B).
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Figure 4. Surface characterization of black diamond samples (a) SEM image of the surface; (b) Raman
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annealing at temperature slightly higher than 500 ◦C for more than 24 h. Black line corresponds to
natural diamond Raman peak.

In Figure 4b we show the Raman spectrum performed after the debris surface cleaning
(green curve) showing considerable tensile stress in the diamond lattice. On the other hand,
the annealing, performed at a temperature slightly higher than 500 ◦C for more than 24 h,
revealed that high-temperature conditions influence reassembling of the diamond lattice
and stress release in the surface layer. Therefore, it was decided to first bring the sample to
the maximum temperature and second analyze its electrical behavior during the cooling
phase (see Section 3.2).

A main point regarding black diamond nanostructured surface is the relation between
the trap’s disposition and the periodicity of the laser-induced surface nanowaves. As
stated in the introduction, black diamond samples with high ordering of the surface waves
exhibit a superior conductivity on behalf of samples that absorbed even more laser energy
but suffered a complete reorganization of the surface waves like the one analyzed in this
paper. Therefore, it is reasonable to suppose that the surface waves are characterized by
distinct traps depth levels. We performed surface Kelvin-Probe measurements, widely
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employed to study defects’ energy levels in organic electronic materials. Indeed, as shown
in Figure 5, the higher black diamond zones of the laser-induced nanowaves, estimated to
be at about 45◦, have a distinctly more positive surface potential than the lower ones, with
edge potentials reaching values of a hundred millivolts, which is more than twice the RT
thermal voltage. Positive potentials mean that electrons are trapped in those regions [38,39]
through localized defects with energy close to the conduction band.
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3.2. Electrical Measurements

We performed high electric-field J(E) measurements (up to 5 kV/cm) with 23 steps
of temperature in both the polarities of the applied electric field, with typical results of
the first voltage ramp (0 V→ 500 V) shown in Figure 6a–d (four I/V curves at different
temperatures with relative Matlab fitting lines, see next paragraph), while opposite polarity
electric field results are shown in Appendix A. Usually, it is possible to reveal the coefficient
β of the FP effect by plotting the logarithmic of the current density (log J) vs. the square root
of the voltage (

√
V) and extracting its slope S = β/

√
d, where d is the distance between the

measurement electrodes. However, in order to be more accurate, we decided to operate the
coefficient extraction directly by using the Matlab “Curve Fitting” tool with the imposition
of Equation (2) directly to the original data (see Figure 6). We noticed that the switching
point between the two exponential regimes always falls in the 230 V–380 V range. Therefore,
we applied three different fittings for each measurement:

A. A Linear Fitting (I = AOffset + GLin*V), excluding point acquired at voltages > 100 V
(red lines), where AOffset is the little initial bias error of the instrument and GLin is the
overall conductance of the sample at low voltages.

B. A First Exponential Fitting (I = G1
FP*V*exp(β1

√
V)), excluding the point acquired at

voltages > 230 V (blue lines), where G1
FP represents the sample linear conductance to

be combined with the exponential contribution and β1 represents the FP coefficient
divided by the contact distance square root.

C. A Second Exponential Fitting (I = G2
FP*V*exp(β2

√
V)), considering all the exper-

imental points (green lines), where G2
FP and β2 have the same meaning of G1

FP

and β1.
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Figure 6. I/V curves relative to the positive voltage ramp with corresponding Matlab fitting for the
linear part (red line), the first exponential part up to 230V (blue curve) and the total exponential behav-
ior up to maximum voltage of 500 V (green curve). (a) measurement at about 50 ◦C; (b) measurement
at about 200 ◦C; (c) measurement at about 350 ◦C; (d) measurement at about 500 ◦C.

It is possible to notice that the difference between the two exponential regimes changes
with temperature. Such a difference is evident at room temperature (RT), it increases
in the range 50 ◦C → 200 ◦C and it diminishes down to vanish at the highest available
temperature, close to 500 ◦C. The extracted parameters (fits B and C of the previous list)
are reported in Figure 7a (conductance) and Figure 7b (FP exponential coefficient) as a
function of the 23 temperatures of measurement. Such results show that conductance
increases exponentially with temperature as it is expected for thermal activation of charges
trapped in shallow defects [40] and that the first exponential regime is characterized by a
lower conductance value. In Figure 7b, it is instead evident that the exponential coefficient
is slightly higher in first low-voltage range. On the other hand, the curves of Figure A2
regarding this factor show a reversed situation with cases of temperatures showing exactly
the same exponential coefficient extracted but with values that always range from about
0.6 at the lowest temperatures to less than 0.3 at the highest ones.
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Figure 7. Frenkel-Poole- parameters as extracted from the I/V curves: (a) conductance for V < 230 V
(blue curve, number 1 subscript in the legend) and for V < 500 V (green curve, number 2 subscript in
the legend); (b) Extraction of the exponential coefficient for V < 230 V (blue curve, number 1 subscript
in the legend) and for V < 500 V (green curve, number 2 subscript in the legend).

4. Discussion

As expressed in Equation (1), the behavior of the current-electric field curve at a given
temperature is determined only by the optical dielectric constant of the insulating film.
In the vast majority of articles, the identification of the FP effect as the dominant current
mechanism is made by plotting the sample conductance as a function of the square root
of the applied electric field, leading to a straight line from which the value of the high-
frequency dielectric constant is calculated [13]. In diamond, the frequency of the extracted
k should correspond to the timing related to the fast electron transport in the conduction
band (εr~5.5) and not to the static dielectric response (εr~7.8). In fact, in literature relative
to the FP effect for diamond samples, it is typically found that a value for the exponential
coefficient of about 3.2 × 10−4 eVcm/V, properly corresponding to an εr = 5.5 [41,42], even
though higher values have been found under irradiation [43].

By substituting in Equation (1) the inherent physical constants, we can evaluate @
RT the following relation between the absolute value of dielectric permittivity and the
parameter (β1,2) extracted by the I/V curves fitting:

β1,2(εr = 1, RT) = 92.7 ∗ 10−3
[

1√
V

]
; → εr(T) =

(
92.7 ∗ 10−3

β1,2
∗ 300K

T(K)

)2

; (2)

where a larger measured slope corresponds to lower values of dielectric permittivity,
according to the correction due to temperature variation.

If we consider the results shown in the previous section, we immediately understand
that the exponential increase of the current with the electric field is much larger than the
one calculated for Vacuum/Air. In fact, the largest value of β1,2, measured just close to
RT, corresponds to a value of 0.6, almost one decade larger than the one corresponding at
εr = 1, and therefore the measured slope corresponds to a relative dielectric permittivity
close to 10−2.

In Figure 8a we report the behavior of the slope extracted from the various I/V curves
analyses as a function of the temperature at which the measurement was conducted. While
the slopes shown in Figure 7b decrease with temperature, this does not correspond to a
constant value of dielectric permittivity since the variation due to temperature according to
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Equation (2) is much larger. Therefore, as reported in the adjacent Figure 8b, the extracted
value of the relative dielectric permittivity in reality halves to values close to the hundredth.
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Figure 8. Relative Dielectric Permittivity as extracted by the I/V curves reported in Figure 6.
(a) Extraction of parameter with V < 230 V; (b) Extraction of parameter with V > 300 V.

FP conduction was observed in the non-linear region at high voltages for many
diamond samples regardless of deposition processes [44,45]. Amplification of the FP effect
was obtained through X-ray irradiation in [43], where it was found for the exponential
coefficient that a parabolic dependence on the density of occupied traps such to reach
more than quadruple values in a specific electric field range (2 kV/cm→ 7 kV/cm). Such
behavior was attributed to the intense trap occupation by the promotion of electrons from
valence bands, causing coulomb interaction between the trap centers with subsequent
barrier lowering with an estimated mean distance (λtraps) of the electron-filled trap states of
about 70 nm. The energy reduction due to the coulombic interaction of close traps additive
to the electric field contribution may be related to their distance (a) with the following
equation based on the Vollmann model [46]:

FPenergy(T) = q ∗Φth
2 ∗ β1,2

2 ∗ d
a

; (3)

where Φth is the thermal potential (see Figure 9). Since we are not observing a transition
from Poole to Frenekl-Poole conduction regimes, it is not possible to extrapolate the real
traps’ distance from the I/V curves, but we can consider that, given the high extrapolated
beta coefficient, FP electron emission happens at distances of hundreds of nm, thus cor-
responding to the spatial gap between laser induced nanowaves (see Figures 4a and 5b).
Obviously, such value is just a tentative estimation and new, more complex transport
experiments should be performed in order to correctly evaluate it. We can also note that
the FP effect, as shown in Figure 8, increases with temperature, allowing us to estimate the
lower values of the dielectric permittivity. Such behavior perfectly agrees with the increase
of the conductance due to the thermal activation of electrons in the conduction band, which
interacts at an increased rate with the empty trap center positively charged, and enhances
the traps filling percentage at the origin of the FP effect reduction in BD.
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5. Conclusions

Defected surfaces have plenty of new physics phenomena to be analyzed, even more
if the defects’ geometry follows a specific regular pattern, as in the case of femtosecond
laser surface-induced LIPSS. In this paper, we have shown that the electrical conduction
of double nanotextured BD films is strongly influenced by the applied electric field. By
applying the FP model to the I/V measurements, it was possible to reveal a dielectric
permittivity near zero for the BD sample. The effect of the electric field over the trapped
charges (FP effect) is appreciable just after it reaches 1 kV/cm, which is, to our knowledge,
far lower than any other reported value over the presence of the FP effect in diamonds. The
dielectric permittivity furthermore reduces its absolute value up to reach values lower than
0.01 for temperatures between 400 ◦C and 450 ◦C with electric fields lower than 2.3 kV/cm.

Such a result demonstrates that it is possible to reach quasi-ENZ polarizability condi-
tions on diamond surfaces thanks to laser surface nanostructuring, an approach that is very
likely to be extendable to other materials’ surfaces, widening the class of ENZ materials.
This new property found on diamonds demonstrates again that it should be considered
even more than other materials for the continued developments of novel functional pho-
tonic devices, since its properties are unique in nature and it may combine very low surface
polarizability to other quantum properties related to its optically-active defect centers.
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Appendix A. Opposite Direction Voltage Ramp Measurements

We proceeded to perform accurate I/V curves measurements with 23 steps of tem-
perature both in the positive and negative voltage direction. In Figure A1 we show four
measurements with relative Matlab fitting corresponding to the same temperatures of
Figure 4 but for the opposite sign voltage ramp. The sample is symmetric, so it does not
meaningfully stress which contact is positive or negative. However, due to possible charge
accumulation at the interfaces, it is important to stress that these values were collected with
a voltage ramp successive to the first one shown in Figure 4.
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Figure A1. I/V curves relative to the negative voltage ramp with corresponding Matlab fitting for
the linear part (red line), the first exponential part up to 230 V (blue curve) and the total exponential
behavior up to maximum voltage of 500 V (green curve). (a) n. 23 measurement at about 50 ◦C;
(b) n. 15 measurement at about 200 ◦C; (c) n8 measurement at about 350 ◦C; (d) n. 1 measurement at
about 500 ◦C.

We can then plot the obtained parameter of first FP conductance (red curve), first FP
exponential coefficient β1 (blue curve), and second FP exponential coefficient β2 (green
curve) as a function of the 23 measured temperature steps. Such results are reported in
Figure 5a (linear conductivity) and Figure 5b (FPs).
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Figure A2. Frenkel-Poole parameters as extracted by the I/V curves reported in Figure A1.
(a) Extraction of Conductance for V < 230 V (blue curve, number 1 subscript in the legend) and
for V < 500 V (green curve, number 2 subscript in the legend); (b) Extraction of Exponential Coeffi-
cient for V < 230 V (blue curve, number 1 subscript in the legend) and for V < 500 V (green curve,
number 2 subscript in the legend).

As a last element, we show in Figure A3 the curves of the linear conductance as
of the fitting case (A), where it is possible to observe the shallow exponential behavior
with BD activation energies much lower that the untreated diamond substrate as reported
previously [11].
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Figure A3. Linear conductance of BD sample as extracted by the I/V curves reported in
Figures 4 and A1. (a) Extraction of sample conductance with V < 100 V for the first voltage
ramp (b) Extraction of sample conductance with V < 100 V for the second voltage ramp with
opposite biasing.

Appendix B. Analysis of Black-Diamond Sample with Reduced Total Accumulated
Laser Fluence

In order to look for a trend in the dielectric permittivity reduction in the produced black
diamonds, we analyzed a sample with the nanostructured surface in a single treatment
(1T-BD). therefore, without the benefit of the increased optical energy absorption of the first
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laser treatment (incubation effect). The analysis of the FP effect according to temperature
produced a similar result to what is shown in the main text, with a low dielectric permittivity
decreasing with temperature. The absolute value of εr (Figure A4b), as extrapolated from
the slope of the I vs.

√
V graphs (Figure A4a), is again more than fifty times lower than in

bulk diamond:
εr(1T − BD) < 0.1 Vs εr(Diamond) = 5.5

On the other hand, we may note that the εr(1T− BD) minimum value is around 6 × 10−2,
which is about six times the minimum value shown in the main text for εr(2T − BD). This
ratio perfectly agrees with a lower density of electron traps.
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