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Abstract. In this paper we introduce and study the strip planarity testing prob-
lem, which takes as an input a planar graph G(V,E) and a function γ : V →
{1, 2, . . . , k} and asks whether a planar drawing of G exists such that each edge
is represented by a curve that is monotone in the y-direction and, for any u, v ∈ V
with γ(u) < γ(v), it holds that y(u) < y(v).
The problem has strong relationships with some of the most deeply studied vari-
ants of the planarity testing problem, such as clustered planarity, upward pla-
narity, and level planarity. Most notably, we provide a polynomial-time reduction
from strip planarity testing to clustered planarity.
We show that the strip planarity testing problem is polynomial-time solvable ifG
has a prescribed combinatorial embedding.

Keywords: planarity, clustered planarity, upward planarity, level planarity, em-
bedded graphs

1 Introduction

Testing the planarity of a given graph is one of the oldest and most deeply investigated
problems in algorithmic graph theory. A celebrated result of Hopcroft and Tarjan [26]
states that the planarity testing problem is solvable in linear time.

A number of interesting variants of the planarity testing problem have been con-
sidered in the literature [34]. Such variants mainly focus on testing, for a given planar
graph G, the existence of a planar drawing of G satisfying certain constraints. For ex-
ample the partial embedding planarity problem [3,29] asks whether a planar drawing
G of a given planar graph G exists in which the drawing of a subgraph H of G in G
coincides with a given drawing H of H . Clustered planarity testing [14,19,30], up-
ward planarity testing [7,23,27], level planarity testing [31], embedding constrained
planarity testing [24], radial level planarity testing [6], and clustered level planarity
testing [5,20] are further examples of problems falling in this category.

In this paper we introduce and study the strip planarity testing problem, which is
defined as follows. The input of the problem consists of a planar graph G(V,E) and of
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a function γ : V → {1, 2, . . . , k}. The problem asks whether a strip planar drawing
of (G, γ) exists, i.e. a planar drawing of G such that each edge is represented by a
curve that is monotone in the y-direction and, for any u, v ∈ V with γ(u) < γ(v),
it holds y(u) < y(v). The name “strip” planarity comes from the fact that, if a strip
planar drawing Γ of (G, γ) exists, then k disjoint horizontal strips γ1, γ2, . . . , γk can
be drawn in Γ so that γi lies below γi+1, for 1 ≤ i ≤ k − 1, and so that γi contains a
vertex x ofG if and only if γ(x) = i, for 1 ≤ i ≤ k. It is not difficult to argue that strips
γ1, γ2, . . . , γk can be given as part of the input, and the problem is to decide whether
G can be planarly drawn so that each edge is represented by a curve that is monotone
in the y-direction and each vertex x of G with γ(x) = i lies in the strip γi. That is,
arbitrarily predetermining the placement of the strips does not alter the possibility of
constructing a strip planar drawing of (G, γ). Further, the strip planarity of an instance
would not change if we required edges to be straight-line segments. In fact, by results
of Eades et al. [17] and of Pach and Tóth [33], a planar drawing in which edges are
y-monotone curves can be converted into a planar straight-line drawing in which each
vertex maintains its y-coordinate.

1.1 Strip Planarity and Other Planarity Variants

Before describing our results, we discuss the strong relationships of the strip planarity
testing problem with three famous graph drawing problems.

Strip planarity and clustered planarity. The c-planarity testing problem, intro-
duced by Feng et al. in [19], takes as an input a clustered graph C(G,T ), that is a
planar graph G together with a rooted tree T , whose leaves are the vertices of G. Each
internal node µ of T is a cluster and is associated with the set Vµ of vertices of G in the
subtree of T rooted at µ. The problem asks whether a c-planar drawing exists, that is a
planar drawing of G together with a drawing of each cluster µ of C(G,T ) as a simple
closed region Rµ so that: (i) if v ∈ Vµ, then v ∈ Rµ; (ii) if Vν ⊂ Vµ, then Rν ⊂ Rµ;
(iii) if Vν ∩Vµ = ∅, then Rν ∩Rµ = ∅; and (iv) each edge of G intersects the boundary
of Rµ at most once. Determining the time complexity of testing the c-planarity of a
given clustered graph is a long-standing open problem.

Surprisingly, no c-planarity testing algorithm is known even in the case in which
the clustered graph C(G,T ) is flat and embedded. That is, every cluster is a child of
the root of T and a combinatorial embedding for G (i.e., an order of the edges incident
to each vertex) is fixed in advance; then, the c-planarity testing problem asks whether a
c-planar drawing exists in which G has the prescribed combinatorial embedding. This
natural variant of the c-planarity testing problem is well-studied [11,12,14,28,30], due
to the fact that several NP-hard graph drawing problems are polynomial-time solvable
in the fixed embedding scenario [7,23,36] and that testing c-planarity of embedded flat
clustered graphs generalizes testing c-planarity of the notable class of triconnected flat
clustered graphs. Yet determining the time complexity of testing c-planarity for this
innocent-looking case eludes an answer.

An instance (G, γ) of the strip planarity testing problem naturally defines a flat
clustered graph C(G,T ), where T consists of a root having k children µ1, . . . , µk and,
for every 1 ≤ j ≤ k, cluster µj contains every vertex x of G such that γ(x) = j. The
c-planarity of C(G,T ) is a necessary condition for the strip planarity of (G, γ), since
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Fig. 1. A negative instance (G, γ) of the strip planarity testing problem whose associated clus-
tered graph C(G,T ) is c-planar. Vertices are drawn in the strip (left drawing) and in the cluster
(right drawing) they belong to.

suitably bounding the strips in a strip planar drawing of (G, γ) provides a c-planar
drawing of C(G,T ). On the other hand, the c-planarity of C(G,T ) is not sufficient
for the strip planarity of (G, γ) (see Fig. 1). However, we will prove that a different
reduction from (G, γ) yields a flat clustered graph C(G,T ) whose c-planarity is in fact
a necessary and sufficient condition for the strip planarity of (G, γ); in other words,
we will prove that the strip planarity testing problem reduces in polynomial time to
the c-planarity testing problem for flat clustered graphs. Furthermore, it turns out that
strip planarity testing coincides with a special case of a problem posed by Cortese et
al. [12,13] and related to c-planarity testing. The problem asks whether a graph G can
be planarly embedded “inside” an host graph H , which can be thought as having “fat”
vertices and edges, with each vertex and edge of G drawn inside a prescribed vertex
and a prescribed edge of H , respectively. The strip planarity testing problem coincides
with this problem in the case in which H is a path.

Strip planarity and level planarity. The level planarity testing problem takes as an
input a planar graph G(V,E) and a function γ : V → {1, 2, . . . , k} and asks whether a
planar drawing of G exists such that each edge is represented by a curve that is mono-
tone in the y-direction and each vertex u ∈ V is drawn on the horizontal line y = γ(u).
The level planarity testing (and embedding) problem is known to be solvable in lin-
ear time [31], although a sequence of incomplete characterizations by forbidden sub-
graphs [21,25] (see also [18]) has revealed that the problem is not yet fully understood.
Level drawings are widely used in applicative contexts in which a hierarchical graph
has to be visualized while conveying its hierarchical information; see the seminal work
by Sugiyama et al. [35] and the recent survey by Healy and Nikolov [37, Chapter 13].
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Fig. 2. A positive instance (G, γ) of the strip planarity testing problem that is not level planar.
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The similarity of the level planarity testing problem with the strip planarity testing
problem is evident: They have the same input, they both require planar drawings with
y-monotone edges, and they both constrain the vertices to lie in specific regions of the
plane; they only differ in that such regions are horizontal lines in one case, and horizon-
tal strips in the other one. Clearly the level planarity of an instance (G, γ) is a sufficient
condition for the strip planarity of (G, γ), as a level planar drawing is also a strip planar
drawing. However, it is easy to construct instances (G, γ) that are strip planar and yet
not level planar, even if we require that the instances are strict, i.e., no edge (u, v) is
such that γ(u) = γ(v). See Fig. 2. Hence, our new drawing style enlarges the spectrum
of hierarchical graphs that can be visualized in a planar hierarchical fashion. We remark
that the approach of [31] seems to be not applicable to test the strip planarity of a graph.
Namely, Jünger et al. [31] visit the instance (G, γ) one level at a time, representing with
a PQ-tree [8] the possible orders of the vertices in level i that are consistent with a level
planar embedding of the subgraph of G induced by levels {1, 2, . . . , i}. However, when
visiting an instance (G, γ) of the strip planarity testing problem one strip at a time, PQ-
trees seem to be not powerful enough to represent the possible orders of the vertices in
strip i that are consistent with a strip planar embedding of the subgraph of G induced
by strips {1, 2, . . . , i}.

Strip planarity and upward planarity. The upward planarity testing problem asks
whether a given directed graph

−→
G admits an upward planar drawing, i.e., a drawing

which is planar and such that each edge is represented by a curve monotonically in-
creasing in the y-direction, according to its orientation. Testing the upward planarity of
a directed graph

−→
G is an NP-hard problem [23], however it is polynomial-time solv-

able, e.g., if
−→
G has a fixed embedding [1,7], or if it has a single source [27], or if it has

a series-parallel structure [16].
A strict instance (G, γ) of the strip planarity testing problem naturally defines a

directed graph
−→
G , by directing an edge (u, v) of G from u to v if γ(u) < γ(v). It is

easy to argue that the upward planarity of
−→
G is a necessary and not always sufficient

condition for the strip planarity of (G, γ) (see Fig.s 3(a) and 3(b)). Roughly speaking,
in an upward planar drawing different parts of the graph are free to “nest” one into the
other, while in a strip planar drawing, such a nesting is only allowed if coherent with
the strip assignment.

1.2 Our Results

In this paper, we show that the strip planarity testing problem is cubic-time solvable for
planar graphs with a fixed combinatorial embedding. In this setting, the graph is given
together with a combinatorial embedding and any strip planar drawing is required to
respect such an embedding. This result enlarges the spectrum of graph drawing prob-
lems for which a polynomial-time solution is known only if the input has a prescribed
combinatorial embedding (e.g., upward planarity testing [7,23] and bend minimization
in orthogonal drawings [23,36]). Our approach considers each of the linearly-many
plane embeddings corresponding to the given combinatorial embedding separately. For
each of them, we perform a sequence of modifications to the input instance (G, γ)
(such modifications consist mainly of insertions of graphs inside the faces of G) that
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Fig. 3. Two negative instances (G1, γ1) (a) and (G2, γ2) (b) of the strip planarity testing problem
whose associated directed graphs are upward planar, where G1 is a tree and G2 is a subdivision
of a triconnected plane graph.

ensure that the instance satisfies progressively stronger constraints while not altering its
strip planarity. Eventually, the strip planarity of (G, γ) becomes equivalent to the up-
ward planarity of its associated directed plane graph, which can be tested in quadratic
time [7].

We also show a polynomial-time reduction from the strip planarity testing prob-
lem (for graphs without a fixed plane embedding) to the c-planarity testing problem for
flat clustered graphs, deepening the relationship between such problems. This reduction
further justifies the study of the relationships between upward planarity and strip pla-
narity. In fact, if we were able to prove that the upward planarity and the strip planarity
problems have the same computational complexity (up to polynomial factors) not only
in the fixed embedding scenario but also in the variable embedding one, we could infer
that the c-planarity problem is NP-hard.

The rest of the paper is organized as follows. In Section 2 we present some prelim-
inaries; in Section 3 we show a quadratic-time algorithm to test the strip planarity of
graphs with fixed plane embedding; in Section 4 we show a polynomial-time reduction
from the strip planarity testing problem to the c-planarity testing problem; finally, in
Section 5 we conclude and present open problems.

2 Preliminaries

In this section we present some definitions and terminology used throughout the paper.
A drawing of a graph is a mapping of each vertex to a distinct point of the Eu-

clidean plane and of each edge to a Jordan arc between the endpoints of the edge. Even
when not specified, throughout the paper we will only consider the Euclidean metric.
A planar drawing is such that no two edges intersect except, possibly, at common end-
points. A planar drawing of a graph determines a clockwise order of the edges incident
to each vertex. Two drawings of the same graph are equivalent if they determine the
same clockwise orders around each vertex. A planar embedding (or combinatorial em-
bedding) is an equivalence class of planar drawings. A planar drawing partitions the
plane into path-connected regions, called faces, which are the complement of the union
of the points and arcs to which the vertices and edges of the graph are mapped, re-
spectively. The unbounded face is the outer face, while the other faces are internal.
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Two planar drawings with the same combinatorial embedding have faces delimited by
the same sequences of edges. However, such drawings could still differ for their outer
faces. A plane embedding of a graph G is a combinatorial embedding of G together
with a choice for its outer face. A plane graph is a graph together with a fixed plane
embedding.

A plane graph G is simple if it contains neither parallel edges nor self-loops. Other-
wise, G is a multi-graph. In the remainder of the paper, we always assume the consid-
ered plane graphs to be simple, unless otherwise specified.

In this paper we will show how to test in quadratic time whether a graph with a
prescribed plane embedding is strip planar. Since an n-vertex graph with a fixed com-
binatorial embedding has O(n) choices for its outer face, this implies that the strip
planarity of a graph with a prescribed combinatorial embedding can be tested in cubic
time. In the remainder of this section and in Section 3, we will assume all the considered
graphs to have a prescribed plane embedding, even when not explicitly mentioned.

A graph is connected if there is a path between every pair of vertices. A graph
G with at least k vertices is k-connected if removing any k − 1 vertices leaves G con-
nected. A cutvertex is a vertex whose removal disconnects the graph. A block of a graph
G(V,E) is a maximal (both in terms of vertices and in terms of edges) 2-connected sub-
graph of G. Also, for sake of readability, we denote by |G| the number of vertices of a
graph G.

2.1 Geometric Tools

In the paper, we exploit the following two geometric lemmata.
The first lemma revolves around the following setting. Consider a planar drawing

Γ of a graph G, consider a face f of G in Γ and denote by c a y-monotone curve on
the boundary of f in Γ . Let uc and vc be the end-points of c, with yu = y(uc) < yv =
y(vc). Refer to Fig. 4(a). We have the following.

c c′

vc

uc

c

vc

uc

ε0

uc

l′u
hu

tu εu

c

c′

vc

uc

pq

q′

(a) (b) (c) (d)

Fig. 4. (a) Illustration for the statement of Lemma 1. (b) The family of y-monotone curves
{c′(ε)|ε > 0}. (c) A close look-up at the neighborhood of vertex uc for the computation of
εu. The gray-shaded area is part of f . (d) Illustration for the statement of Lemma 2.
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Lemma 1. There exists a simple y-monotone curve c′ with end-points uc and vc such
that: (i) the interior of c′ lies in the interior of f , and (ii) the interior of the region
delimited by c and by c′ has no intersection with Γ .

Proof: Assume that f is to the right of c, as the case in which it is to the left is
analogous.

First, consider a family of y-monotone curves {c′(ε)|ε > 0}, where c′(ε) is obtained
as the translation of c by a vector (ε, 0); see Fig. 4(b). Observe that, as ε→ 0, we have
that c′(ε) tends to c. This, together with the fact that c has f to its right, implies that there
exists a positive ε0 with the property that, for every 0 < ε ≤ ε0, the only intersections
between c′(ε) and Γ happen between c′(ε) and curves in Γ incident to uc and leaving
uc upwards and to the right of c (or incident to vc and leaving vc downwards and to the
right of c).

Second, let su be the slope of the tangent tu to c at uc; refer to Fig. 4(c). If there
exists a curve in Γ leaving uc upwards and to the right of c, then let l′u be the first such
curve (in clockwise order after c) and let s′u be the slope of the tangent to l′u at uc.
If such a curve does not exist, then let s′u = 0. Consider the half-line hu with slope
(su + s′u)/2. Note that hu intersects the interior of f . In fact, hu leaves uc to the right
of c and to the left of l′u, if the latter curve is defined. Hence, there exists an εu > 0
such that, for every 0 < ε ≤ εu, there exists a point p(ε) on hu with the property that
the horizontal distance between p(ε) and a point of c is ε, and the open straight-line
segment between p(ε) and uc lies in f .

Third and analogously, let sv be the slope of the tangent to c at vc. If there exists
a curve in Γ leaving vc downwards and to the right of c, then let l′v be the first such
curve (in counter-clockwise order after c) and let s′v be the slope of the tangent to l′v at
vc. If such a curve does not exist, then let s′v = 0. Consider the half-line hv with slope
(sv + s′v)/2. Note that hv intersects the interior of f . Hence, there exists an εv > 0
such that, for every 0 < ε ≤ εv , there exists a point q(ε) on hv with the property that
the horizontal distance between q(ε) and a point of c is ε, and the open straight-line
segment between q(ε) and vc lies in f .

Now, let εm = min{ε0, εu, εv}. Then, by construction, the curve c′ composed of
(i) the straight-line segment between uc and p(εm), (ii) the part of c′(εm) between
p(εm) and q(εm), and (iii) the straight-line segment between q(εm) and vc satisfies the
statement. �

In the proofs exhibited in this paper, when we draw c′ inside f as just explained, we
say that c′ follows c inside f .

The second lemma deals with a similar setting. Consider a planar drawing Γ of
a graph G, consider a face f of G in Γ and denote by c a y-monotone curve on the
boundary of f in Γ . Let uc and vc be the end-points of c, with yu = y(uc) < yv =
y(vc). Let p be a point which is in the interior or on the boundary of f , that does not
belong to c, and such that yu < p < yv . Refer to Fig. 4(d).

Lemma 2. Assume that the interior of the horizontal straight-line segment pq connect-
ing p and the unique point q of c with y(q) = y(p) has no intersection with Γ . Then
there exists a y-monotone curve c′ such that: (i) the end-points of c′ are p and a point
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q′ of c with y(p) < y(q′), (ii) the interior of c′ lies in the interior of f , and (iii) the
interior of c′ has no intersection with Γ .

Proof: Assume that f is to the right of c, as the case in which it is to the left is anal-
ogous. Consider the horizontal half-line ` starting at p through q. By the assumption, `
is directed leftwards. Rotate ` in clockwise direction of an angle ε > 0, while keeping
it fixed at p, obtaining a half-line `ε. Denote by qε the first (while traversing `ε from p)
intersection of `ε with c, if any. Observe that, as ε → 0, we have that `ε tends to ` and
qε tends to q. This, together with the assumptions that pq has no intersection with Γ ,
that its interior belongs to f , and that yu < p < yv , implies that there exists a positive
ε∗ with the property that, for every 0 < ε ≤ ε∗, the curve c′ defined as the straight-line
segment pqε satisfies the required properties. �

In the proofs exhibited in this paper, when we draw c′ inside f as just explained,
we say that c′ moves slightly upward from p to c inside f . A symmetric version of this
lemma allows us to define a curve c′ that moves slightly downward from p to c inside f .

2.2 Strip Planarity

We now define some concepts related to strip planarity.

Definition 1. An instance (G, γ) of strip planarity is strict if it contains no intra-strip
edge, where an edge (u, v) is intra-strip if γ(u) = γ(v).

Definition 2. An instance (G, γ) of strip planarity is proper if, for every edge (u, v) of
G, it holds γ(v)− 1 ≤ γ(u) ≤ γ(v) + 1.

For any face f of G, we denote by Cf = (u0, u1, . . . , ul) the walk delimiting
the boundary of f . Recall that G is not necessarily 2-connected, hence f might not be
delimited by a simple cycle; also, if a vertex incident to f is a cut-vertex, it might appear
several times in Cf . Consider any vertex occurrence uj with 0 ≤ j ≤ l. See Fig. 5(a).
We say that uj is a local minimum for f if γ(uj) ≤ γ(uj−1) and γ(uj) ≤ γ(uj+1),
where indices are modulo l + 1. Analogously, we say that uj is a local maximum for f
if γ(uj) ≥ γ(uj−1) and γ(uj) ≥ γ(uj+1), where indices are modulo l + 1. Observe
that several occurrences of the same vertex might be local minima or maxima for f .
In the remainder of the paper, we often say “the number of minima and maxima” of
an instance (G, γ) of strip planarity, as a short form for “the number of distinct pairs
(vj , g) such that vertex occurrence vj is a local minimum or maximum for face g of
G”. Further, we say that uj is a global minimum for f (a global maximum for f ) if
γ(uj) ≤ γ(ui) (resp. γ(uj) ≥ γ(ui)), for every i 6= j with 0 ≤ i ≤ l.

Let (G, γ) be a 2-connected strict proper instance of the strip planarity testing prob-
lem. A path (u1, . . . , uj) inG is monotone if γ(ui) = γ(ui−1)+1, for every 2 ≤ i ≤ j.
Consider any face f ; since G is 2-connected, Cf is a simple cycle. A global minimum
um and a global maximum uM for f are consecutive in f if no global minimum and
no global maximum exists in one of the two paths connecting um and uM in Cf . A
local minimum um and a local maximum uM for a face f are visible if one of the
paths P connecting um and uM in Cf is such that, for every vertex u of P , it holds
γ(um) < γ(u) < γ(uM ).

We conclude the section with the following definitions.
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Fig. 5. (a) The boundary of a face f in an instance of strip planarity. The walk delimiting f is
Cf = (1, 2, 7, 6, 9, 6, 5, 4, 8, 10, 4, 1, 3, 1). Both occurrences of vertex 6 are local and global
minima for f ; vertex 8 is a local minimum and not a global minimum for f ; vertex 7 is neither
a local minimum nor a local maximum for f . (b) The boundary of a face f in a quasi-jagged
instance of strip planarity. (c) The boundary of a face f in a jagged instance of strip planarity.

Definition 3. An instance (G, γ) of strip planarity is quasi-jagged if it is 2-connected,
strict, proper and if, for every face f of G and for any two visible local minimum um
and local maximum uM for f , one of the two paths connecting um and uM in Cf is
monotone (see Fig. 5(b)).

Definition 4. An instance (G, γ) of strip planarity is jagged if it is 2-connected, strict,
proper and if, for every face f of G, any local minimum for f is a global minimum for
f , and every local maximum for f is a global maximum for f (see Fig. 5(c)).

Roughly speaking, a jagged instance is such that the boundary of any face consists
of a sequence of monotone paths, each connecting a global minimum and a global
maximum. The property of quasi-jagged instances is weaker: If a local minimum um
and a local maximum uM for a face f are visible (i.e., one of the two paths connecting
um and uM on the boundary of f is composed of vertices all lying on intermediate strips
between γ(um) and γ(uM )), then one of the two paths connecting um and uM on the
boundary of f is monotone (however, um and uM might not be a global minimum and
a global maximum). Observe that a jagged instance (G, γ) is also quasi-jagged.

3 How To Test Strip Planarity

In this section we describe an algorithm to test strip planarity. In Sections 3.1– 3.6, we
will assume every considered strip planarity instance to be connected. We will show in
Section 3.7 how to extend our polynomial-time algorithm to non-connected instances.

In Section 3.1 we show how to reduce a general instance to an equivalent strict in-
stance. In Section 3.2 we show how to reduce a strict instance to an equivalent strict
proper instance. In Section 3.3 we show how to reduce a strict proper instance to an
equivalent 2-connected strict proper instance. In Section 3.4 we show how to reduce a
2-connected strict proper instance to an equivalent quasi-jagged instance. In Section 3.5
we show how to reduce a quasi-jagged instance to an equivalent jagged instance. Fi-
nally, in Section 3.6 we show that testing the strip planarity of a jagged instance is
equivalent to test the upward planarity of the associated directed graph.
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3.1 From a General Instance to a Strict Instance

In this section we show how to reduce a general instance of the strip planarity testing
problem to an equivalent strict instance.

Lemma 3. Let (G, γ) be an instance of the strip planarity testing problem with n ver-
tices, k strips, and r minima and maxima.

There exists an O(n)-time algorithm that either decides that (G, γ) is not strip
planar or constructs an equivalent strict instance (G∗, γ∗) with at most n vertices, k
strips, and at most r minima and maxima. Graph G∗ might be a multi-graph; however,
G∗ has no self-loops and no parallel edges between vertices belonging to the same
strip.

We construct (G∗, γ∗) from (G, γ) by repeatedly contracting intra-strip edges.
Consider an instance (H, γ) of strip planarity in which H is a plane graph. The

operation of contracting an edge (u, v) in (H, γ) results in a new instance (H ′, γ′),
where u and v are identified to be the same vertex w, with γ′(w) = γ(u) = γ(v) and
with γ′(x) = γ(x) for every x 6= w in H ′. The edges incident to w are all the edges
incident to u and v, except for the contracted edge; the clockwise order of the edges
incident to w is: All the edges incident to u in H in the same clockwise order starting
at (u, v), and then all the edges incident to v in H in the same clockwise order starting
at (v, u).

While performing an edge contraction in (H, γ), multiple parallel edges might arise
in (H ′, γ′). In the following we show how to ensure that any intermediate graph (G′, γ′)
that is constructed from (G, γ) by contracting some intra-strip edges is a plane multi-
graph with no self-loops and with no parallel intra-strip edges; that is, the only parallel
edges connect vertices belonging to distinct strips. Observe that the starting plane graph
G indeed satisfies these properties.

Consider any intra-strip edge (u, v) in (G, γ). Since (G, γ) has no parallel intra-strip
edges, the contraction of (u, v) does not result in the creation of self-loops incident to
w in (G′, γ′). However, the contraction of (u, v) might result in the creation of parallel
edges, which happens if G has a cycle (u, v, z). Consider each vertex z such that G
has a cycle (u, v, z). If z belongs to a strip different from the one of u and v, then
the two created parallel edges (w, z) are inter-strip. Otherwise, γ(z) = γ(u) = γ(v);
then, we check whether all the vertices of G that lie inside cycle (u, v, z) belong to the
strip corresponding to γ(u). If this is the case, we remove from (G′, γ′) all the vertices
(and their incident edges) inside cycle (u, v, z) as well as one of the two copies of
edge (w, z). Otherwise, we conclude that (G, γ) is not strip planar. Namely, if (u, v, z)
contains in its interior a vertex not belonging to γ(u), then it is not possible to draw
plane graphGwith the edges of (u, v, z) being y-monotone curves and with each vertex
drawn in the strip it belongs to.

If we did not conclude that (G, γ) is not strip planar, then we have an instance
(G′, γ′) such that G′ is a plane multigraph with no self-loops and whose only parallel
edges connect vertices belonging to distinct strips. In the next claim, we prove that the
described operation does not alter the strip planarity of the instance.

Claim 1 (G′, γ′) is strip planar if and only if (G, γ) is strip planar.
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Proof: We first prove the sufficiency. Consider any strip planar drawing Γ of (G, γ)
(see Fig. 6(a)). Assume that 2 ≤ γ(u) ≤ k − 1. Denote by p1, p2, . . . , ph and by
q1, q2, . . . , ql the left-to-right order of the intersection points of the edges of G with
the lines delimiting the strip corresponding to γ(u) from the top and from the bottom,
respectively. Insert dummy vertices at points p1, p2, . . . , ph and q1, q2, . . . , ql. Each of
these vertices splits an edge of G into two dummy edges, one inside the strip corre-
sponding to γ(u) and one outside it. Insert dummy edges (p1, q1), (ph, ql), (pi, pi+1),
for 1 ≤ i ≤ h − 1, and (qi, qi+1), for 1 ≤ i ≤ l − 1, in the strip corresponding
to γ(u). Contract edge (u, v) into a single vertex w; further, for each vertex z with
γ(z) = γ(u) = γ(v) such that G has a cycle (u, v, z), remove all the vertices (and their
incident edges) inside cycle (u, v, z) as well as one of the two copies of edge (w, z).
Denote by L the subgraph of G′ induced by the vertices inside or on the boundary of
cycle (p1, p2, . . . , ph, ql, ql−1, . . . , q1). Observe that L is a simple plane graph, given
that the only parallel edges of G′ are inter-strip. Triangulate the internal faces of L by
inserting dummy vertices and edges, so that no edge connects two vertices pi and pj or
qi and qj with j ≥ i+ 2 (see Fig. 6(b)). Construct a convex straight-line drawing of L
in which vertices p1, p2, . . . , ph and q1, q2, . . . , ql have the same positions they have in
Γ (see Fig. 6(c)). Such a drawing always exists [10]. Slightly perturb the positions of
the vertices different from p1, p2, . . . , ph and q1, q2, . . . , ql, so that no two vertices have
the same y-coordinate. As a consequence, the edges of L different from (pi, pi+1), for
1 ≤ i ≤ h − 1, and (qi, qi+1), for 1 ≤ i ≤ l − 1, are y-monotone curves. Removing
the inserted dummy vertices and edges results in a strip planar drawing of (G′, γ′) (see
Fig. 6(d)).

u

v

γ(u)

z

w γ(u)

p1 p2 ph

q1 q2 ql

z

(a) (b)

w γ(u)

p1 p2 ph

q1 q2 ql

z w γ(u)z

(c) (d)

Fig. 6. (a) A strip planar drawing Γ of (G, γ). (b) Modifications performed on the part ofG inside
the strip corresponding to γ(u), resulting in an internally-triangulated simple plane graph L. (c)
A convex straight-line drawing of L. (d) A strip planar drawing of (G′, γ′).
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Fig. 7. (a) A disk D containing w. (b) Drawing graph Gw inside rectangle R.

The cases in which γ(u) = 1 or γ(u) = k can be handled analogously to the case
in which 2 ≤ γ(u) ≤ k − 1; however, when γ(u) = 1 (the case in which γ(u) = k
is symmetric), points q1, q2, . . . , ql are not defined. Then, we also insert points p0 and
ph+1 to the left of p1 and to the right of ph, respectively, and we insert a dummy vertex
d in the strip corresponding to γ(u) and dummy edges (p0, d), (ph+1, d), and (pi, pi+1),
for 0 ≤ i ≤ h. The remainder of the construction is the same as in the case in which
2 ≤ γ(u) ≤ k − 1.

We now prove the necessity. Consider any strip planar drawing Γ ′ of (G′, γ′).
Slightly perturb the positions of the vertices in Γ ′, so that no two vertices have the
same y-coordinate. Consider a diskD containing w, small enough so that it contains no
vertex different from w, and it contains no part of an edge that is not incident to w (see
Fig. 7(a)).

Consider a rectangleR enclosing w in Γ ′ that is entirely contained insideD in such
a way that each intersection point between the boundary of R and a curve incident to
w lies either on the top or on the bottom side of R. Let p1, . . . , ph, ph+1, . . . , pr be
a set of points such (i) p1, ph, ph+1, and pr lie on the top-left, top-right, bottom-right,
bottom-left corner ofR, respectively; (ii) points p2, . . . , ph−1 are the intersection points
between edges incident tow and the top side ofR, in this left-to-right order along the top
side ofR; (iii) points ph+2, . . . , pr−1 are the intersection points between edges incident
to w and the bottom side of R, in this right-to-left order along the bottom side of R.
Replace each point pi, for i = 1, . . . , r, with a dummy vertex di. Draw a straight-line
segment between di and di+1, for each i = 1, . . . , r (where dr+1 = d1). Then, remove
from Γ ′ vertex w and all the curves connecting w to a dummy vertex. Initialize an
auxiliary graph Gw to a cycle C = (d1, . . . , dr, d1). Add to Gw two adjacent vertices
u and v, and a set of edges defined as follows. For each dummy vertex di, add to
Gw an edge (di, u) (resp., an edge (di, v)) if the edge (x,w) in G′ that is split by
di corresponds to an edge (x, u) (resp., to an edge (x, v)) in G. Observe that, all the
dummy vertices adjacent to u (to v) appear consecutively in C, since all the edges
incident to w corresponding to edges incident to u (and to v, as a consequence) appear
consecutively around w in G′. Hence, Gw is a planar graph. Triangulate each face
of Gw, except for the one delimited by C, without introducing any edge connecting
vertices of C.

Add to Γ a planar straight-line drawing Γw of Gw such that the outer-face of Gw is
delimited by cycle C and is represented by rectangle R in such a way that each dummy
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vertex di, for i = 1, . . . , r, of Gw lies on point pi in Γ . This can be done by using
any of the algorithms to construct straight-line planar drawings of a planar triconnected
graph with a prescribed convex outer-face [10], since Gw is triconnected (and, hence,
Gw does not contain chords between vertices of C), by construction, and cycle C is
drawn as a rectangle.

Finally, remove all the edges belonging to cycle C from Γ and remove each dummy
vertex by joining the two curves incident to it into a single curve, which now represents
an edge of G incident to u or to v. Observe that such curves are y-monotone as they
are the union of a y-monotone curve and of a straight-line segment lying entirely either
above or below such a curve. Hence, Γ is a strip planar drawing of (G, γ). �

Lemma 3 easily follows from Claim 1. First, (G′, γ′) has at least one intra-strip
edge fewer than (G, γ); hence, O(n) repetitions of the above described operation even-
tually lead either to decide that (G, γ) is not strip planar or to construct an equivalent
strict instance (G∗, γ∗). Further, G′ has fewer vertices than G (hence G∗ has at most n
vertices). Moreover, the number of strips of (G′, γ′) is k (hence (G∗, γ∗) has k strips as
well). Finally, the number of minima and maxima of (G′, γ′) is at most r (and the same
holds for (G∗, γ∗)). To prove the running time, first observe that with anO(n)-time pre-
processing we can determine whether each edge ofG is intra-strip or not. Second, using
the data structure described in [32], testing whether there exists a common neighbor z
of u and v in a planar graph can be done inO(1) time. This data structure is constructed
with a linear-time preprocessing and can be updated in constant time. Finally, checking
whether the plane subgraph contained within a triangle (u, v, z) is composed of vertices
all belonging to the same strip as u, v, and z can be done in linear time in the size of
this subgraph. However, once this test has been performed we either conclude that the
instance is negative or we construct a new instance in which such a subgraph has been
removed. Hence, the total running time is still linear in the size of G.

3.2 From a Strict Instance to a Strict Proper Instance

In this section we show how to reduce a strict instance of the strip planarity testing
problem to an equivalent strict proper instance.

Lemma 4. Let (G, γ) be a strict instance of the strip planarity testing problem with n
vertices, k strips, and r minima and maxima, such that G is a plane multi-graph with
no self-loops and with no intra-strip parallel edges.

There exists an O(kn)-time algorithm that constructs an equivalent strict proper
instance (G∗, γ∗) with O(kn) vertices, O(k) strips, and r minima and maxima, such
that G∗ is a simple plane graph.

Proof: For each two consecutive strips of (G, γ), we add a new strip between them.
Namely, we construct an instance (G′, γ′) such that G′ = G and γ′(v) = 2γ(v) − 1,
for each vertex v of G. Graph G∗ is the graph obtained from G′ by subdividing each
edge (u, v) of G′ such that γ′(u) = γ′(v) + j with j ≥ 2. More formally, the edge is
replaced by path (v = u1, u2, . . . , uj+1 = u) such that γ∗(ui+1) = γ∗(ui) + 1, for
every 1 ≤ i ≤ j.
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Observe that (G∗, γ∗) has O(kn) vertices, 2k − 1 strips, and the same number r of
minima and maxima as (G, γ). The construction of (G∗, γ∗) can clearly be performed
in O(kn) time. Also, graph G∗ is simple, since all the intra-strip parallel edges of G
have been replaced by paths. Finally, the equivalence between the strip planarity of
(G, γ) and the one of (G∗, γ∗) can be easily proved by interpreting the drawing of an
edge (u, v) of G as a drawing of path (v = u1, u2, . . . , uj+1 = u) of G∗ (with vertices
u2, . . . , uj placed inside the corresponding strips) and vice versa. �

3.3 From a Strict Proper Instance to a 2-Connected Strict Proper Instance

In this section we show how to reduce a strict proper instance (G, γ) of the strip pla-
narity testing problem to an equivalent 2-connected strict proper instance (G∗, γ∗).

The idea for the proof of the upcoming lemma is that, if G contains a cutvertex
c, it can be augmented with a new vertex w, with γ(w) = γ(c), and with new edges
connecting w with two consecutive neighbors vi and vi+1 of c, where vi and vi+1

belong to different blocks of G. This augmentation does not change the strip planarity
of the instance, and its repetition eventually leads to the desired instance (G∗, γ∗).

Lemma 5. Let (G, γ) be a strict proper instance of the strip planarity testing problem
with n vertices, k strips, and r minima and maxima.

There exists an O(n)-time algorithm that constructs an equivalent 2-connected
strict proper instance (G∗, γ∗) withO(n) vertices, k strips, andO(r) minima and max-
ima.

Proof: Let (G(V,E), γ) be a strict proper instance of the strip planarity testing
problem. First, we associate each edge e ∈ E with the unique block of G it belongs
to and with its two incident faces. This computation can be performed in total O(n)
time [38]. Denote by b the number of blocks of G. Note that, if b = 1, then (G, γ) is a
2-connected strict proper instance. Otherwise, consider any cutvertex c of G.

Let e1, e2, . . . , em, em+1 = e1 be the clockwise order of the edges incident to c; let
ei = (c, vi) and ei+1 = (c, vi+1) be two edges belonging to distinct blocks Bp and Bq
of G, respectively, for some 1 ≤ i ≤ m. Let f be the face of G that is to the left of ei
when traversing this edge from vi to c. Insert a vertexw and edges (w, vi) and (w, vi+1)
inside f . Let V ′ = V ∪ {w} and let E′ = E ∪ {(w, vi), (w, vi+1)}; also, let G′ be the
graph (V ′, E′). Let γ′ : V ′ → {1, 2, . . . , k} be defined as follows: γ′(u) = γ(u) for
every vertex u ∈ V , and γ′(w) = γ(c).

We claim that (G′, γ′) is an instance of the strip planarity testing problem that is
equivalent to (G, γ). We first prove that the claim implies the lemma, and we then
prove the claim. Refer to Fig. 8.

First, (G′, γ′) is proper and strict, given that (G, γ) is proper and strict, that γ′(w) =
γ′(c) = γ′(vi)±1, and that γ′(w) = γ′(c) = γ′(vi+1)±1; further, the number of blocks
of G′ is equal to b − 1, since blocks Bp and Bq of G belong to the same block of G′.
Hence, the repetition of the above augmentation eventually leads to a 2-connected strict
proper instance (G∗, γ∗) that is equivalent to (G, γ) and that has |G∗| = b − 1 + n ∈
O(n) vertices. The fact that (G∗, γ∗) containsO(r) minima and maxima descends from
the fact that G∗ has the same faces of G, except for the two faces obtained by splitting
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Fig. 8. Inserting vertex w and edges (w, vi) and (w, vi+1) inside f if (a) γ(vi) = γ(c) + 1 =
γ(vi+1) + 2 and if (b) γ(vi) = γ(vi+1) = γ(c) + 1.

face f with path (vi, w, vi+1), and that w is incident to exactly two faces ofG∗. Finally,
the augmentation of (G, γ) to (G′, γ′) can be easily performed in O(1) time (observe
that, after the augmentation is performed, blocks Bp and Bq are given the same name,
that is now associated to every edge in each of these blocks, in O(1) time). Hence, the
total running time is O(n) given that b ∈ O(n).

We now prove the claim. One direction is trivial. Namely, if (G′, γ′) is strip planar,
then (G, γ) is strip planar, given thatG is a subgraph ofG′ and given that γ(u) = γ′(u)
for every u ∈ V . We prove the other direction. Assume that (G, γ) is strip planar and
let Γ be any strip planar drawing of (G, γ). We distinguish two cases:

1. In the first case, γ(vi) = γ(c) + 1 and γ(vi+1) = γ(c) − 1 (the case in which
γ(vi) = γ(c) − 1 and γ(vi+1) = γ(c) + 1 is symmetric), as in Fig. 8(a). Let δ be
the curve composed of the curves representing (vi, c) and (vi+1, c). Use Lemma 1
to draw a curve δ′ that follows δ inside f . Place w at any point of δ inside γ(c)
(observe that δ′ cuts γ(c) as its end-points are inside strips γ(c)− 1 and γ(c) + 1).
The resulting drawing Γ ′ of G′ is strip planar. Namely, each vertex u of G′ lies
inside γ′(u) (by assumption if u ∈ V and by construction if u = w); further, each
edge e of G′ is represented by a y-monotone curve (by assumption if e ∈ E and
by Lemma 1 if e is incident to w); finally, Γ ′ is planar because Γ is planar (by
assumption) and because edges (vi, w) and (vi+1, w) do not cross any edge of G,
by Lemma 1.

c

vi vi+1λi

c

vi vi+1λi λi+1

c

vi vi+1

p

c

vi vi+1

w

(a) (b) (c) (d)

Fig. 9. Illustration for the proof of Lemma 5.

2. In the second case, γ(vi) = γ(vi+1) = γ(c) + 1 (the case in which γ(vi) =
γ(vi+1) = γ(c) − 1 is symmetric), as in Fig. 8(b). Use Lemma 1 to draw a curve
λi that follows the curve representing (c, vi) inside f . See Fig. 9(a). Observe that
λi partitions f into two faces; let f ′ be the face that contains the curve representing
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(c, vi+1) on its boundary. Use Lemma 1 to draw a curve λi+1 that follows the curve
representing (c, vi+1) inside f ′. See Fig. 9(b). Observe that λi+1 partitions f ′ into
two faces; let f ′′ be the face that contains λi and λi+1 on its boundary. Let p be a
point on λi inside strip γ(c) and such that, for every vertex u with y(u) > y(w),
we have that y(p) < y(u). Then the interior of the horizontal straight-line segment
between p and the unique point of λi+1 with y-coordinate equal to y(p) lies in the
interior of f ′′. Use Lemma 2 to draw a curve λ∗ that moves slightly upward from
p to λi+1. See Fig. 9(c). Place w at p. Represent edge (w, vi) as the part of λi
between p and vi; also, represent edge (w, vi+1) as the curve composed of λ∗ and
of the part of λi+1 between its intersection with λ∗ and vi+1. See Fig. 9(d). The
resulting drawing Γ ′ of G′ is strip planar. Namely, each vertex u of G′ lies inside
γ′(u) (by assumption if u ∈ V and by construction if u = w); further, each edge
e of G′ is represented by a y-monotone curve (by assumption if e ∈ E and by
Lemmata 1 and 2 if e is incident to w); finally, Γ ′ is planar because Γ is planar (by
assumption) and because edges (vi, w) and (vi+1, w) do not cross any edge of G,
by Lemmata 1 and 2.
This concludes the proof of the claim and hence of the lemma. �

3.4 From a 2-Connected Strict Proper Instance to a Quasi-Jagged Instance

In this section we show how to reduce a 2-connected strict proper instance of the strip
planarity testing problem to an equivalent quasi-jagged instance.

Lemma 6. Let (G, γ) be a 2-connected strict proper instance of the strip planarity
testing problem with n vertices, k strips, and r minima and maxima.

There exists anO(kr+n)-time algorithm that constructs an equivalent quasi-jagged
instance (G∗, γ∗) with O(kr + n) vertices, k strips, and O(r) minima and maxima.

Consider any face f of G containing two visible local minimum and maximum um
and uM , respectively, such that no path connecting um and uM in Cf is monotone.
Insert a monotone path connecting um and uM inside f . Denote by (G+, γ+) the re-
sulting instance of the strip planarity testing problem.

In the next claim, we prove that this augmentation does not alter the strip pla-
narity of the instance. Note that drawing a monotone path connecting um and uM
inside f might not be possible in a given strip planar drawing Γ of (G, γ). In fact,
any y-monotone curve between um and uM might be forced to cross in Γ parts of
G that are “intertwined” with the path P that connects um and uM and such that
γ(um) < γ(v) < γ(uM ) holds for every internal vertex v of P . For this reason, we
first perform a horizontal scaling of a portion of the drawing which moves away” from
P the parts of G that are intertwined with P .

Claim 2 (G+, γ+) is strip planar if and only if (G, γ) is strip planar.

Proof: One direction of the equivalence is trivial, namely if (G+, γ+) is strip planar,
then (G, γ) is strip planar, since G is a subgraph of G+ and γ(v) = γ+(v) for every
vertex v in G.
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We prove the other direction. Consider a strip planar drawing Γ of (G, γ). Slightly
perturb the positions of the vertices in Γ so that no two of them have the same y-
coordinate. Denote by P and Q the two paths connecting um and uM along Cf . Since
um and uM are visible, it holds γ(um) < γ(v) < γ(uM ) for every internal vertex
v of P or for every internal vertex v of Q. Assume that γ(um) < γ(v) < γ(uM )
holds for every internal vertex v of P , the other case being analogous. We also assume
w.l.o.g. that face f is to the right of P when traversing such a path from um to uM . We
modify Γ , if necessary, while maintaining its strip planarity so that a y-monotone curve
C connecting um and uM can be drawn inside f .
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l′′

l′M
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l′ uM
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l(uM)
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(a) (b)
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λm
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κMκM

p′m
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Fig. 10. (a) Drawing Γ inside region R. The part of face f inside R is colored gray. Path P is
represented by a thick line. Intersection points of edges with lines l′′, l(um), l(uM ), l′m, and
l′M are represented by white circles. (b) Drawing Γ inside region R after the horizontal scaling.
Regions R′, R′′′, and RB are represented as light, medium, and dark gray regions, respectively.
(c) Reconnecting parts of edges that have been disconnected by the scaling. (d) Drawing of a
monotone path connecting um and uM inside f .

We introduce some notation. Refer to Fig. 10(a). Let l(um) and l(uM ) be the hor-
izontal lines through um and uM , respectively. Let l′ and l′′ be vertical lines entirely
lying right of P , with l′′ to the right of l′. Denote by D the distance between l′ and l′′.
Denote by R the bounded region of the plane delimited by P , by l(um), by l(uM ), and
by l′′. Denote by l′m (by l′M ) an horizontal line above l(um) (resp. below l(uM )) and
sufficiently close to l(um) (resp. to l(uM )) so that the strip delimited by l′m and l(um)
(resp. by l′M and l(uM )) does not contain any vertex of G other than um (resp. other
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than uM ). Finally, we define some regions inside R. Let R′ be the bounded region of
the plane delimited by P , by l′m, by l′M , and by l′; let R′′ be the bounded region of the
plane delimited by P , by l′m, by l′M , and by l′′; let R′′′ be the bounded region of the
plane delimited by l′, by l′m, by l′M , and by l′′ (observe that R′′ = R′ ∪ R′′′); let RB
be the bounded region of the plane delimited by P , by l′m, by l(um), and by l′′; and let
RA be the bounded region of the plane delimited by P , by l′M , by l(uM ), and by l′′. We
are going to modify Γ in such a way that no vertex and no part of an edge lies in the
interior of R′. The part of Γ outside R is not modified in the process.

We perform a horizontal scaling of the part of Γ that lies in the interior of R′′

(the vertices of P stay still). This is done in such a way that every intersection point
of an edge with l′′ keeps the same position, and the distance between l′′ and every
point in the part of Γ that used to lie inside R′′ becomes strictly smaller than D. See
Fig. 10(b). Hence, the part of Γ that used to lie inside R′′ is now entirely contained in
R′′′. However, some edges of G (namely those that used to intersect l′m and l′M ) are
now disconnected; e.g., if an edge of G used to intersect l′m, now such an edge contains
a line segment inside R′′′, which has been scaled, and a line segment inside RB , whose
drawing has not been modified by the scaling. By construction RB does not contain
any vertex in its interior. Hence, the line segments that lie in RB form in Γ a planar
y-monotone matching between a set A of points on l′m and a set B of points on l(um).
As a consequence of the scaling, the position of the points in A has been modified,
however their relative order on l′m has not been modified. Thus, we can delete the line
segments in RB and reconnect the points in B with the new positions of the points in A
on l′m so that each edge is y-monotone and no two edges intersect. See Fig. 10(c). After
performing an analogous modification in RA, we obtain a planar y-monotone drawing
Γ ′ of G in which no vertex and no part of an edge lies in the interior of R′. Since
no vertex changed its y-coordinate and every edge is y-monotone, Γ ′ is a strip planar
drawing of (G, γ).

Finally, we draw a y-monotone curve C connecting um and uM . See Fig. 10(d).
This is done as follows. Let vmax be the local maximum of f on P such that um and
vmax are visible, and let vmin be the local minimum of f on P such that uM and vmin
are visible. Observe that, vmax 6= uM and vmin 6= um since P is not monotone. Apply
Lemma 1 to construct (i) a y-monotone curve λm between um and vmax inside f and
(ii) a y-monotone curve λM between uM and vmin inside f . Denote by pm and by
pM the intersection points between λm and l′m, and between λM and l′M , respectively.
Observe that, the portion of l′m between pm and its intersection with l′ and the portion
of l′M between pM and its intersection with l′ lie inside f . Hence we can use Lemma 2
to draw a curve κm that moves slightly upward from pm to a point p′m on l′ and a curve
κM that moves slightly downward from pM to a point p′M on l′ inside f . Curve C is
composed of the portion of λm from um to pm, the portion of κm from pm to p′m, the
vertical segment from p′m to p′M , the portion of κM from p′M to pM , and the portion of
λM from pM to uM . Place each vertex x of the monotone path connecting um and uM
on C at a suitable y-coordinate, so that x lies in the strip corresponding to γ(x). Since
C is y-monotone and since it entirely lies in the interior of f , we obtained a strip planar
drawing of (G+, γ+), which concludes the proof. �

Claim 2 implies Lemma 6, as proved in the following.
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First, the repetition of the above described augmentation leads to a quasi-jagged in-
stance (G∗, γ∗). In fact, whenever the augmentation is performed, the resulting instance
is clearly strict, proper, and 2-connected; further, the number of triples (vm, vM , g) such
that vertices vm and vM are visible local minimum and maximum for face g, respec-
tively, and such that both paths connecting vm and vM along Cg are not monotone
decreases at least by 1, thus eventually the number of such triples is zero, and the in-
stance is quasi-jagged.

Second, we prove that (G∗, γ∗) can be constructed from (G, γ) in O(kr+ n) time,
that |G∗| ∈ O(kr+n), and that there are O(r) minima and maxima in (G∗, γ∗). These
statements easily descend from the following two arguments.

– The insertion of a monotone path connecting a local minimum vm with a local
maximum vM for a face g can be easily performed in O(γ(vM )− γ(vm)) = O(k)
time, as it consists of introducing γ(vM ) − γ(vm) − 1 new vertices and γ(vM ) −
γ(vm) new edges in the graph. Further, whenever the insertion is performed, the
number of vertices of the graph increases by γ(vM )− γ(vm)− 1 ∈ O(k), and the
number of distinct pairs (v, g) such that v is a local minimum or maximum for a
face g of the graph increases by O(1), given that only vertices vm and vM and only
the two faces incident to the inserted path can generate new such pairs.

– The number of times the described augmentation is performed is O(r). To prove
this claim, it suffices to prove that the number of paths that are inserted in a face g
of G is linear in the number of local minima and maxima for g. No two paths P1

and P2 are inserted in g connecting a vertex am with a vertex aM and connecting
a vertex bm with a vertex bM , respectively, such that am, bm, aM , and bM appear
in this circular order along the boundary of g, as when the second path insertion
is performed, the two end-vertices of the path would not be incident to the same
face in g. It follows that the graph that has one vertex for each local minimum or
maximum for g and one edge between two vertices if a path between them has been
inserted in g is planar (in fact outerplanar), hence it has a number of edges that is
linear in the number of maxima and minima for g. Thus, the claim follows.
Third, (G∗, γ∗) is an instance of the strip planarity testing problem that is equivalent

to (G, γ). This directly comes from repeated applications of Claim 2.
This concludes the proof of Lemma 6.

3.5 From a Quasi-Jagged Instance to a Jagged Instance

In this section we show how to reduce a quasi-jagged instance of the strip planarity
testing problem to an equivalent jagged instance.

Lemma 7. Let (G, γ) be a quasi-jagged instance of the strip planarity testing problem
with n vertices, k strips, and r minima and maxima.

There exists an O(kr + n)-time algorithm that constructs an equivalent jagged
instance (G∗, γ∗) with O(kr + n) vertices, k strips, and O(r) minima and maxima.

Consider any face f of G that contains some local minimum or maximum which is
not a global minimum or maximum for f , respectively. Assume that f contains a local
minimum v which is not a global minimum for f . The case in which f contains a local
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maximum which is not a global maximum for f can be discussed analogously. Denote
by u (denote by z) the first global minimum or maximum for f that is encountered
when walking along Cf starting at v while keeping f to the left (resp. to the right).

We distinguish two cases, namely the case in which u is a global minimum for f
and z is a global maximum for f (Case 1), and the case in which u and z are both
global maxima for f (Case 2). The case in which u is a global maximum for f and z
is a global minimum for f , and the case in which u and z are both global minima for f
can be discussed symmetrically.
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v′′
v′

v

f f2
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u

Q
f1

v′′
v′

v

(a) (b)

Fig. 11. Augmentation of (G, γ) inside a face f in Case 1. (a) Before the augmentation. (b) After
the augmentation.

In Case 1, denote byQ the path connecting u and z in Cf and containing v. Refer to
Fig. 11(a). Consider the internal vertex v′ of Q that is a local minimum for f and such
that v′ = argminu′ γ(u

′) among all the internal vertices u′ of Q that are local minima
for f . TraverseQ starting from u, until a vertex v′′ is found with γ(v′′) = γ(v′). Notice
that the subpath ofQ between u and v′′ is monotone. Insert a monotone path connecting
v′′ and z inside f . See Fig. 11(b). Denote by (G+, γ+) the resulting instance of the strip
planarity testing problem. We have the following claim:

Claim 3 Suppose that Case 1 is applied to a quasi-jagged instance (G, γ) to construct
an instance (G+, γ+). Then, (G+, γ+) is strip planar if and only if (G, γ) is strip
planar. Also, (G+, γ+) is quasi-jagged.

Proof: We prove that (G+, γ+) is strip planar if and only if (G, γ) is strip planar.
One direction of the equivalence is trivial, namely if (G+, γ+) is strip planar, then

(G, γ) is strip planar, since G is a subgraph of G+ and γ(x) = γ+(x), for every vertex
x in G.

We prove the other direction. Consider a strip planar drawing Γ of (G, γ). Ob-
serve that, since u and z are consecutive global minimum and maximum for f , they are
visible. Since Q is not monotone, by assumption, and since (G, γ) is quasi-jagged, it
follows that the path P connecting u and z in Cf and not containing v is monotone.
Hence, u and z are the only global minimum and maximum for f , respectively. See
Fig. 12.
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For every local minimum u′ in Q such that γ(u′) = γ(v′) (including v′), let R(u′)
be the bounded region delimited by the two edges incident to u′ in Q, and by the hor-
izontal line delimiting the strip corresponding to γ(u′) from the top; vertically scale
R(u′) and the part of Γ inside it so that the y-coordinate of u′ is larger than the one of
v′′. Observe that such a modification does not alter the strip planarity of Γ .

If f is an internal face (see Fig. 12(a)), we apply Lemma 1 to construct a curve λP
following P inside f ; otherwise, f is the outer face (see Fig. 12(b)), and we consider a
vertical line l lying entirely to the right of Γ . In both cases, we can apply Lemma 2 to
construct a curve λv′′ that moves slightly upward from v′′ to a point pv′′ on either λP
or l. This can be done since, after the scaling performed for each local minimum u′ in
Q such that γ(u′) = γ(v′), the horizontal segment between v′′ and the unique point of
λP or l with the same y-coordinate lies inside f .

If f is an internal face (see Fig. 12(a)), we construct a y-monotone curve C between
v′′ and z inside f that is composed of λv′′ from v′′ to pv′′ , and of the portion of λP
between pv′′ and z.

Otherwise, f is the outer face (see Fig. 12(b)). We first apply again Lemma 2 to
construct a y-monotone curve λz that moves slightly downward from z to a point pz
on l. Observe that, this is possible since z is the unique global maximum for f . Then,
we construct a y-monotone curve C between v′′ and z inside f that is composed of λv′′
from v′′ to pv′′ , of the vertical segment from pv′′ to pz , and of λz from pz to z.

In both cases, C is y-monotone and entirely lies inside f ; hence, placing each vertex
x of the monotone path connecting v′′ and z on C at a suitable y-coordinate, so that x
lies in the strip corresponding to γ(x), yields a strip planar drawing (G+, γ+).
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l

pv′′

λz
pz

(a) (b)

Fig. 12. Inserting a monotone path connecting v′′ and z inside f if: (a) f is an internal face, and
(b) f is the outer face.

It remains to show that (G+, γ+) is quasi-jagged. Clearly, (G+, γ+) is strict, proper,
and 2-connected. Every face g 6= f ofG has not been altered by the augmentation inside
f , hence, for any two visible local minimum um and local maximum uM for g, one of
the two paths connecting um and uM in g is monotone. Denote by f1 and f2 the two
faces into which f is split by the insertion of the monotone path connecting v′′ and
z, where f1 is the face delimited by such a monotone path and by the subpath of Q
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between v′′ and z. Face f2 is delimited by two monotone paths, hence the only pair of
visible local minimum and local maximum for f2 is connected by a monotone path in
Cf2 . Face f1, on the other hand, contains a local minimum that is not a local minimum
for f , namely v′′. However, the existence of a local maximum u′′ for f such that v′′ and
u′′ are visible and are not connected by a monotone path in Cf1 would imply that u and
u′′ are a pair of visible local minimum and local maximum for f that is not connected
by a monotone path in Cf , which contradicts the fact that (G, γ) is quasi-jagged. �

In Case 2, when both u and z are global maxima for f , there exists a maximal
path M that is part of Cf , whose end-vertices are two global maxima uM and vM
for f , that contains v in its interior, and that does not contain any global minimum in
its interior (see Fig. 13(a)). Assume, w.l.o.g., that face f is to the right of M when
walking along M from uM to vM . Possibly uM = u and/or vM = z. Let um (vm)
be the global minimum for f such that um and uM (resp. vm and vM ) are consecutive
global minimum and maximum for f . Possibly, um = vm. Denote by P (by Q) the
path connecting um and uM (vm and vM ) along Cf and not containing v. Since M
contains a local minimum among its internal vertices, and since (G, γ) is quasi-jagged,
it follows that P and Q are monotone.
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um vm

u′m

v

u z

P Q

f2

M

uM vM

um vm
am

a′m b′m

bm

zM

u′m

f3 f4
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f5 f6

v

u z
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(a) (b)

Fig. 13. Augmentation of (G, γ) inside a face f in Case 2. (a) Before the augmentation. (b) After
the augmentation.

Insert the plane graph A(uM , vM , f) depicted by white circles and dashed lines
in Fig. 13(b) inside f . Consider a local minimum u′m ∈ M for f such that u′m =
argminv′m γ(v′m) among the local minima v′m for f in M . Set γ(zM ) = γ(uM ), set
γ(am) = γ(bm) = γ(um), and set γ(a′m) = γ(b′m) = γ(u′m). The dashed lines
connecting am with uM , a′m with uM , am with zM , a′m with zM , bm with zM , b′m with
zM , bm with vM , b′m with vM , am with a′m, and bm with b′m represent monotone paths.
Denote by (G+, γ+) the resulting instance of strip planarity. In the following claim we
prove that (G+, γ+) is a quasi-jagged instance that is equivalent to (G, γ).

The proof mainly consists of showing that the structure of gadget A(uM , vM , f) is
“flexible” enough to allow its insertion in any strip planar drawing of (G+, γ+) to obtain
a strip planar drawing of (G, γ), whatever is the shape of face f in such a drawing. In
particular, we have to distinguish two cases based on whether f lies “inside” the region
R delimited by P , M , and Q (see Fig. 14) or “outside” it (see Fig. 17). In the first case,
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we redraw the part of the graph that lies inside R (see Fig. 15) to “make room” for a
drawing of A(uM , vM , f) (see Fig. 16). In the second case, we again redraw the part of
the graph that might interfere with the drawing ofA(uM , vM , f) (see Fig. 18); however,
the drawing of A(uM , vM , f) is not straightforward, as it has to “wrap around” R,
which can be done by exploiting the existence of the global maximum zM (see Fig. 19).

Claim 4 Suppose that Case 2 is applied to a quasi-jagged instance (G, γ) to construct
an instance (G+, γ+). Then, (G+, γ+) is strip planar if and only if (G, γ) is strip
planar. Also, (G+, γ+) is quasi-jagged.

Proof: One direction of the equivalence is trivial, namely if (G+, γ+) is strip planar,
then (G, γ) is strip planar, since G is a subgraph of G+ and γ(v) = γ+(v) for every
vertex v in G.

We prove the other direction. Consider a strip planar drawing Γ of (G, γ). Slightly
perturb the position of the vertices in Γ so that no two of them have the same y-
coordinate. Assume w.l.o.g. that f is to the right of P when traversing such a path
from um to uM . Denote by lM (by lm) the line delimiting the strip corresponding to
γ(uM ) from below (to γ(um) from above). Further, denote by l′m a line above lm and
sufficiently close to lm so that the horizontal strip delimited by these two lines does not
contain any vertex of G.

We distinguish two cases, based on whether the intersection of P with lM lies left
(Case 2A) or right (Case 2B) of the intersection of Q with lM . Since P and Q are
represented in Γ by y-monotone curves that do not intersect each other, in Case 2A (in
Case 2B) the intersection of P with lm lies left (right) of the intersection of Q with lm.
In both cases, we modify Γ while maintaining its strip planarity so that A(uM , vM , f)
can be planarly drawn in f with y-monotone edges. We first discuss Case 2A.
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um vm
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Q
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l′m
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p1(x1)p2(x1) p3(x1) p4(x1)
s(x1)
s(x2)
s(x3)
s(x4)

λQ

Fig. 14. Illustration for the proof of Claim 4. Paths P , M , and Q are represented by thick lines.
The part of the graph that is outside region R is not shown.
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We introduce some notation. Refer to Fig. 14. Denote by R the bounded region
delimited by P , by M , by Q, and by lm. Drawing Γ will be only modified in the
interior of R. Denote by R′ the bounded region delimited by P , by M , by Q, and by
l′m. We define a closed bounded region RQ inside R′ as follows. First, apply Lemma 1
to construct a curve λQ that follows Q inside f . Let p′ and p′′ be the intersection points
of l′m with λQ and with Q, respectively. Region RQ is the one delimited by λQ, by
Q, and by the horizontal segment between p′ and p′′ that has vM on its boundary. By
Lemma 1, the interior of RQ entirely belongs to f . The part of Γ that lies in the interior
of R′ will be redrawn so that it entirely lies in RQ.

For each vertex x of G in the interior ofR, consider the horizontal line l(x) through
x. Let p1(x), . . . , pf(x)(x) be the left-to-right order of the intersection points of edges
of G with l(x), where x is also a point pi(x) for some 1 ≤ i ≤ f(x). We draw a hor-
izontal segment s(x) inside RQ, in such a way that: (i) s(x) is contained in the strip
corresponding to γ(x), (ii) s(x) connects a point in λQ with a point inQ, and (iii) if ver-
tices x1 and x2 inside R are such that y(x1) < y(x2), then s(x1) lies below s(x2). For
each vertex x of G that lies in the interior of R, insert points p′1(x), . . . , p

′
f(x)(x) in this

left-to right order on s(x). Also, let p1(l′m), . . . , pf(l′m)(l
′
m) be the left-to-right order of

the intersection points of edges of G with l′m. Insert points p′1(l
′
m), . . . , p′f(l′m)(l

′
m) in

this left-to right order on the segment between p′ and p′′.
We now redraw in RQ the vertices and edges that are inside R′ in Γ . Refer to

Fig. 15.

M

uM

vM

um vm

P

Q

Fig. 15. Redrawing in RQ the vertices and edges that are inside R in Γ .

For any line segment that is part of an edge of G and that connects two points
pi(x1) and pj(x2), with x1 6= x2, (or a point pi(l′m) with a point pj(x)) draw a line
segment connecting p′i(x1) and p′j(x2) (resp. connecting p′i(l

′
m) with p′j(x)) insideRQ.

Observe that, if such a line segment exists, then s(x1) and s(x2) (resp. pp′ and s(x)) are
consecutive horizontal segments inRQ. Further, the line segments connecting points on
two consecutive line segments s(x1) and s(x2) (resp. pp′ and s(x)) can be drawn as y-
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monotone curves inside RQ so that they do not cross each other, give that the relative
order of the points p′i(x) on s(x) preserves the order of the points pi(x) on l(x), for
every vertex x of G in the interior of R, and the relative order of the points p′i(l

′
m) on

pp′ preserves the order of the points pi(l′m) on l′m. For each edge e that has non-empty
intersection with R, delete from Γ the part eR of e inside R. If e used to intersect l′m,
denote by pi(lm) and pi(l′m) the intersection points of e with lm and l′m before eR was
removed. Draw a y-monotone curve connecting point p′i(l

′
m) on pp′ with point pi(lm).

Such curves can be drawn without introducing crossings, given that the relative order
of the points p′i(l

′
m) on pp′ preserves the order of the points pi(l′m) on l′m.
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Fig. 16. Drawing A(uM , vM , f) (vertices are white circles and edges are solid thin lines). (a)
Construction of curves λP , λ1

P , λ2
P , λh, λ′

h, and λ′
Q. (b) Assigning paths of A(uM , vM , f) to

curves.

We now draw A(uM , vM , f).
First we draw a set of curves in Γ . Refer to Fig. 16(a). Apply Lemma 1 to construct

a curve λP between um and uM following P inside f . This splits f into two faces f1

and f2 (here we refer to faces as regions of the plane delimited by closed curves, even if
such curves do not correspond to paths in the graph), where f2 is the one having M on
its boundary. Place am, a′m and zM on any three points of λP lying in the interior of the
strip corresponding to γ(am), γ(a′m), and γ(zM ), respectively. Then, apply Lemma 1
to construct a curve λ1P between a′m and uM following λP inside f1, and a curve λ2P
between am and zM following λP inside f2. Hence, f2 is split into two faces; let f3

be the one having M on its boundary. Place bm on any point of λ2P lying in the interior
of the strip corresponding to γ(bm). Also, apply Lemma 1 to construct a curve λ1Q
between p′ and vM following λQ inside f3. Let qb (let qb′ ) be a point on λ1Q inside the
strip corresponding to γ(um) + 1 (to γ(b′m)) whose y-coordinate is smaller than the
one of every vertex lying inside the same strip. This implies that the horizontal segment
between qb (between qb′ ) and the unique point of λ2P with its same y-coordinate entirely
lies inside f3. Hence, we can apply Lemma 2 to construct inside f3 a y-monotone curve
λh that moves slightly downward from qb to a point pb on λ2P and a y-monotone curve
λ′h that moves slightly upward from qb′ to a point pb′ on λ2P . Place b′m on qb′ .

We now describe an assignment of monotone paths to curves; refer to Fig. 16(b).
Assigning a path P to a curve C means that each vertex v of P will be placed on a
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point of C lying inside the strip corresponding to γ(v). The path between am and a′m
is assigned to a curve Caa′ that is the portion of λP between them. The path between
a′m and zM is assigned to a curve Ca′z that is the portion of λP between them. The
path between a′m and uM is assigned to λ1P . The path between am and uM (between
am and zM ) not containing a′m is assigned to a curve, obtained by applying Lemma 1,
that follows the concatenation of curves Caa′ and λ1P (curves Caa′ and Ca′z), inside the
unique face having these two curves on its boundary. The path between bm and b′m is
assigned to a curve Cbb′ that is obtained by concatenating the portion of λ2P from bm to
pb, curve λh, and the portion of λ′Q between qb and b′m. The path between b′m and zM
is assigned to a curve Cb′z that is obtained by concatenating λ′h and the portion of λ2P
between pb′ and zm. The path between b′m and vM is assigned to a curve Cb′v that is
the portion of λ′Q between them. The path between bm and vM (between bm and zM )
not containing b′m is assigned to a curve, obtained by applying Lemma 1, that follows
the concatenation of curves Cbb′ and Cb′v (curves Cbb′ and Cb′z), inside the unique face
having these two curves on its boundary.

We now discuss Case 2B. We introduce some notation. See Fig. 17. Denote by l′t
the horizontal line passing through the vertex wM of M with largest y-coordinate, and
denote by lt an horizontal line in the strip corresponding to γ(uM ) slightly above l′t,
and close enough to l′t so that no vertex lies in the interior of the strip delimited by lt
and l′t. Observe that all the vertices and edges of M , of P , and of Q are entirely below
l′t, except for vertex wM . Let s(wM ) be the vertical segment connecting wM with lt.
Denote by l′p and by l′′p (by l′q and by l′′q ) vertical lines entirely right (left) of M , P ,
and Q, with l′′p right of l′p (with l′′q left of l′q). Let RA be the region delimited by lt, by
l′t, by l′′p , and by l′′q . Denote by Rp the bounded region of the plane delimited by lm,
by l′′p , by lt, by P , by the part of M connecting uM with wM , and by s(wM ). Region
Rq is defined analogously with l′′q , Q, and vM in place of l′′p , P , and uM , respectively.
Drawing Γ will be only modified in the interior of Rp ∪ Rq . In particular, the vertices
of G and the intersection points of the edges of G with the lines delimiting Rp ∪ Rq
will maintain the same position after the modification.

We define some regions inside Rp. Let R′p be the part of Rp that is left of l′p, above
l′m and below l′t; let R′′p be the part of Rp that is above l′m and below l′t; let R′′′p be
the part of Rp that is right of l′p, above l′m and below l′t (observe that R′′p = R′p ∪R′′′p );
finally, letRB,p be the part ofRp below l′m. RegionsR′q ,R

′′
q ,R′′′q , andRB,q are defined

analogously with l′q and l′′q in place of l′p and l′′p , with left in place of right, and vice versa.
We modify Γ so that no vertex and no part of an edge lies inR′p∪R′q . The part of Γ

outside Rp ∪ Rq is not modified in the process. This modification is similar to the one
performed for the proof of Claim 2. Refer to Fig. 18.

We perform a horizontal scaling of the part of Γ that lies inside R′′p (the vertices
and edges of P and M stay still). This is done so that every intersection point of an
edge with l′′p keeps the same position, and the part of Γ that used to lie insideR′′p is now
contained in R′′′p , that is the interior of R′p contains no vertex and no part of an edge.
Some edges of G (those that used to intersect l′m and l′t) are now disconnected; e.g., if
an edge of G used to intersect l′m, now such an edge contains a line segment inside R′′′p ,
which has been scaled, and a line segment inside RB,p, which has not been scaled. By
construction RB,p does not contain any vertex in its interior. Hence, the line segments
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Fig. 17. Drawing Γ inside regionRp∪Rq . RegionRp is colored light and dark gray. In particular,
part of face f inside Rp is colored dark gray. Paths P , Q, and M are represented by thick lines.
Intersection points of edges with lines l′′p , l′′q , lm, l′m, lt, and l′t are represented by white circles.

in RB,p form in Γ a planar y-monotone matching between a set Ap of points on l′m
and a set Bp of points on lm. After the scaling, the position of the points in Ap has
been modified, however their relative order on l′m has not. Thus, we can delete the line
segments in RB,p and reconnect the points in Bp with the new positions of the points
in Ap on l′m so that each edge is y-monotone and no two edges intersect.

We also perform a horizontal scaling of the part of Γ inside R′′q (the vertices and
edges of Q and M stay still). This is done symmetrically to the scaling inside R′′p . After
this scaling, R′q contains no vertex and no part of an edge.

Finally, the line segments in RA form in Γ a planar y-monotone matching between
points on l′t and points on lt. As for the segments in RB,p, the scaling does not cause
two segments in RA to cross.

We thus obtain a planar y-monotone drawing Γ ′ of G in which no vertex and no
part of an edge lies in the interior of R′p ∪R′q . Since no vertex changed its y-coordinate
and every edge is y-monotone, Γ ′ is a strip planar drawing of (G, γ).

We now draw A(uM , vM , f).
First we draw a set of curves in Γ ′. Refer to Fig. 19(a).
Place zM on any point of f between lt and l′t, and consider the two straight-line

segments sa and sb connecting zM to the intersection points between l′t and l′p, and
between l′t and l′q , respectively. Note that sa and sb entirely lie inside f . Apply Lemma 1
to construct two y-monotone curves λP , between um and uM , and λQ, between vm
and vM , inside f following P and Q, respectively. Let f1 be the face whose boundary
contains both λP and λQ. Place vertex am (vertex bm) on any point of λP (of λQ)
inside the strip corresponding to γ(am) = γ(bm). Also, place vertex a′m (vertex b′m)
on any point of λP (of λQ) inside the strip corresponding to γ(a′m) = γ(b′m) whose
coordinate is smaller than the one of every vertex lying in the same strip. This implies
that the horizontal segment between a′m (between b′m) and the unique point of l′p (of
l′q) with its same y-coordinate entirely lies inside f1. Hence, we can apply Lemma 2
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Fig. 18. Drawing Γ ′ of (G, γ), obtained by scaling the part of Γ that lies insideR′′
p and insideR′′

q ,
and by reconnecting points on lm with points on l′m and points on lt with points on l′t. Regions
R′

p and R′
q are light gray, regions R′′′

p and R′′′
q are medium gray, while regions RB,p and RB,q

are dark gray.

to construct inside f1 a y-monotone curve λa that moves slightly upward from a′m to
a point pa on l′p and a y-monotone curve λb that moves slightly upward from b′m to a
point pb on l′q .

We now describe an assignment of monotone paths to curves; refer to Fig. 19(b).
Assigning a path P to a curve C means that each vertex v of P will be placed on a point
of C lying inside the strip corresponding to γ(v).

The path between am and a′m is assigned to a curve Caa′ that is the portion of λP
between them. The path between a′m and uM is assigned to a curve Ca′u that is the
portion of λP between them. The path between a′m and zM is assigned to a curve Ca′z
that is the curve obtained by concatenating curve λa, the portion of l′p between pa and
the intersection point between l′p and l′t, and segment sa. The path between am and uM
(between am and zM ) not containing a′m is assigned to a curve, obtained by applying
Lemma 1, that follows the concatenation of curves Caa′ and Ca′u (curves Caa′ and Ca′z),
inside the unique face having these two curves on its boundary.

The paths connecting bm, b′m, vM , and zM are assigned analogously, as follows. The
path between bm and b′m is assigned to a curve Cbb′ that is the portion of λQ between
them. The path between b′m and vM is assigned to a curve Cb′v that is the portion of λQ
between them. The path between b′m and zM is assigned to a curve Cb′z that is the curve
obtained by concatenating curve λb, the portion of l′q between pb and the intersection
point between l′q and l′t, and segment sb. The path between bm and vM (between bm
and zM ) not containing b′m is assigned to a curve, obtained by applying Lemma 1,
that follows the concatenation of curves Cbb′ and Cb′v (curves Cbb′ and Cb′z), inside the
unique face having these two curves on its boundary.

This concludes the construction of a strip planar drawing of (G+, γ+). It remains
to prove that (G+, γ+) is quasi-jagged. Clearly, (G+, γ+) is strict, proper, and 2-
connected.
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Fig. 19. Augmentation of drawing Γ ′ of G with a drawing of plane graph A(uM , vM , f). (a)
Construction of curves λQ, λP , λa, λb, sa, and sb. (b) Assigning paths of A(uM , vM , f) to
curves.

Every face g 6= f of G has not been altered by the augmentation inside f , hence,
for any two visible local minimum um and local maximum uM for g, one of the two
paths connecting um and uM in G is monotone. Denote by f1, f2, . . . , f6 the faces into
which f is split by the insertion of A(uM , vM , f) (see Fig. 13(b)).

For i = 3, . . . , 6, face fi is delimited by two monotone paths. Face f2 contains two
local minima, namely am and bm, and one local maximum, namely zM , that are not
incident to f in G. However, uM and zM are the only local maxima for f2 that are
visible with am; also, am and bm are the only local minima for f2 that are visible with
zM ; further, zM and vM are the only local maxima for f2 that are visible with bm. For
all such pairs of visible local minimum and maximum, there exists a monotone path
in Cf2 connecting them. Moreover, every pair of visible local minimum and maximum
for f2 which does not include am, zM , or bm is also a pair of visible local minimum
and maximum for f , hence it is connected by the same monotone path in Cf2 as in Cf .
Finally, consider f1. As for f2, each of a′m, zM , and b′m only participates in two pairs
of visible local minimum and maximum for f1, where the second vertex of each pair is
one of uM , a′m, zM , b′m, and vM . For all such pairs, monotone paths in Cf1 exist by
construction. Further, every pair of visible local minimum and maximum for f1 which
does not include a′m, zM , or b′m is also a pair of visible local minimum and maximum
for f , hence it is connected by the same monotone path in Cf1 as in Cf . �

We prove that Claims 3–4 imply Lemma 7. First, the repetition of the augmentation
leads to a jagged instance (G∗, γ∗). For an instance (G, γ) and for a face g ofG, denote
by n(g,G) the number of vertices that are local minima or maxima for g but not global
minima or maxima for g. Also, let n(G) =

∑
g n(g,G) over all faces g of G. We

claim that, when a face f of G is augmented as in Case 1 or in Case 2 and instance
(G, γ) turns into an instance (G+, γ+), we have n(G+) < n(G). The claim implies that
n(G∗) = 0, hence (G∗, γ∗) is jagged. We prove the claim. For each face g 6= f , it holds
that n(g,G) = n(g,G+), given that a vertex u is a local minimum, a local maximum,
a global minimum, or a global maximum for g in (G+, γ+) if and only if it is in (G, γ).
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Suppose that Case 1 is applied, thus splitting f into faces f1 and f2, as in Fig. 11(b).
Face f2 is delimited by two monotone paths, hence n(f2, G+) = 0. Further, every
vertex inserted into f is neither a local maximum nor a local minimum for f1; moreover,
vertex v′ is a global minimum for f1, by construction, and it is a local minimum but not
a global minimum for f . Hence, n(f1, G+) < n(f,G). Suppose that Case 2 is applied,
thus splitting f into faces f1, . . . , f6, as in Fig. 13(b). For i = 3, . . . , 6, face fi is
delimited by two monotone paths, hence n(fi, G+) = 0. Every vertex ofA(uM , vM , f)
incident to fi, with i = 1, 2, is either a global maximum or minimum for fi, or it
is not a local maximum or minimum for fi at all. Moreover, vertex u′m is a global
minimum for f1 and it is a local minimum but not a global minimum for f . Hence,
n(f1, G

+) + n(f2, G
+) < n(f,G).

Second, since each augmentation can be performed in O(k) time by introducing
O(k) new vertices and edges, since O(r) augmentations are performed in order to ob-
tain (G∗, γ∗), given that n(G) ≤ r, and since every augmentation introduces a constant
number of minima or maxima, it follows that the number of vertices ofG∗ isO(kr+n),
the number of minima and maxima of (G∗, γ∗) isO(r), and (G∗, γ∗) can be constructed
in O(kr + n) time. In particular, an O(n)-time preprocessing determines, for all faces
g of G, all the pairs (v, g) such that v is a local minimum or maximum for g but it is
not a global minimum or maximum for g.

Third, (G∗, γ∗) is an instance of strip planarity equivalent to (G, γ). This comes
from repeated applications of Claims 3 and 4, and concludes the proof of Lemma 7.

3.6 Strip Planarity of Jagged Instances

In this section we show that testing whether a jagged instance (G, γ) of the strip pla-
narity testing problem is strip planar is equivalent to testing whether the associated
directed graph of (G, γ) is upward planar. Based on this equivalence and on the results
of the previous sections, we show that the strip planarity testing problem can be solved
in polynomial time for general instances with a prescribed plane embedding.

Recall that the associated directed graph of (G, γ) is the directed plane graph
−→
G

obtained from (G, γ) by orienting each edge (u, v) in G from u to v if and only if
γ(v) = γ(u) + 1. We have the following:

Lemma 8. A jagged instance (G, γ) of the strip planarity testing problem is strip pla-
nar if and only if the associated directed graph

−→
G of (G, γ) is upward planar.

Proof: The necessity is trivial, given that a strip planar drawing of (G, γ) is also an
upward planar drawing of

−→
G , by definition.

We prove the sufficiency. A directed plane graph
−→
Gst is called plane st-digraph if

it has exactly one source s and one sink t such that s and t are both incident to the outer
face of

−→
Gst. Each face f of a plane st-digraph

−→
Gst consists of two monotone paths

called left path and right path, where the left path has f to the right when traversing it
from its source to its sink. The right path and the left path of the outer face of

−→
Gst are

also called leftmost path and rightmost path of
−→
Gst, respectively.

Since
−→
G is upward planar,

−→
G can be augmented [15] to a plane st-digraph

−→
Gst.

Also, this can be done by adding only dummy edges (u, v) such that u and v are incident
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to the same face f , and u and v are either both sources or both sinks in Cf (when Cf is
oriented according to

−→
G ). Note that, since (G, γ) is jagged, each dummy edge (u, v) is

such that γ(u) = γ(v).
We now compute the directed dual

−→
Gs∗t∗ of

−→
Gst. The vertices of

−→
Gs∗t∗ are the

faces of
−→
Gst; two special vertices s∗ and t∗ represent the outer face. There is an edge

(f, g) in
−→
Gs∗t∗ if face f shares an edge (u, v) 6= (s, t) with face g, and face f is on the

left side of (u, v) when such an edge is traversed from u to v. Graph
−→
Gs∗t∗ is a plane

st-digraph [15].
We divide the plane into k horizontal strips of fixed height, each corresponding to

one of the strips of (G, γ).
We compute an upward planar drawing of

−→
Gst in which each vertex lies in the corre-

sponding strip, as follows. First, consider the leftmost path pl of
−→
Gst, where pl = (s =

v11 , . . . , v
h(1)
1 , v12 , . . . , v

h(2)
2 , . . . , v1k, . . . , v

h(k)
k = t), with γ(v1i ) = · · · = γ(v

h(i)
i ) = i,

for i = 1, . . . , k. Path pl is drawn as a y-monotone curve in which each vertex u ∈ pl
lies inside the strip corresponding to γ(u). Then, we add the faces of

−→
Gst one at a

time, in such a way that a face is considered after all its predecessors in
−→
Gs∗t∗ (i.e.,

the faces can be considered in the order corresponding to any linear extension of the
poset represented by

−→
Gs∗t∗ ). When a face f is considered, its left path has been already

drawn as a y-monotone curve λl. We apply Lemma 1 to draw the right path of f as a
y-monotone curve λr that follows λl inside the outer face of the current drawing. Then,
we place each vertex u belonging to the right path of f on any point of λr inside the
strip corresponding to γ(u). This implies that the rightmost path of the graph in the
current drawing is represented by a y-monotone curve.

A strip planar drawing of (G, γ) can be obtained from the upward planar drawing
of
−→
Gst by removing the dummy edges. �

Note how the correctness of the proof of Lemma 8 heavily depends on the fact that
(G, γ) is jagged. We thus obtain the main result of this paper:

Theorem 1. The strip planarity testing problem can be solved in O(|G|2) time for in-
stances (G, γ) such that G is a plane graph.

Proof: In the following we denote by |H| the number of vertices of any instance
(H, γ) of strip planarity; also, we denote by r(H) the number of minima and maxima
of (H, γ), and by k(H) the number of strips of (H, γ). Further, we assume that k(H) ≤
|H|, since empty strips can be removed without loss of generality.

Let (G, γ) be any instance of strip planarity such that G is a plane graph.
By Lemma 3–8, there exists an O(|G|2)-time algorithm that either decides that

(G, γ) does not admit any strip planar drawing or constructs a directed plane graph
−→
G∗

with |−→G∗| ∈ O(k(G)|G|), s(−→G∗) ∈ O(|G|+ r(G)) (where s(
−→
G∗) is the total number of

sources and sinks of
−→
G∗), and such that (G, γ) is strip planar if and only if

−→
G∗ is upward

planar with respect to its plane embedding.
Finally, by the results of Bertolazzi et al. [7], the upward planarity of

−→
G∗ can be

tested in O(|−→G∗| + (s(
−→
G∗))2) time. Since |−→G∗| ∈ O(k(G)|G|) and since s(

−→
G∗) ∈
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O(|G| + r(G)), the upward planarity of
−→
G∗ can be tested in O(k(G)|G| + (|G| +

r(G))2) ∈ O(|G|2) time.
This concludes the proof of the theorem. �

3.7 Non-Connected Instances

In this section we show how the problem of testing the strip planarity of non-connected
instances can be reduced to the one of testing the strip planarity of connected instances.

The input of the strip planarity testing algorithm might or might not specify the
containment relationships between distinct connected components. According to our
definition of combinatorial embedding given in Section 2, these relationships are not
prescribed. Then a non-connected instance (G, γ) is strip planar if and only if all its
connected components are strip planar. Namely, if (G, γ) is strip planar, then all its
components are strip planar. Conversely, if all the components of (G, γ) are strip planar,
then a strip planar drawing of (G, γ) can be obtained by placing strip planar drawings
of the components of (G, γ) “side by side”.

Several papers in the graph drawing literature (see, e.g., [2,3,29]), however, assume
a definition for “embedding of a non-connected planar graph G” in which the con-
tainment relationships between distinct connected components of G are prescribed in
advance. More formally, let G1, . . . , Gk be the connected components of G, let Γa and
Γb be two planar drawings of G, and let Ea1 , . . . , Eak and Eb1 , . . . , Ebk be the plane em-
beddings of G1, . . . , Gk in Γa and Γb, respectively. Then Γa and Γb are equivalent if:
(i) they determine the same clockwise order of the edges incident to each vertex of G,
i.e., Eai = Ebi for each 1 ≤ i ≤ k, and (ii) consider every simple cycle C ⊆ Gi all
of whose edges are incident to the same face in Eai (and in Ebi ); then, for every vertex
v ∈ Gj with j 6= i, we have that v is inside C in Eai if and only if it is inside C
in Ebi . A plane embedding is defined as an equivalence class of planar drawings. This
choice for the definition of a plane embedding is somewhat more natural in the sense
that, analogously to the connected case, two drawings Γa and Γb of G have the same
embedding if and only if they have faces with the same boundaries. With this definition
for “embedding of a non-connected planar graph G”, testing the strip planarity of an
instance (G, γ) becomes slightly more complicated than just testing the strip planarity
of its connected components.

Thus, assume that the input (G, γ) of the strip planarity testing algorithm specifies
the containment relationships between distinct connected components. Then the bound-
ary of each face of G is prescribed by the input. Test individually the strip planarity of
each connected component of (G, γ). If one of the tests fails, then (G, γ) is not strip
planar. Otherwise, construct a strip planar drawing of each connected component of
(G, γ). Place the drawings of the connected components containing edges incident to
the outer face of G side by side. Repeatedly insert connected components in the inter-
nal faces of the currently drawn graph (G′, γ) as follows. If a connected component
(Gi, γ) of (G, γ) has to be placed inside an internal face f of (G′, γ), check whether
γ(uM ) ≤ γ(ufM ) and whether γ(um) ≥ γ(ufm), where uM (um) is a vertex of (Gi, γ)
such that γ(uM ) is maximum (resp. γ(um) is minimum) among the vertices of Gi,
and where ufM (ufm) is a vertex of Cf such that γ(ufM ) is maximum (resp. γ(ufm) is
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minimum) among the vertices of Cf . If the test fails, then (G, γ) is not strip planar.
Otherwise, using a technique analogous to the one of Claim 2, a strip planar drawing of
(G′, γ) can be modified so that two consecutive global minimum and maximum for f
can be connected by a y-monotone curve C inside f . Suitably squeezing a strip planar
drawing of (Gi, γ) and placing it arbitrarily close to C provides a strip planar drawing
of (G′ ∪Gi, γ). Repeating such an argument leads either to conclude that (G, γ) is not
strip planar, or to construct a strip planar drawing of (G, γ).

4 Reduction

In this section we show that the strip planarity testing problem reduces in polynomial
time to the clustered planarity testing problem.

Theorem 2. Let (G, γ) be an instance of strip planarity. Then, there exists an instance
C(G′, T ) of clustered planarity such that (G, γ) is strip planar if and only if C(G′, T )
is clustered planar. Further, C(G′, T ) can be constructed in polynomial time.

Proof: Denote by k the number of strips of (G, γ). First, we show that, if k ≤ 2,
then the “natural” reduction from strip planarity to clustered planarity, namely the one
that transforms each strip into a cluster, is a valid polynomial-time reduction. We now
formalize this claim.

If k = 1, clustered graph C(G′, T ) is defined as follows. Graph G′ coincides with
G and tree T consists of a single internal node µ that is parent of all the vertices of
G′. The equivalence between the strip planarity of (G, γ) and the clustered planarity of
C(G′, T ) follows from their equivalence to the planarity of G = G′.

If k = 2, clustered graph C(G′, T ) is defined as follows. Graph G′ coincides with
G and tree T consists of three internal nodes µ, µ1, and µ2, where µ is parent of µ1 and
µ2, and where µi is parent of every vertex x of G′ such γ(x) = i, for i = 1, 2. From a
strip planar drawing Γ of (G, γ), a c-planar drawing Γ ′ of C(G′, T ) can be constructed
so that the drawings of G and G′ coincide, and so that, for i = 1, 2, the region R(µi)
representing µi is a rectangle whose top and bottom sides lie on the top and bottom
lines delimiting γi, respectively, and whose left (right) side is to the left (right) of all
the vertices and edges of G′. Conversely, suppose that C(G′, T ) is c-planar. Then, it
admits a c-planar straight-line drawing Γ ′ in which µ1 and µ2 are represented by convex
regions R(µ1) and R(µ2) (see [4,17]). Thus, R(µ1) and R(µ2) can be separated by a
straight line l; by suitably rotating l and the Cartesian axes, we can assume that l is
horizontal and every edge of G′ is y-monotone in Γ ′, with R(µ1) below R(µ2). Then,
define γ1 (γ2) as a horizontal strip containing R(µ1) (resp. R(µ2)) and entirely below l
(resp. above l). The resulting drawing Γ is a strip planar drawing of (G, γ).

If k ≥ 3, then the above reduction does not always work (Fig.1 shows an example
with k = 4). In the following we show how to construct a clustered graph C(G′, T )
whose c-planarity is equivalent to the strip planarity of (G, γ) if k ≥ 3. We also as-
sume that G is connected. This is not a loss of generality. Namely, if G is not con-
nected, then (G, γ) is strip planar if and only if each of its connected components
(G1, γ1), . . . , (Gm, γm) is strip planar (where γi(v) = γ(v) for every v ∈ Gi and
every 1 ≤ i ≤ m). Thus, if an instance Ci(G′i, Ti) can be constructed in polynomial
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time equivalent to (Gi, γi), for every 1 ≤ i ≤ m, then an instance C(G′, T ) can also
be constructed in polynomial time equivalent to (G, γ), where G′ = G′1 ∪ · · · ∪ G′m,
and where T is a tree consisting of a root having T1, . . . , Tm as subtrees.

Further, we assume that (G, γ) is proper. If this is not the case, then the reduction
described in Section 3.2 can be applied in order to obtain an equivalent proper instance.

Summarizing, we can suppose w.l.o.g. that (G, γ) is connected, proper, and has
k ≥ 3 strips. We now describe how to construct C(G′, T ) (see Figs. 20(a)-(b)).
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Fig. 20. Illustration for the proof of Theorem 2. (a) Instance (G, γ) of strip planarity; (b) instance
C(G′, T ) of clustered planarity obtained from (G, γ); (c) a c-planar drawing Γ ′ of C(G′, T );
(d) the strip planar drawing Γ of (G, γ) obtained from Γ ′.

Graph G′ is composed of G and of a triconnected plane graph H , which con-
sists of vertices a, b, c, d, u1, . . . , uk, v1, . . . , vk, and of edges (a, b), (b, c), (c, d),
(a, d), (b, d), (a, uk), (a, vk), (c, u1), (c, v1), (b, u1), . . . , (b, uk), (d, v1), . . . , (d, vk),
(u1, u2), . . . , (uk−1, uk), and (v1, v2), . . . , (vk−1, vk).

Tree T is constructed as follows. Initialize T with a root cluster µ. Add to T four
clusters µa, µb, µc, and µd as children of µ, containing vertices a, b, c, and d, respec-
tively. Then, for each i = 1, . . . , k, add a cluster µi to T , as a child of µ, that contains
vertices ui, vi, and each vertex w ∈ V (G) such that γ(w) = i.

Clearly, C(G′, T ) can be constructed in polynomial time. We prove that C(G′, T )
admits a c-planar drawing if and only if (G, γ) admits a strip planar drawing.

Suppose that C(G′, T ) admits a c-planar drawing Γ ′. We construct a strip planar
drawing Γ of (G, γ) as follows.
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Since H is triconnected, it has a unique planar embedding [39], hence it has faces
delimited by the same sequence of edges in any planar drawing. Since G is connected,
by planarity all of its vertices and edges have to be inserted inside a single face of H .
By the c-planarity of Γ ′, the face of H in which G has to be inserted has to contain
at least a vertex belonging to each cluster µ1, . . . , µk. Moreover, since k ≥ 3, just one
of the faces of H has incident vertices belonging to all clusters µ1, . . . , µk, namely the
face f delimited by cycle Cf = (u1, . . . , uk, a, vk, . . . , v1, c). It follows that all the
vertices and edges of G are embedded inside f in Γ ′. Moreover, for each 1 ≤ i ≤ k,
the intersection of the regionR(µi) representing cluster µi in Γ ′ with the interior of f is
a connected region containing ui and vi; in fact, ui and vi are separated by path (a, b, c)
in the region delimited by cycle Cf different from f . Then, the edges connecting a
vertex of µi to a vertex of µi+1 cut the boundary of R(µi) consecutively, for every
1 ≤ i ≤ k − 1; denote by si1, . . . , s

i
ni

the clockwise order in which these edges cut the
boundary of R(µi), starting at the first edge si1 crossing the boundary of R(µi) after
(ui, ui+1). Analogously, the mi edges connecting a vertex of µi to a vertex of µi−1 cut
the boundary of R(µi) consecutively, for every 2 ≤ i ≤ k. Observe that, since (G, γ)
is proper, it holds that ni = mi+1 for each i = 1, . . . , k − 1.

We now show how to construct Γ . The outline of such a construction is as follows.
We start by performing some modifications on the structure of G. We first subdivide
the edges of G connecting vertices in different clusters with two subdivision vertices
(denoted by pij and qi+1

j in the following, for 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ ni); further,
we add to G some dummy vertices (denoted by xi, yi, zi, and wi in the following, for
1 ≤ i ≤ k) as well as some dummy edges incident to the dummy vertices and to the
subdivision vertices. This modification of G results in a graph (denoted by L in the
following) that satisfies the following property: There exists a set of cycles (denoted
by Ci in the following, for 1 ≤ i ≤ k) each containing all the vertices of a distinct
cluster in its interior (roughly speaking, each of such cycles “simulates” the border of a
strip). Then the interior of each cycle Ci can be triangulated by adding dummy edges.
Now the cycles Ci can be drawn one on top of the other as axis-parallel rectangles and
the graph inside Ci can be drawn with straight-line edges inside such a rectangle, for
1 ≤ i ≤ k − 1. Interpreting the horizontal sides of the rectangles as part of the strip
boundaries and interpreting the dummy vertices as bend points, this results in a strip
planar drawing of (G, γ) in which each edge between different strips is a y-monotone
curve composed of three straight-line segments, two inside the corresponding strips and
one between them. We now make this argument more precise.

We start by constructing the auxiliary graph L. Initialize L as G. We replace each
edge sij , where sij connects a vertex uij in µi to a vertex ui+1

j in µi+1, with a path
(uij , p

i
j , q

i+1
j , ui+1

j ). Further, add toL (i) dummy edges (pij , p
i
j+1), with j = 1, . . . , ni−

1, (ii) dummy edges (qij , q
i
j+1), with j = 1, . . . ,mi − 1, (iii) dummy edges (pi1, y

i),
(xi, yi), and (xi, qi1), where xi and yi are two dummy vertices, and (iv) dummy edges
(pini

, wi), (zi, wi), and (zi, qimi
), where zi and wi are two dummy vertices. Also, add

edges (x1, z1) and (yk, wk) to L.

For each i = 1, . . . , k, denote by Cµi
the subgraph of L induced by the vertices

inside or on the boundary of cycle Ci = (pi1, . . . , p
i
n, w

i, zi, qimi
, . . . , qi1, x

i, yi).
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Consider any set of k horizontal strips γ1, . . . , γk. For each i = 1, . . . , k, let y = Y i0
and y = Y i1 be the higher and lower horizontal lines delimiting the strip γi, respectively.

We first show how to draw each graph Cµi
. Place vertex yi at point (0, Y i0 ), vertex

xi at point (0, Y i1 ), vertex wi at point (max{mi, ni} + 1, Y i0 ), and vertex zi at point
(max{mi, ni} + 1, Y i1 ). Also, place each vertex pij at point (j, Y i0 ), and each vertex
qij at point (j, Y i1 ). By construction, Ci is represented by a convex quadrilateral Qi.
Then, extend Qi to a straight-line planar drawing Γi of Cµi . Observe that Cµi can be
augmented to an internally-triangulated planar graph with no edge connecting two non-
consecutive vertices on the outer face. Hence, Γi always exists [9]. Slightly perturbing
the position of the internal vertices of Cµi

results in a drawing in which all the edges,
except for the ones incident to the outer face, are y-monotone.

Finally, for each i = 1, . . . , k − 1 and j = 1, . . . , ni, vertices pij and qi+1
j have the

same x-coordinate, and hence can be connected with a vertical straight-line segment not
intersecting any other edge. Now removing the inserted dummy edges and replacing all
dummy vertices pij and qij with bends results in a strip planar drawing Γ of (G, γ).

Suppose now that (G, γ) admits a strip planar drawing Γ . A c-planar drawing Γ ′ of
C(G′, T ) can be constructed as follows. First, let the drawings of G′ in Γ ′ and of G in
Γ coincide. Let X0 and X1 be the smallest and the largest x-coordinate of a vertex in
Γ , respectively. For each i = 1, . . . , k, let y = Y i0 and y = Y i1 be the horizontal lines
delimiting strip γi from above and from below, respectively. Refer to Fig. 21.

Place vertices ui and vi at points (X0 − 1,
Y i
0+Y

i
1

2 ) and (X1 + 1,
Y i
0+Y

i
1

2 ), respec-
tively, and represent µi as a rectangular region R(µi) with corners at (X0 − 2, Y i0 ),
(X0 − 2, Y i1 ), (X1 + 2, Y i0 ), and (X1 + 2, Y i1 ). Then, place vertex a at point (Xa =
X0+X1

2 , Ya = Y k0 +1), vertex b at point (Xb = X0−4, Yb =
Y k
0 +Y 1

1

2 ), vertex c at point

(Xc =
X0+X1

2 , Yc = Y 1
1 − 1), and vertex d at point (Xd = X1 + 4, Yd =

Y k
0 +Y 1

1

2 ).

µc

µd

µa a

b

c

d

uk vk

u1 v1

µk

µ1

µb

X0 X1

Y k
0

Y k
1

Y 1
1

Fig. 21. The c-planar drawing Γ ′ of C(G′, T ) obtained from a strip planar drawing Γ of (G, γ).

Draw edges (a, b), (b, c), (c, d), and (d, a) as polygonal lines bending at points
(Xb +1, Ya), (Xb, Yc), (Xd, Yc), and (Xd − 1, Ya), respectively. Draw edge (b, d) as a
polygonal line bending at points (Xb, Ya+1) and (Xd, Ya+1). For each i = 1, . . . , k,
draw edges (b, ui) and (d, vi) as polygonal lines bending at points (Xb+1,

Y i
0+Y

i
1

2 ) and

(Xd−1, Y
i
0+Y

i
1

2 ), respectively. Draw edges (a, uk), (a, vk), (c, u1), and (c, v1) as polyg-
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onal lines bending at points (X0, Y
k
0 ), (X1, Y

k
0 ), (X0, Y

1
1 ), and (X1, Y

1
1 ), respectively.

Draw edges (ui, ui+1) and (vi, vi+1) as straight-line segments, for each 1 ≤ i ≤ k− 1.
Finally, draw cluster µa (µb, µc, µd) as a small disk R(µa) (resp. R(µb), R(µc),

R(µd)) enclosing only vertex a (resp. b, c, d) and not overlapping with any other region.
This results in a c-planar drawing of C(G′, T ). �

5 Conclusions

In this paper, we introduced the strip planarity testing problem and showed how to
solve it in polynomial time if the input graph has a prescribed plane embedding. The
main question raised by this paper is whether the strip planarity testing problem can be
solved in polynomial time or it is ratherNP-hard for graphs without a prescribed plane
embedding. The problem is intriguing even if the input graph is a tree.

We also proved the existence of a polynomial-time reduction from the strip planarity
testing problem to the clustered planarity testing problem. Fulek proved [22] a stronger
result: For every instance (G, γ) of strip planarity, an equivalent instance C(G,T ) of
clustered planarity can be constructed in polynomial time such that T only contains
three clusters. Thus, designing a polynomial-time algorithm for the strip planarity test-
ing problem is a vital step towards deepening our understanding of clustered planarity.
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narity: small clusters in cycles and Eulerian graphs. J. Graph Alg. Appl. 13(3), 379–422
(2009)
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