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A B S T R A C T   

The current study establishes theoretical and empirical linkages among urbanization, economic growth, land use, 
and greenhouse gas (GHG) emissions. The prime objective of this article is to draw novel conclusions and policies 
for the different income levels of countries regarding the urbanization and agriculture sector land on environ-
mental pollution. Employing panel data of 50 countries for the period 1990 to 2019, this study uses the lasso 
regression and non-parametric regression panel data methods to investigate the impacts of land use (arable, 
permanent pastures, and cropland), urbanization growth, and economic progress on the pollution levels. After 
estimating a Lasso regression to find the best auto-regressive predictive specification, we used an auto-regressive 
partially linear regression where each of the drivers’ effects was modelled non-parametrically. The elasticity 
effect of the urban population on emissions is significantly positive and sizable. In addition, the effect distri-
bution shows a non-negligible share of observations with an elasticity higher than one. Urban population growth 
is a serious threat to climate change, as it seems to increase sharply CO2 emissions (although with an elasticity 
pace smaller than one). The elasticity effect of GDP is significantly negative, which implies that the scale of 
production, by triggering efficiency, can have a positive effect on emissions reduction. The results argue that 
agglomeration negative effects put in place by larger urban population can partly explain this finding. Overall, 
the study argues that urbanization growth and economic activities lead to GHG emissions, whereas the study also 
discusses novel implications and the role of agricultural land use apropos Sustainable Development Goals (SDGs). 
The empirical findings allow us to draw novel conclusions and guidelines in line with SDGs. The agricultural 
reforms might include irrigation and farming techniques such as spin farming, solar tube wells, tunnel farming, 
technology use agreements, plant double helix, etc.   

1. Introduction 

Climate change is a serious threat and challenge for the human race. 
The increasing temperature, environmental repercussions, land deteri-
oration, rainfall fluctuation, precipitations, ecological deficit, and 
greenhouse gas (GHG) emissions are serious challenges to the survival of 
economic and non-economic sectors. Environmental issues and rising 
pollution have become a serious threat to agriculture, industrialization, 
and food security. More specifically, the fluctuations in temperature, 
heatwaves, precipitation patterns, floods, and extreme weather jeopar-
dize agriculture productivity. Among all these, GHG emissions are 

important drivers of human-induced environmental issues. The agri-
culture sector contributes more than 10 to 15 percent of global GHG 
emissions, which includes emissions from enteric fermentation 
(methane, CH4), synthetic fertilizers (nitrous oxide, N2O), and tillage 
(carbon dioxide, CO2) (Tubiello et al., 2013; Jantke et al., 2020). Ac-
cording to emission pathways, there is a need to mitigate 48% of global 
agricultural CH4 emissions until 2030 relative to 2010 levels and nitrous 
emissions by 26%, to attain the global warming of 1.5 ◦C. In addition, 
Agriculture is one of the key sector sectors affected by climate change 
and global warming, and it also contributes to environmental exter-
nalities (UNFCCC, 2021). According to the Food and Agriculture 
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Organization (FAO) of the United Nations (UN), innovation and efficient 
technology in the agriculture sector are important to move toward 
limiting CO2 emissions and saving biodiversity (FAO, 2021). 

The fluxes of GHG emissions have increased over the past decades. 
For instance, only from 2005 to 2016 GHG emissions augmented from 
38,679 to 46,141 mt of CO2 equivalent (Si et al., 2021). A group of G-20 
countries accounting for approximately 75% of global GHG emissions, 
two-thirds of the world’s population, and 80% of global GDP, has a 
critical role in tackling climate change (World Resources Institute, 
2021). According to the Intergovernmental Panel on Climate Change 
(IPCC, 2021), each of the past four decades has been successively 
warmer than all the decades before it since 1850. During the first two 
decades of the 21st century (2001–2020), the global surface tempera-
ture was 0.99 (0.84–1.10) ◦C higher than that of 1850–1900. 

The Environmental Protection Agency (2018) suggests that the most 
significant kinds of GHG emissions comprise CO2, N2O, CH4, and water 
vapors. Several factors contribute to the degradation of the environment 
quality following the spread of CO2 emissions worldwide. The con-
sumption of coal, natural gas, and petroleum energies leads to an in-
crease in GHG emissions. Approximately 5% of all CO2 emissions from 
human activities flow from one country to another. Around 50% of 
carbon emissions are associated with trade commodities (steel, cement, 
and chemicals), and the rest is associated with finished and 
semi-finished products (clothing, motor vehicles, industrial equipment, 
and machinery). For many developed countries, embodied carbon im-
ports are significant. Developed countries are typically net importers of 
carbon emissions, while developing countries export embodied carbon 
emissions (Carbon Trust, 2011). 

Carlson et al. (2017) argued that agriculture is the main source of 
carbon dioxide emissions and global warming. Furthermore, agriculture 
and land use contribute to around 25% of direct and indirect GHG effects 
(CO2, CH4, and N2O) to global anthropogenic GHG. 

Nevertheless, some environmental issues (acid rain and ozone 
depletion) are caused by the high volume of nitrogen used in fertilizer 
applications in farmland and wasted (Adegbeye et al., 2020). Recently, 
more interest in the emissions of GHG derived from vegetable products 
(Zhang et al., 2017). The energy sector contributes around 75% of GHG 
emissions (IEA, 2021). The carbon dioxide emissions from the global 
energy sector rise to almost 38 gigatons (around 1.9%) between 2013 
and 2018. In 2020, the world energy demand registered the largest 
decrease since the Second World War, almost 4%, and around 5.8% in 
world energy-related CO2 emissions (REN21, 2021). 

Increasing fossil fuel demand is the major factor causing carbon di-
oxide emissions (Alola, 2019). In 2021, according to the 26th Confer-
ence of the Parties (COP26), the Intergovernmental Panel on Climate 
Change (IPCC), the temperature of the global surface had been warmed 
by 1.1 ◦C in comparison with the pre-industrial epoch. Reducing GHG 
emissions and achieving net-zero carbon dioxide emissions contribute to 
stabilizing the temperature of the global surface and limiting warming to 
1.5 ◦C (IEA, 2021). According to the United Nations environment pro-
gram (UNEP), the main goal of the Paris climate agreement is to limit 
temperature to less than 1.5 ◦C this century and in the next 8 coming 
years (2030). In the short term, to fill the emission hole and decrease the 
temperature, the reduction of GHG emissions (CH4) in different sectors 
(agriculture, waste, and fossil fuels) could mitigate climate change 
(UNEP, 2021). 

The policymakers and the administration management identify the 
greenhouse effects of agricultural output and elaborate policies to 
mitigate climate change. (He et al., 2021). Earlier research elaborates 
strategies and measures at region-specific scales, farmers, and crops to 
limit GHG emissions and mitigate climate change (Zarei et al., 2019). To 
keep global warming below 2 ◦C for the coming years 2050 and respect 
the limited level of GHG in fact of increasing demand for food and 
population (Shahzad et al., 2021). The world population is estimated to 
increase from around 8 billion to 8.5 billion in the coming years (2030) 
and 9.7 billion in 2050 (IEA, 2021). Food and Agriculture Systems 

Foresight Study (2020) indicated that the environment and agriculture 
had an opposite association on one side agriculture contributes to 
climate change and environmental damages and on the other side, 
agriculture is a victim and depends on environmental degradation (land, 
water, and genetic materials). 

Renewable energy, innovations, and new technologies are the main 
solutions to resolve environmental issues and mitigate climate change 
by limiting anthropogenic global warming (Ghazouani et al., 2020). 
Investment in energy efficiency and renewable energy is crucial to 
limiting global warming and reducing carbon dioxide emissions. Both 
renewable energy and energy efficiency contribute to limiting GHG 
emissions. To realize the net-zero emission pledges, 190 countries noted 
renewable energy in their Nationally Determined Contributions (NDCs) 
under the agreement of Paris, whereas 144 countries noted energy ef-
ficiency and 142 nations mentioned both (REN21, 2021). The world 
bank group is working now on climate-smart agriculture. In the first 
climate change action plan (2016–2020) and the same for the coming 
update (2021–2025), nations committed with the world bank to realize 
reducing emissions, increasing productivity, and enhancing resilience 
by delivering climate-smart agriculture. The agriculture sector is 
financed by 52% of the World Bank’s global financing and mitigating 
climate change and achieving climate change targets in 2020. According 
to the UN, 8.9% of the world population is hungry and this figure could 
increase to 840 million by 2030. The food demand increase with the 
increase of the world population and the need to produce more food 
becomes difficult. The world will need to feed 9 billion people by 2050 
(almost 70% more food needed), and the food security challenge be-
comes hard. The negative effects of climate change and GHG influence 
agriculture’s challenges to achieve its food needs. 

The sustainable investment will keep productivity and maintain the 
future food demand. On the other hand, agriculture contributes to 
climate change (19–29% of global GHG), and the absence of measures 
will increase carbon dioxide emissions. The environmental situation 
becomes a challenge and climate change mitigation becomes a crucial 
help and need (World Resources Institute, 2021). The prime objective of 
the current study is to explore the impacts of agriculture and urbani-
zation growth on greenhouse emissions. To this end, authors employ the 
data of different income levels of countries, which allows drawing a few 
novel implications apropos Sustainable Development Goals and agri-
culture sustainability. An important contribution of our study is that we 
used the composite measure of arable, permanent pastures, and crop-
land for the agriculture sector’s contribution to GHG emissions. The 
conclusions of the current study reveal the non-parametric and lagged 
impacts of the agriculture sector and urbanization growth on GHG 
emissions. The findings of this study are in line with SDG-8: Decent Work 
and Economic Growth and SDG-12: Responsible Consumption and 
Production. Finally, the findings and conclusions will help policymakers 
design effective urbanization and agricultural land usage policies for 
sustainable and cleaner growth. Meanwhile, the empirical results can 
provide a reference for developed, emerging, and underdeveloped 
countries aiming to mitigate GHG emissions. 

Given the highlighted research gaps, this paper contributes to the 
ongoing debate by pioneering the simultaneous assessment of the 
interaction among urbanization, economic growth, land use, and GHG 
emissions from a global perspective. In fact, our research integrates 50 
countries with different levels of economic development covering low- 
income, lower-middle, upper-middle, and high-income economies. We 
can show that aside from understanding the nexus, we further explore 
the topic more deeply by deciphering the 28-year inventory of GHG 
occurrences and simultaneously assessing the interaction between GHG 
emission and the key drivers in countries stratified based on socioeco-
nomic developments. Contrary to previous literature, our contributions 
include: first, a sample of 10 low-income, 18 lower-middle-income, 12 
upper-middle-income, and 10 high-income economies over the period 
from 1990 to 2019, which is the level of sample diversity not explored 
intensively by the literature in the same area. This large and diverse 
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sample can provide a new perspective on the impact of forests, agri-
culture, composite variable, population, and economic growth on total 
GHG emissions at a global scale within multiple socioeconomic de-
velopments. Second, this study highlights various drivers of GHG 
emissions under broader categories such as population, economic 
development, forest density, and agricultural practices. Third, we eval-
uate the nexus using a novel estimation technique by employing Lasso 
regression and partially non-parametric regression in a panel data 
context, a technique that, to the best of our knowledge, has not been 
implemented on this topic. Lasso regression is used to identify the most 
predictive lag structure for the covariates included in the model. Once 
the best linear specification to predict the dependent variable is found, 
the partially nonparametric regression is applied to the identified 
specification. Through this procedure, we can identify the contribution 
of each driver to the total GHG emissions by partialling out the effect of 
other drivers. GHG emissions depend on a complex interplay among 
social, physical, and chemical factors, whose dynamic cannot be entirely 
captured by traditional linear modelling. The joint use of a Machine 
Learning (ML) approach (Lasso) and of a partially nonparametric (or 
semi-parametric) approach provides ground for a more accurate esti-
mation of the relationship between GHG emissions and their drivers. In 
different settings, previous papers used nonparametric methods to 
model the relationship between GHG emissions and their drivers (Azo-
mahou et al., 2006; Magazzino et al., 2021; Wang and Feng, 2021; 
Krüger and Tarach, 2022). However, this is the first to use a semi-
parametric regression jointly with an ML optimal specification method. 

The rest of the study paper is organized as follows: Section 2 reports 
the literature reviews together with research gaps. Section 3 provides 
data description and methodology. Section 4 presents and discusses the 
empirical results. Section 5 concludes the paper and puts forward policy 
implications based on the previous discussion. 

2. Literature review and research gap 

It is extensively important to measure the dynamic relationship be-
tween the advancement of agricultural activities and the propagation of 
GHG emissions. A few recent empirical studies have investigated the 
relationship between environmental indicators, urbanization growth, 
and agriculture using various techniques of estimation for different 
countries or panel samples (Wang and Su, 2019; Rehman et al., 2020; 
Sufyanullah et al., 2022). Studying the data for Pakistan, Sufyanullah 
et al. (2022) documented the impacts of urbanization and energy use on 
carbon emissions. The Auto-Regressive Distributed Lags (ARDL) bounds 
testing approach claimed a positive association between urbanization 
growth and carbon emissions. Rehman et al. (2020) discussed the rela-
tionship of CH4 emissions, N2O emissions, CO2 emissions, and GHG 
emissions with the agricultural GDP for the case of China using the ARDL 
bounds testing approach, fully modified least-squares method, and ca-
nonical cointegrating regression analysis. The outcomes from the anal-
ysis revealed that both CO2 emissions and GHG emissions have a positive 
influence on the agricultural gross domestic product. The findings 
argued that agricultural CH4 emissions and agricultural N2O emissions 
negatively influence the agricultural gross domestic product. They 
conclude that China is a huge emitter of CO2 emissions and GHG 
emissions. The study recommends that the Chinese government should 
make the required changes to reduce emissions. 

More recently, Niu et al. (2020) studied the global agriculture trade 
data and GHG emissions for 151 countries. The findings of 
quasi-input-output analysis suggested that international trade of agri-
cultural products has different impacts on the pollution level of each 
country. For instance, the findings mentioned that Australia, the USA, 
Brazil, and Argentina are the largest exporter of agriculture products 
and greenhouse gas emissions. 

In the same line, Wang and Su (2019) report that urbanization and 
industrial growth are positively linked with the carbon emissions of 
China. De Cara et al. (2005) used a supply-oriented, agricultural-type 

linear programming model of European agriculture, the reference levels 
of CH4 and N2O emissions are assessed at the regional level in the EU-15. 
The authors attempted to assess the potential reduction and the optimal 
combination of emissions sources for a range of CO2 equivalent prices. 
Further, the authors show that spatial variability of the decrease 
attained at a given carbon price is significant, indicating that the het-
erogeneity of abatement costs is a fundamental characteristic in the 
design of a mitigation policy. 

In the same line, Darwin (2004) examined whether climate pro-
jections generate uncertainty about the economic impacts of agriculture. 
Also, the author investigates to what extent the agricultural economic 
impacts of GHG emissions depend on the economic conditions at the 
time of the impacts. The results mentioned that the uncertainty due to 
varying climate projections is quite large for most of the economic ef-
fects assessed in the analysis. Also, the outcomes mentioned that, at the 
moment of the impact, the economic conditions have an influence on the 
direction and the magnitude as well as confidence in the economic ef-
fects of identical projections of GHG impacts. Global agricultural pro-
duction is considered the most consistent economic variable. Increases 
in average global temperature lead to a decline in global agricultural 
production on average, under the economic conditions of 1990 and 
improved, and in both cases, confidence in varying climate projections is 
medium or higher. The author concludes that agricultural production 
can be a fairly robust indicator of the potential impacts of GHG 
emissions. 

In one of earlier works, Muyungi and Omujuni (1995) attempt to 
identify and quantify the anthropogenic sources and sinks of GHG 
emissions from forestry, land-use change, and agriculture in Tanzania. 
The authors revealed that, according to the 1990 inventory, CH4 and 
CO2 are the main gases emitted in the land-use sector. Also, they 
deliberate that the main source of CH4 was the enteric fermentation in 
animal production systems. Although deforestation results in GHG 
emissions, Tanzania’s managed forests are an important sink of CO2. Si 
et al. (2021) examine the short and long-run causal effects of agriculture, 
forestry, and land use on GHG emissions for the case of China using the 
Vector Error Correction Model (VECM). The outcomes of the empirical 
study suggest the existence of long-run cointegration among the vari-
ables. However, in the short-run, only land use significantly has a strong 
causality with GHG emissions in China. The findings recommend that 
Chinese policymakers should improve the activities related to agricul-
ture and land use. 

Some other empirical studies have considered that energy con-
sumption (including renewable energies) influences agricultural activ-
ities through some land use forms. More recently, Koondhar et al. 
(2021a) investigated the relationships between bioenergy consumption, 
agricultural bio-economic growth, and CO2 emissions for the case of 
China using ARDL bounds and novel Dynamic Auto-Regressive Distrib-
uted Lags (DYNARDL) models. The outcomes from the empirical 
modeling show that all variables are cointegrated using the ARDL 
bounds test. Also, an increase in the consumption of bioenergy leads to 
an increase in agricultural bio-economic growth in the short- and 
long-run. According to the DYNARDL model, the outcomes show that a 
10% positive shock from the consumption of bioenergy will increase the 
growth of agricultural bio-economic, while a 10% negative shock in 
bioenergy consumption will decrease the growth of agriculture. More-
over, the study suggests that a negative shock from fossil fuels is able to 
increase agricultural bio-economic growth. However, a positive shock 
from fossil fuels will decrease the growth of agriculture. The authors 
recommend that to achieve carbon neutrality, it would be better to 
substitute fossil fuel with sources of bioenergy or renewable energy 
consumption. Similarly, Koondhar et al. (2021b) investigate the asym-
metric causality between agricultural carbon emissions, energy con-
sumption, fertilizer consumption, and cereal food production in the case 
of Pakistan using the Non-linear ARDL (NARDL) and linear and 
non-linear Granger causality tests. The outcomes from linear Granger 
causality suggest unidirectional causality running from energy 
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consumption and fertilizer to cereal food production. However, the 
non-linear Granger causality suggests a unidirectional causality from 
cereal food production to agricultural carbon emissions and energy 
consumption. Also, the authors revealed unidirectional causality fertil-
izer consumption to cereal food production. The results from the NARDL 
approach show that changes in agricultural carbon emission, energy 
consumption, and fertilizer lead to fluctuations in cereal food produc-
tion. The authors recommend that Pakistan farms should switch from 
chemical fertilizer, non-renewable energies to organic fertilizer, and 
renewable energy sources to mitigate emissions levels and increase the 
production of cereal food. Magazzino (2023) examined the relationship 
among ecological footprint, electricity consumption, and GDP in China 
using annual data ranging from 1960 to 2019. However, factors like 
trade openness, urbanization, and life expectancy might increase EF as 
ecological distortions are mainly human-induced. Quantile Regressions 
(QR) estimates indicate that electricity consumption and real GDP in-
crease environmental degradation, while trade and urbanization reduce 
ecological footprint, allowing for a higher environmental quality. On the 
other hand, the spectral Granger-causality tests reveal that only urban-
ization and life expectancy affect environmental degradation over the 
whole frequency domain. 

Ozturk (2017) discussed the dynamic relationship between agricul-
tural sustainability and food-energy-water poverty for a panel of 
Sub-Saharan African (SSA) countries using pooled least squares regres-
sion, pooled fixed effects, and pooled random-effects regression tech-
niques. The results of the empirical study show that the country-specific 
shocks influenced the model of food-energy-water poverty. Also, the 
author shows that agricultural value-added, cereal yields and forest area 
decrease the food-energy-water poverty relationship. This outcome 
leads to higher economic growth and price levels at the environmental 
quality cost. Few recent studies have considered the role that renewable 
energies and agricultural activities play in mitigating pollution levels. 
Turkey is one of the most important countries in agriculture production, 
despite the share of service and industry observed in constant rise. 
Adedoyin et al. (2020) explored the relationship among agro-economic 
performance, real GDP, total natural rent, urbanization, and environ-
mental degradation in a carbon function using a panel dataset for the 
period 1980–2014 for selected SSA countries. Empirical findings assert 
that agricultural value-added reduces emissions while urbanization and 
natural resource rent both increases CO2 emissions in the long-run. 
Bayrakcı and Koçar (2012) investigated the use of renewable energies 
(such as solar energy, biomass energy, wind energy, geothermal energy, 
and hydropower) in agricultural activities in Turkey. The authors 
recommend some proposals like substituting renewable energy instead 
of fossil fuels. Kara et al. (2022) examined the carbon emission effects of 
the categories of agricultural land utilization for Turkey over the period 
1988–2019. By employing the ARDL approach, the study finds that the 
use of agricultural land for arable farming and permanent plantation 
helps to reduce carbon emissions, especially in the long-run, while the 
impact of meadows is also desirable only in the short-run. Bas et al. 
(2021) inspected the environmental effects of the contributions of 
agriculture value-added, merchandize value-added, export value-added, 
and share value-added in Turkey over the period 1991–2019. By 
employing a combination of econometric techniques, the result revealed 
that agriculture value-added and export value-added mitigate environ-
mental hazards, while a 1% increase in total energy utilization, 
merchandize value-added, and share value-added induce carbon emis-
sion by about 0.6%, 0.02%, and 0.001%. Ben Jebli and Ben Youssef 
(2017) examined the role of renewable energy consumption and agri-
culture in mitigating CO2 emissions for a panel of North African coun-
tries using panel cointegration techniques and Granger causality tests 
spanning the period 1980–2011. Interestingly, the outcomes revealed a 
bidirectional short-run causality between CO2 emissions and Agriculture 
Value-Added (AVA), one-way causality from agriculture to economic 
growth and from renewable energy consumption to AVA. Moreover, the 
authors show a bidirectional long-run causality between emissions of 

CO2 and agriculture and unidirectional causality from renewable energy 
consumption to emissions. From Fully Modified Ordinary Least Squares 
(FMOLS) and DOLS (Dynamic Ordinary Least Squares) approaches, 
long-run estimates show AVA mitigates emissions in the long run. For 
the case of Brazil, Ben Jebli and Ben Youssef (2019) have investigated 
the dynamic association between Combustible Renewables and Waste 
(CRW) consumption, agriculture, CO2 emissions, and economic growth 
using the ARDL bounds approach and Granger causality test. The results 
mentioned that all variables are integrated of order one and the long-run 
association between the variables has between established. Bidirectional 
long-run causalities between all the variables are proven. Long-run es-
timates show that both consumptions of CRW and agriculture contribute 
to mitigating CO2 emissions. Magazzino and Santeramo (2023) analyzed 
the link among financial development, productivity and growth on a 
sample of 130 economies over the period 1991–2019. The results show 
that higher levels of output stimulate the economic development in the 
agricultural sector, mainly via the productivity channel and, in the most 
developed economies, also through access to credit. Differently, in 
developing and least developed economies, the role of access to credit is 
marginal. 

From the above discussion and comprehensive analysis of literature, 
the authors observe a strong window of research gap regarding the 
impacts of the agriculture sector on greenhouse gas emissions. Hence, 
the investigation into the role of agriculture for environmental exter-
nalities is a logical and sound mind. More specifically, the current study 
uncovers the impacts of three composite agriculture measures: arable, 
permanent pastures, and cropland for agriculture. This aspect of 
empirical investigation has been overlooked in the existing literature. 
Hence, the findings on-hand study are more in-depth and report novel 
conclusions and fruitful policies. Further, the findings of this study allow 
us to draw some novel implications regarding SDG-8: Decent Work and 
Economic Growth and SDG-12: Responsible Consumption and 
Production. 

3. Data and methodology 

3.1. Data 

The global sample includes 50 countries across all development 
levels throughout 1990–2019. The 50 countries selected are based on 
data availability and comprise 10 low-income economies, 18 lower 
middle-income economies, 12 upper middle-income economies, and 10 
high-income economies. All the variables utilized in the model are 
derived from the World Development Indicators (WDI) database from 
World Bank (WB), freely available on the internet. The total GHG 
emissions represent the dependent variable, whereas the independent 
variables in each model include urban population, economic growth, 
and land-use intensity. Contrary to previous attempts, we use a 
comprehensive indicator for assessing climate change, GHG emissions, 
which comprises CO2, CH4, N2O, and fluorinated gases. EM is the total 
GHG emissions (in kt of CO2 equivalent); GDP is the real Gross Domestic 
Product (in constant LCU); PO is the urban population (% as country’s 
total population); DEN is the composite measures of arable, permanent 
pastures, and cropland. Based on methodologies and guidelines of the 
indicators of sustainable development, land-use intensity, a composite 
variable is calculated as ((Agric*weight of agric)+(Forest*weight of 
forest))/2, where the weight of agric is defined as agric divided by the 
sum of agric and forest, and weight of forest is defined as forest divided 
by sum of agric and forest. All the variables in the model are presented in 
terms of the natural logarithm. 

All variables are constructed in natural logarithm to reduce data’s 
variation. Descriptive statistics of the variables are given in Table A in 
the Appendix. Figure A contains the scatterplot matrices of the selected 
series. 
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3.2. Methodology 

In this study, we jointly use optimal model specification through the 
Lasso method, and a partially non-parametric regression for GHG 
emissions. The use of a model embedded in the larger family of 
nonparametric regression models has several advantages over tradi-
tional parametric regression models (Cerulli, 2015). Overall, nonpara-
metric regression methods are a powerful tool for analyzing complex 
data relationships as the ones considered in this study and can provide 
more flexible and robust models than traditional parametric regression 
methods. We estimate a partially non-parametric autoregressive equa-
tion in a panel data context. The underlying regression for N 
cross-sectional units observed over T periods is modelled as follow: 

yi,t = αi + λt +m
(
zi,t

)
+

∑K

k=1
γkyi,t− k +

∑K

k=1
δkzi,t− k +

∑K

k=1
β1kx1i,t− k

+
∑K

k=1
β2kx2i,t− k+εi,t (1)  

where i = 1,…,N and t = 1,…,T; αi captures the country effect; λt the 
time effect; γk the autoregressive endogenous parameters; β1k and β2k the 
exogenous autoregressive parameters of the variables x1 and x2 
respectively; δk the exogenous autoregressive parameters of the variable 
z; m(zi,t) is the function linking yi,t to zi,t in an unknown way; and εi,t a 
pure error shock with zero mean and finite variance. The main goal of 
our analysis is to estimate m(•) conditional on the country and time 
fixed effects and the auto-regressive components of the dependent and 
independent variables. We also assume that K = 3, to account for at most 
a three-year autoregressive process. 

In equation (1), the first problem is to identify the structure of the 
autoregressive components. Indeed, we do not want to leave in the 
model all the K = 3 components, as only a subset of them should matter 
for predicting the outcome. Thus, we run a Lasso regression of equation 
(1) by dropping out m(zi,t). The Lasso is a machine learning feature- 
selector linear method allowing us to select the sole autoregressive 
components that have high predictive power on our outcome excluding 
all those with poor predictive power. This makes us able to obtain a 
more parsimonious model producing an optimal predicting balance 
between prediction bias and prediction variance. There is predictive 
superiority of Lasso compared to Ordinary Least Squares (OLS) as the 
Lasso, contrary to OLS, does not suffer from overfitting (i.e., the ten-
dency of the in-sample prediction error to go to zero whenever model’s 
complexity increases). This has been rigorously showed by the pio-
neering paper of Tibshirani (1996). Lasso does not suffer from over-
fitting as it entails the minimization of a penalized version of the 
traditional Residual Sum of Squares (RSS), which allows to penalize 
models with a too abundant set of specified predictors. 

By stacking the set of Lasso selected regressors in the column vector 
wi,t also containing the fixed effects, equation (1) becomes: 

yi,t =m
(
zi,t

)
+ πwi,t +εi,t (2)  

where π collects the parameters of the predictors selected by the Lasso. 
Equation (2) is a partially linear (or partially non-parametric) regression 
that can be consistently estimated by the so-called “double partalling- 
out” method provided in Robinson (1986). This procedure allows for 
estimating non-parametrically the unknown function m(zi,t) by obtain-
ing at the same time a root-N consistent estimate of π. The “double 
partalling-out” procedure goes as follows: 

Step 1. Take the expectation of equation (2) conditional on zi,t, thus 
obtaining: 

E(yi,t
⃒
⃒zi,t

)
=m

(
zi,t
)
+ πE(wi,t

⃒
⃒zi,t

)
(3)   

Step 2. Subtract equation (3) to equation (1) obtaining: 
[
yi,t − E

(
yi,t|zi,t

)]
= π[wi,t − E(wi,t

⃒
⃒
⃒zi,t

)]
+εi,t (4)   

Step 3. Estimate non-parametrically (for instance, by a kernel poly-

nomial regression) the two conditional expectations E(yi,t

⃒
⃒
⃒zi,t) and 

E(wi,t
⃒
⃒zi,t), compute the two residuals r̂y,it and r̂w,it, and estimate 

consistently π by a Least Squares regression of r̂y,it on r̂w,it. 

Step 4. Once we obtain π̂ by the previous step, we can use equation (2) 
and obtain: 

Yi,t =m
(
zi,t
)
+ εi,t (5)  

where Yi,t = yi,t − π̂wi,t is the partialled-out yi,t. In equation (5), we can 
estimate m(zi,t) by any possible non-parametric method. In this appli-
cation, we use a univariate kernel local linear approach as it has good 
asymptotic properties and reasonable computational costs. 

Once we have an estimate of m(zi,t), we can plot it as a function of zi,t. 
Moreover, we can compute the partial effect of zi,t on Yi,t, that is: 

∂E(Yi,t|zi,t

)

∂zi,t
=m′( zi,t

)
(6) 

The expectation of this function over the support of zi,t will provide 
us with the Average Partial Effect (APE) of zi,t on Yi,t: 

APEz→Y =
∂E(Yi,t|zi,t

)

∂zi,t
=Ez

[
m
(
zi,t
)]

(7) 

This is a singleton number synthesizing the overall effect of zi,t on Yi,t. 
Standard Errors and P-Values are obtained via bootstrap. 

4. Empirical results 

By carrying out three times the previous procedure, we estimate 
m(zi,t) and m′(zi,t) assuming zi,t to be equal to the log of PO, GDP, and 
DEN. In this way, we can identify the contribution of each driver zi,t to 
the EM, by partialling out the effect of the other drivers. The log trans-
formation allows to account for data heteroskedasticity, and provides 
parameters in the form of elasticities. We present our results by single 
EM driver. 

4.1. The effect of urban population on total greenhouse gas emissions 

We start by estimating equation (1) via a Lasso regression to identify 
the most predictive lag structure for the covariates included in the 
model. Results are illustrated in Table 1. In this case, we use a 10-fold 
cross-validation over 88 variables and 1261 observations. The optimal 

Table 1 
Lasso regression results: effect of PO on EM.  

ID Description lambda No. of 
non-zero 
coeff. 

Out-of- 
sample R2 

CV mean 
prediction 
error 

1 first lambda 0.1961 1 0.5421 0.8938 
55 lambda 

before 
0.0013 81 0.6915 0.6021 

*56 selected 
lambda 

0.0012 83 0.6915 0.6021 

57 lambda after 0.0011 84 0.6915 0.6022 
61 last lambda 0.0007 86 0.6910 0.6031 
No. of 

CV 
folds 

10 Obs. 1261 No. of 
covariates 

88 

Notes: * lambda by Cross-validation. Selection: Cross-validation. 
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tuning of the model is obtained at a lambda of 0.0012 at which 83 out of 
88 predictors are selected, mostly dummy variables related to country 
and year fixed effects. 

Once we have found the best linear specification able to predict the 
log of EM, we run equation (2) over this specification to then estimate m 
(z) and m’(x). Table 2 sets out the results of the linear component of 
equation (2), where it is evident the significant effect of the first two lags 
of the log of EM, with negative size in both cases smaller than one 
(remember that coefficients are elasticities). The adjusted R-squared is 
0.37 which is of acceptable size. 

Table 3 shows the results of the non-parametric estimation of m(z) 
and m’(z), the core of our study. This aims to measure non- 
parametrically the effect of the log of PO on the log of EM. We imme-
diately see that the effect is highly significant with a positive elasticity of 
0.89 meaning that, when PO increases by 10%, EM increases by 8.9%. It 
is a sizable effect, but lower than one, thus signaling low decreasing 
returns of EM to PO. The R-squared is rather high as well, around 77%. 

Fig. 1 plots the m(z) function. As expected, it has a steep curvature 
pretty close to the 45-degree line of the Cartesian plan. It confirms an 
elasticity very close to one. Also, the observations’ cloud is poorly 
scattered, thus making this result robust as signaled by the high R- 
squared commented above. 

An advantage of running a semi-parametric model is the opportunity 
to analyze and visualize the distribution of the effect, i.e. the empirical 
distribution of m’(z). This distribution is visible in Fig. 2, where the red 
vertical line identifies an elasticity equal to one. We see that only a few 
observations, less than 10%, show an elasticity larger than one, thus 
generating a reinforcing effect on EM. The large majority presents 
elasticities smaller than one, in accordance with the overall average 
effect of Table 3. 

Fig. 3, finally, shows the distribution of the prediction of m(z). This 
distribution is highly symmetric around the mean that, as shown in 
Tables 3 and is equal to 12.49. As also the range of variation is not too 
large, we conclude that the predictions of EM to different levels of PO is 
rather homogenous, although with some not negligible differences. 

4.2. The effect of gross domestic product on total greenhouse gas 
emissions 

Also in this case we start by estimating equation (1) via a Lasso 
regression to identify the most predictive lag structure for the covariates 
included in the model. Results are illustrated in Table 4, where we see 
that the optimal tuning of the model is obtained at a lambda of 0.0010 
where 83 out of 88 predictors are selected. 

With the best linear specification computed, we can run equation (2) 
over this specification for then estimating m(z) and m’(x). Table 5 sets 
out the results of the estimation of the linear component of equation (2). 
Compared to the previous case (the effect of PO on EM), the current 
equation is richer in terms of lags components retained by the Lasso. 
Indeed, it is evident the significant effect of the first two lags of the log of 
EM, with negative elasticity sizes both smaller than one. The adjusted R- 
squared is 0.37 which is an acceptable size. Besides the significance of 

lag 1 and 2 of the auto-correlated component of the log of EM, other 
variables and lags are significant: the log of PO with an expected positive 
sign, as well as the lags of this variable; the first lag of the log of GDP also 
shows a negative and significant coefficient. The adjusted R-squared is 
around 64%, a rather high value. 

Table 6 shows the results of the non-parametric estimation of m(z) 
and m’(z), where z is the log of GDP. We immediately see that the effect 
is in this case still highly significant, but with a low and negative average 
elasticity of − 0.12: it means that when the GDP increases by 10%, EM 
decreases by 1.2%, a weak effect but at least negative. The R-squared is 

Table 2 
Partially non-parametric regression results: Effect of PO on EM.   

Coefficient [95% Confidence Interval] 

lnEMt-1 − 0.0475** [0.0231] − 0.0929 − 0.0022 
lnEMt-2 − 0.0648** [0.0264] − 0.1166 − 0.0129 
lnEMt-3 0.0006 [0.0237] − 0.0460 0.0471 
lnGDPt-1 − 0.0053 [0.0271] − 0.0586 0.0479 
lnGDPt-2 0.0046 [0.0316] − 0.0574 0.0667 
lnPOt-2 0.0001 [0.0393] − 0.0770 0.0772 
Obs. 1261 Adj. R2 0.3781 
R2 0.4008 Root MSE 0.7151 

Notes: country and time coefficients are not reported for brevity. [.] denotes 
Standard Error. ** represents 5% significance level. 

Table 3 
Non-parametric estimation of m(z).   

Observed Estimate Percentile [95% Confidence Interval] 

Mean Y 12.4951*** [0.0370] 12.4310 12.5709 
Effect lnPO 0.8978*** [0.0178] 0.8621 0.9304 
Obs. 1261 E (Kernel obs.) 47 
R2 0.7746 Mean Effect 
Bandwidth lnPO 0.0373 1.4157 

Notes: *** denotes statistical significance at a 1% level. [.] is the Bootstrap 
Standard Error. Parameter estimate using Local-linear regression. Kernel: Epa-
nechnikov. Bandwidth: Cross-validation. Effect estimates are averages of 
derivatives. 

Fig. 1. Pattern of the kernel local linear estimation of m(z). 
Notes: authors’ elaborations in STATA. 

Fig. 2. Distribution of the predicted partial effect m’(z). 
Notes: authors’ elaborations in STATA. 
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rather low and around 15%, signaling a large dispersion around the 
relationship between EM and GDP. 

Fig. 4 plots the m(z) function where z is the log of GDP. As expected, 
this curve is rather flat with a slight decreasing pattern. This pattern 
confirms a low and negative elasticity of EM to GDP. Also, the obser-
vations’ cloud is now a bit more scattered, thus justifying a lower R- 

squared as seen above. 
The distribution of the effect (i.e., the distribution of m’(z)) is visible 

in Fig. 5, where we immediately see that the elasticities are negative 
over all the observations. This makes our results on the impact of GDP on 
EM quite reliable, as the negative sign of the effect belongs to any 
observation. Clearly, these negative elasticities are rather uniformly 
low, ranging from − 0.13 to − 0.11. We conclude that there is a quite low 
but homogenous response of EM to GDP. 

Fig. 6, finally, shows the distribution of the predictions of m(z). This 
distribution is highly right-side asymmetric around the mean (still equal 

Fig. 3. Distribution of the predicted average m(z). 
Notes: authors’ elaborations in STATA. 

Table 4 
Lasso regression results.  

ID Description lambda No. of 
non-zero 
coef. 

Out-of- 
sample R2 

CV mean 
prediction 
error 

1 first lambda 0.7308 1 0.1949 1.5714 
70 lambda 

before 
0.0012 80 0.6911 0.6029 

*71 selected 
lambda 

0.0011 83 0.6912 0.6027 

72 lambda after 0.0010 83 0.6912 0.6027 
78 last lambda 0.0006 86 0.6907 0.6037 
No. of 

CV 
folds 

10 Obs. 1261 No. of 
covariates 

88 

Notes: * lambda by Cross-validation. Selection: Cross-validation. 

Table 5 
Partially non-parametric regression results.  

lnEM Coefficient [95% Confidence Interval] 

lnEMt-1 − 0.0610** [0.0286] − 0.1171 − 0.0048 
lnEMt-2 − 0.0726** [0.0290] − 0.1296 − 0.0156 
lnEMt-3 0.0334 [0.0289] − 0.0234 0.0902 
lnPO 0.7489*** [0.1856] 0.3847 1.1131 
lnDEN 0.1193 [0.1733] − 0.2207 0.4593 
lnPOt-1 − 0.2842* [0.1628] − 0.6035 0.0352 
lnPOt-2 0.7069*** [0.1666] 0.3799 1.0339 
lnPOt-3 0.3311** [0.1517] 0.0336 0.6287 
lnDENt-1 − 0.1874 [0.1720] − 0.5248 0.1500 
lnDENt-2 − 0.2216 [0.1758] − 0.5665 0.1233 
lnDENt-3 0.2905 [0.1933] − 0.0888 0.6698 
lnGDPt-1 − 0.1287** [0.0574] − 0.2412 − 0.0161 
lnGDPt-2 − 0.0438 [0.0586] − 0.1589 0.0712 
lnGDPt-3 0.0581 [0.0485] − 0.0371 0.1533 
Obs. 1261 Adj. R2 0.6481 
R2 0.6721 Root MSE 0.7315 

Notes: Country and time coefficients are not reported for brevity. [.] denotes the 
Standard Error. *, **, *** represent 10, 5, and 1% significance level, 
respectively. 

Table 6 
Non-parametric estimation of m(z).  

R Observed Estimate Percentile [95% Confidence Interval] 

Mean R 12.4915*** [0.0199] 12.4488 12.5220 
Effect lnGDP − 0.1262*** [0.0115] − 0.1471 − 0.1048 
Obs 1261 E (Kernel obs) 175 
R2 0.1585 Mean Effect 
Bandwidth lnGDP 0.1390 5.0785 

Notes: *** denotes statistical significance at a 1% level. [.] is the Bootstrap 
Standard Error. Parameter estimate using Local-linear regression. Kernel: Epa-
nechnikov; Bandwidth: Cross-validation. Effect estimates are averages of 
derivatives. 

Fig. 4. Pattern of the kernel local linear estimation of m(z). 
Notes: authors’ elaborations in STATA. 

Fig. 5. Distribution of the predicted partial effects m’(z). 
Notes: authors’ elaborations in STATA. 
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to 12.49, of course). This means that higher effects are likelier than 
smaller once. We can also conclude that the predictions of EM to 
different levels of GDP is rather heterogeneous. 

4.3. The effect of composite measures of arable, permanent pastures, and 
cropland on total greenhouse gas emissions 

For the case of the non-parametric relationship between DEN and 
EM, Table 7 sets out the estimation of equation (1) by Lasso. The optimal 
tuning of the model is obtained at a lambda of 0.0023 where 87 out of 88 
predictors are selected. 

As done for the other two predictors (PO and GDP), also for DEN we 
run equation (2) over the best specification to then estimate m(z) and 
m’(x). Table 8 sets out the results of the linear component of equation 
(2), where some lags are significant, and in particular the first and 
second lag of the log of EM with both negative sign; the contempora-
neous and second lag of the log of PO with both positive sign, the first lag 
of the log of GDP, and the second lag of the log of DEN, with both 
negative sign. The adjusted R-squared is 0.68 which is of acceptable 
magnitude. 

Table 9 shows the results of the non-parametric estimation of m(z) 
and m’(z), where z is the log of DEN. We see that the effect is significant 
with a positive but small elasticity of 0.19 meaning that, when DEN 
increases of 10%, EM increases of 1.9%, a small effect similar to the one 
found for the GDP. The adjusted R-squared is rather low as well, around 
16%. 

Fig. 7 plots the m(z) function and confirms a poor elasticity with high 
nonlinearity. Moreover, the observations’ cloud is poorly scattered, thus 
making this result fairly robust even although characterized by a low 

adjusted R-squared. 
The empirical distribution of m’(z), the effect of DEN on EM is visible 

in Fig. 8. We see that all the observations show a small but positive 
elasticity. This confirms that, although small, the positive effect is ho-
mogenous around the elasticity mean of 0.19. 

Fig. 9, finally, shows the distribution of the predicted average of m 
(z). It is rather skewed and right-side asymmetric. It means that larger 
positive elasticities are likelier. The range of variation is, however, 
rather small ranging only from 11.5 to at most 13. 

Notes: authors’ elaborations in STATA. 

Fig. 6. Distribution of the predicted average effects m(z). Notes: authors’ 
elaborations in STATA. 

Table 7 
Lasso regression results.  

ID Description lambda No. of 
non-zero 
coef. 

Out-of- 
sample R2 

CV mean 
prediction 
error 

1 first lambda 0.9075 1 0.0454 1.8633 
89 lambda 

before 
0.0003 86 0.6926 0.5999 

*90 selected 
lambda 

0.0002 87 0.6926 0.5999 

91 lambda after 0.0002 87 0.6926 0.5999 
100 last lambda 0.0001 86 0.6925 0.6002 
No. of 

CV 
folds 

10 Obs. 1261 No. of 
covariates 

88 

Notes: * lambda by Cross-validation. Selection: Cross-validation. 

Table 8 
Partially non-parametric regression results.   

Coefficient [95% Confidence Interval] 

lnEMt-1 − 0.0647** [0.0274] − 0.1185 − 0.0109 
lnEMt-2 − 0.0958*** [0.0292] − 0.1530 − 0.0386 
lnEMt-3 0.0292 [0.0290] − 0.0276 0.0860 
lnPO 1.4494*** [0.1330] 1.1886 1.7103 
lnGDP − 0.0264 [0.0563] − 0.1369 0.0840 
lnPOt-1 − 0.1631 [0.1449] − 0.4475 0.1212 
lnPOt-2 0.4754*** [0.1507] 0.1797 0.7711 
lnPOt-3 0.1638 [0.1307] − 0.0926 0.4201 
lnGDPt-1 − 0.0878* [0.0458] − 0.1777 0.0021 
lnGDPt-2 − 0.0429 [0.0588] − 0.1582 0.0725 
lnGDPt-3 0.0528 [0.0486] − 0.0426 0.1483 
lnDENt-1 − 0.2201 [0.1677] − 0.5491 0.1088 
lnDENt-2 − 0.3672*** [0.1428] − 0.6474 − 0.0870 
lnDENt-3 0.3218* [0.1688] − 0.0094 0.6529 
Obs 1261 Adj R2 0.6876 
R2 0.7087 Root MSE 0.7342 

Notes: Country and time coefficients are not reported for brevity. [.] denotes 
Standard Error. *, **, *** represent 10, 5, and 1% significance level, 
respectively. 

Table 9 
Non-parametric estimation of m(z).   

Observed Estimate Percentile [95% Confidence Interval] 

Mean R 12.4934*** [0.0204] 12.4500 12.5306 
Effect lnDEN 0.1972*** [0.0362] 0.1018 0.2725 
Obs. 1261 E (Kernel obs) 137 
R2 0.1656 Mean Effect 
Bandwidth lnDEN 0.1087 0.9967 

Notes: *** denotes statistical significance at a 1% level. [.] is the Bootstrap 
Standard Error. Parameter estimate using Local-linear regression. Kernel: Epa-
nechnikov. Bandwidth: Cross-validation. Effect estimates are averages of 
derivatives. 

Fig. 7. Pattern of the kernel local linear estimation of m(z). 
Notes: authors’ elaborations in STATA. 
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5. Concluding remarks and policy recommendations 

The prime objective of this article is to draw novel conclusions and 
policies for different income levels of countries regarding the urbani-
zation and agriculture sector land on environmental pollution. In this 
study, we have considered three important drivers of GHG emissions, 
that is, urban population, GDP, and a composite measure of arable, 
permanent pastures, and cropland to catch the agriculture sector’s 
contribution to GHG emissions. In doing so, we employ the data of 50 
countries from 1990 to 2019. Notably, we used the maximum available 
data of countries, and these were further divided into high-income, 
middle-income, and low-income groups of countries. For empirical 
analysis, we used the Lasso and non-parametric regression methods. 
After estimating a Lasso regression to find the best auto-regressive 
predictive specification, we used an auto-regressive partially linear 
regression where each of the drivers’ effects was modelled non- 
parametrically. The comprehensive empirical findings allow us to 
draw novel conclusions and guidelines in line with SDGs. The elasticity 
effect of the urban population on emissions is significantly positive and 
sizable, equal to 0.8978. Also, the effect distribution shows a non- 
negligible share of observations with an elasticity higher than one. 
Urban population growth is a serious threat to climate change, as it 
seems to increase sharply CO2 emissions (although with an elasticity 
pace smaller than one). The results argue that agglomeration negative 

effects put in place by larger urban population can partly explain this 
finding. Agglomeration may however also have the potential to mitigate 
CO2 emissions if specialized policies were able to trigger cooperative 
behaviors able to reduce duplications in energy consumption favoring 
scale and scope economies in renewable energy-delivering modes. For 
example, houses’ closeness in cities and towns could allow to build and 
share of solar plants for energy-delivering solutions or can reduce energy 
waste or misuse. The effects of urbanization growth on GHG emissions in 
different countries demand urgent attention regarding urbanization 
policies. In this scenario, collaborations and communication across 
different income groups and regions should be increased to improve 
positive urbanization impacts on the environment. In doing, so the 
countries and regions can also share the policies and adopt the syn-
chronized framework of policies regarding the urbanization processing, 
resource utilization, and economic repercussions. 

The findings of this study are in line with SDG-8: Decent Work and 
Economic Growth and SDG-12: Responsible Consumption and Produc-
tion. The elasticity effect of GDP is significantly negative and equal to 
− 0.1262. This is good news, showing that the scale of production, by 
triggering efficiency, can have a positive effect on emissions reduction. 
Also, the distribution of the (negative) effects seems quite concentrated 
around the − 0.1262 mean, with no strong effect heterogeneity. The 
empirical findings argue that economic progress might reduce GHG 
emissions, this might be due to the use of greener energy sources or other 
factors. In summary, the conclusions endorse the directions of SDG-2: 
zero hunger and SDG-13: climate action. The mentioned SDGs are 
focused on mitigating hunger and pollution globally. To this end, the 
current study reports the analyses and conclusions for different income 
groups of countries. The UN SDGs framework strictly focuses on 
reducing hunger through promoting agriculture and food production 
activities. Meanwhile, the global organization is keen to reduce envi-
ronmental externalities such as pollution, temperature change, and 
climate change challenges. 

The elasticity effect of the composite measure is significantly positive 
but rather small and equal to 0.1972. Larger crop production does seem 
to represent just a milder threat to climate change. This may be due to an 
improvement in emission-saving technologies that many farms world-
wide have adopted, especially in recent years. Also, the distribution of 
the (positive) effects seems quite concentrated, with no strong asym-
metries. Since urbanization and agriculture sector development not only 
reinforce each other, but act as a vital engine for economic progress, 
therefore there is a need for innovative and synchronized reforms for 
agriculture and urbanization. 

The empirical conclusions regarding land use and agricultural land 
use are novel and allow us to draw some implications. For instance, the 
governments of low-income and middle-income countries need to pro-
mote the awareness level and information for the farmers to adopt 
climate-friendly resources, farming styles, and modern irrigation tools. 
In addition, the countries can also introduce some subsidies and public 
acknowledgment for the farmers and people engaged in agricultural 
activities. During the absence of regulations for agricultural emissions, 
personal motivations and acknowledgments can act as a tool for emis-
sion mitigation. In addition, the environmental and climate change 
authorities should enforce the industries and agricultural sector to 
install treatment plants and follow the environmental regulations and 
schemes for GHG emissions. Lastly, governments of middle-income and 
high-income countries can implement sector-specific regulations and 
taxes depending on the amount of carbon emissions and GHG emissions. 
In doing so, countries can also introduce some non-economic reforms, 
which include regulations for forests, trees, water, and arable land. The 
agricultural reforms might include irrigation and farming techniques 
such as spin farming, solar tube wells, tunnel farming, technology use 
agreements, plant double helix, etc. 

Caution can be observed while analyzing and implementing the 
above-mentioned policies, because this study discusses GHG emissions, 
which are the major contributors to pollution. While future studies can 

Fig. 8. Distribution of the predicted partial effect m’(z). 
Notes: authors’ elaborations in STATA. 

Fig. 9. Distribution of the predicted average m(z).  
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analyze and research the individual components of GHG emissions, and 
their effects on agricultural and economic factors. Future studies can add 
nitrogen emissions or sulphur emissions to the empirical analysis, as 
well as industry-specific pollution and pollutant emissions can be 
considered to draw more narrow implications. Finally, a novel approach 
based on ML or Artificial Neural Networks (ANNs) may be used to 
inspect this topic (Magazzino and Mele, 2022; Mele et al., 2021). 
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Appendix  

Table A 
Descriptive statistics.  

Variable Mean Median Std. Dev. Skewness Kurtosis Range IQR CV 

EM 12.3919 12.4355 1.4368 0.1233 3.0050 7.4941 1.8230 0.1159 
PO 16.8298 16.8728 1.2764 0.2357 2.9126 6.4655 1.7001 0.0758 
GDP 7.6547 7.4170 1.6253 0.3267 2.0917 6.5753 2.5342 0.2123 
DEN 4.3035 4.4535 0.6747 − 1.1541 5.2191 5.2203 0.8503 0.1568 

Notes: Std. Dev.: Standard Deviation; IQR: Inter-Quartile Range; CV: Coefficient of Variation. 
Sources: authors’ elaborations. 

Fig. A. Scatterplot matrices. 
Notes: authors’ elaborations in STATA. 

References 

Adedoyin, F.F., Alola, A.A., Bekun, F.V., 2020. The nexus of environmental sustainability 
and agro-economic performance of Sub-Saharan African countries. Heliyon 6 (9), 
E04878. 

Adegbeye, M.J., Reddy, P., Obaisi, A.I., Elghandour, M.M.M.Y., Oyebamiji, K.J., 
Salem, A.Z.M., Morakinyo-Fasipe, O.T., Cipriano-Salazar, M., Camacho-Díaz, L.M., 
2020. Sustainable agriculture options for production, greenhouse gasses and 
pollution alleviation, and nutrient recycling in emerging and transitional nations - an 
overview. J. Clean. Prod. 242, 118319. 

Alola, A.A., 2019. Carbon emissions and the trilemma of trade policy, migration policy 
and health care in the US. Carbon Management 10 (2), 209–218. 

Azomahou, T., Laisney, T., Nguyen, V.P., 2006. Economic development and CO2 
emissions: a nonparametric panel approach. J. Publ. Econ. 90 (6–7), 1347–1363. 

Bas, T., Kara, F., Alola, A.A., 2021. The environmental aspects of agriculture, 
merchandize, share, and export value-added calibrations in Turkey. Environ. Sci. 
Pollut. Control Ser. 28, 62677–62689. 

Bayrakcı, A.G., Koçar, G., 2012. Utilization of renewable energies in Turkey’s 
agriculture. Renewable and Sustainable Energy Reviews 16 (1), 618–633. 

C. Magazzino et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S1309-1042(23)00200-3/sref1
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref1
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref1
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref2
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref2
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref2
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref2
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref2
http://refhub.elsevier.com/S1309-1042(23)00200-3/optBuy9COIZ2V
http://refhub.elsevier.com/S1309-1042(23)00200-3/optBuy9COIZ2V
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref3
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref3
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref4
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref4
http://refhub.elsevier.com/S1309-1042(23)00200-3/sref4
http://refhub.elsevier.com/S1309-1042(23)00200-3/opt9PccqmI8Vi
http://refhub.elsevier.com/S1309-1042(23)00200-3/opt9PccqmI8Vi


Atmospheric Pollution Research 14 (2023) 101846

11

Ben Jebli, M., Ben Youssef, S., 2017. The role of renewable energy and agriculture in 
reducing CO2 emissions: evidence for North Africa countries. Ecol. Indicat. 74, 
295–301. 

Ben Jebli, M., Ben Youssef, S., 2019. Combustible renewables and waste consumption, 
agriculture, CO2 emissions and economic growth in Brazil. Carbon Manag. 10 (3), 
309–321. 

Carlson, K.M., Gerber, J.S., Mueller, N.D., Herrero, M., MacDonald, G.K., Brauman, K.A., 
Havlik, P., O Connell, C.S., Johnson, J.A., Saatchi, S., West, P.C., 2017. Greenhouse 
gas emissions intensity of global croplands. Nat. Clim. Change 7, 63–68. 

Cerulli, G., 2015. Econometric Evaluation of Socio-Economic Programs. Springer. 
Darwin, R., 2004. Effects of greenhouse gas emissions on world agriculture, food 

consumption, and economic welfare. Climatic Change 66, 191–238. 
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