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Abstract

We study a natural growth process with competition, modeled by two first passage
percolation processes, FPP1 and FPPλ, spreading on a graph. FPP1 starts at the
origin and spreads at rate 1, whereas FPPλ starts from a random set of inactive seeds
distributed as Bernoulli percolation of parameter µ ∈ (0, 1). A seed of FPPλ gets
activated when one of the two processes attempts to occupy its location, and from
this moment onwards spreads at some fixed rate λ > 0. In previous works [17, 3, 7]
it has been shown that when both µ or λ are small enough, then FPP1 survives
(i.e., it occupies an infinite set of vertices) with positive probability. It might seem
intuitive that decreasing µ or λ is beneficial to FPP1. However, we prove that, in
general, this is indeed false by constructing a graph for which the probability that
FPP1 survives is not a monotone function of µ or λ, implying the existence of multiple
phase transitions. This behavior contrasts with other natural growth processes such
as the 2-type Richardson model.
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1 Introduction

We consider a natural growth process known as First passage percolation in a hostile
environment (FPPHE), which consists of two first passage percolation processes that
spread at different rates, which we shall call FPP1 and FPPλ. Such processes are
competing against each other to infect vertices of the underlying graph, according to

*E.C. was supported by the project “Programma per Giovani Ricercatori Rita Levi Montalcini” awarded
by the Italian Ministry of Education. E.C. also acknowledges partial support by “INdAM–GNAMPA Project
2019” and “INdAM–GNAMPA Project 2020”. A.S. acknowledges support from EPSRC Early Career Fellowship
EP/N004566/1.

†elisabetta.candellero@uniroma3.it; Università Roma Tre, Dipartimento di Matematica e Fisica, Largo S.
Murialdo 1, 00146, Rome, Italy.

‡a.stauffer@bath.ac.uk; University of Bath, Dept of Mathematical Sciences, BA2 7AY Bath, UK & Università
Roma Tre, Dipartimento di Matematica e Fisica, Largo S. Murialdo 1, 00146, Rome, Italy.

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/24-EJP1145
https://ams.org/mathscinet/msc/msc2020.html


FPPHE is not monotone

the following dynamics. Consider a connected infinite graph of bounded degree, choose
a reference point on it (call it the origin), and place a FPP1 particle there. Then fix a
parameter µ ∈ (0, 1), and at each vertex other than the origin independently place a
FPPλ particle with probability µ and nothing with probability 1− µ. We shall call such
initial FPPλ particles seeds.

At time zero, all seeds of FPPλ are inactive, and FPP1 starts spreading from the
origin as a first passage percolation process of rate 1. Whenever there is an attempt to
occupy a site that is currently occupied by an inactive seed, then the seed gets activated
and starts to spread as a first passage percolation of rate λ. Whenever a site gets
occupied by one of the two processes, it will remain so forever. Thus the two processes
compete with one another for space. We see FPP1 and FPPλ as infection processes, so
we will say that a vertex is infected by FPP1 or FPPλ to mean that the vertex is occupied
by the given process.

FPPHE is a natural model for the growth of two processes with competition and, as
we will see below, it has many interesting aspects and phase transitions. Nonetheless,
it was introduced by Sidoravicius and Stauffer [17] as an auxiliary model for analyzing
a notoriously challenging model called Multiparticle Diffusion Limited Aggregation
(MDLA). The use of FPPHE as a tool of analysis has been further explored in Dauvergne
and Sly [4] to analyze a non-equilibrium process for the spread of an infection. The
way in which FPPHE is used to analyze such processes with non-equilibrium dynamics
is by making the growth of FPP1 represent the propagation of the front as it spreads
through “typically good regions”, while the activation of a FPPλ seed represents places
where the front behaves “atypically bad”. The influence of discovering such bad events
is represented by the spread of FPPλ from the activated seed. In this context, one is
interested to understand whether FPP1 grows indefinitely and leaves behind any cluster
of activated seeds of FPPλ.

There are several challenging questions about FPPHE. One example is the survival of
FPP1 (resp. FPPλ), meaning that FPP1 (resp. FPPλ) infects an infinite connected region
of the graph. Note that it is natural to require connectivity of the infected region in the
definition of survival since FPPλ already starts from an infinite set of seeds. Another
fundamental question is that of coexistence of FPP1 and FPPλ, which corresponds to
both processes surviving simultaneously.

The first paper about FPPHE [17] established that on Zd if λ < 1, then for all µ small
enough FPP1 survives with positive probability and produces a bulky shape (cf. [17,
Theorems 1.3]). Simple arguments show that, on Zd, FPP1 dies out almost surely if λ ≥ 1

or µ large enough. The justification of the first case can be found in Finn’s PhD thesis
[6, Chapter 4]. The latter case follows from an percolation argument. Very recently, [7]
showed the opposite direction that FPP1 survives with positive probability for any µ for
which non-seeds percolate on Zd provided λ is small enough. This seems analogous to the
work of [17], but actually FPPHE behaves rather differently in this setting. For example,
the result of [7] implies a coexistence regime on Zd for d ≥ 3, and even a regime where
both types occupy a set of positive density. Coexistence is a challenging phenomenon
to establish. Even in more classical models, such as the two-type Richardson model,
the regime of coexistence has not been fully determined (cf. [11], and [9] for a more
general analysis of the model, not restricted to exponential passage times). For FPPHE
on Zd, it remains entirely open whether coexistence occurs when d = 2. Before that,
coexistence for FPPHE was established on hyperbolic non-amenable graphs by [3], which
also showed that FPPHE behaves quite different in such graphs when compared to Zd.
In fact, [3] shows that FPPλ survives almost surely, for any fixed pair of values for the
parameters 0 < µ ≤ 1 and λ > 0.

The core of this work will focus on the behavior of FPPHE on a type of graph that is
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hyperbolic, non-amenable, quasi-transitive and is endowed with a “tree-like structure”.
However, our result does not apply to trees, because of the lack of loops in their structure.
Although this construction naturally leads to a specific kind of graph, we are confident
that the main ideas developed in this paper will be applicable to other contexts, at least
to other growth models. A work that follows a similar flavor is [5], in which the authors
investigate competing Richardson processes on graphs. They construct specific graphs
where the set of values for λ that allow coexistence has very counter-intuitive properties.
However, a crucial difference is that the Richardson model is a monotone model, in the
sense that increasing the rate of one type can only increase the probability that said
type survives. The focus of [5] is on the event of coexistence, while we are interested in
studying monotonicity properties of the FPPHE model on its own.

It is natural to believe that by increasing the density µ or the rate λ one would favor
FPPλ. Such monotonicity property would be quite useful as it plays a crucial role in the
analysis of several other related models, such as the contact process and the two-type
Richardson model [14, 11, 10, 8, 12]. However, it is possible to show that there are
choices for the locations of the seeds and for the passage times such that the standard
coupling fails to be monotone. In particular, on graphs whose structure present a lot of
loops of different lengths, such configurations can be engineered so that adding a seed
is beneficial to FPP1. The reason is that when the seed is activated, the process gets
slowed down locally, and this can delay the activation of seeds that are further away in
that direction. This could be beneficial for FPP1 as it grows along nearby directions.

The lack of knowledge of such monotonicity gives rise to serious challenges; the
papers [17, 3, 7] develop quite involved multi-scale arguments to analyze FPPHE without
using monotonicity. The aim of the present article is to show that FPPHE is indeed not
monotone in general, meaning that there are graphs for which the probability of survival
of FPP1 is not a monotone function of the parameters. The graph that we obtain is rather
different from a d-dimensional lattice; roughly speaking, it looks like a homogeneous
tree of large degree, where all edges are replaced by identical copies of a finite graph
that we call tile. (A formal definition is given in Section 1.1).

We believe that on regular graphs such as Zd (d ≥ 1) the process should be monotone.
However, the challenges in this type of analysis stem from several facts. For example,
geodesics on Zd can go very far apart from each other, making it more difficult to control
the spread of FPPHE. Moreover, there are arbitrarily long loops, allowing FPP1 (resp.
FPPλ) to “surround” arbitrarily large clusters of FPPλ (resp. FPP1) within a short time.
At the moment a general result still eludes us, but we hope that this work will trigger a
more general analysis of this question.

For any event E and considering λ fixed, let Pµ(E) denote the probability of E, given
that the initial density of seeds of FPPλ equals µ.

Theorem 1.1. There is a connected, infinite graph of bounded degree and values µ1, µ2

with 0 < µ1 < µ2 < 1, such that, whenever the rate λ is small enough,

Pµ1(FPP1 survives) = 0 and Pµ2(FPP1 survives) > 0.

Remark 1.2. In our proof of Theorem 1.1, we will construct a graph (which we denote
G∞) with the above properties. We note that G∞ is even a quasi transitive graph.
Recall that a graph is quasi transitive if its vertex set can be partitioned into a finite
number of sets V1, V2, . . . , Vℓ such that for any k and any two vertices u, v ∈ Vk, there
exists an automorphism of the graph that maps u onto v. Theorem 1.1 then implies
at least three phase transitions as λ is fixed and µ varies. It is possible to get more
involved constructions that lead to a larger number of phase transitions, and a similar
non-monotonicity result can be obtained for µ fixed and λ varying (see Theorem 2.4 and
Remark 2.5).
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In our analysis of whether FPP1 survives we will use the following classical fact
regarding percolation on regular trees (cf. [15, Chapter 5] for more details).

Theorem 1.3. [15, Theorem 5.15]. Let T denote a homogeneous tree of degree b ≥ 3.
Then,

pc(T ) =
1

b− 1
,

where pc(T ) denotes the percolation threshold for the appearance of an infinite cluster
for Bernoulli percolation on T .

Note that in the case of trees the threshold for bond and for site percolation is the
same.

1.1 Idea of the proof

The proof proceeds through various steps, which we outline here.

Construction of the graph. The graph G∞ should be thought of as a sort of infinite
tree where each vertex has degree Φ + 1, where Φ is a large integer. We replace the
edges of the tree by identical copies of a finite graph that we call “tile”. The structure of
a tile plays a key role in determining which process gets (with reasonable probability) to
advance more quickly. Below we give an overall view on the construction of the tiles,
leaving the details to Section 2.1.

The origin of the tile is a vertex from where two edges depart, we shall say that they
begin the upper part and the lower part of the tile (refer to Figure 2). Following the
lower part, we find that the endpoint of the first edge is connected with a finite binary
tree of some (large) height H. The last generation of this tree is then identified into
one vertex, which represents the start of a path of length R (for some large integer R).
Following the upper part, we see that the endpoint of the edge departing from the origin
is connected with a finite D-ary tree (for some large integer D > 2) of some height L.
Again, the last generation of the D-ary tree is identified into one vertex, to which one
edge is attached. Finally, the two loose ends that we are left with (the end of the path in
the lower part and the endpoint of the edge in the upper part) are identified into one
vertex.

Analysis of FPPHE for µ = µ1 and µ = µ2. The next step consists in investigating the
typical behavior of FPPHE on a tile, hence we split the study of the process into two
parts.

In Section 3.1 we set the initial density of seeds to be some properly chosen value
µ = µ1 ∈ (0, 1/2), and we show that the first process to infect the opposite endpoint
of the tile is likely to be FPPλ. The idea is that for small values of µ, the seeds do not
block the advance of FPP1 through the two trees (the D-ary tree in the upper part and
the binary tree in the lower part). Therefore it is likely that FPP1 is the first process
to reach the end of both trees. By letting H much smaller than L, we obtain that FPP1

reaches the end of the binary tree first. At this point though, in the lower part it is likely
that FPP1 will encounter a seed along the path of length R. Hence we will have that
the endpoint of the tile can be infected either by FPP1 (which is making its way along
the upper part of the tile) or by FPPλ (started by a seed activated in the lower part).
The construction of the tile, in particular by properly choosing the height of the D-ary
tree and the binary tree, makes it more likely that FPPλ (through the lower part) arrives
first.

We note that implementing the idea above requires a delicate analysis of FPPHE on a
finite tree. The main challenge is that even if FPP1 spreads quickly along a tree it may
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so happen that, near the last levels of the tree, seeds are located on the fastest route of
FPP1. Therefore, it is not enough to look at the geodesics of first passage percolation on
trees: we also need to control paths that are “near optimal” for FPP1. We do this via a
comparison with branching random walks, for which strong concentration results are
available. This is the most technical part of the paper. It is established in Proposition 2.1,
whose proof is given in Section 5.

The second part is carried out in Section 3.2, where we set the initial density to some
properly chosen value µ = µ2 ∈ (1/2, 1 − 1/D). This will imply that while in the upper
part FPP1 continues to be the process that reaches the last generation of the D-ary tree,
in the lower part it will be likely that FPP1 will be blocked by the seeds in the binary
tree (as a straightforward consequence of Theorem 1.3). This delays the progress of
the process through the lower part, making it likely that the first process to reach the
opposite endpoint of the tile is FPP1 (through the upper part).

Conclusion of the proof. To conclude, recall that Φ was a large integer appearing in
the construction of G∞ as the “degree” of each vertex. Then we show that the event

E := {the first process to infect the endpoint of the tile is FPP1}

is such that Pµ1
(E) < 1

Φ whereas Pµ2
(E) > 1

Φ . Then, by viewing each tile where E holds
as an open edge of a suitable Bernoulli percolation process on a Φ-ary tree and using
Theorem 1.3, we conclude the proof.

Organization of the paper. The paper is organized as follows. Section 2 deals with
the construction of G∞ with vertex set V (G∞) and edge set E(G∞) and states a result
(Proposition 2.3) which is the main step of the proof, giving the typical behavior of FPP1

on a tile. Using Proposition 2.3, we conclude Section 2 with the proof of Theorem 1.1. In
Section 3 we prove auxiliary lemmas, and in Section 4 we prove Proposition 2.3 using
these lemmas and Proposition 2.1. Section 5 is devoted to the proof of Proposition 2.1.

1.2 Passage times

A path π of length n is a sequence of n consecutive edges {e{0,1}, e{1,2}, . . . , e{n−1,n}}.
Fix a value γ > 0. For every path π = {e{0,1}, . . . , e{n−1,n}} define its passage time by

T (γ)(π) :=

n−1∑
j=0

t
(γ)
{j,j+1},

where t
(γ)
{j,j+1} is a random variable associated to edge e{j,j+1} and distributed according

to Exp(γ). For any given γ the variables t
(γ)
{j,j+1} are independent and are often called

passage times of the corresponding edges. In particular, when we write FPP1 we mean
first passage percolation with γ = 1 whereas when we write FPPλ we mean first passage
percolation with γ = λ.

Definition 1.4 (First Passage Times). At this point we can define the passage time
between two vertices x and y of the graph as

T (γ)(x → y) := min
π: x→y

T (γ)(π),

where the minimum is taken over all paths π that connect x to y. Throughout the paper
we will also need a “mixed” first passage time. Given a path π from a vertex x to a vertex
y, if there exists a vertex of π that hosts a seed, let w be the first such vertex and let
k ≤ n denote the distance between x and w along π; note that for fixed x, y and π, the
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value k is a random variable as it depends on whether vertices of π host a seed. Then
the passage time of π is defined as

T (1,λ)(π) :=

k−1∑
j=0

t
(1)
{j,j+1} +

n−1∑
j=k

t
(λ)
{j,j+1};

otherwise, if no vertex of π hosts a seed simply define T (1,λ)(π) := T (1)(π). Furthermore,
for any two vertices x, y ∈ V (G) that are cut-points1 in G∞, we also define the “mixed”
passage time between two vertices x and y as

T (1,λ)(x → y) := min
π: x→y

T (1,λ)(π),

where the minimum is taken over all paths π that connect x to y. Since x and y are
cut-points in G∞, there are only finitely many paths between x and y.

Remark 1.5. We can couple the passage times for different values of γ as follows. For
each edge e, let t(1)e be independent exponential random variables of rate 1. Then, for
any γ > 0, γ ̸= 1 and any edge e, we set t(γ)e := t

(1)
e /γ.

We will need a result that is based on the known correspondence between the Gamma
distribution and a Poisson process. For a complete proof the reader is referred to [3,
Lemma 2.5]. In the following statement we denote by P the probability measure defined
on the considered graph where seeds are not present. More specifically, we consider a
FPP process with (generic) rate γ > 0 started at a unique source. We write the statement
for a first passage percolation process of rate γ > 0, as we shall be interested in applying
this result to the values γ = 1 for FPP1 and γ = λ for FPPλ. For a more clear statement,
in the following lemma we set γ = 1, but the statement hold for arbitrary γ > 0. In fact,
it suffices to observe that for any path π, we have that T (1)(π) has the same distribution
as γT (γ)(π).

Lemma 1.6. [3, Lemma 2.5 + Remark 2.6] Consider an infinite graph with bounded
degree, and let o denote a reference vertex. For any constant c1 > 0, there is a constant
cout = cout(c1) > 1 so that for all k ≥ 1

P

[
∃ a path πk of length k started at o, such that T (1)(πk) ≤

k

cout

]
≤ e−c1k. (1.1)

For any constant 0 < c0 < 1 there is a constant cin = cin(c0) < 1 so that for all k ≥ 1

P

[
∃ a path πk of length k started at o, such that T (1)(πk) ≥

k

cin

]
≤ e−c0k. (1.2)

2 Construction of the graph

The construction of the sought graph is done by steps, we start by describing the
“tiles” that we will use. The procedure about how to “attach” them together in a suitable
manner is explained in Section 2.3.

2.1 The tile G: construction, notation and some facts

Roughly speaking, a “tile” G with vertex set V (G) and edge set E(G) is a connected
graph consisting of different types of trees. For any integer d ≥ 1 let Td be the infinite
tree where all its nodes (including the root) have exactly d children. For any h ∈ N we

let Th
d denote the tree Td truncated at generation h. Finally, the notation T

h

d denotes the
tree Th+1

d where all nodes in generation h+ 1 have been identified into one vertex (refer
to Figure 1, where such vertex is denoted by W ).

1A vertex is a cut-point when, if removed, it disconnects the graph.

EJP 29 (2024), paper 85.
Page 6/42

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1145
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


FPPHE is not monotone

Th
d

T
h
d

O W

Figure 1: Sketch of T
h

d : the triangle on the left (pink) represents the tree Th
d , while the

one on the right (black) represents the set of edges connecting the h-th generation of Th
d

to W .

For ease of readability, the reader can refer to Figure 2 for a sketch of G. Start from
a vertex O (which we also call the origin) and attach two edges to it, that is, identify the
starting point of these two edges into O. Call the other two endpoints Oup and Olow.

For the moment we shall simply say “fix a sufficiently large integer”, meaning that
we shall be more precise later on by fixing the conditions that such value must satisfy.
Fix two sufficiently large integers D > 2 and L > 0, and identify the root of the graph

T
L

D with Oup. Similarly, for another large integer H > 0 identify the root of T
H

2 with

Olow. Basically, we are “attaching” T
L

D to one edge incident to the origin, and T
H

2 to the

other one. The last vertex of T
L

D will be denoted by Wup and the last vertex of T
H

2 will be
denoted by Wlow.

Finally, attach a single edge from Wup to a new vertex B and a path of length R (for a
large integer R) from Wlow to B. (Refer to Figure 2.)

O

Oup

Olow
Wlow

B

1

1

H
1

1

R

L
1

1

Wup

T
L
D

T
H
2

Figure 2: Sketch of the tile G and the lengths of its components.

Recall the constants c0, c1, cin and cout from Lemma 1.6. Later on, for d ∈ N, we shall

EJP 29 (2024), paper 85.
Page 7/42

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1145
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


FPPHE is not monotone

emphasize this dependence by writing

c
(d)
in := c

(d)
in (c0) := value of cin satisfying (1.2) when c0 is given and the graph is Td,

c
(d)
out := c

(d)
out(c1) := value of cout satisfying (1.1) when c1 is given and the graph is Td.

(2.1)

For the particular case where d = 1, we write c
(1)
in and c

(1)
out to denote the values that on a

large interval of Z satisfy (1.2) and (1.1) respectively.
Before proceeding, we introduce some notation. For any fixed µ ∈ (0, 1), any fixed

d ∈ N and any infinite tree Td define the event

Eperc(Td) := {cluster of non-seeds containing the root percolates on Td},

then set fd(µ) to be
fd(µ) := 1− Pµ (Eperc(Td)) . (2.2)

By monotonicity of percolation, we know that fd(µ) is increasing with µ. To simplify the
notation throughout, for any vertex x ∈ V (G) and µ ∈ (0, 1) fixed, set

Ex := {vertex x does not host a seed}, (2.3)

for which we have
Pµ(Ex) = 1− µ. (2.4)

On T
h

d with the notation borrowed from Figure 1 we set

Eperc(T
h

d) := {there is a cluster of non-seeds in T
h

d connecting O to W}, (2.5)

for which we have
Pµ

[
Eperc(T

h

d)
]
≥
(
1− fd(µ)

)
(1− µ). (2.6)

In particular, the first term of the product on the R.H.S. follows from (2.2) and the second
is the probability that vertex W does not host a seed. (Recall that in the definition of the
model the origin is defined to be free of seeds.)

2.2 Behavior of FPPHE on a tile

Fix λ > 0 and consider a copy of the tile G as constructed above, and start FPPHE by
placing a FPP1 particle at O, and a seed independently at each vertex with probability
µ. From now on, the value of λ > 0 will be considered fixed and small enough for our
purposes.

Now we are able to state a result that will be crucial for the whole analysis. The
considered graph is T

m

d , and the notation that we use is the same as in Figure 1.

Proposition 2.1. Fix an integer d ≥ 2, take λ > 0 small enough, and any µ ∈ (0, 1). For
all m ∈ N large enough, consider T

m

d with the following initial setting: place a particle
of FPP1 at o and at every x ∈ V (T

m

d ) \ {o} place seeds independently with probability µ.
Then there is a function ηd = ηd(µ, λ) > 0 so that the following hold.

(i) For all µ small enough,

Pµ

[
W is infected by FPP1

]
≥
(
1− fd(µ)− ηd

)
(1− µ).

(ii) If µ ∈ (1/2, 1) so that

d(1− µ) > 1 and d2(1− µ)2µd−1 < 1, (2.7)

then,

Pµ

[
W is infected by FPP1

]
≥
(
1− fd(µ)− ηd

)
(1− µ).
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(iii) For any ξ > 0, if λ is small enough and either µ is small enough or d is large enough,
then ηd ≤ ξ.

The factor 1− µ corresponds to the probability that W does not host a seed.

Remark 2.2. Observe that, since λ > 0 is fixed throughout, the quantity ηd(µ, λ) can
be seen as a function of µ only. Furthermore, whenever λ and µ are fixed, ηd(µ, λ) is
decreasing in d. In order to avoid making the notation even more cumbersome, we chose
that whenever µ is clear from the context we shall omit its explicit dependence from ηd.

Since the proof of Proposition 2.1 is quite technical, we postpone it to Section 5, thus
we will proceed while assuming the validity of the result. The next statement provides a
crucial fact regarding the behavior of the process on a tile G with origin O.

Proposition 2.3. Fix a large integer D, and let λ be small enough. Then there are values
0 < µ

(crit)
1,low < µ

(crit)
1,high < 1/2 < µ

(crit)
2,low < µ

(crit)
2,high < 1, and values of H,L,R,Φ so that in such a

tile G we obtain

Pµ (B is infected by FPP1) <
1

Φ
, for all µ ∈

(
µ
(crit)
1,low, µ

(crit)
1,high

)
and

Pµ (B is infected by FPP1) >
1

Φ
, for all µ ∈

(
µ
(crit)
2,low, µ

(crit)
2,high

)
.

This statement will be proven in Section 4, admitting the result of Proposition 2.1
(which will be proven in Section 5).

2.3 The infinite graph G∞

We proceed with the construction that provides the sought counterexample to mono-
tonicity. We view each tile with an orientation, where the vertex O is called the origin
of the tile, and the vertex B is called the tail of the tile. Then G∞ is constructed as
follows. Fix a large integer Φ and consider an infinite (Φ + 1)-regular tree. Consider
an infinite (self-avoiding) path starting at the root, this determines an end of the tree,
and thus a specific direction. Now, for each vertex v of the tree, let u0, u1, . . . , uΦ be the
neighbors of v with u0 being the unique neighbor that is on the direction of the chosen
end. Now we replace each edge (v, ui) of the tree, for i ∈ {1, 2, . . . ,Φ}, with a copy of the
tile, identifying the origin of the tile (i.e., the vertex O) with v and the tail of the tile (i.e.,
the vertex B) with ui. For the edge (v, u0), the orientation of the tile is reversed; i.e., we
replace (v, u0) with a copy of the tile, but identify the origin of the tile with u0 and the
tail of the tile with v.

A graphical representation is shown in Figure 4 (for simplicity we used Φ = 2,
although it follows from the computations in Section 4 that Φ is much larger than 2).
Note that the graph G∞ is quasi transitive.

2.4 Proof of Theorem 1.1

We state our result for FPPHE on the graph G∞ below, from which Theorem 1.1
follows directly.

Theorem 2.4. Consider FPPHE starting from the origin of G∞. Fix a large integer D,
let λ be small enough, and let the values µ

(crit)
1,low, µ(crit)

1,high, µ(crit)
2,low, µ(crit)

2,high be as in Proposition
2.3. Then there are values for H,L,R and Φ so that,

Pµ(FPP1 survives) = 0 for all µ ∈
(
µ
(crit)
1,low, µ

(crit)
1,high

)
and

Pµ(FPP1 survives) > 0 for all µ ∈
(
µ
(crit)
2,low, µ

(crit)
2,high

)
.
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Remark 2.5. We make the following observations.

1. It is immediate that FPP1 survives if µ is small enough (much smaller than µ
(crit)
1,low)

since seed-free tiles percolate on G∞ for all small enough µ. Moreover, it is
immediate that FPP1 dies out if µ is large enough (much larger than µ

(crit)
2,high) so

that the origin is blocked by seeds with probability one. Therefore, this reasoning
and Theorem 2.4 establish at least three phase transitions on G∞: from survival of
FPP1 for small enough µ, then non-survival for some µ in (0, 1/2), then a survival
regime for some µ in (1/2, 1) to a final regime of non-survival for all large µ.

2. By further working the construction of the tiles we can make as many phase
transitions as we desire. For example, we could have a tile composed of κ copies of
the upper and lower parts so that O would have degree 2κ, with each copy of the
upper and lower parts of different sizes and different degrees for the corresponding
trees. Then by tuning the parameters properly, as we increase µ we could make B

be occupied by FPPλ through the first lower part, then by FPP1 through the first
upper part, then by FPPλ through the second lower part, then by FPP1 through
the second upper part, and so on and so forth.

3. We choose to fix λ small enough and show non-monotonicity when varying µ. A
similar result could be obtained by fixing µ small enough first and then varying λ

inside the interval (0, 1). For example, in the lower part of the tile we could split
the vertex Wlow into two vertices (Wlow and W ′

low), connect them with a small finite
tree, and then create an additional path of length R′ connecting Olow to Wlow (see

Figure 3). Then, from Olow there would be two ways to Wlow, one through T
H

2 which
is favorable to FPP1 by having µ small and λ < 1, and the new path which will be
likely to have a seed in it. Even for not-too-small values of λ, we can make the path

of length R′ slow enough to let FPP1 get to Wlow through T
H

2 , leading to a fast
passage through the small tree from Wlow to W ′

low and the vertex B to be occupied
by FPPλ from the lower part through the activation of a seed in the path of length
R. On the other direction, by increasing λ we can make the path of length R′ to be
the fastest way to Wlow, but since λ < 1 this makes the way through the small tree
from Wlow to W ′

low slow enough to let the upper part of the tile be the fastest. This
leads to FPP1 occupying B from the upper part. By tuning the parameters we can
then establish the non-monotonicity. For conciseness, we only do the details for the
phase transition on µ.

Remark 2.6. In the following, we set the parameters in the following order. First, we
choose µ

(crit)
1,low, µ

(crit)
1,high and µ

(crit)
2,low, µ

(crit)
2,high, then we choose the values of L,R,H,D uniformly

over µ1 ∈
(
µ
(crit)
1,low, µ

(crit)
1,high

)
and µ2 ∈

(
µ
(crit)
2,low, µ

(crit)
2,high

)
.

Proof of Theorems 1.1 and 2.4. We now prove Theorem 2.4 (Theorem 1.1 is just a direct
consequence of it). The proof of Theorem 2.4 is a consequence of Proposition 2.3 and
classical facts about percolation. Proposition 2.3 gives values for the quantities D,L,H,R

so that all calculations work for all µ1 ∈
(
µ
(crit)
1,low, µ

(crit)
1,high

)
and µ2 ∈

(
µ
(crit)
2,low, µ

(crit)
2,high

)
. Thus,

we can fix µ1 and µ2 in the above intervals. We can assume, without loss of generality,
that the origin of G∞ is a vertex that has been identified with the origin of a tile (i.e., it is
not an internal vertex of a tile). The reason why we can assume this is that, if the origin
were an internal vertex of a tile, then with positive probability FPP1 would spread to
both the origin of the tile and the tail of the tile (since there is a positive probability that
the tile contains no seed). This means that FPP1 has a positive probability of surviving
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O

Oup

Olow
Wlow

B

1

1

H

R

L

Wup

R′

W ′
low

Figure 3: The tile G that gives non-monotonicity in λ as in Remark 2.5 part 3.

Vertex v

u1

u2

u0

Figure 4: The construction of G∞, every diamond represents a copy of the tile G, while
arrows inside each tile point from the origin of the tile to the tail. Considering vertex v

as the origin of G∞, we obtain that G⃗∞ (as formally defined in the proof of Theorems 1.1
and 2.4) as the part of the figure to the right of v.

in this case if and only if it has a positive probability of survival when the origin of G∞ is
not internal to a tile.

From now on, let o denote the origin of G∞, which is identified with the origin of Φ
tiles and with the tail of one tile, we denote this last tile Gparent. Referring to Figure
4 with the vertex v being o, we obtain that Gparent is the tile between u0 and v. We
shall denote the corresponding percolation probability measure by Pp, in order to avoid
confusion with the previously defined measures. Now let G⃗∞ be the subgraph where we
remove from G∞ all vertices and edges whose geodesic to o intersects Gparent; in Figure
4 this is the part of the graph to the right of v. Note that by collapsing each tile of G⃗∞

to an edge, we obtain a Φ-ary tree rooted at o. Then, by performing (edge) Bernoulli
percolation with parameter p on an infinite Φ-ary tree we have (cf., e.g., [15])

Pp
(
cluster containing the root is infinite

)
> 0 ⇔ p >

1

Φ
.
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In a similar fashion, consider a percolation process on the graph G⃗∞ defined as follows.
Fix a value p ∈ (0, 1). For every copy of G in G⃗∞, toss an independent coin which gives
heads with probability p and tails with probability 1 − p. If the coin gives heads, then
declare the corresponding copy of G to be open, otherwise declare it closed. This process
on G⃗∞ is a percolation process of parameter p on a Φ-ary tree, and thus

Pp(cluster containing vertex o is infinite) > 0 ⇔ p >
1

Φ
. (2.8)

From Proposition 2.3 it follows immediately that, for a large integer Φ (which will be
specified later in Equation (4.6)) we have

Pµ1 (B is infected by FPP1) >
1

Φ
and Pµ2 (B is infected by FPP1) <

1

Φ
. (2.9)

Therefore, it suffices to realize that the event {FPP1 survives} corresponds to the event

E := {∃ infinite cluster of tiles so that, for each such tile, vertex B is infected by FPP1} .

Hence, by (2.8)

Pp
(
E
)
> 0 ⇔ p >

1

Φ
.

Now we turn to analyzing G∞. When FPP1 survives in G⃗∞, then it also survives
on G∞. We are then left to show that when FPP1 dies out almost surely in G⃗∞ then
it also dies out almost surely in G∞. To see this, let o1, o2, . . . be a sequence of origins
of tiles, starting with o = o1, such that for each i ≥ 1 there is a tile for which oi+1 is
its origin and oi its tail. In other words, o1, o2, . . . is the unique sequence of origins of
tiles that are traversed by a path that starts from o and can only traverse tiles from
the tail to the origin. Since this sequence is unique and the corresponding tiles form
a one-dimensional chain of tiles, almost surely FPP1 occupies only a finite number of
elements in this sequence (for example, it will happen almost surely that there exists a k

for which ok hosts a seed). Let ℓ < ∞ be such that oℓ is occupied by FPP1 and oℓ+1 is
occupied by FPPλ. For FPP1 to survive, it has to survive by spreading through a path
from o1, o2, . . . , oℓ which first traverses a tile from the origin to the tail. But such paths
correspond to spreading of FPP1 in G⃗∞. Since FPP1 dies out almost surely in G⃗∞, it will
also die out when spreading from each one of o1, o2, . . . , oℓ, concluding the proof.

3 Analysis of the process on the tile

This section is devoted to the analysis of the process on each tile. In particular, we
will state and prove two results (Lemmas 3.1 and 3.2 below) which we will use in the
proof of Proposition 2.3. In order to prove the lemmas, we will apply the result from
Proposition 2.1. So µ1 and µ2 are given as specified in Proposition 2.1. In the following,

we shall refer to the upper part of G as the subgraph of G induced by the vertices of T
L

D

together with O and B. Symmetrically, the lower part of G is the subgraph of G induced

by all vertices of G except for those of T
L

D; cf. Figure 2.
Informally speaking, we study the spread of the process along two main streams,

the lower one and the upper one. Since they only communicate at O and at B, they are
independent until the moment at which vertex B gets infected. Once this happens, it will
be crucial to understand whether B got infected from the upper or from the lower part.

In order to avoid confusion, we define another notation for passage times that are only
local to G. More precisely, if the edges of a path π = (e{0,1} . . . e{n−1,n}) are completely
contained in E(G) and is such that when exploring the path from vertex 0 to vertex n
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the first seed is encountered at k, then (similarly to the reasoning in Definition 1.4) we
define the quantity

Υ(1,λ)(π) :=

k−1∑
j=0

t
(1)
{j,j+1} +

n−1∑
j=k

t
(λ)
{j,j+1}.

Consequently, similarly to what discussed in Definition 1.4, the “mixed” passage time
between two vertices x, y ∈ V (G) along a path completely contained in G is denoted by
Υ(1,λ)(x → y). When k = 0 or k = n in the above formula, we shall simplify the notation
writing Υ(λ)(x → y) or Υ(1)(x → y), respectively. Note that this is the first passage time
between x and y restricted to paths contained in G, and thus in general we would have
Υ(1,λ)(x → y) ≥ T (1,λ)(x → y).

To avoid confusion, we denote by Υ
(1,λ)
up (x → y) the first passage time between x and

y restricted to paths in the upper part of G, and by Υ
(1,λ)
low (x → y) the first passage time

from x to y restricted to paths in the lower part. Moreover, when we write the event
{Wup is infected by FPP1}, we mean that this happens when we restrict to the upper
part of the tile, so we do not account for the possibility that Wup is infected by B.

We start from the fact that for any ε > 0 fixed and any spread rate γ > 0 there is a
constant C(ε, γ) > 0 such that uniformly in e ∈ E(G) we have P

(
t
(γ)
e < C(ε, γ)

)
> (1− ε).

In what follows, set ε > 0 as an arbitrarily small fixed constant, and we will set

C := max
{
C(ε, 1), C(ε, λ)

}
. (3.1)

The next two subsections are devoted to prove two results. More specifically, in Lemma
3.1 we show that when µ is small, the process is very likely to be “quick” in the upper
part and “slow” in the lower part (where “quick” and “slow” are to be made precise
below). Subsequently, in Lemma 3.2 we show that when µ is large (but not too large), it
is very likely that the situation is reversed. The proof of Proposition 2.3 will strongly rely
on these results.

Lemma 3.1. Let C be as in (3.1). There are critical values 0 < µ
(crit)
1,low < µ

(crit)
1,high < 1/2 and

large enough values of L, H, R and D so that for any fixed ε > 0 there are c
(D)
out = c

(D)
out (ε),

c
(1)
in = c

(1)
in (ε), c(2)in = c

(2)
in (ε) such that for all µ1 ∈

(
µ
(crit)
1,low, µ

(crit)
1,high

)
the following hold.

(i) In the lower part,

Pµ1

[
Υ

(1,λ)
low (O → B) ≤ C+

H + 1

c
(2)
in

+
R

λc
(1)
in

]
≥ (1− ε)3(1− µ1)

2
[
(1− f2(µ1)− η2)(1− µ1)

2 − ε
]
,

where the factor η2 is as in Proposition 2.1 and f2(µ) as in (2.2) when d = 2.

(ii) In the upper part,

Pµ1

[
Υ

(1,λ)
up (O → B) ≥ L+ 1

c
(D)
out

]
≥ 1− ε.

Remark. The critical value 0 < µ
(crit)
1,high < 1/2 depends on λ and has to satisfy some

technical conditions that will be specified later on (expressed in details in conditions
(4.7), (5.37), (5.47), (5.49)). Moreover, since the result holds for all µ1 small enough, we
can simply set µ(crit)

1,low := µ
(crit)
1,high/2. Note that such values are independent of L,H,R,D.

Lemma 3.2. Let C be as in (3.1). There are critical values 1/2 < µ
(crit)
2,low < µ

(crit)
2,high < 1 and

large enough values of L, H, R and D so that for any fixed ε > 0 there are c
(D)
out = c

(D)
out (ε),

c
(1)
in = c

(1)
in (ε), c(2)in = c

(2)
in (ε) such that for all µ2 ∈

(
µ
(crit)
2,low, µ

(crit)
2,high

)
,
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(i) In the lower part,

Pµ2

[
Υ

(1,λ)
low (O → B) ≥ H/2

c
(2)
out

+
H/2 + 1

λc
(2)
out

+
R

λc
(1)
out

]
≥ (1− 3ε).

(ii) In the upper part,

Pµ2

[{
Υ

(1,λ)
up (O → B) ≤ 2C+

L+ 1

c
(D)
in

}
∩ {Wup is infected by FPP1}

]
≥ (1− ε)2(1− µ2)

2
[(
1− ηD − fD(µ2)

)
(1− µ2)

2 − ε
]
.

where ηD is as in Proposition 2.1 and fD(µ) as in (2.2) when d = D.

3.1 Proof of Lemma 3.1

The aim of this section is to understand the “typical” behavior of the process on the
tile G when µ = µ1 is small enough. Sections 3.1.1 and 3.1.2 take care of the analysis in
the lower and upper part of G respectively.

3.1.1 Proof of Lemma 3.1(i), “lower part” of G.

Consider the variable Υ
(1,λ)
low (O → B). Fix any pair of vertices x, y in the lower part of

G and an initial density of seeds µ1 ∈
(
µ
(crit)
1,low, µ

(crit)
1,high

)
, where µ

(crit)
1,high is a small enough

value (cf. Section 5). For this part of the proof consider only the lower part of G, more

precisely define the passage times {t(γ)e } as follows. Let t
(γ)
e := t

(γ)
e if the edge e is in the

lower part of G, and set t
(γ)
e := ∞, if e is in the upper part. With respect to the passage

times {t(γ)e }e∈E(G), recalling the definition of Ey from (2.3), define the event

Blow(x, y) := Ey ∩ {FPP1 started at x infects y before FPPλ}. (3.2)

Remark 3.3. Note that the event Blow(x, y) does not require x to be seed-less.

Using the fact that Olow and Wlow are cutpoints, under the event EO ∩Blow(O,Olow) ∩
Blow(Olow,Wlow),

Υ
(1,λ)
low (O → B) = Υ

(1,λ)
low (O → Olow) + Υ

(1,λ)
low (Olow → Wlow) + Υ

(1,λ)
low (Wlow → B).

Thus,

Pµ1

[
Υ

(1,λ)
low (O → B) ≤ C+

H + 1

c
(2)
in

+
R

λc
(1)
in

]

≥ Pµ1

[{
Υ

(1,λ)
low (O → B) ≤ C+

H + 1

c
(2)
in

+
R

λc
(1)
in

}
∩ EO ∩Blow(O,Olow) ∩Blow(Olow,Wlow)

]
≥ Pµ1

[
EO ∩Blow(O,Olow) ∩

{
Υ

(1,λ)
low (O → Olow) ≤ C

}]
×

× Pµ1

[
Blow(Olow,Wlow) ∩

{
Υ

(1,λ)
low (Olow → Wlow) ≤

H + 1

c
(2)
in

}]
×

× Pµ1

[
Υ

(1,λ)
low (Wlow → B) ≤ R

λc
(1)
in

]
,

(3.3)

where we used independence of the passage times in the second bound.
We proceed our analysis by bounding each term in (3.3).
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First term. Since the graph {O,Olow} is actually an edge, then

Pµ1

[
EO ∩Blow(O,Olow) ∩

{
Υ

(1,λ)
low (O → Olow) ≤ C

}]
= Pµ1

[{
Υ

(1)
low(O → Olow) ≤ C

}
∩ EO ∩ EOlow

] (2.4), (3.1)
> (1− ε)(1− µ1)

2.

Second term. Because of Proposition 2.1, by taking o ≡ Olow, m = H, d = 2 and
W ≡ Wlow, the event Blow(Olow,Wlow) has probability bounded from below by (1 −
f2(µ1)− η2)(1− µ1). For the following part we need a technical construction which will
be developed in detail later on, therefore at this point we present a result whose proof is
deferred to Section 5.1, since it requires a comparison with branching random walks
that will be described in Section 5. At this point we emphasize that the bound obtained
in the following result is independent of λ (provided that λ is chosen to be small).

Claim 3.4. Suppose that µ1 and µ2, as well as L,H,R,D, are as in Lemmas 3.1 and 3.2.
Let ε > 0 be a small enough constant so that c

(2)
in < 1 and c

(D)
in < 1 are small enough.

Then there are values C, δ, β > 0 independent of H and of c(2)in such that

Pµ1

[
EOlow ∩Blow(Olow,Wlow) ∩

{
Υ

(1,λ)
low (Olow → Wlow) ≤

H + 1

c
(2)
in

}]
≥ (1− f2(µ1)− η2)(1− µ1)

2 − e−βH − Ce−δ(H+1)/(2c
(2)
in ).

Similarly, there are constants C, δ, β > 0 that are independent of L and of c(D)
in , so that

Pµ2

[
EOup ∩Bup(Oup,Wup) ∩

{
Υ

(1,λ)
up (Oup → Wup) ≤

L+ 1

c
(D)
in

}]
≥ (1− ηD − fD(µ2))(1− µ2)

2 − e−βH − Ce−δ(L+1)/(2c
(D)
in ).

Hence in this context we choose H large enough, so that e−βH +Ce−δ(H+1)/(2c
(2)
in ) < ε.

Third term. By the geodesic path connecting Wlow to B we mean the path of length R

as described in Section 2.1. Define the event

Eseed := {there is a seed on a vertex along the (geodesic) path going from Wlow to B}.
(3.4)

Since
Pµ1

(Eseed) = 1− (1− µ1)
R, (3.5)

then, by choosing R large enough uniformly over µ1 ∈
(
µ
(crit)
1,low, µ

(crit)
1,high

)
, we can make the

above probability arbitrarily close to 1. We emphasize that if the first seed appears at
the beginning of the path, then the passage time of FPPλ along the path is higher than
if it originated towards the end of the path. This can be obtained by a simple coupling
argument. In fact, since λ is small, then when adding a seed the passage time for each
edge e of the path (t

(γ)
e ) is not decreasing. More precisely, if e is preceding the seed, then

t
(γ)
e = t

(1)
e , whereas if e is after the seed, then t

(γ)
e = t

(λ)
e > t

(1)
e . From this observation

together with Lemma 1.6, applied to γ = λ < 1, it follows that for any c0
(1) ∈ (0, 1) fixed,

there is c
(1)
in < 1 such that

Pµ1

[
Υ

(1,λ)
low (Wlow → B) ≤ R

λc
(1)
in

]
≥ Pµ1

[{
Υ

(λ)
low(Wlow → B) ≤ R

λc
(1)
in

}
∩ Eseed

]
(3.5)
≥
(
1− e−c0

(1)R
) (

1− (1− µ1)
R
)
.

(3.6)
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We can now conclude the proof of the first part of the lemma.

Lemma 3.1(i). By plugging all these lower bounds into (3.3) we obtain

Pµ1

[
Υ

(1)
low(O → B) ≤ C+

H + 1

c
(2)
in

+
R

λc
(1)
in

]
≥ (1− ε)(1− µ1)

2
[
(1− f2(µ1)− η2)(1− µ1)

2 − ε
] [

1− e−c0
(1)R

] [
1− (1− µ1)

R
]
.

The statement follows by taking R large enough, uniformly over µ1 ∈
(
µ
(crit)
1,low, µ

(crit)
1,high

)
, so

that e−c0
(1)R ≤ ε and (1− µ1)

R < ε.

3.1.2 Proof of Lemma 3.1(ii), “upper part” of G.

Here we investigate what is likely to happen on the upper part of G. Here D > 5

denotes a large integer that will be specified later. Note that the tree structure implies
that the geodesics have length exactly L+ 1. Also, note the following simple coupling
argument: for any λ < 1, if X is an exponential random variable of parameter 1,
then X/λ is an exponential random variable of parameter λ. Therefore, the sum of
independent exponential random variables of rate λ stochastically dominates the sum of
the independent exponential random variables of rate 1. Then, by Lemma 1.6, for any
fixed c1

(D) > 0 there is a c
(D)
out > 1 so that

Pµ1

[
Υ

(1,λ)
up (O → B) ≥ L+ 1

c
(D)
out

]
≥ Pµ1

[
Υ

(1,λ)
up (Oup → Wup) ≥

L+ 1

c
(D)
out

]
coupling
≥ Pµ1

[
Υ

(1)
up (Oup → Wup) ≥

L+ 1

c
(D)
out

]
≥ 1− e−c1

(D)(L+1).

(3.7)

Now it suffices to take L so large that e−c1
(D)(L+1) ≤ ε and the proof of the lemma is

concluded.

3.2 Proof of Lemma 3.2

As required in Proposition 2.1 (and in the hypotheses of the Lemma), we will assume

that D is large enough and µ2 ∈
(
µ
(crit)
2,low, µ

(crit)
2,high

)
satisfies (2.7). Since D(1−µ2) > 1, then

Pµ2
(Eperc(T2)) = 0 and Pµ2

(Eperc(TD)) > 0. (3.8)

This is clearly not the case for µ = µ1 < 1
2 , and this difference will turn out to be crucial.

3.2.1 Proof of Lemma 3.2(i), “lower part” of G

Consider the connected component containing Olow consisting of vertices T
H

2 which are
not hosting seeds (placed with density µ2). This set has the same distribution as the first
H generations of a subcritical Galton-Watson tree (GWT) whose reproduction rule is a
Bin(2, (1− µ2)).

By letting Pµ2 denote the probability measure defined on the space of Galton-Watson
trees with the above-mentioned distribution, then it is a standard fact that

Pµ2
(subcritical GWT survives for more than H/2 generations) ≤

(
2(1− µ2)

)H/2
.

Thus, the event

Esubcr(H) :=
{

cluster of non-seeds on T
H

2 is a tree of height at most H/2
}

(3.9)
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has probability bounded from below by

Pµ2 (Esubcr(H)) ≥ 1−
(
2(1− µ2)

)H/2
, (3.10)

which can be made as close to 1 as we need, uniformly over all µ2 ∈
(
µ
(crit)
2,low, µ

(crit)
2,high

)
, by

taking a sufficiently large value of H.
Recall the definition Blow(x, y) from (3.2). We will show that it is very likely that,

when restricting the analysis to the lower part, FPPλ takes a very long time before it
can potentially infect Wlow. In order to proceed, we need an auxiliary result.

Lemma 3.5. For the quantities defined above we have

Pµ2

(
Bc

low(Olow,Wlow) ∩
{
Υ

(1,λ)
low (Olow → Wlow) ≥

H/2

c
(2)
out

+
H/2 + 1

λc
(2)
out

})
≥ 1− 2H/2+1e−c1

(2)H/2 −
(
2(1− µ2)

)H/2
.

Proof. For every k ∈ N define L2,k to be the set of vertices at generation k of T
H

2 , that is,

L2,k :=
{
x ∈ V (T

H

2 ) : d
T

H
2
(Olow, x) = k

}
,

where d
T

H
2
(Olow, x) is the distance induced by the graph metric on T

H

2 . We observe that

since λ < 1, via a simple coupling argument (similar to the one outlined in Section 3.1.2),
we see that the probability of the event

Bc
low(Olow,Wlow) ∩

{
Υ

(1,λ)
low (Olow → Wlow) ≥

H/2

c
(2)
out

+
H/2 + 1

λc
(2)
out

}
is bounded from below by the probability of the event{

Υ
(1)
low(Olow → L2,H2

) ≥ H/2

c
(2)
out

}
∩ Esubcr(H) ∩

{
Υ

(λ)
low(L2,H2

→ Wlow) ≥
H/2 + 1

λc
(2)
out

}
. (3.11)

To see this fact more clearly, observe that the event Esubcr(H) only depends on the

vertices up to generation H/2, and that the function Υ
(1)
low does not take into account the

presence of seeds. Lemma 1.6 yields

Pµ2

[{
Υ

(1)
low(Olow → L2,H2

) ≥ H/2

c
(2)
out

}
∩ Esubcr(H)

]
≥
[
1− e−c1

(2)H/2
] [

1−
[
2(1− µ2)

]H/2
]
.

(3.12)

Furthermore, by Lemma 1.6 with γ = λ,

Pµ2

[
Υ

(λ)
low(L2,H2

→ Wlow) ≥
H/2 + 1

λc
(2)
out

]
≥ 1− 2H/2e−c1

(2)
(
H/2+1

)
. (3.13)

Thus, by (3.12) and (3.13) and using independence of the passage times before and after
level L2,H2

,

Pµ2

[{
Υ

(1)
low(Olow → L2,H2

) ≥ H/2

c
(2)
out

}
∩ Esubcr(H) ∩

{
Υ

(λ)
low(L2,H2

→ Wlow) ≥
H
2 + 1

λc
(2)
out

}]

= Pµ2

[{
Υ

(1)
low(Olow → L2,H2

) ≥ H/2

c
(2)
out

}
∩ Esubcr(H)

]
Pµ2

[
Υ

(λ)
low(L2,H2

→ Wlow) ≥
H
2 + 1

λc
(2)
out

]

≥
(
1− e−c1

(2)H/2 −
(
2(1− µ2)

)H/2
)(

1− 2H/2e−c1
(2)
(
H/2+1

))
≥ 1− 2H/2+1e−c1

(2)H/2 −
(
2(1− µ2)

)H/2
,

EJP 29 (2024), paper 85.
Page 17/42

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1145
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


FPPHE is not monotone

as claimed.

Furthermore, Lemma 1.6 applied to the path from Wlow to B when γ = λ < 1 gives

Pµ2

[
Υ

(λ)
low(Wlow → B) ≥ R

λc
(1)
out

]
≥ 1− e−c1

(1)R. (3.14)

Now we are ready to proceed with the proof of the first part of Lemma 3.2.

Proof of Lemma 3.2(i). Since Wlow is a cutpoint we can bound the sought probability as

Pµ2

[
Υ

(1,λ)
low (O → B) ≥ H/2

c
(2)
out

+
H/2 + 1

λc
(2)
out

+
R

λc
(1)
out

]

≥ Pµ2

[
Bc

low(Olow,Wlow) ∩
{
Υ

(1,λ)
low (Olow → Wlow) ≥

H/2

c
(2)
out

+
H/2 + 1

λc
(2)
out

}
∩

∩
{
Υ

(λ)
low(Wlow → B) ≥ R

λc
(1)
out

}]

= Pµ2

[
Bc

low(Olow,Wlow) ∩
{
Υ

(1,λ)
low (Olow → Wlow) ≥

H/2

c
(2)
out

+
H/2 + 1

λc
(2)
out

}]
×

× Pµ2

[
Υ

(λ)
low(Wlow → B) ≥ R

λc
(1)
out

]
.

By Lemma 3.5 the above is bounded from below by(
1− 2H/2+1e−c1

(2)H/2 −
(
2(1− µ2)

)H/2
)
Pµ2

[
Υ

(λ)
low(Wlow → B) ≥ R

λc
(1)
out

]
(3.14)
≥

(
1− 2H/2+1e−c1

(2)H/2 −
(
2(1− µ2)

)H/2
)(

1− e−c1
(1)R

)
.

At this point we can choose R and H so large that, for all values of µ2 ∈
(
µ
(crit)
2,low, µ

(crit)
2,high

)
one has e−c1

(1)R < ε,
(
2(1− µ2)

)H/2
< ε and 2H/2+1e−c1

(2)H/2 < ε, hence the statement
follows.

3.2.2 Proof of Lemma 3.2(ii), “upper part” of G

Similarly to the previous section, consider the variable Υ
(1,λ)
up (O → B), fix any pair of

vertices x, y in the upper part of G and an initial density of seeds µ. For this part of the

proof consider only the upper part of G, more precisely define the passage times {t(γ)e }
as follows. Set t

(γ)

e := t
(γ)
e if the edge e is in the upper part of G, and set t

(γ)

e := ∞, if e is

in the lower part. With respect to the passage times {t(γ)e }e∈E(G), recalling the definition
of Ey from (2.3), define the event

Bup(x, y) := Ey ∩ {FPP1 started at x infects y before FPPλ}. (3.15)

By Proposition 2.1,

Pµ2
[Bup(Oup,Wup)] ≥

(
1− fD(µ2)− ηD

)
(1− µ2). (3.16)

Now we want to show that, with high probability, when the initial density of seeds is

µ2 ∈
(
µ
(crit)
2,low, µ

(crit)
2,high

)
the time needed by FPP1 started at O to reach B is smaller than

that needed by FPPλ.
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Now recall the definition of C from (3.1) and the bounds obtained in Lemma 3.5 and
(3.14). At this point we are ready to prove the second bound of Lemma 3.2.

Proof of Lemma 3.2(ii). We can bound the sought probability by

Pµ2

[{
Υ

(1,λ)
up (O → B) ≤ 2C+

L+ 1

c
(D)
in

}
∩ {Wup is infected by FPP1}

]

≥ Pµ2

[{
Υ

(1,λ)
up (O → B) ≤ 2C+

L+ 1

c
(D)
in

}
∩ EO ∩ EOup ∩Bup(Oup,Wup) ∩ EWup

]
.

(3.17)

Using the fact that Oup and Wup are cutpoints, under the event EO ∩ EOup ∩Bup(Oup,Wup)

we have

Υ
(1,λ)
up (O → B) = Υ

(1,λ)
up (O → Oup) + Υ

(1,λ)
up (Oup → Wup) + Υ

(1,λ)
up (Wup → B),

hence the last line in (3.17) is bounded from below by

Pµ2

[{
Υ

(1,λ)
up (O → Oup) ≤ C

}
∩
{
Υ

(1,λ)
up (Oup → Wup) ≤

L+ 1

c
(D)
in

}
∩

∩
{
Υ

(1,λ)
up (Wup → B) ≤ C

}
∩ EO ∩ EOup ∩Bup(Oup,Wup) ∩ EWup

]
.

(3.18)

Under the event EO ∩ EOup ∩Bup(Oup,Wup) ∩ EWup we have that

• Υ
(1,λ)
up (O → Oup) is equal to Υ

(1)
up (O → Oup);

• Υ
(1,λ)
up (Wup → B) is equal to Υ

(1)
up (Wup → B).

Furthermore, the distributions of such random variables only depend on the passage
times of FPP1, which are independent of the position of the seeds. Therefore, the
quantity in (3.18) is bounded from below by

Pµ2

[{
Υ

(1)
up (O → Oup) ≤ C

}
∩ EO

]
Pµ2

[
Υ

(1)
up (Wup → B) ≤ C

]
×

× Pµ2

[{
Υ

(1,λ)
up (Oup → Wup) ≤

L+ 1

c
(D)
in

}
∩ EOup ∩Bup(Oup,Wup) ∩ EWup

]
(3.1)
≥ (1− ε)2(1− µ2)

2Pµ2

[{
Υ

(1,λ)
up (Oup → Wup) ≤

L+ 1

c
(D)
in

}
∩ EOup ∩Bup(Oup,Wup)

]

For the last term of the last line, we proceed analogously to the proof of Lemma 3.1.
Consider now a sufficiently small value of c(D)

in . By using similar arguments to the ones
mentioned in Section 3.1.1, in particular by Claim 3.4, one finds that there are constants
C, δ, β > 0 that are independent of L and of c(D)

in , so that

Pµ2

[{
Υ

(1,λ)
up (Oup → Wup) ≤

L+ 1

c
(D)
in

}
∩ EOup ∩Bup(Oup,Wup)

]
≥ (1− ηD − fD(µ2))(1− µ2)

2 − e−βH − Ce−δ(L+1)/(2c
(D)
in ).

Now it suffices to pick L,H large enough so that e−βH +Ce−δ(L+1)/(2c
(D)
in ) < ε. By putting

all these bounds together into (3.17) and using (3.16), we obtain the claim.
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4 Proof of Proposition 2.3

We start with a technical lemma which we use to appropriately set H,R and L.

Lemma 4.1. As before, we consider λ to be an arbitrarily small constant fixed before-
hand; let D be large. For C fixed as in (3.1), for any large integer R, there is a choice of
values H,L, so that

H + 1

c
(2)
in

+
R

λc
(1)
in

+ C <
L+ 1

c
(D)
out

, (4.1)

and
H/2

c
(2)
out

+
H/2 + 1

λc
(2)
out

+
R

λc
(1)
out

> 2C+
L+ 1

c
(D)
in

(4.2)

hold simultaneously.

Proof. By solving (4.1) and (4.2) for (L + 1) and comparing the results, we see that it
suffices to prove the following (stronger) condition,

c
(D)
out

(
H + 1

c
(2)
in

+
R

λc
(1)
in

+ 2C

)
+ 1 < c

(D)
in

(
H/2

c
(2)
out

+
H/2

λc
(2)
out

+
R

λc
(1)
out

− 2C

)
. (4.3)

In other words, (4.3) ensures that we can use (4.1) and (4.2) at the same time. The
value “+1” on the left-hand side guarantees we can pick a large integer L depending on
λ,H,R,C, c

(1)
in , c

(2)
in , c

(D)
in , c

(1)
out, c

(2)
out, c

(D)
out that satisfies both (4.1) and (4.2). Relation (4.3)

is equivalent to

c
(D)
out

c
(2)
in

+
R

λ

(
c
(D)
out

c
(1)
in

− c
(D)
in

c
(1)
out

)
+ 2C

(
c
(D)
out + c

(D)
in

)
+ 1 < H

(
c
(D)
in

2c
(2)
out

(
1 +

1

λ

)
− c

(D)
out

c
(2)
in

)
. (4.4)

Recall from Lemma 1.6 that c(d)out > 1 > c
(d)
in for all d. Suppose now that R is a large value

chosen in a convenient way. Then we need to check that the coefficient of H is positive,
that is,

c
(D)
in

2c
(2)
out

(
1 +

1

λ

)
− c

(D)
out

c
(2)
in

> 0,

which is guaranteed for all values 0 < λ < λ0 where we have set

λ0 :=
c
(D)
in c

(2)
in

2c
(2)
outc

(D)
out − c

(D)
in c

(2)
in

> 0.

The proof is now completed since, after fixing R, it suffices to choose H large enough so
that (4.4) is satisfied.

Now we proceed by showing that for all µ1 ∈
(
µ
(crit)
1,low, µ

(crit)
1,high

)
, it is likely that B is

infected by the process spreading in the lower part of the tile, whereas for all µ2 ∈(
µ
(crit)
2,low, µ

(crit)
2,high

)
it is likely to be the opposite. We recall that, as in Lemma 3.2, the

event {Wup is infected by FPP1} is restricted to the upper part of the tile, so we do not
consider the possibility that Wup is infected by B.

Lemma 4.2. Let G be constructed as in Section 2.1. Fix a large integer D and a small
enough λ > 0. Then there are values 0 < µ

(crit)
1,low < µ

(crit)
1,high < 1/2 < µ

(crit)
2,low < µ

(crit)
2,high < 1

satisfying

D
(
1− µ

(crit)
2,high

)
> 1 and D2

(
1− µ

(crit)
2,low

)2 (
µ
(crit)
2,high

)D−1

< 1,
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as well as values H, L and R satisfying Lemma 4.1 together with (3.6) and (3.14), so
that

Pµ1

(
Υ

(1,λ)
low (O → B) < Υ

(1,λ)
up (O → B)

)
≥ 1− η2 − f2(µ1)− 5ε− 4µ1,

Pµ2

({
Υ

(1,λ)
low (O → B) > Υ

(1,λ)
up (O → B)

}
∩ {Wup is infected by FPP1}

)
≥ (1− 5ε)(1− µ2)

2
[(
1− ηD − fD(µ2)

)
(1− µ2)

2 − ε
]
,

where η2 and ηD are obtained as in Proposition 2.1.

Proof. In order to bound the first formula we use Lemma 3.1 together with relation (4.1)
and the fact that FPPHE spreads in the upper and lower part of the tile independently
(until B gets infected). We find that

Pµ1

(
Υ

(1,λ)
low (O → B) < Υ

(1,λ)
up (O → B)

)
≥ Pµ1

[{
Υ

(1,λ)
low (O → B) ≤ C+

H + 1

c
(2)
in

+
R

λc
(1)
in

}
∩
{
Υ

(1,λ)
up (O → B) ≥ L+ 1

c
(D)
out

}]
≥
(
1− ε

)3(
1− µ1

)2[
(1− f2(µ1)− η2)(1− µ1)

2 − ε
]
(1− ε),

implying the first part of the claim. Analogously, for the second formula of the statement
we use Lemma 3.2, relation (4.2) and again independence of FPPHE in the upper and
lower part, finding

Pµ2

({
Υ

(1,λ)
low (O → B) > Υ

(1,λ)
up (O → B)

}
∩ {Wup is infected by FPP1}

)
≥ Pµ2

[{
Υ

(1,λ)
low (O → B) ≥ H/2

c
(2)
out

+
H/2 + 1

λc
(2)
out

+
R

λc
(1)
out

}
∩
{
Υ

(1,λ)
up (O → B) ≤ 2C+

L+ 1

c
(D)
in

}
∩

∩ {Wup is infected by FPP1}
]

≥ (1− 3ε)(1− ε)2(1− µ2)
2
[(
1− ηD − fD(µ2)

)
(1− µ2)

2 − ε
]
,

which implies the claim.

Now recall that λ is small enough and note that, given µ
(crit)
2,high, the function fD(µ

(crit)
2,high)

is decreasing in D. Moreover, by Proposition 2.1(iii), the quantity
(
1−ηD−fD(µ

(crit)
2,high)

)
(1−

µ
(crit)
2,high)

2 can be made positive by choosing D large enough. Hence, let D be so large that,

for all µ2 ∈
(
µ
(crit)
2,low, µ

(crit)
2,high

)
one has

(
1 − ηD − fD(µ2)

)
(1 − µ2)

2 > 0. Hence we assume

that ε is so that, uniformly in µ2 ∈
(
µ
(crit)
2,low, µ

(crit)
2,high

)
,

ε < min

{
1

700
, (1− ηD − fD(µ2))(1− µ2)

2

}
. (4.5)

Since
(
1− ηD − fD(µ2)

)
(1− µ2)

2 − ε > 0, define

Φ := sup
µ2∈

(
µ
(crit)
2,low, µ

(crit)
2,high

)
⌈

2D3

99
100

[(
1− ηD − fD(µ2)

)
(1− µ2)2 − ε

]⌉ ; (4.6)

this quantity will be left constant throughout. Now we are ready to prove Proposition
2.3. Here we shall use that the critical value µ

(crit)
1,high is small enough; more precisely, with

the notation above, let µ1 := sup{µ ∈ (0, 1) : 7ε+ 5µ+ η2 + f2(µ) < 1/Φ}. Then we need

0 < µ
(crit)
1,high ≤ µ1. (4.7)
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Proof of Proposition 2.3. Start by considering µ1 ∈
(
µ
(crit)
1,low, µ

(crit)
1,high

)
and recall the defini-

tion of Ey from (2.3). Then, since R was so that (1− µ1)
R < ε (cf. (3.6) and (3.14)).

Pµ1 (B is infected by FPP1)

≤ Pµ1

({
Υ

(1,λ)
low (O → B) > Υ

(1,λ)
up (O → B)

}
∩ EB

)
+ Pµ1 (there is no seed on the path to B)

Lem. 4.2
≤

(
1− (1− 5ε− 4µ1 − η2 − f2(µ1))

)
(1− µ1) + (1− µ1)

R−1

< 5ε+ 5µ1 + η2 + f2(µ1) + 2ε.

Using the fact that ε is small (cf. (4.5)), as well as λ, together with (4.7), then, for all

µ1 ∈
(
µ
(crit)
1,low, µ

(crit)
1,high

)
we have 7ε + 5µ1 + η2 + f2(µ1) < 1/Φ, concluding the first part.

Analogously,

Pµ2
(B is infected by FPP1)

≥ Pµ2

[{
Υ

(1,λ)
low (O → B) > Υ

(1,λ)
up (O → B)

}
∩ EB ∩ {Wup is infected by FPP1}

]
Lem. 4.2

≥ (1− 5ε)
[(
1− ηD − fD(µ2)

)
(1− µ2)

2 − ε
]
(1− µ2)

3

(2.7)
> (1− 5ε)

[(
1− ηD − fD(µ2)

)
(1− µ2)

2 − ε
] 1

D3
.

By our assumption on ε we have that 1− 5ε > 99/100. By (4.6),

(1− 5ε)
[(
1− ηD − fD(µ2)

)
(1− µ2)

2 − ε
] 1

D3
≥ 2

Φ
>

1

Φ
,

as claimed.

5 Analysis of FPPHE on a finite tree: proof of Proposition 2.1

In this section we analyze FPPHE on the tree T
m

d and prove Proposition 2.1. Since the
proof is articulated into several intermediate results, we provide a sketch. The idea is the
following. If FPPλ occupies W , then we can find an index i ∈ {1, . . . ,m} corresponding
to a generation, such that there is a seed at generation i that is activated by FPP1 and
which belongs to the geodesic that reaches W . Note that i is the generation of the first
seed in the geodesic between the root and W .

Once we fix an arbitrarily small constant ε0 > 0, “Step 1” and “Step 2” below deal
with the cases i ≤ ⌈(1− ε0)m⌉ and i > ⌈(1− ε0)m⌉ respectively. From now on, in order to
avoid cumbersome notation, instead of writing ⌈(1− ε0)m⌉ we only write (1− ε0)m.

Step 1. Fix an arbitrarily small constant ε0 > 0. We start by showing that the
probability that there is a seed at some generation i ≤ (1− ε0)m that originates a FPPλ

process which will reach level m much quicker than expected, decreases exponentially
fast in m. The underlying idea is that if i ≤ (1− ε0)m, then, in order to reach generation
m, FPPλ has to cross at least ε0m edges, and since m is large, this is unlikely. This step
then will show that if FPPλ does occupy W , then it is more likely that it did so from a
seed within distance ε0m of W .

Step 2. Subsequently, we take care of what happens at levels i for (1− ε0)m ≤ i ≤ m.
Since the seed is close to W , we cannot argue that the path traversed by FPPλ from
the seed to W has a large delay with respect to what FPP1 would have had. Note that
with probability at least µ the fastest path to W will have a seed in its last vertex before
reaching W . Therefore, in order to give an upper bound to the probability that W is
occupied by FPPλ, we will consider what happened on the tree before level (1− ε0)m.
For simplicity, set j := m− i; here is the idea behind this procedure.
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(i) We show that for all j ∈ {1, . . . , ⌊ε0m⌋}, it is likely that all vertices of type FPP1 at
level j are infected within some time proportional to j.

(ii) Fix j ∈ {1, . . . , ⌊ε0m⌋}. We consider the (unique, if any) geodesic of vertices infected
by FPP1 started at each vertex at level j described in (i), and ended at the first
infected vertex at level m − j. Note that up to level m − j − 1 such line consists
of vertices infected by FPP1, whereas the one at level m− j can be either of type
FPP1 or a seed.

(iii) We use a relation between first passage percolation and a continuous-time branch-
ing random walk, as well as concentration results for the latter, to show that all
vertices at level m − j described in (ii) are infected within a time that is very
concentrated around its expected value (which is of order m− j).

(iv) Next, we show that the probability that among the first-infected particles described
in (iii) there is a non-seed originating a FPP1 process that infects level m before
any other process does is high.

Before proceeding we make a brief reflection about the steps above. Part (i) is used
to get several independent vertices at level j to be occupied by FPP1, for which the
arrival time at level j is within distance of order j of one another. Parts (ii) and (iii) give
that each such vertex will give rise to a geodesic path to level m− j, whose passage time
is very concentrated around a given value of order m − j. Call the collection of such
geodesic paths P. Since m− j is much bigger than j, the paths in P all arrive at level
m− j within a small time interval. Part (iv) gives that, since P reaches several vertices
at level m− j, it is unlikely that too many of them are occupied by seeds. Similarly, since
P is large, it is unlikely that a seed from level m− j that is activated by a non-geodesic
path (that is, by a path not in P) arrives at level m faster than the paths in P.

Recall that d ≥ 2 is the degree of the tree, and consider µ as in the statement of the
proposition. In this proof we will deal with the first passage times restricted to T

m

d , thus

to make this more explicit we shall write Υ
(1,λ)

T
m
d

. Recall that m is chosen to be large. For

d ≥ 2 and 0 ≤ k ≤ m let

Lk = Ld,k := {x ∈ V (T
m

d ) : dTm
d
(o, x) = k},

that is, the set of all vertices of T
m

d at distance k from the root.

Auxiliary facts. For d ≥ 2 and µ as in (2.7), for all levels i ∈ {1, . . . ,m} define the
events

Bi :={∃ seed in Li which is infected by FPP1 and

gives rise to a FPPλ process that infects Lm first}.
(5.1)

These are “bad” events, thus we need to show that the probability that there is a level i
for which Bi occurs is small. To shorten the notation, sometimes we shall write “vertex
x is of type 1 (resp. λ)” as an equivalent formulation of “vertex x is of type FPP1 (resp.
FPPλ)”.

A fundamental tool is provided by [1, Theorem 3] which we recall below. Let γ ∈ {1, λ}.
For d ≥ 2 and each i, n ∈ {1, . . . ,m} with i < n, and for every fixed x ∈ Li, x of type γ, set

M
(γ)
i,n (x) := inf

y∈Ln, y of type γ, y descendant of x
{Υ(γ)

T
m
d

(x → y)}, (5.2)

with the standard convention that inf{∅} := +∞, and thus define

M
(γ)
i,n := inf

x∈Li, x of type γ
M

(γ)
i,n (x).
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In words, M (γ)
i,n is the time needed by the quickest among the infections started at any

x ∈ Li to reach Ln when the infection spreads at rate γ. Now we consider a Galton-
Watson branching process (where individuals have i.i.d. offspring) whose branching
distribution is given by Bin(d, (1− µ)). Define S to be the event

S := {branching process with distribution given by Bin(d, (1− µ)) survives}.

By (2.2),

Pµ(S ) = 1− fd(µ). (5.3)

Description of a Branching Random Walk in Continuous Time (BRWCT). We
will couple the process FPP1 inside T

m

d with initial density of seeds µ with a BRWCT on
R as follows.

• Each vertex of type FPP1 corresponds to an individual in the BRWCT. The origin o

plays the role of the starter of the progeny, and for j ∈ {0, . . . ,m− 1} we say that
individual u ∈ Lj is the father of x ∈ Lj+1 if and only if (a) u and x are not seeds,
and (b) {u, x} ∈ E(T

m

d ). For x, y ∈ V (T
m

d ), we say that y is a descendant of x if
there is a line of fathers from y to x.

• The distribution governing the underlying random walk has (independent) incre-
ments distributed as exponentials of parameter γ = 1.

• The offspring distribution is binomial with parameters d and 1− µ.

• The above defines the BRWCT up to generation m; from generation m+ 1 onwards,
we let the BRWCT evolve independently of FPP1 on T

m

d .

Whenever we will write “GWT” we will mean a Galton-Watson Tree having this distribu-
tion. Also, from the coupling above, we see that the event that the BRWCT survives does
not depend on the passage times of FPP1, but just on the location of the seeds.

Similarly, we couple the evolution of FPPλ on Td from each seed activated by FPP1

as independent BRWCT on R by setting the offspring distribution to be the constant
d, and the distribution governing the underlying random walk to have (independent)
increments as exponentials of parameter γ = λ. Clearly, individuals here correspond
to vertices of type FPPλ, and each progeny is started by a seed. The theorem below is
the concentration result we shall use. The measure P below is defined on the space of
the trajectories of BRWCT on R, where the branching mechanism and the step size are
governed by the prescribed distributions.

Theorem 5.1 ([1, Theorem 3, adapted to our setting]). Consider a supercritical BRWCT
on R with branching distribution Bin(d, (1 − µ)) and step size X ∼ Exp(γ) (for a fixed
γ > 0) coupled with FPPHE as specified above. Then, for each fixed x ∈ Li there exist
constants Cx > 0, δx > 0 which depend on γ, such that for all α > 0 and all n ≥ 1

P
(∣∣∣M (γ)

i,n (x)− E
(
M

(γ)
i,n (x) | S

)∣∣∣ > α | S
)
≤ Cxe

−δxα,

where M
(γ)
i,n (x) was defined in (5.2).

Remark 5.2. It follows from the definition that, whenever the branching distribution
is Bin(d, (1 − µ)), the measure P above can be coupled with Pµ. From now on, for

every measurable event E define P̃µ[E] := Pµ[E | S ], that is, the probability measure P̃µ

coincides with Pµ conditioned on the event of survival S . Consistently, the corresponding

expectation will be denoted by Ẽµ.
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5.1 Proof of Claim 3.4

Before continuing with the proof of Proposition 2.1, in this short section we use the
auxiliary results stated above to establish Claim 3.4, in particular we will only write the
proof for the lower part, as it is completely analogous for the upper part.

Proof of Claim 3.4. Start by defining the following auxiliary event

E := {∃ a path π from Olow to Wlow that is free of seeds and s.t. Υ(1)
low(π) ≤

H + 1

c
(2)
in

}.

We can bound the sought probability from below as follows,

Pµ1

[
EOlow ∩Blow(Olow,Wlow) ∩

{
Υ

(1,λ)
low (Olow → Wlow) ≤

H + 1

c
(2)
in

}]
≥ Pµ1

[
EOlow ∩Blow(Olow,Wlow) ∩ E ∩ S

]
= Pµ1

[EOlow ∩Blow(Olow,Wlow) ∩ S ]− Pµ1

[
EOlow ∩Blow(Olow,Wlow) ∩ E

c ∩ S
]
.

Now let S not
H denote the event that the GWT survives for H + 1 generations but it does

not survive forever. At this point, the above expression is at least

Pµ1
[EOlow ∩Blow(Olow,Wlow) ∩ S ]− Pµ1

[
E

c ∩ S
]

≥ Pµ1
[EOlow ∩Blow(Olow,Wlow) ∩ S ]− Pµ1

[
E

c | S
]

= Pµ1
[EOlow ∩Blow(Olow,Wlow)]− Pµ1

[EOlow ∩Blow(Olow,Wlow) ∩ S c]− P̃µ1

[
E

c
]

≥ Pµ1
[EOlow ∩Blow(Olow,Wlow)]− Pµ1

[
S not

H

]
− P̃µ1

[
E

c
]
.

By Proposition 2.1 the first term in the last line is bounded from below by (1− f2(µ1)−
η2)(1− µ1)

2. Regarding the second term, it suffices to recall that a super-critical GWT
conditioned on dying out has the same distribution of a sub-critical Galton-Watson tree
(cf. [2, Section I.12]). Thus, the event S not

H is so that there is a constant β > 0 dependent
on µ1 but independent of H, so that

Pµ1

[
S not

H

]
≤ e−βH .

In order to bound the third term we proceed as follows. Since the event Υ(1)
low(π) >

H+1

c
(2)
in

must hold for all paths of length H + 1 starting at Olow that are free of seeds, it holds for
the one with minimum passage time. By construction, it is easy to see that there is a
constant C ′ > 0 (independent of H) so that

Ẽµ

[
M

(1)
0,H+1

]
≤ C ′(H + 1).

Furthermore, we shall assume that the constant c(2)in in the statement is so that 1/c(2)in ≥
2C ′. Thus,

P̃µ1

[
E

c
]
≤ P̃

(∣∣∣M (1)
0,H+1(Olow)− Ẽ

(
M

(1)
0,H+1(Olow)

)∣∣∣ > ( 1

c
(2)
in

− C ′
)
(H + 1)

)

≤ P̃
(∣∣∣M (1)

0,H+1(Olow)− Ẽ
(
M

(1)
0,H+1(Olow)

)∣∣∣ > H + 1

2c
(2)
in

)
Thm 5.1

≤ COlowe
−δOlow

(H+1)/(2c
(2)
in ),

concluding the proof.

EJP 29 (2024), paper 85.
Page 25/42

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1145
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


FPPHE is not monotone

5.2 Step 1, taking care of levels up to (1− ε0)m

We start by showing that it is unlikely that FPPλ originated from any seed located far
away from Lm reaches level m too quickly. To achieve this we show that the probability of
the occurrence of a bad event Bi (cf. (5.1)) at some level much earlier than m decreases
exponentially fast.

Now we proceed with our analysis as follows. Fix an arbitrarily small constant ε0 > 0;
for any fixed i ≤ (1− ε0)m the event Bi necessarily implies that there must be a vertex
xi ∈ Li hosting a seed (and whose tree-geodesic to the origin is free of seeds), which
starts a FPPλ process such that

M
(λ)
i,m(xi) < M

(1)
0,m −Υ

(1)

T
m
d

(o → xi).

For simplicity, let M(xi) denote this event, then

Bi ⊆ {∃ a seed xi ∈ Li : M(xi) is realized} . (5.4)

We shall proceed with bounding the probability of the RHS of the above. We shall use
the obvious fact that M(xi) ⇒ M

(λ)
i,m(xi) < M

(1)
0,m. Fix a large constant c1 > 0, and define

the following auxiliary event

A(1) :=
{
M

(1)
0,m < (1 + c1)Ẽµ

[
M

(1)
0,m

]}
.

The value M
(1)
0,m is a minimum over all paths starting at the origin as FPP1 and arriving

to Lm as FPP1. Thus it is easy to see that there is a constant C ′ > 0 (independent of m)
so that

Ẽµ

[
M

(1)
0,m

]
≤ C ′m. (5.5)

Similarly, there must be a constant C∗ > 0 independent of λ, such that for all 0 ≤ i < n ≤
m

Eµ

[
M

(λ)
i,n

]
≥ C∗

λ
(n− i). (5.6)

We shall proceed by showing that P̃µ [∃ i ≤ (1− ε0)m s.t. ∃ seed xi : M(xi) occurs] de-
creases exponentially fast in m.

Claim 5.3. Given ε0 > 0, for all λ > 0 small enough, there is a constant α1 = α1(λ, ε0) > 0

independent of m such that

P̃µ

[
∃ i ≤ (1− ε0)m s.t. ∃ seed xi : M(xi) ∩ A(1)

]
≤ e−α1m.

Proof. By definition, the event M(xi) ∩ A(1) implies

M
(λ)
i,m(xi) < M

(1)
0,m ≤ (1 + c1)Ẽµ

[
M

(1)
0,m

]
. (5.7)

Thus, relation (5.7) together with (5.5) imply

M
(λ)
i,m(xi) ≤ (1 + c1)C

′m = (1 + c1)C
′(m− i) + (1 + c1)C

′i

i≤(1−ε0)m

≤ (1 + c1)C
′(m− i) + (1 + c1)C

′(1− ε0)m

= (1 + c1)C
′(m− i) +

(1 + c1)C
′

ε0

ε0(1− ε0)m
ε0m≤m−i

< C ′′(m− i),

for some constant C ′′ > 0 which depends on ε0 but is independent of i and m. By (5.6),

Ẽµ

[
M

(λ)
i,m(xi)

]
≥ C∗

λ
(m− i). (5.8)
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By putting these facts together we find that

M
(λ)
i,m(xi) < C ′′(m− i) <

C ′′

C∗ λẼµ

[
M

(λ)
i,m(xi)

]
. (5.9)

Since λ is small enough, relations (5.8) and (5.9) ensure that there is a constant c2 > 0

such that uniformly over all i ≤ (1− ε0)m,

M
(λ)
i,m(xi) < Ẽµ

[
M

(λ)
i,m(xi)

]
− c2

1

λ
(m− i).

In particular, we have that

P̃µ

[
M(xi) ∩ A(1)

]
≤ di max

xi∈Li

P̃µ

(∣∣∣M (λ)
i,m(xi)− Ẽµ

[
M

(λ)
i,m(xi)

]∣∣∣ > c2

λ
(m− i)

)
, (5.10)

where in the last step we used a union bound over all vertices of Li. Thus,

P̃µ

(
∃ i ≤ ⌈(1− ε0)m⌉ s.t. ∃ seed xi ∈ Li : M

(λ)
i,m(xi) < Ẽµ

[
M

(λ)
i,m(xi)

]
− c2

λ
(m− i)

)
(5.10)
≤

⌈(1−ε0)m⌉∑
i=1

di max
xi∈Li

P̃µ

(∣∣∣M (λ)
i,m(xi)− Ẽµ

[
M

(λ)
i,m(xi)

]∣∣∣ > c2

λ
(m− i)

)
Thm. 5.1

≤
⌈(1−ε0)m⌉∑

i=1

Cdi e−δ(m−i)c2/λ ≤ e−α1m,

where the very last inequality follows from the facts that λ is small enough (in order to
have dm e−δε0mc2/λ < 1 to ensure summability) and i ≤ ⌈(1− ε0)m⌉.

The following result is of the same fashion.

Claim 5.4. Given ε0 > 0, there is a constant α2 = α2(ε0) > 0 independent of m so that

P̃µ

[
Ac

(1)

]
≤ e−α2m.

Proof. By definition of A(1), we obtain

P̃µ

[
Ac

(1)

]
≤ P̃µ

[∣∣∣M (1)
0,m − Ẽµ

[
M

(1)
0,m

]∣∣∣ ≥ c1Ẽµ

[
M

(1)
0,m

]] Thm 5.1
≤ Ce

−δc1Ẽµ

[
M

(1)
0,m

]
.

The quantity M
(1)
0,m is a minimum over all paths starting at the origin as FPP1 and arriving

to Lm as FPP1, therefore it is easy to see that there is a constant C > 0 such that

Ẽµ

[
M

(1)
0,m

]
≥ Cm,

implying the statement for a suitable choice of α2 > 0.

Lemma 5.5. Given ε0 > 0, for all small enough λ > 0 there exists a constant δ′ =

δ′(λ, ε0) > 0 independent of m, such that

P̃µ

(1−ε0)m⋂
i=1

Bc
i

 ≥ 1− e−δ′m.

Proof. For all i ≤ (1− ε0)m, for each seed xi ∈ Li we have

P̃µ [M(xi)] = P̃µ

[
M(xi) ∩ A(1)

]
+ P̃µ

[
M(xi) ∩ Ac

(1)

]
. (5.11)
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The proof is now a simple consequence of the previous two claims, in fact by (5.4)

P̃µ

(1−ε0)m⋃
i=1

Bi

 ≤ P̃µ

 ⋃
i≤(1−ε0)m

{∃ a seed xi ∈ Li : M(xi) is realized}


(5.11) and Claims 5.3, 5.4

≤ e−α1m + e−α2m.

Since α1,α2 are independent of m, the statement follows.

5.3 Step 2, subsequent levels

In this section we will bound the probability of the event

m⋃
i=(1−ε0)m+1

Bi.

Since this part is more delicate, we need to control the probabilities of the Bi’s in a more
refined way. We proceed by using the BRWCT representation that we defined before.
Recall that by “GWT” we mean the Galton-Watson tree with offspring distribution given
by Bin(d, 1− µ). For any individual u in the GWT define

tu := birth time of u, (5.12)

where the root o was born at time 0, that is to = 0. From the definition of BRWCT we
have

tu
law
= Υ

(1,λ)

T
m
d

(o → u).

To make the proof more readable, from now on we set

ℓ := ⌊ε0m⌋. (5.13)

Now for each j ∈ {1, . . . , ℓ} define

Nj := {individuals at j-th generation of the GWT}, (5.14)

and let Nj := |Nj |. Consider a large constant C1 > 0 (which will be specified later) and
set

Kj := {u ∈ Nj : tu ≤ C1j}, (5.15)

and let Kj := |Kj |. In words, Kj is the subset of Nj of individuals born within time C1j.
Recall the technical conditions on µ from (2.7) and fix two small constants ε1 > 0 and

ε2 > 0. With this notation in mind, we define a sequence of “good” events, namely for
j ∈ {1, . . . , ℓ} set

Aj :=
{
Kj ≥ ε2

(
d(1− µ)

)(1−ε1)j
}
. (5.16)

In order to continue, we need an auxiliary result. Recall that P̃µ(·) = P(· | S ) is the
probability measure conditioned on the event of survival of GWT.

Lemma 5.6. Assume that d and µ satisfy (2.7) and ε1, ε2 are as above. Then there are
two positive constants c3 = c3(ε1) <

ε1

2 log(d(1 − µ)) and C2 = C2(ε1, ε2) such that for all
1 ≤ j ≤ ℓ,

P̃µ

(
ε2

(
d(1− µ)

)(1−ε1)j ≤ Nj ≤
1

ε2

(
d(1− µ)

)(1+ε1)j
)

≥ 1− C2e
−c3j . (5.17)

In particular, C2 can be made arbitrarily small by choosing ε2 small enough.
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Proof. For all j ∈ {1, . . . , ℓ} we have

P̃µ

(
Nj(

d(1− µ)
)j ≥ 1

ε2

(
d(1− µ)

)ε1j

)
≤
Pµ

(
Nj(

d(1−µ)
)j ≥ 1

ε2

(
d(1− µ)

)ε1j

)
Pµ(S )

≤ 1

Pµ(S )

Eµ

[
Nj(

d(1−µ)
)j ] ε2(

d(1− µ)
)ε1j

=
1

Pµ(S )

ε2(
d(1− µ)

)ε1j
≤ C2e

−c3j

2
.

The above inequalities follow from Markov’s inequality, from the fact that EµNj =(
d(1− µ)

)j
and that c3 < ε1 log(d(1− µ)).

To bound the reverse inequality we re-write the sought quantity to apply Markov’s
inequality,

P̃µ

(
Nj(

d(1− µ)
)j ≤ ε2

(
d(1− µ)

)−ε1j

)
= P̃µ

((
d(1− µ)

)j
Nj

≥ 1

ε2

(
d(1− µ)

)ε1j

)

≤ Ẽ
[(

d(1− µ)
)j

Nj

]
ε2

(
d(1− µ)

)−ε1j ≤ exp

{∣∣∣∣∣log Ẽ
[(

d(1− µ)
)j

Nj

]∣∣∣∣∣
}
ε2

(
d(1− µ)

)−ε1j
.

(5.18)

Hence our next aim is to bound the expression exp

{∣∣∣∣∣log Ẽ
[(

d(1−µ)
)j

Nj

]∣∣∣∣∣
}
. To do so, we

employ [16, Corollary 1], which says that under the so-called L logL condition (which is
satisfied here, since the offspring distribution of GWT is binomial) we have that

lim
n

1

n
log Ẽ

[
1

Nn

]
= max {log(p1), − log(E(N1))} ,

where p1 := P(N1 = 1). In our specific case this translates into

lim
n

1

n
log Ẽ

[
1

Nn

]
= max

{
log
(
d(1− µ)µd−1

)
, − log(d(1− µ))

}
.

Given that d and µ must satisfy (2.7), we obtain that log
(
d(1− µ)µd−1

)
< − log(d(1− µ)),

implying that for any fixed ε′ > 0, for all n sufficiently large we have∣∣∣∣ 1n log Ẽ

[
1

Nn

]
+ log(EN1)

∣∣∣∣ < ε′.

From now on, for convenience, we set ε′ := ε1

2 log(EN1). Thus, for all n large enough,
the above can be rewritten as

exp

{∣∣∣∣log Ẽ [ 1

Nn
(EN1)

n

]∣∣∣∣} < exp{ε′n} ε′=ε1 log(EN1)/2
= (d(1− µ))ε1n/2.

Hence, there is a constant C ′ > 0 such that uniformly for all j ≥ 1 we have

exp

{∣∣∣∣log Ẽ [ 1

Nj
(EN1)

j

]∣∣∣∣} < C ′(d(1− µ))ε1j/2. (5.19)

Thus, replacing this quantity in (5.18) we obtain

P̃µ

[
Nj(

d(1− µ)
)j ≤ ε2

(
d(1− µ)

)−ε1j

]
(5.18), (5.19)

≤ C ′(d(1− µ))ε1j/2ε2

(
d(1− µ)

)−ε1j
,
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which equals C ′ε2

(
d(1−µ)

)−ε1j/2. Since c3 <
ε1

2 log(d(1−µ)) then, for all j ∈ {1, 2, . . . , ℓ},

P̃µ

(
Nj(

d(1− µ)
)j ≤ ε2

(
d(1− µ)

)−ε1j

)
≤ C ′ε2

(
d(1− µ)

)−ε1j/2 ≤ C2e
−c3j

2
,

finishing the proof. In particular, C2 can be made arbitrarily small by picking ε2 small
enough.

Here we recall an auxiliary result that can be found e.g. in [13], which will allow us
to proceed. The following statement and Lemma 1.6 are strongly related. In the result
below we denote by P the probability measure defined on all possible realizations of the
sums of independent random variables with the prescribed distribution.

Theorem 5.7. [13, Thm 5.1(i),(iii)] Let X :=
∑K

k=1 Xk, where {Xk}k is a collection of
independent random variables such that Xk ∼ Exp(ak) for some constants ak > 0 and let
a∗ := mink ak. Then the following bounds hold.

(i) For all fixed δ > 0 we have P
(
X ≥ (1 + δ)EX

)
≤ 1

1+δ exp
{
−a∗EX(δ − ln(1 + δ))

}
.

(ii) For all fixed 0 < δ < 1 we have P
(
X ≤ (1− δ)EX

)
≤ exp

{
−a∗EX(−δ − ln(1− δ))

}
.

Claim 5.8. For every j ∈ {1, . . . , ℓ}

P̃µ [The entire generation Nj is born by time C1j] ≥ 1− 1

C1

e−jC1/2.

Proof. By Theorem 5.7, with high probability all particles of generation j of GWT are
born within time C1j, for some C1 large enough. Clearly, for all j ∈ {1, . . . , ℓ},

P̃µ [Entire generation Nj is born by time C1j] ≥ 1− P̃µ

[
∃ individual in Nj born after time C1j

]
.

Now, let {Xk}k denote an i.i.d. sequence of exponential random variables with parameter
1. By a union bound we obtain that the above probability is bounded from below by

1− djP

[
j∑

k=1

Xk ≥ C1j

]
Thm 5.7(i)

≥ 1− dj
1

C1

e−j
(
C1−1−ln(C1)

)
= 1− 1

C1

e−j
(
C1−1−ln(C1)−ln(d)

)
C1 large
≥ 1− 1

C1

e−jC1/2.

This concludes the proof.

The next result proves that for all j ∈ {1, . . . , ℓ}, it is likely that at level j there are a
lot of vertices of type FPP1 which have been infected by time C1j.

Lemma 5.9. Given any small constant ε3 > 0, we can choose ε1 > 0 in (5.16) such that

P̃µ

(
∃ j ∈ {1, . . . , ℓ} s.t. Ac

j occurs
)
≤ ε3.

Proof. The probability P̃µ

(
Kj ≥ ε2(d(1− µ))(1−ε1)j

)
is bounded from below by

P̃µ

[
{Entire Nj born by time C1j} ∩

{
Nj ≥ ε2(d(1− µ))(1−ε1)j

}]
≥ 1− P̃µ [{Entire Nj born by time C1j}c]− P

[
Nj < ε2(d(1− µ))(1−ε1)j

]
.

The last term of the sum is taken care of by Lemma 5.6, while for the middle term we
rely on Claim 5.8. Using these facts we obtain that for every j ∈ {1, . . . , ℓ}

P̃µ(A
c
j) ≤

1

C1

e−jC1/2 + C2e
−c3j .
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Hence it suffices to pick C1 = C1(d, ε3) large enough and ε2 = ε2(ε3), ε1 = ε1(ε3) so that

ℓ∑
j=1

1

C1

e−jC1/2 ≤ ε3

2
and

ℓ∑
j=1

C2e
−c3j ≤ ε3

2
, (5.20)

in order to obtain
∑ℓ

j=1 P̃µ(A
c
j) ≤ ε3, which is the claim.

For a Bi to be realized, there must be a first seed (at level Li) initiating the FPPλ

process which infects level Lm before any other process does. From now on we set

s := first seed initiating the FPPλ process which infects the first vertex on Lm. (5.21)

In other words, ∪m
i=m−ℓBi is realized only if there is a seed s ∈ ∪ℓ

j=0Lm−j such that

min
y∈Lm

Υ
(1,λ)

T
m
d

(o → y) = Υ
(1)

T
m
d

(o → s) + min
y∈Lm

Υ
(λ)

T
m
d

(s → y).

Remark 5.10. Note that j = 0 means that the first infected vertex on Lm is a seed,
hence from now on we shall consider j ≥ 1.

Recall that for any vertex y ∈ V (T
m

d ) \ {o} the father of y is the unique vertex y− on
the (unique) geodesic line connecting o to y such that

dTd
(o, y) = dTd

(o, y−) + 1.

For all j ∈ {1, . . . , ℓ} fixed, for every vertex v ∈ Nj with birth time tv ≤ C1j, let the FPP1

process started at v continue until it reaches level Lm−j for the first time. More precisely,
define the set

S(m− j) := {y ∈ Lm−j : y− ∈ Nm−j−1}, (5.22)

that is, S(m− j) is the set of vertices y ∈ Lm−j whose father is of type FPP1. Thus, for
every v ∈ Nj we look for a vertex h(v) ∈ S(m− j), that corresponds to the first vertex
that has been infected by FPP1 and has v as ancestor. (Note that h(v) can be of type
FPP1 or a seed.) Furthermore, it will be convenient to set

h(Nj) := ∪v∈Nj
h(v), (5.23)

keeping in mind that h(Nj) ⊆ S(m− j); cf. Figure 5.
The next result shows that with high probability all vertices h(v) are born relatively

close (in time) to each other.

Lemma 5.11. For any large enough constant C ′
3, we can take C3 = C3(C

′
3) so large that

P̃µ

[
sup

v,v′∈Nj

∣∣th(v) − th(v′)

∣∣ ≤ (2C3 + C1

)
j

]
≥ 1− 2e−C′

3j − 1

C1

e−jC1/2.

Proof. For simplicity, denote

τ
(
v, h(v)

)
:= th(v) − tv, (5.24)

that is the time needed by FPP1 started at v to advance up to infecting S(m − j) for
the first time. Note that by definition we have that the variables {τ

(
v, h(v)

)
}v∈Nj

are
independent. Furthermore, since the process advances as FPP1 for m − 2j steps, we
also have that {τ

(
v, h(v)

)
}v∈Nj

are identically distributed. In particular,

for all v ∈ Nj , τ
(
v, h(v)

) law
= M

(1)
0,m−2j . (5.25)
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j generations

j generations

Nj

Lm−j

h(Nj)

o

Figure 5: Sketch of the construction of h(Nj).

We can exploit this fact by fixing a large constant C3 > 0 and applying Theorem 5.1,
obtaining

P̃µ

[∣∣∣τ(v, h(v))− Ẽµ

[
τ
(
v, h(v)

)]∣∣∣ > C3j
]
≤ Ce−δC3j ≤ e−C′

3j , (5.26)

for a suitable (and still large, when C3 is large enough) constant C ′
3 > 0. Furthermore,

|th(v) − th(v′)| =
∣∣th(v) − tv + tv − th(v′) + tv′ − tv′

∣∣ ≤ |th(v) − tv − (th(v′) − tv′)|+ |tv − tv′ |
(5.24)
=

∣∣τ(v, h(v))− τ
(
v′, h(v′)

)∣∣+ |tv − tv′ |.

From (5.25) it follows that Ẽµ

[
τ
(
v, h(v)

)]
= Ẽµ

[
τ
(
v′, h(v′)

)]
, for all v, v′ ∈ Nj . Thus, the

above gives

|th(v) − th(v′)| ≤
∣∣τ(v, h(v))− τ

(
v′, h(v′)

)∣∣+ |tv − tv′ |
≤
∣∣∣τ(v, h(v))− Ẽµ

[
τ
(
v, h(v)

)]∣∣∣+ ∣∣∣τ(v′, h(v′))− Ẽµ

[
τ
(
v′, h(v′)

)]∣∣∣+ |tv − tv′ |.

By putting this fact together with Claim 5.8 and (5.26) we obtain that for every v, v′ ∈ Nj ,

P̃µ

[∣∣th(v) − th(v′)

∣∣ ≤ (2C3 + C1

)
j
]

≥ P̃µ

[∣∣∣τ(v, h(v))− Ẽµ

[
τ
(
v, h(v)

)]∣∣∣+
+
∣∣∣τ(v′, h(v′))− Ẽµ

[
τ
(
v′, h(v′)

)]∣∣∣+ |tv − tv′ | ≤
(
2C3 + C1

)
j
]

≥ 1− 2e−C′
3j − 1

C1

e−jC1/2,

yielding the claim.

Using the notation in Lemma 5.11, define the constant

C4 := 2C3 + C1, (5.27)

furthermore, for all j ∈ {1, . . . , ℓ} define the following event

Zj :=

{
sup

v,v′∈Nj

∣∣th(v) − th(v′)

∣∣ ≤ C4j

}
. (5.28)
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For γ ∈ {λ, 1} recall the definition of M (γ)
i,n (x) from (5.2). For all j ∈ {1, 2, . . . , ℓ}, when-

ever a vertex xm−j ∈ Lm−j hosts a seed, all variables M
(λ)
m−j,m(xm−j) are independent

and have the same distribution. Thus introduce Mλ(j) as an independent copy of

M
(λ)
m−j,m(xm−j), that is,

Mλ(j) ∼ M
(λ)
m−j,m(xm−j).

Similarly, let M1(j) be an independent copy of M
(1)
m−j,m(xm−j) for some (any) vertex

xm−j ∈ Nm−j , that is,

M1(j) ∼ M
(1)
m−j,m(xm−j).

(If the corresponding GWT is so that the subtree started at xm−j dies out before reaching

level m, then we set M
(1)
m−j,m(xm−j) := +∞.) As a consequence of relation (5.6) we

see that for any large fixed constant K, if λ is small enough, we obtain that for all
j ∈ {1, 2, . . . , ℓ}

Eµ [Mλ(j)] > K Ẽµ [M1(j)] . (5.29)

Recall C∗ from (5.6). Since λ is small enough,

C∗

λ
> 2C4,

with C4 satisfying (5.27). Subsequently, for j ∈ {1, . . . , ℓ} define tfirst(m−j) := minx∈Lm−j
tx,

and consider the following (random) time interval

Tλ(j) :=

[
tfirst(m− j), tfirst(m− j) +

C∗j
2λ

]
.

Our next aim is to use these tools to define auxiliary events that, for each j ∈ {1, . . . , ℓ},
contain Bm−j and subsequently bound (from above) their probability.

Recall the definition of s from (5.21), and the definition of S(m− j) from (5.22). We
now look at all particles in S(m− j) and order them by their birth time and subsequently,
for all j ∈ {1, . . . , ℓ} and for all 1 ≤ i ≤ |S(m− j)| we set

Ei(j) :=
{

the i-th particle coincides with s and initiates a FPPλ

process reaching Lm within the time interval Tλ(j)
}
.

(5.30)

Then define

E(j) :=

|S(m−j)|⋃
i=1

Ei(j). (5.31)

Recall the definition of h(Nj) from (5.23). This time consider i ∈ h(Nj), and set

Ui(j) :=
{

particle i is not a seed, and the FPP1 process

started from it infects Lm within Tλ(j)
}
.

(5.32)

Subsequently, define

U(j) :=
⋃

i∈h(Nj)

Ui(j). (5.33)

Note that the events E(j) and U(j) are not mutually exclusive. Each event E(j) can be
seen as follows: for some i ∈ {1, . . . , |S(m− j)|} the i-th particle is a seed s initiating a
FPPλ process which is atypically quick. On the other hand, U(j) states that in the set
of all individuals in h(Nj) ⊂ S(m− j) ⊂ Lm−j , there is one that starts a FPP1 process
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that infects level Lm within a reasonably large time. (Recall that for small values of λ we
have (5.29).) Now for all 1 ≤ i ≤ |S(m− j)| we define

F
(j)
i := Ei(j)∩

{
∀r ∈ {1, . . . , i− 1}, the process originated from the r-th particle

reaches Lm after the process originated by the i-th particle
}
.

(5.34)

Roughly speaking, the event F
(j)
i implies that the i-th particle of S(m − j) is a seed

initiating a FPPλ process that is quicker than what we expect, and at the same time
all previously born particles originate processes (FPP1 or FPPλ) that are slower than
that. A graphical representation can be seen in Figure 6, where the horizontal segments
represent time-intervals.

Generation m− j

Generation m

tfirst(m− j) tfirst(m− j) + C∗

2λ j

tfirst(m− j) tfirst(m− j) + C1 j

Figure 6: Empty (red) dots are seeds and full (black) dots are non-seeds. Here the
first individual to be born at the m-th level is a descendant of a seed at level m − j.
Dashed arrows represent the quickest line of descendants for each particle, and the first
descendant is represented as a square. Empty (red) squares are descendants of seeds
and full (black) squares are descendants of non-seeds. Note that among the descendants
of the non-seeds we only consider those of type FPP1, as further seeds are treated at
the corresponding level.

We proceed by showing that Ei(j) is unlikely.

Claim 5.12. There is large constant Cλ > 0 such that for all fixed j ∈ {1, . . . , ℓ} and
uniformly over all 1 ≤ i ≤ |S(m− j)|,

Pµ(Ei(j)) ≤ e−Cλj . (5.35)

Furthermore, Cλ can be made large by picking λ sufficiently small.

Proof. Recall relation (5.6); to make the notation less cumbersome, for this proof we set

Cλ :=
C∗

λ
.

From Theorem 5.1 we see that for all j ∈ {1, . . . , ℓ} and uniformly in 1 ≤ i ≤ |S(m− j)|,

Pµ(Ei(j)) ≤ Pµ

[
|Mλ(j)− E (Mλ(j))| >

Cλj

2

]
≤ Ce−δCλj/2.

Thus, there is a large constant Cλ = Cλ(C, δ,Cλ) so that uniformly over i ∈ {1, . . . , |S(m−
j)|}

Pµ(Ei(j)) ≤ Ce−δCλj/2 ≤ e−Cλj , (5.36)

proving the statement.
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The next result is where we need the assumption that either d is arbitrary and µ is
small, or µ > 1/2 is fixed and d is large enough. In the first case we start by defining µ′

so small that
Pµ′(S ) > 1/2, (5.37)

and consider only µ < µ′.

Lemma 5.13. For any fixed constant C > 0 the following occurs. Suppose that d ≥ 2

is arbitrary and µ is small enough, or µ ∈ (1/2, 1) is fixed and d is large enough and
satisfies (2.7). Then for all fixed j ∈ {1, . . . , ℓ},

P̃µ(U
c(j)) ≤ e−Cj . (5.38)

Proof. Start by fixing the constant C > 0. Now we want to show that |h(Nj)| is likely to

be large, so that P̃µ(U
c(j)) satisfies the sought bound. For this proof denote

hj := |h(Nj)|.

Using Lemma 5.6, we see that with probability at least 1 − C2e
−c3j , the variable hj

stochastically dominates a Binomial random variable

Yj ∼ Bin
(
max

{
1,
⌊
ε2

(
d(1− µ)

)(1−ε1)j
⌋}

,Pµ(S )
)
.

In particular, since we can choose ε2 as small as we please, we can fix it so small that

C2e
−c3j ≤ e−Cj

3
. (5.39)

We proceed with a case distinction, following the two conditions in the statement.
Case (i): d ≥ 2 is arbitrary and µ is small enough. Note that the case Yj ∼

Bin(1,Pµ(S )) is a Bernoulli random variable. Recall that µ < µ′ (cf. (5.37)), then
for convenience we pick a large constant C̃ = C̃(C) so that

1

Pµ(S )
e−C̃j/4 ≤ e−Cj

3
. (5.40)

First we prove the claim for all j such that

C̃j ≤ 1

2
EµYj =

1

2

⌊
ε2

(
d(1− µ)

)(1−ε1)j
⌋
Pµ(S ). (5.41)

Here we simply apply a Chernoff bound and the definition of stochastic domination,

P̃µ

(
hj ≤ C̃j

)
≤ Pµ

(
Yj ≤ 1

2EµYj

)
Pµ(S )

≤ 1

Pµ(S )
e−EµYj/8

(5.41)
≤ 1

Pµ(S )
e−C̃j/4.

At this point our choice of C̃ as in (5.40) gives us that for all j satisfying (5.41),

P̃µ

(
hj ≤ C̃j

)
≤ e−Cj

3
. (5.42)

Whenever C̃j > 1
2EµYj we perform a different approach, using Chebyshev’s inequality.

Let

j0 = j0(ε1, ε2, d) := max

{
j ∈ {1, . . . , ℓ} : C̃j ≥ 1

2
ε2d

(1−ε1)j/2

}
. (5.43)

By definition, under our assumptions, all j’s for which (5.41) fails are smaller or equal
than j0. Letting

Sj := {GWT survives for j generations},
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then we observe that, given Nj , hj is distributed as a binomial random variable hj ∼
Bin (Nj ,Pµ(Sj)), thus

Eµhj = Eµ [Eµ[hj | Nj ]] = Eµ[NjPµ(Sj)] =
(
d(1− µ)

)j
Pµ(Sj). (5.44)

This holds for all j, and hence for all j ≤ j0. Since d and µ must satisfy (2.7), there are
two constants 0 < κ < κ < 1 so that, on the one hand,

κd(1− µ) > 1; (5.45)

and on the other hand, for all j ≤ j0 κPµ(Sj) > κ. Then,

P̃µ

(
hj ≤ κ

(
d(1− µ)

)j) ≤ P̃µ

(
hj ≤ κ

(
d(1− µ)

)j
Pµ(Sj)

)
≤ P̃µ (|hj − Eµhj | ≥ (1− κ)Eµhj) ≤

1

Pµ(S )

Varµ(hj)

((1− κ)Eµhj)
2 .

(5.46)

To evaluate the variance of hj we reason like above, namely,

Eµ[(hj − Eµhj)
2] = Eµ[Eµ[(hj − Eµhj)

2 | Nj ]] = E[NjPµ(Sj)(1− Pµ(Sj))]

=
(
d(1− µ)

)j
Pµ(Sj)(1− Pµ(Sj)).

Using these facts in (5.46) we obtain

P̃µ (|hj − Eµhj | > (1− κ)Eµhj) ≤
(1− Pµ(Sj))

(1− κ)2
(
d(1− µ)

)j
Pµ(Sj)Pµ(S )

.

Now, since for all j ≥ 1 we have Pµ(Sj) ≥ Pµ(S ), then for all j ≥ 1 one has

1− Pµ(Sj) ≤ 1− Pµ(S ).

Hence, Chebyshev’s inequality for all j ∈ {1, . . . , j0} reduces to

P̃µ (|hj − Eµhj | > (1− κ)Eµhj) ≤
(1− Pµ(S ))

(1− κ)2
(
d(1− µ)

)j
Pµ(S )2

.

Since we are assuming that µ < µ′ (defined in (5.37)) then Pµ(S ) > 1/2, which yields

P̃µ (|hj − Eµhj | > (1− κ)Eµhj) ≤
4(1− Pµ(S ))

(1− κ)2
(
d(1− µ)

)j .
Now define µ′′ := µ′′(C, κ) > 0 so that, uniformly over all j ≥ 1 one has

2

(1− κ)2
(
2(1− µ′′)

)j ≤ e−Cj

3
. (5.47)

Hence we can restrict our attention to µ < µ′′ so that, uniformly over all j ∈ {1, . . . , j0}
one has

P̃µ

(
hj ≤ κ

(
d(1− µ)

)j) ≤ 4(1− Pµ(S ))

(1− κ)2
(
d(1− µ)

)j ≤ e−Cj

3
. (5.48)

Now we find an upper bound for P̃µ(U
c
i (j)), for all i ∈ h(Nj). By definition we have

P̃µ(U
c
i (j)) ≤ P̃µ

[∣∣∣M1(j)− Ẽµ [M1(j)]
∣∣∣ > E(Mλ(j))

2
− Ẽµ [M1(j)]

]
+ P̃µ (particle i is seed)

(5.29)
≤ P̃µ

(∣∣∣M1(j)− Ẽµ [M1(j)]
∣∣∣ > (

K

2
− 1)Ẽµ [M1(j)]

]
+ µ

Thm 5.1
≤ Ce−δKẼµ[M1(j)]/3 + µ.
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At this point fix a value µ′′′ = µ′′′(λ,C, δ,C, j0) > 0 so small that

Ce−δKẼµ′′′ [M1(1)]/3 + µ′′′ ≤ e−Cj0

3
. (5.49)

(This quantity is well defined because j0 is independent of µ, cf. (5.43).) Thus, for all
µ < µ′′′ and for all λ small enough (that is for all K large enough), one has

P̃µ(U
c
i (j)) ≤ Ce−δKẼµ[M1(j)]/3 + µ ≤ Ce−δKẼµ[M1(1)]/3 + µ ≤ e−Cj0

3
. (5.50)

As a consequence of this, for all j ∈ {1, . . . , j0} and µ < min{µ′, µ′′, µ′′′} (defined in (5.37),
(5.47), (5.49) respectively) we get

P̃µ(U
c(j)) ≤ P̃µ

 ⋂
i∈h(Nj)

U c
i (j)

 ≤ P̃µ (U
c
1 (j))

κ
(
d(1−µ)

)j
+ P̃µ

(
hj ≤ κ

(
d(1− µ)

)j)
+

(5.50), (5.45), (5.48)
≤ e−Cj0

3
+

e−Cj

3

j≤j0
≤ e−Cj .

Similarly, for all j ∈ {j0, . . . , ℓ} and µ < min{µ′, µ′′, µ′′′} we get

P̃µ(U
c(j)) ≤ P̃µ

 ⋂
i∈h(Nj)

U c
i (j)


≤ P̃µ (U

c
1 (j))

C̃j
+ P̃µ

(
hj ≤ C̃j

)
+ P̃µ

(
Nj ≤ ε2

(
d(1− µ)

)(1−ε1)j
)

Lemma 5.6
≤ P̃µ (U

c
1 (j))

C̃j
+ P̃µ

(
hj ≤ C̃j

)
+ C2e

−c3j

(5.50),(5.45),(5.42),(5.39)
≤ e−Cj0C̃j

3
+

e−Cj

3
+

e−Cj

3
≤ e−Cj ,

as claimed.
Case (ii): µ ∈ (1/2, 1) is fixed and d is large enough. In this case, when µ ∈ (1/2, 1) is

fixed, C̃ > 0 can be chosen again as in (5.40). Thus, once ε1, ε2 have been set, we can
pick d large enough, so that condition (5.41) holds. Hence the proof for this case follows
from a Chernoff bound exactly as performed before, yielding the claim. This concludes
the proof.

We proceed with the goal of bounding P̃µ(Bm−j). For all j, by applying the inclusion-
exclusion principle, we obtain the following bound

P̃µ(Bm−j) ≤ P̃µ

Bm−j ∩

exp{Cλj/2}⋂
i=1

Ec
i (j) ∩ U(j)

+ P̃µ

exp{Cλj/2}⋃
i=1

Ei(j) ∪ U c(j)

 .

(5.51)
Recall the definition of Zj from (5.28), Aj from (5.16), and the definition of the events
E(j) and U(j) from (5.31) and (5.33). Consider the case where all the following assump-
tions are satisfied, for all j ∈ {1, . . . , ℓ}.

(i) There are at least ε2

(
d(1− µ)

)(1−ε1)j individuals of type FPP1 alive at generation j

which are born by time C1j (that is, Aj holds).

(ii) All their first descendants at generation m− j which are of type FPP1 or seeds (if
there are any) are born within time C4j of each other (that is, Zj holds).
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(iii) All particles i ∈ S(m− j) such that i > exp{Cλj/2} are either not seeds, or seeds
initiating a FPPλ process which is not reaching Lm within the time interval Tλ(j),
or yet there is a particle r with r < i originating a process (FPP1 or FPPλ) reaching
Lm before the process originated from the i-th particle, that is,

(
F

(j)
i

)c
holds for all

i > exp{Cλj/2}. (Note that if |S(m− j)| ≤ exp{Cλj/2} this assumption is empty.)

Then, necessarily at least one of the following events must hold. Possibly, at level Lm−j

there are no seeds that originate a FPPλ process infecting Lm first; or there is at least a
particle i ≤ exp{Cλj/2} originating a FPP1 or an FPPλ process reaching Lm within the
time interval Tλ(j). (This latter possibility is ensured by assumption (iii) above.) Hence,
by considering the complementary events, for every j ∈ {1, . . . , ℓ}

Bm−j ∩

exp{Cλj/2}⋂
i=1

Ec
i (j) ∩ U(j)

 ⊆

 ⋃
i>exp{Cλj/2}

F
(j)
i

 ∪ Zc
j ∪Ac

j . (5.52)

Hence, relations (5.51) and (5.52) yield

P̃µ(Bm−j) ≤

 ∑
i>eCλj/2

P̃µ(F
(j)
i ) + P̃µ(Zc

j ) + P̃µ(A
c
j)

+ P̃µ(U
c(j)) +

eCλj/2∑
i=1

P̃µ(Ei(j))

(5.35)
≤

∑
i>exp{Cλj/2}

P̃µ(F
(j)
i ) + P̃µ(Zc

j ) + P̃µ(A
c
j) + P̃µ(U

c(j)) + eCλj/2e−Cλj

(5.38)
≤

∑
i>exp{Cλj/2}

P̃µ(F
(j)
i ) + P̃µ(Zc

j ) + P̃µ(A
c
j) + e−Cj + e−Cλj/2.

(5.53)

Our next aim is to show that the quantity
∑

i>exp{Cλj/2} P̃µ(F
(j)
i ) decreases exponentially

fast in j, which we do in the next lemma.

Lemma 5.14. With the above definitions, there is a constant C5 > 0 which does not
depend on λ, such that for all j ∈ {1, . . . , ℓ} we have∑

i>exp{Cλj/2}
P̃µ(F

(j)
i ) ≤ C5e

−Cλj/2,

Proof. We define two auxiliary events as follows. For all k ∈ N define

Hk(i) :=
{
∀r ∈ {1, . . . , i− 1} with r-th particle being a non-seed, the process

originated from the r-th particle reaches Lm in time ≥ k
}
;

Y(λ)
k (i) :=

{
i-th particle is a seed initiating a FPPλ process reaching Lm in time ≤ k

}
.

(Note that the above events also depend on j, but we omitted this dependence to simplify
the notation.) Recall that S is the event that GWT survives indefinitely and let

Q := Pµ({o is a non-seed} ∩ S ),

then fix any r ≤ i − 1 and let {Xl}l denote an i.i.d. sequence of exponential random
variables with rate 1. We have

P({r is not a seed} ∩ {r starts a FPP1 process infecting Lm in time ≤ k})

≥ P({r is not a seed} ∩ {r = root of a GWT surviving for j generations})P
[

j∑
l=1

Xl ≤ k

]

≥ QP

(
j∑

l=1

Xl ≤ k

)
.
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In particular, according to the relative sizes of k and j, we shall make a case distinction,
namely, fix 1 ≤ j ≤ |S(m− j)| and consider the following two situations. Recall C∗ from
(5.6) and for simplicity set Cλ := C∗

λ .

(i) For all 1 ≤ k ≤ Cλj
2 , we see that

QP

(
j∑

l=1

Xl ≤ k

)
= QP [Poi(k) ≥ j] ≥ QP [Poi(k) = k + j]

≥ Qe−k k(k+j)

(k + j)!
≥ Q

e−k− 1
12 (k+j)√

2π(k + j)

(
ke

k + j

)(k+j)

,

in the last inequality we used a standard refinement of Stirling’s approximation.

Set C6 := Q e−
1
12√
2π

, then

Q
e−k− 1

12 (k+j)√
2π(k + j)

(
ke

k + j

)(k+j) k,j≥1

≥ C6

ej√
k + j

(
k

k + j

)(k+j)

k≤Cλj/2

≥ C6

ej√
Cλ

2 j + j

(
k

Cλ

2 j + j

)(
Cλ
2 j+j)

≥ C7

ej/2√
Cλ

(
k(

Cλ

2 + 1
)
j

)(
Cλ
2 +1)j

,

for some suitable constant C7 = C7(C6) > 0. To ease the notation, set

C∗
λ :=

Cλ

2
+ 1, (5.54)

which, for all 1 ≤ k ≤ Cλj
2 gives

P̃µ(Hk(i)) ≤
(
1− C7√

Cλ

ej/2
(

k

C∗
λj

)C∗
λj
)i

≤ exp

{
− C7√

Cλ

i ej/2
(

k

C∗
λj

)C∗
λj
}
.

(5.55)

(ii) For all k > Cλj
2 we use Theorem 5.7(i) in the following way. First, we note that for

a sequence of i.i.d. exponential variables of parameter 1 we have E
(∑j

l=1 Xl

)
= j.

Then, since k is much larger than j (for λ small enough) we can write

P

(
j∑

l=1

Xl > k

)
= P

(
j∑

l=1

Xl >
k

j
j

)
Thm 5.7(i)

≤ j

k
e−j( k

j −1−ln( k
j )) ≤ j

k
e−k/2,

where in the last inequality we have used that λ is small enough (and thus k is
large). Hence, for all k > Cλj

2 we obtain

P(Hk(i)) ≤
(
j

k
e−k/2

)i

≤
(

2

Cλ

)i

e−i k/2. (5.56)

Using again Theorem 5.1 we obtain that for all k ≤ E(Mλ(j))
2

P
(
Y(λ)
k (i)

)
= P

(
Mλ(j) ≤ k

)
≤ P

(
|Mλ(j)− E (Mλ(j))| > E(Mλ(j))− k

)
≤ P

(
|Mλ(j)− E (Mλ(j))| >

Cλj

2

)
≤ Ce−δCλj/2.

Hence, as we did previously (cf. (5.36)) we find that for all k ≤ Cλj
2 and all i,

P
(
Y(λ)
k (i)

)
≤ e−Cλj . (5.57)
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From the definition of F (j)
i it follows that

P̃µ

(
F

(j)
i

)
≤ P̃µ

(
∪k∈N

(
Hk(i) ∩ Y(λ)

k (i)
))

,

thus, since processes born from different particles (at the same level) are independent

we have P̃µ

(
Hk(i) ∩ Y(λ)

k (i)
)
= P̃µ (Hk(i))P

(
Y(λ)
k (i)

)
. Hence,

P̃µ

(
F

(j)
i

)
≤
∑
k≥1

P̃µ

(
Hk(i) ∩ Y(λ)

k (i)
)
≤

Cλj/2∑
k=1

P̃µ (Hk(i))P
(
Y(λ)
k (i)

)
+

∑
k≥Cλj/2+1̃

Pµ (Hk(i))

(5.57)
≤ e−Cλj

Cλj/2∑
k=1

P̃µ (Hk(i)) +
∑

k≥Cλj/2+1

P̃µ (Hk(i)) .

Now we apply relations (5.55) and (5.56), which give that the above is bounded by

e−Cλj
Cλj

2
exp

{
−C7 i e

j/2

(
k

C∗
λj

)C∗
λj
}

+
∑

k>Cλj/2

(
2

Cλ

)i

e−i k/2

≤ e−CλjCλj exp

{
−C7 i e

j/2

(
1

C∗
λj

)C∗
λj
}

+ 2

(
2

Cλ

)i

e−iCλj/4,

where we have used that Cλ is large enough. Now it follows easily that the above
quantity is summable in i, giving at most

e−CλjCλj
e
−C7 e

j/2

(
1

C∗
λ
j

)C∗
λj

1− e
−C7 ej/2

(
1

C∗
λ
j

)C∗
λ
j
+

4

Cλ

e−Cλj/4

1− e−Cλj/4

≤ C8e
−Cλj/2e

−C7 e
j/2

(
1

C∗
λ
j

)C∗
λj

+
8

Cλ
e−Cλj/4

≤ C8e
−Cλj/2 +

8

Cλ
e−Cλj/4 ≤ C8e

−Cλj/2 + 8e−δCλj/4,

for a suitable constant C8 > 0, independent of λ. The statement follows from the
definition of Cλ as in (5.36) and by picking C5 := C8 + 8.

At this point we are ready to conclude the proof of Proposition 2.1.

Proof of Proposition 2.1. For any large (fixed) value of m we have

Pµ

[
W reached first by FPPλ

]
≤ Pµ

 m⋃
j=1

Bj ∪ S c

 ≤ Pµ

 m⋃
j=1

Bj

+ Pµ [S
c]

(5.3)
≤ Pµ

 m⋃
j=1

Bj

+ fd(µ)
Lemma 5.5

≤ e−δ′m + Pµ

 m⋃
j=m−ℓ

Bj

+ fd(µ).

Now, in order to bound Pµ

[⋃m
j=m−ℓ Bj

]
we use 5.53. By putting together the results

obtained in Lemmas 5.9, 5.11 and 5.14 we obtain

Pµ

 m⋃
j=m−ℓ

Bj

 ≤ ε3 +

ℓ∑
j=1

[
2e−C′

3j +
1

C1

e−jC1/2 + e−Cj + e−Cλj/2 + C5e
−Cλj/4

]

≤ ε3 +

ℓ∑
j=1

[
2e−C′

3j +
1

C1

e−jC1/2 + e−Cj + (C5 + 1)e−Cλj/4

]
.
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Recall the definitions of C and Cλ from Claim 5.12 and Lemma 5.13, and in particular
recall that they could be picked as large as we wanted, when λ is small and whenever
µ < min{µ′, µ′′, µ′′′} (defined in (5.37), (5.47), (5.49) respectively) or d large enough.
Now denote by

ω := min{C ′
3, C1/2,C,Cλ/4},

hence

Pµ

[
m⋃

i=m−ℓ

Bi

]
≤ ε3 +

(
2 +

1

C1

+ 1 + (C5 + 1)

) ℓ∑
j=1

e−ωj .

Set C9 := 5 + C5, since λ is chosen to be small enough, then ω is extremely large, hence

Pµ

[
m⋃

i=m−ℓ

Bi

]
≤ ε3 + 2C9e

−ω.

Since m was chosen large enough, we let

ηd = ηd(δ
′, µ, d, λ, ε3, C9,ω) := e−δ′m + ε3 + 2C9e

−ω.

Moreover, ε3 can be made arbitrarily small and ω arbitrarily large, provided λ > 0 is
small enough and either µ is small enough, or d is large enough. This establishes the
desired property of ηd in Proposition 2.1. To conclude, we note that

Pµ

[
W is infected by FPPλ

]
= Pµ

[
W reached first by FPP1 ∩{W is seed}

]
+ Pµ

[
W reached first by FPPλ

]
≤ (1− ηd − fd(µ))µ+ (ηd + fd(µ)) ≤ µ+ (1− µ)(ηd + fd(µ)).

Thus, Pµ

[
W is infected by FPP1

]
≥ (1− µ)(1− ηd − fd(µ)), as claimed.
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