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Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy

(Extended Twisted Mass Collaboration)

(Received 1 September 2023; accepted 18 September 2023; published 19 October 2023)

Inclusive hadronic decays of the τ lepton are very interesting from the phenomenological point of view
since they give access to the Cabibbo-Kobayashi-Maskawamatrix elementsVud andVus. In this paper, for the
first time, by employing themethod of [M.Hansen,A. Lupo, andN. Tantalo, Phys. Rev.D 99, 094508 (2019)]
for hadronic smeared spectral densities, we compute on the lattice the inclusive decay rate of the processes
τ → Xudντ, where Xud is a generic hadronic state with ūd flavor quantum numbers. Our computation, which
avoids any recourse to operator product expansion and/or perturbative approximations, is carried out in isospin
symmetricNf ¼ 2þ 1þ 1 latticeQCDat physical quarkmasses, using ensembles produced by theExtended
Twisted Mass Collaboration at three lattice spacings and two volumes. All uncertainties, except for isospin
breaking effects, are taken into account and a result with a subpercent error is obtained for jVudj, which is
nicely consistent with the current world average. These findings validate our approach and also motivate the
inclusion of isospin breaking corrections and its extension to the inclusive decay τ → Xusντ, paving the way
toward a high-precision first-principles determination of jVusj and jVudj from inclusive τ decay.
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I. INTRODUCTION

The τ lepton, owing to its large mass, is the only lepton
that can decay through weak interactions in both hadrons
and leptons. From the phenomenological point of view,
hadronic τ decays, both inclusive (τ → Xud=usντ) and
exclusive (τ → π=Kντ), are very interesting since they give
access to the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements jVudj and jVusj, thus providing additional infor-
mation on these parameters besides the one coming from
the currently more precise determinations of jVudj from
nuclear superallowed beta transitions and jVusj and
jVusj=jVudj from K and π leptonic and semileptonic decays
(see the reviews FLAG21 [1] and HFLAV22 [2]).

The phenomenological studies of inclusive hadronic τ
decays have been mainly focused so far on the strange-
hadronic decays and the determination of jVusj. A direct
operator product expansion (OPE) analysis of the inclusive
process τ → Xusντ leads to the result jVusjτ−incl−1 ¼
0.2184ð21Þ [3,4]. This determination, however, is in dis-
agreement with both the value of jVusj obtained from the
analysis of leptonic and semileptonic kaon decays, namely
jVusjKl3−K=πl2 ¼ 0.2248ð6Þ [1], and the one obtained
by combining CKM unitarity with the measurements of
jVudj from superallowed nuclear β transitions, namely
jVusjuni ¼ 0.2277ð13Þ [1,2]. Moreover, the value of jVusj
obtained from inclusive τ decays is also smaller than,
though not incompatible with, the one obtained from
the analysis of exclusive τ → π=Kντ decays, namely
jVusjτ−excl ¼ 0.2222ð17Þ [2].
The apparent tension between the value of jVusj coming

from inclusive τ decays and the other determinations,
has been critically addressed in Ref. [5], where, owing
to a new treatment of higher order terms in the OPE, which
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are determined by fits to lattice current-current correlators,
and by using a partly different experimental input, a larger
value of jVusj is obtained, namely (according to the update
given in Ref. [6]) jVusjτ−incl−2 ¼ 0.2219ð22Þ.
Recently, a new method to determine jVusj from

inclusive τ decays has been proposed in Ref. [7]. By
introducing generalized dispersion relations, involving
weights with poles chosen so as to suppress the most
uncertain contributions coming from large timelike
momenta, this method evaluates the corresponding spec-
tral integrals using lattice-QCD data for the hadronic
vacuum polarization function, thereby avoiding assump-
tions on OPE and related condensates. In this way, a later
analysis [6] yields jVusjτ−part−incl ¼ 0.2240ð18Þ, in agree-
ment with the determinations from kaon (semi)leptonic
decays and exclusive τ decays. As noted in Ref. [8], this
result is in line with the fact that, owing to the particular
generalized dispersion relation of choice, it mostly relies
on the exclusive τ → Kντ data, which represents instead
less than 25% of the inclusive strange-hadronic decays
(whence the label “part-incl”).
In this paper we present a novel lattice field theory

approach to the study of inclusive hadronic τ decays which
provides a first-principles and fully nonperturbative deter-
mination of the inclusive decay rate, in a given fixed
flavor hadronic channel. Our method neither relies on
OPE assumption and related condensates nor employs
generalized dispersion relations, chosen with the aim of
reducing the uncertainties due to the use of perturbative
approximations. Rather, we employ the presently well-
established Hansen-Lupo-Tantalo (HLT) method [9,10] for
spectral density reconstruction in order to obtain, directly
from the Euclidean lattice correlation functions, the inclusive
decay rate, expressed in terms of an integral over the energy
of the relevant spectral density weighted by a suitably
smeared kernel [see Eq. (32) below and Ref. [11] where
a similar approach has been proposed to study inclusive
decays of heavy mesons]. Upon working at physical values
of the quark masses, taking the infinite volume limit and
performing the zero smearing width as well as the continuum
extrapolations, we obtain a first-principles, fully nonpertur-
bative determination of the inclusive decay rate. A brief
account of this new method was already given in Ref. [12].
In this first study, we apply themethod to the computation

of the inclusive decay rate of τ → Xudντ. For the numerical
calculation, we employed the lattice vector and axial two-
point correlators with degenerate quark masses, that were
produced with high statistics by Extended Twisted Mass
Collaboration (ETMC) for the study of Ref. [13]. By relying
on several lattice ensembles produced withNf ¼ 2þ 1þ 1

dynamical quark flavors in the isospin symmetric limit of
QCD, at three lattice spacings and two volumes, we are able
to take into account all statistical and systematic uncertain-
ties, except for the isospin breaking effects, in close analogy
to what was done in Refs. [13,14].

In terms of the ratio RðτÞ
ud ¼Γðτ→XudντÞ=Γðτ→eν̄eντÞ,

we find the theoretical prediction

1

jVudj2
RðτÞ
ud ¼ 3.650� 0.028; ð1Þ

a result that has a subpercent total error and looks nicely
consistent with the experimental value [2], namely

1

jVudj2
RðτÞ
ud ¼ 3.660� 0.008; ð2Þ

obtained using jVudj ¼ 0.97373ð31Þ from nuclear β
decays [1]. Alternatively, we can compare our theoretical

determination in Eq. (1) with the experimental value of RðτÞ
ud

to obtain

jVudj ¼ 0.9752ð39Þ: ð3Þ

We should remind the reader that these results are
obtained in the isospin symmetric limit of QCD, thus
neglecting, in the determination of the τ → Xudντ decay
rate, isospin breaking effects. Nevertheless, these results
appear to fully validate our approach and motivate us to
compute the leading isospin breaking effects [15,16],
as well as to extend our study to the inclusive process
τ → Xusντ, thus arriving at a high-precision first-principles
and completely nonperturbative determination of jVudj and
jVusj from inclusive τ decay.
The outline of this paper is as follows: In Sec. II we

present our strategy to evaluate the τ → Xudντ decay rate
using the HLT method. In Sec. III we present our numerical
results and discuss the continuum and infinite-volume
extrapolations, as well as the extrapolation to zero smearing
width. We briefly comment on the phenomenological
implications of our findings, and compare our results with
those of existing experiments. Finally in Sec. IV we draw
our conclusions. In Appendix A we provide an alternative
(with respect to that given in the main text) derivation of
the inclusive τ decay rate formula in Eq. (20) based on
the optical theorem and the Cutkosky rule, while in
Appendix B, we derive useful expressions for the leading
corrections to the zero-width limit of the smeared ratio
defined in Eq. (32).

II. THE METHOD

A. The inclusive decay rate

At the leading order in the Fermi effective theory, the
amplitude Aðτ → XudντÞ for the τ-lepton decay into a
generic hadronic state Xud, with flavor quantum number
ūd, is represented by the Feynman diagram in Fig. 1, and it
is given by
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Aðτ → XudντÞ ¼
GFffiffiffi
2

p VudhXudντjJανττð0ÞJαudð0Þ†jτi

¼ GFffiffiffi
2

p VudhντjJανττð0ÞjτihXudjJαudð0Þ†j0i;

ð4Þ

where Jανττ and Jαud are the weak V − A leptonic and
hadronic currents

Jανττ ¼ ν̄τγ
αð1 − γ5Þτ; Jαud ¼ ūγαð1 − γ5Þd: ð5Þ

The modulus square of the amplitude, summed over the
whole set of hadronic final states with ūd quantum
numbers, is then

jAj2 ¼
X
X

jAðτ → XudντÞj2

¼
�
GFffiffiffi
2

p
�

2

jVudj2Lαβðpτ; pνÞ
X
X

h0jJαudð0ÞjXudðqÞi

× hXudðqÞjJβudð0Þ†j0i ð6Þ

where pτ and pν are the four-momentum of the τ lepton and
of the neutrino, and q ¼ pτ − pν is the four-momentum of
the final hadronic state. The leptonic tensor Lαβðpτ; pνÞ,
averaged over the spin orientations of the τ lepton and
summed over those of the ντ neutrino, is given by

Lαβðpτ; pνÞ ¼
1

2
Tr½ð=pτ þmτÞγαð1− γ5Þ=pνγ

βð1− γ5Þ�
¼ 4ðpα

τp
β
ν þpβ

τpα
ν − gαβpτ ·pν − iεαβρσpτρpνσÞ:

ð7Þ

In the hadronic part of the amplitude square, given in
Eq. (6), we now use the identityX

X

jXðqÞihXðqÞj ¼ ð2πÞ4δ4ðP − qÞ; ð8Þ

where P is the QCD four-momentum operator, which
expresses the completeness relation in the subspace of
states with given four-momentum q. From Eq. (6) one then
obtains

jAj2 ¼
�
GFffiffiffi
2

p
�

2

jVudj2Lαβðpτ; pνÞραβudðqÞ; ð9Þ

where ραβudðqÞ is the spectral density

ραβudðqÞ ¼ h0jJαudð0Þð2πÞ4δ4ðP − qÞJβudð0Þ†j0i: ð10Þ

The (semi-)inclusive decay rate Γðτ → XudντÞ is finally
obtained by integrating the modulus square of the ampli-
tude over the phase space and dividing by 2mτ (in the
τ-lepton rest frame), where mτ is the τ-lepton mass:

ΓðτÞ
ud ≡ Γðτ → XudντÞ ¼

1

2mτ

Z
d3pν

ð2πÞ32Eν

Z
d4q
ð2πÞ4 ð2πÞ

4δ4ðpτ − pν − qÞjAj2

¼ G2
FjVudj2
4mτ

Z
d3pν

ð2πÞ32Eν
Lαβðpτ; pνÞραβudðqÞ; q ¼ pτ − pν; ð11Þ

where Eν ¼ jpνj is the neutrino energy. In Appendix A we
present an alternative, but equivalent, derivation of Eq. (11)
based on the optical theorem and the Cutkosky rule.
From Eq. (11) we see that all the long-distance effects of

the strong interactions in the decay rate are described by the
spectral density of Eq. (10), whose integral we are going to
evaluate nonperturbatively on the lattice. The primary data
of the lattice calculation are given by the Euclidean time-
dependent correlation function

Cαβðt; qÞ ¼
Z

d3x e−iq·xh0jT
�
JαudðxÞJβudð0Þ†

�
j0i ð12Þ

at fixed spatial momentum q. The relation between the
correlator Cαβðt; qÞ and the spectral density ραβudðqÞ is easily
derived. By considering Cαβðt; qÞ at positive Euclidean
time t > 0, one has

FIG. 1. Feynman diagram representing the amplitude for the
τ → Xudντ decay.
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Cαβðt; qÞ ¼
Z

d3x e−iq·xh0jJαudðxÞJβudð0Þ†j0i

¼
Z

d3x e−iq·xh0jJαudð0Þe−HtþiP·xJβudð0Þ†j0i

¼ h0jJαudð0Þe−Htð2πÞ3δ3ðP − qÞJβudð0Þ†j0i

¼
Z þ∞

−∞

dE
2π

e−Eth0jJαudð0Þe−Htð2πÞ4δðH − EÞδ3ðP − qÞJβudð0Þ†j0i

¼
Z þ∞

−∞

dE
2π

e−Eth0jJαudð0Þð2πÞ4δ4ðP − qEÞJβudð0Þ†j0i; ð13Þ

where qE ≡ ðE; qÞ and we have used the identity

Z þ∞

−∞
dE δðH − EÞ ¼ 1: ð14Þ

The matrix element appearing in Eq. (13) is precisely the
spectral density of Eq. (10), so that we can write

Cαβðt; qÞ ¼
Z

∞

0

dE
2π

e−EtραβudðE; qÞ; t > 0; ð15Þ

Equation (15) provides the relation between the spectral
density ραβudðE; qÞ and the Euclidean correlator Cαβðt; qÞ.

B. Form factors

Lorentz covariance implies that ραβudðqÞ can be expressed
in terms of two scalar form factors, ρTðq2Þ and ρLðq2Þ,
which parametrize respectively the transverse and the
longitudinal contribution to the spectral density tensor,
according to

ραβudðqÞ ¼ ðqαqβ − q2gαβÞρTðq2Þ þ qαqβρLðq2Þ: ð16Þ

We now substitute the spectral density (16) and the
leptonic tensor (7) into the expression (11) for the decay
rate. A simple algebra shows that

Lαβðpτ; pνÞραβudðqÞ ¼ 2m4
τð1 − sÞ½ð1þ 2sÞρTðsÞ þ ρLðsÞ�;

ð17Þ

where

s ¼ q2

m2
τ
¼ 1 − 2

pτ · pν

m2
τ

; ð18Þ

and, to simplify the notation, we have also used ρTðsÞ≡
ρTðm2

τsÞ. In the τ-lepton rest frame, s ¼ 1–2Eν=mτ, so that
we can express the integral over the neutrino phase spaceΦ
in Eq. (11) as an integral over s,

Z
Φ

d3pν

ð2πÞ32Eν
¼ 1

4π2

Z
mτ=2

0

dEνEν ¼
m2

τ

16π2

Z
1

0

dsð1 − sÞ:

ð19Þ

Inserting Eqs. (17) and (19) into Eq. (11), we arrive at the
final expression for the inclusive τ decay rate,

ΓðτÞ
ud ¼ G2

FjVudj2m5
τ

32π2

Z
1

0

dsð1 − sÞ2½ð1þ 2sÞρTðsÞ þ ρLðsÞ�:

ð20Þ

In order to compare the theoretical prediction with the
experimental result, we find it convenient to normalize the
hadronic rate with the leptonic one, by introducing the ratio

RðτÞ
ud ¼ Γðτ → XudντÞ

Γðτ → eν̄eντÞ
: ð21Þ

A straightforward calculation shows that for the leptonic
decay the transverse and longitudinal form factor are given,
in the limit of massless electrons and neglecting isospin
breaking effects, by

ρTðsÞ ¼
1

3π
; ρLðsÞ ¼ 0 ðfor τ → eν̄eντÞ; ð22Þ

which in turn leads to the well-known result

Γðτ → eν̄eντÞ ¼
G2

Fm
5
τ

192π3
: ð23Þ

Therefore, inserting Eqs. (20) and (23) into Eq. (21),
and including a factor SEW ¼ 1.0201ð3Þ to account for
the short-distance electroweak correction [17], one arrives
at the simple result

RðτÞ
ud ¼ 6πSEWjVudj2

Z
1

0

dsð1− sÞ2½ð1þ 2sÞρTðsÞ þ ρLðsÞ�;

ð24Þ
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which expresses the ratio RðτÞ
ud in terms of the CKM matrix

element jVudj and of the transverse and longitudinal
spectral form factors. We are now going to discuss how
Eq. (24) can be evaluated on the lattice, using the HLT
method of Ref. [9].

C. The smeared RðτÞ
ud ðσÞ via the HLT method

In this section we illustrate how the HLT method of
Ref. [9] can be applied to evaluate the inclusive hadronic τ

decay expressed by the ratio RðτÞ
ud of Eq. (21). To this end, let

us start from Eq. (24), which can equivalently be written as

RðτÞ
ud ¼ 12πSEW

jVudj2
m3

τ

Z
∞

0

dE

�
KT

�
E
mτ

�
E2ρTðE2Þ

þ KL

�
E
mτ

�
E2ρLðE2Þ

�
; ð25Þ

where E ¼ mτ
ffiffiffi
s

p
and we have introduced the kernel

functions

KLðxÞ≡ 1

x
ð1 − x2Þ2θð1 − xÞ;

KTðxÞ≡ ð1þ 2x2ÞKLðxÞ: ð26Þ

As it will be described in more details in the next section, the
quantity we directly compute through numerical simulations
is the Euclidean correlator Cαβðt; 0Þ at vanishing spatial
momentum q ¼ 0. For qμ ¼ ðq; 0Þ, using the relations

ρ00ðqÞ ¼ q2ρLðq2Þ;
1

3

X
j¼1;2;3

ρjjðqÞ ¼ q2ρTðq2Þ; ð27Þ

one has that the transverse and longitudinal form factors
ρTðE2Þ and ρLðE2Þ are related to Cαβðt; 0Þ through [see also
Eq. (15)]

CIðtÞ≡
Z

∞

0

dE
2π

e−EtE2ρIðE2Þ; ð28Þ

where we introduced the index I ¼ fL;Tg, and have defined

CLðtÞ≡ C00ðt; 0Þ; CTðtÞ≡ 1

3

X
j¼1;2;3

Cjjðt; 0Þ: ð29Þ

As discussed in detail in Refs. [9,10], the problem of
reconstructing the convolution integral between spectral
densities and smooth analytic kernel functions from the
knowledge of the corresponding lattice Euclidean correla-
tors, is well posed, and it can be shown [10] that the finite-
size effects (FSEs) on the resulting convolution integral
vanish faster than any power of the lattice spatial extent L.
In our case, the kernel functions KIðxÞ, due to the presence
of the theta function, have a nonanaliticity at x ¼ 1, and the

expression in Eq. (25) needs to be regularized. In this work
we consider the following smeared kernel functions:

Kσ
LðxÞ≡ 1

x
ð1 − x2Þ2Θσð1 − xÞ;

Kσ
TðxÞ≡ ð1þ 2x2ÞKσ

LðxÞ; ð30Þ

where

ΘσðxÞ≡ 1

1þ e−x=σ
; lim

σ↦0
ΘσðxÞ ¼ θðxÞ ð31Þ

is a C∞ smoothed version of the Heaviside step-function
θðxÞ. Clearly one has

RðτÞ
ud ¼ lim

σ↦0
RðτÞ
ud ðσÞ;

RðτÞ
ud ðσÞ≡ 12πSEWjVudj2

Z
∞

0

dEE2

m3
τ

�
Kσ

T

�
E
mτ

�
ρTðE2Þ

þ Kσ
L

�
E
mτ

�
ρLðE2Þ

�
; ð32Þ

and, by performing the L ↦ ∞ extrapolation at fixed
nonzero values of σ (i.e., by taking the L ↦ ∞ limit
before σ ↦ 0), we are guaranteed to deal with quantities
that have a well-defined infinite-volume limit and FSEs
vanishing faster than any power of 1=L.

The representation of RðτÞ
ud ðσÞ given in Eq. (32) allows for

a straightforward application of the HLT reconstruction
method developed in Ref. [9], and recently applied to
the study of many hadronic processes [11,14,18–20].
We summarize here the main ingredients of the procedure.
The final goal is to find, for fixed nonzero values of
the smearing parameter σ, the best approximation of the
kernel functions Kσ

I , in terms of the basis function1

fe−aEngn¼1;…;nmax
, namely

Kσ
I

�
E
mτ

�
≃
Xnmax

n¼1

gIðn; σ; amτÞe−aEn ≡ K̃σ
I

�
E
mτ

�
; ð33Þ

where the dimension nmax of the exponential basis is
typically chosen to be equal to the number of discrete
times at which CIðtÞ is known, i.e., nmax ¼ T=ð2aÞ (due to
the invariance of the correlator under t → T − t). In this
way, once the coefficients gI are known, the smeared ratio

RðτÞ
ud ðσÞ can be reconstructed, from the knowledge of

CIðnaÞ only, using

1On a lattice having a finite temporal extent T, the basis
function gets modified replacing e−aEn with e−aEn þ e−aEðT=a−nÞ.
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Rðτ;IÞ
ud ðσÞ≡ 12πSEWjVudj2

Z
∞

mh

dEE2

m3
τ

Kσ
I

�
E
mτ

�
ρIðE2Þ

≃ 12πSEWjVudj2
XT=ð2aÞ
n¼1

gIðn; σ; amτÞ

×
Z

∞

0

dEE2

m3
τ

e−aEnρIðE2Þ

¼ 24π2

m3
τ
SEWjVudj2

XT=ð2aÞ
n¼1

gIðn; σ; amτÞCIðnaÞ;

ð34Þ

and clearly RðτÞ
ud ðσÞ ¼ Rðτ;TÞ

ud ðσÞ þ Rðτ;LÞ
ud ðσÞ.

The problem of finding the coefficients gI presents a
certain number of technical difficulties. Any determination

of the smeared ratio RðτÞ
ud ðσÞ based on Eqs. (33) and (34)

will be inevitably affected by both systematic errors (due to
the inexact reconstruction of the kernels) and statistical
uncertainties [due to the fluctuations of the correlator
CIðtÞ], which need to be simultaneously kept under control.
The HLT method enables one to find an optimal balance
between the size of the statistical and systematic errors.
This is achieved by minimizing a linear combination

Wα
I ½g�≡ Aα

I ½g�
Aα
I ½0�

þ λBI½g�; ð35Þ

of the norm-functional

Aα
I ½g� ¼

Z
Emax

Emin

dEeaEα
					
XT=ð2aÞ
n¼1

gðnÞe−aEn − Kσ
I

�
E
mτ

�					
2

;

Emax ≡ rmax=a; ð36Þ

which quantifies the difference between the approximated
and the target kernel, and of the error-functional

BI½g� ¼ Bnorm

XT=ð2aÞ
n1;n2¼1

gðn1Þgðn2ÞCovIðan1; an2Þ; ð37Þ

where CovI is the covariance matix of the correlator
CIðanÞ, and Bnorm is a normalization factor introduced to
render the error-functional dimensionless.
The algorithmic parameters fα; Emin; rmaxg in Eq. (36)

can be tuned to optimize the fidelity of the reconstruction in
specific energy regions. For the parameter Emin, any value
0 < Emin < mh, where mh is the mass of the lightest
hadronic state allowed in the decay (in pure QCD mh ¼
mπ for the axial channel and mh ¼ 2mπ for the vector one),
is legitimate, since the spectral density vanishes for
E∈ ½0; mhÞ, and the quality of the reconstruction of the
kernel functions in this energy region has no impact in the

determination of Rðτ;IÞ
ud ðσÞ. The parameter λ in Eq. (35) is

the so-called trade-off parameter, and for a given value of
λ, the minimization of the functional Wα

I ½g� gives the
coefficients gλI. In presence of statistical errors, the second
term in Eq. (35) disfavors coefficients g leading to too
large statistical uncertainties in the reconstructed values of

Rðτ;IÞ
ud . The optimal balance between having small statistical

errors (small BI½g�) and small systematic errors (small
AI½g�) can be achieved by tuning λ appropriately. This
is done performing the so-called stability analysis,
which is thoroughly discussed in Refs. [14,18]. In a
nutshell, in the stability analysis one monitors the evolu-

tion of the reconstructed values of Rðτ;IÞ
ud as a function of λ.

The optimal value λ⋆ is then chosen in the so-called
statistically dominated regime, where λ is sufficiently
small that the systematic error due to the kernel
reconstruction is smaller than the statistical one (in this
region the results are thus stable under variations of λ),
but large enough to still have reasonable statistical
uncertainties. Examples of the stability analysis will be
given in the next section (see Fig. 2). Finally, having
determined the optimal value λ⋆, we always repeat
the calculation employing a second (smaller) value of
λ ¼ λ⋆⋆, which is determined imposing the validity of the
following condition:

BI½gλ⋆⋆I �
AI½gλ⋆⋆I � ¼ κ

BI½gλ⋆I �
AI½gλ⋆I � ; ð38Þ

with κ ¼ 10. Any statistically significant difference

between the values of Rðτ;IÞ
ud ðσÞ corresponding to the

two choices λ ¼ λ⋆ and λ ¼ λ⋆⋆ is added as a systematic
uncertainty in our final error. We refer to Ref. [14] for
further details on this point.

III. NUMERICAL RESULTS

In this section we show our numerical results for RðτÞ
ud ,

obtained making use of the last generation of gauge field
configurations produced by the ETMC employing the
Iwasaki gluon action [21] and Nf ¼ 2þ 1þ 1 flavors of
Wilson-Clover twisted-mass fermions at maximal twist [22].
This framework guarantees the automatic OðaÞ improve-
ment of all physical observables of interest [23,24].
Full information on the last generation of ETMC ensembles
can be found in Refs. [13,25–27], as well as in Refs. [28,29]
for more technical details. However, for the sake of
completeness, we report in Table I essential information
on the ensembles that have been used for the present work,
which correspond to three values of the lattice spacing a in
the range [0.056, 0.08] fm, and lattice extent L in the range
[5.09, 7.64] fm. All ensembles but the B96 have a very
similar volume (see Table I), while the B96 ensemble has a
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larger linear extent of more than 7 fm, and it is used to
estimate FSEs.
We employ two distinct lattice discretizations of the

weak current, given by

Jα;tmud ¼ ZAūþγαdþ − ZVūþγαγ5dþ;

Jα;OSud ¼ ZVūþγαd− − ZAūþγαγ5d−; ð39Þ

where ZA and ZV are the (finite) renormalization constants
(RCs) of the axial and vector currents, which in twisted-
mass QCD are chirally rotated with respect to the ones of
standard Wilson fermions. In the previous equation, the
subscript� on the up and down quark fields corresponds to

a specific choice of the Wilson r parameter (see e.g., [30]
and reference therein for details) given by

ru� ¼ −rd� ¼ ð−1Þ�: ð40Þ

Since the twisted Wilson term accompanied by the appro-
priate critical mass counterterm (for both sea and all kinds
of valence quark fields) is a truly dimension-five irrelevant
operator, the two currents Jtmud and JOSud , where “tm” stands
for twisted-mass and “OS” for Osterwalder-Seiler, when
plugged into the expression (13), produce Euclidean
correlators having the same continuum limit. However,
at finite lattice spacing the two correlators differ in general

FIG. 2. Stability analysis plot for the three different contributions Rðτ;TV Þ
ud ðσÞ (top), Rðτ;TAÞ

ud ðσÞ (middle), and Rðτ;LÞ
ud ðσÞ (bottom). The data

refer to the results obtained on the B64 ensemble for σ ¼ 0.02, using the OS regularization. In each figure, the different colors
correspond to different values of the algorithmic parameters α and rmax. The vertical dashed lines correspond, from right to left, to the
position of the values of λ⋆ and λ⋆⋆ [see Eq. (38) and the text around it] for the case α ¼ 4 and rmax ¼ 4 (data points in red).
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by lattice artifacts, allowing us to approach the continuum
limit from two different directions. In the following, wewill
present the results obtained using both the tm and the OS
current, which, as it will be discussed, can simultaneously
be used in the continuum fits to better control the result of
the extrapolation. Moreover, we will oftentimes adopt the
notation Xtm ðOSÞ, to indicate that a given lattice observable

X has been evaluated using the current Jtm ðOSÞ
ud . For

completeness, in Table II we collect the values of ZA
and ZV that we use for each of the ensembles of Table I.
For both the tm and the OS regularization, and for each

of the ensembles of Table I, we evaluated the Euclidean
correlator Cαβðt; 0Þ at vanishing spatial momentum q ¼ 0,
using Nsource ¼ 103 stochastic spatial sources per gauge
configuration. The sources are randomly distributed in
the time slice, diagonal in spin and diluted in the color
variable. The number of gauge configurations we ana-
lyzed is given in Table I. From the knowledge of Cαβðt; 0Þ,
we determine the smeared ratio RðτÞ

ud ðσÞ using the HLT
method introduced in the previous section, as we are now
going to illustrate.

A. Stability analysis and study of the FSEs

For each of the ensembles of Table I, and for both the tm

and the OS regularization, we evaluated Rðτ;IÞ
ud ðσÞ for several

values of σ ∈ ½0.004; 0.14�. The first investigation we
carried out concerns the determination of the optimal
values of the algorithmic parameters fα; Emin; rmaxg of
Eq. (36). For Emin, we always set its value to Emin ¼
0.05mτ ≃ 90 MeV, which ensures the validity of the con-
dition Emin < mh [see text below Eq. (37)] in all channels.
We considered instead different values of α and rmax given
by2 α∈ f2−; 3; 4; 5g and rmax ∈ f4; 5; 6;∞g. For Emax ¼ ∞
only values of α < 2 can be employed, otherwise the
integral in Eq. (36) would be divergent.
In Fig. 2, we show the stability-analysis plot for a

fixed value of σ ¼ 0.02 and for a selected gauge ensemble,
the B64. In the figure we compare the results obtained for
different choices of α and Emax. Notice that we distinguish

the axial and vector contributions to Rðτ;TÞ
ud ðσÞ, which we

indicate simply by Rðτ;TV Þ
ud ðσÞ and Rðτ;TAÞ

ud ðσÞ. The two
contributions are obtained by evaluating the Euclidean
correlator of Eq. (13) employing respectively the axial and
vector part of the weak current of Eqs. (5) and (39), and
then following the procedure described in the previous
subsections to obtain the smeared ratio. One has

Rðτ;TÞ
ud ðσÞ ¼ Rðτ;TVÞ

ud ðσÞ þ Rðτ;TAÞ
ud ðσÞ; ð41Þ

because the mixed axial-vector term in Eq. (12) is zero
due to parity symmetry. Instead, in isosymmetric QCD,
the vector part of the correlation function of Eq. (12) is
transverse due to the conservation of the vector current

ūγαd; therefore the longitudinal contribution Rðτ;LÞ
ud ðσÞ

comes entirely from the axial part of the weak current.
Computing the axial and vector contributions separately
is phenomenologically interesting, since, as we shall
discuss, the same separation can be performed
experimentally.
In Fig. 2 the results corresponding to the different values

of λ explored are shown as a function of the variable

TABLE II. The values of the vector (ZV) and axial (ZA) RCs for
the ETMC ensembles of Table I. They have been determined in
Ref. [13], to which we refer for additional details, using methods
based on lattice Ward identities (for ZV ) or universality of matrix
elements (case of ZA) for currents between the vacuum and a
(relatively light) one-pseudoscalar-meson state.

Ensemble ZV ZA

B64 0.706379 (24) 0.74294 (24)
B96 0.706405 (17) 0.74267 (17)
C80 0.725404 (19) 0.75830 (16)
D96 0.744108 (12) 0.77395 (12)

TABLE I. Parameters of the ETMC ensembles used in this work. We present the lattice spacing a, the pion mass
Mπ , the lattice size L, and the number Ng of gauge configurations analyzed. The values of the lattice spacing are

determined as explained in Appendix B of Ref. [13] using the value fphysπ ¼ fisoQCDπ ¼ 130.4ð2Þ MeV of the pion
decay constant. The quoted values of the pion mass are obtained by computing the light-quark mass corrections
needed to match the valueMisoQCD

π ¼ 135.0 MeV starting from simulations with slightly larger than physical quark
masses, as described in Appendix A of Ref. [13]. We refer to Ref. [13] for more detailed information on the
ensembles.

Ensemble β V=a4 a (fm) Mπ (MeV) L (fm) Ng

B64 1.778 643 · 128 0.07957 (13) 135.2 (0.2) 5.09 776
B96 � � � 963 · 192 � � � � � � 7.64 602
C80 1.836 803 · 160 0.06821 (13) 134.9 (0.3) 5.46 401
D96 1.900 963 · 192 0.05692 (12) 135.1 (0.3) 5.46 373

2α ¼ 2− in practice means α ¼ 1.99.
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dI½gλI�≡
ffiffiffiffiffiffiffiffiffiffiffiffi
A0
I ½gλI�
A0
I ½0�

s
ð42Þ

which quantifies the goodness of the reconstruction (the
smaller the value of dI½gλI�, the better the reconstruction). As
the figure shows, larger values of α lead to much more
stable results as a function of λ. This behaviour is explained
by noticing that for α > 0 the presence of the exponential
eaEα term in Eq. (36) improves the quality of the
reconstruction in the large-energy region. Indeed, the errors
in the reconstruction of the smearing kernels for large
values of E=mτ get amplified in the corresponding smeared
quantity because, in general, the spectral densities appear-
ing in lattice correlators grow asymptotically with the
energy. In light of these findings, in the following we
employ in the data analysis only the results corresponding
to α > 2 (and hence to a finite rmax). For illustration, we
report in Fig. 3 the reconstructed smeared kernels K̃σ

TðxÞ,
for σ ¼ 0.02, corresponding to the coefficients gλ

⋆

T deter-

mined in the spectral reconstruction of Rðτ;TAÞ
ud ðσÞ, in the OS

regularization and for all the values of the algorithmic
parameters shown in Fig. 2.
Concerning the estimate of the FSEs, we recall that all

the gauge ensembles we use but the B96 have a very similar
spatial volume (in the range L∈ ½5.1; 5.5� fm). To properly
estimate the FSEs we compare the results obtained on the
B64 and B96 ensembles, which share the same values of
the quark masses and of the lattice spacing, and only differ

by the lattice volume. The B96 has a large lattice extent of
7.64 fm. The results of the comparison are shown in Fig. 4
for σ ¼ 0.02, and for both the tm and the OS regularization,
in the case of the spectral reconstruction obtained using
α ¼ 4 and rmax ¼ 4. As the figure shows, for all contri-
butions and regularizations, the difference between the
results on the two volumes is reassuringly small. However,
in order to be conservative, we associate to the results
obtained on the B64, C80, and D96 ensembles an addi-
tional systematic uncertainty, due to FSEs, given by

ΣFSE
I ðσÞ ¼ max

reg¼ftm;OSg



Δreg

I ðσÞerf
�

1ffiffiffi
2

p
σΔreg

I ðσÞ

��
; ð43Þ

where we have defined

Δreg
I ðσÞ ¼

			Rðτ;IÞ;reg
ud ðσ;B64Þ − Rðτ;IÞ;reg

ud ðσ;B96Þ
			; ð44Þ

and indicated with σΔreg
I ðσÞ its relative statistical uncertainty.

Thus, ΣFSE
I ðσÞ is the spread between the results obtained on

the B96 and B64 ensembles, weighted by the probability
that the spread is not due to a statistical fluctuation, and
maximized over the two regularizations tm and OS. In the
following subsection, we will carry out the continuum
limit extrapolation using the results on the B64, C80, and
D96 ensembles, which, after including the systematic
uncertainty ΣFSE

I ðσÞ due to FSEs, are considered as infinite-
volume quantities.

FIG. 3. The reconstructed smearing kernels K̃σ
TðxÞ obtained using the coefficients gλ

⋆

T employed in the reconstruction of Rðτ;TAÞ
ud ðσÞ in

the OS regularization. The different colors correspond to the different choices of the algorithmic parameters α and rmax shown in Fig. 2.
In the top figure the black line corresponds to the exact kernel Kσ

TðxÞ of Eq. (30). In the bottom figure we show instead
x½K̃σ

TðxÞ − Kσ
TðxÞ�. The data correspond to σ ¼ 0.02.
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B. Continuum limit extrapolation
and the limit of vanishing σ

We now turn to the discussion of the remaining extrap-

olations that need to be performed to obtain RðτÞ
ud , namely

the continuum limit extrapolation at fixed σ (that we
perform first), and the final extrapolation to vanishing σ.
For the continuum extrapolation, we perform combined fits
to the data corresponding to the two regularizations tm and
OS, employing the following fit Ansatz:

Rðτ;IÞ;tm
ud ðσ; aÞ ¼ RIðσÞ þDtm

I ðσÞa2;
Rðτ;IÞ;OS
ud ðσ; aÞ ¼ RIðσÞ þDOS

I ðσÞa2; ð45Þ

where RIðσÞ, Dtm
I ðσÞ, and DOS

I ðσÞ are σ-dependent free fit
parameters. A common continuum limit value, RIðσÞ, is
thus enforced. The fit is performed minimizing a correlated
χ2 variable. The corresponding covariance matrix has a
2 × 2 block-diagonal form, since the data corresponding to
different ensembles are uncorrelated, and the only non-
vanishing correlation is the one between the tm and OS data
corresponding to the same ensemble. We carry out, for each
contribution, a total of four different fits, which differ on
whether for each regularization we perform a linear or a

constant fit in a2 [i.e., we selectively set Dtm
I ðσÞ and/or

DOS
I ðσÞ to zero]. In order to combine the results obtained in

the different continuum fits, and provide our final deter-

mination of Rðτ;IÞ
ud ðσÞ, we make use of the Bayesian model

average (BMA) procedure developed in Ref. [31]: starting
from the values fxkgk¼1;…;N obtained by fitting the same
dataset in N different ways, their average x̄ and final
uncertainty σx are given by

x̄¼
XN
k¼1

ωkxk; σ2x¼σ2x;statþ
XN
k¼1

ωkðxk− x̄Þ2;
XN
k¼1

ωk¼1

ð46Þ

where ωk is the weight associated to the kth fit, and σx;stat is
the statistical error of x̄. We choose the weights according
to the Akaike Information Criterion (AIC) of Ref. [32],
namely

ωk ∝ exp f−ðχ2k þ 2Nk
par − Nk

measÞ=2g; ð47Þ

where χ2k, N
k
par and Nk

meas are respectively the chi squared,
the total number of fit parameters, and the total number of
measurements of the kth fit.

FIG. 4. Comparison between the stability analysis plot corresponding to the B64 (red) and B96 (blue) ensembles. The three figures on
the left (right) correspond to the different contributions to the smeared ratio for σ ¼ 0.02 and in the OS (tm) regularization. As in Fig. 2,
the vertical dashed lines correspond, from the right to the left, to the position of the values of λ⋆ and λ⋆⋆ for the two ensembles. All data
correspond to the spectral reconstruction obtained using α ¼ 4 and rmax ¼ 4.
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In Fig. 5 we illustrate the continuum fits we performed,
by considering the case of the smallest value of σ we
employed, i.e., σ ¼ 0.004, and the reconstructed observ-
ables corresponding to the choice α ¼ 4 and rmax ¼ 4 in
the HLT method. In the rightmost part of the panels of
Fig. 5, the lattice data corresponding to the tm and OS
regularization are shown in red and blue, respectively.
The corresponding error bars are already inclusive of the
systematic errors due to FSEs and inexact kernel
reconstruction. In the figure, to highlight the typical size
of the FSEs, we also show the raw data obtained on the B64
and B96 ensembles, which are indicated as orange and light
blue data points, respectively for the tm and OS regulari-
zation. The different red (for tm) and blue (for OS) lines
show fits obtained using a constant or linear Ansatz in a2.
As it is clear from the figure, the cutoff effects are
remarkably small, typically of the order of a few percent,
and in some cases smaller than the combined statistical
and systematic error of the data. Indeed, for many
contributions we are able to obtain a very good χ2=dof
by fitting the data with a constant function. Finally, in the
leftmost part of the panels of Fig. 5 we show the histo-
grams corresponding to the distribution of the continuum
extrapolated results for the mean values of interest, as
obtained by applying the BMA procedure of Eq. (46)
and using the weights in Eq. (47). The magenta bands
corresponds to our final determination.
Finally, let us now discuss the issue of the σ ↦ 0

extrapolation. Under the assumption that the form factors
ρT and ρL are regular at the end point of the phase space,
i.e., for E ¼ mτ, we show in Appendix B that the
corrections to the σ ↦ 0 limit are even functions of σ,
starting at Oðσ4Þ, i.e.,

Rðτ;IÞ
ud ðσÞ − Rðτ;IÞ

ud ¼ Oðσ4Þ: ð48Þ

The assumption of regularity is expected to hold true in the
infinite-volume limit, where the form factors ρI should be
smooth functions of the energy around E ¼ mτ. The result
of Eq. (48) is important since it allows one to carry out a
controlled extrapolation to vanishing σ. In addition, since
the leading order corrections are of order Oðσ4Þ, one

expects a rather fast convergence of RðτÞ
ud ðσÞ towards

RðτÞ
ud . In Fig. 6, we show as a function of the smearing

parameter σ our results for Rðτ;IÞ
ud ðσÞ after applying the BMA

procedure of Eqs. (46) and (47). As it is clear from the
figure, the results are remarkably stable under modification
of the algorithmic parameters α and rmax. Moreover, for
σ < 0.04, no dependence on σ can be appreciated within
errors, a remarkable finding that allows us to take the
σ ↦ 0 limit with confidence. For the longitudinal contri-

bution Rðτ;LÞ
ud ðσÞ the dependence on σ is practically absent

over all ranges of σ explored. This behavior is somehow
expected, since, as highlighted in the figure, ρLðE2Þ turns

out to be dominated by the pion-pole contribution, which is
given by

ρLðE2Þjπ−pole ¼ πδðE −mπÞ
f2π
mπ

⇒ Rðτ;LÞ
ud

			
π−pole

¼ 12π2SEWjVudj2
f2π
m2

τ

�
1 −

m2
π

m2
τ

�
2

≃ 0.643ð2ÞjVudj2; ð49Þ

and is thus less sensitive to the smearing, which mostly
affects the behavior of the kernel functions around
E ≃mτ, where the spectral function ρLðE2Þ is thus pre-
sumably small.
In light of the asymptotic-expansion formula of Eq. (48),

we have carried out the σ ↦ 0 extrapolation employing the
following linear Ansatz in σ4:

Rðτ;IÞ
ud ðσÞ ¼ RI þ AIσ

4; ð50Þ

where RI and AI are free fit parameters. The extrapolation
has been performed using our preferred analysis branch,
i.e., the one with α ¼ 4 and rmax ¼ 4, which leads to
slightly smaller errors. We found that for all contributions
the data up to σ ¼ 0.14 are well described by the fit Ansatz,
and stable within errors under removal of a few data points
at the largest σ values as well as under variation of the
fit Ansatz by inclusion of a σ6 term. The result of the
extrapolations, which basically coincides with the results
obtained at the smallest value of σ we simulated (i.e.,
σ ¼ 0.004), are indicated by the gray bands in Fig. 6.
Our main results are summarized in Table III, where we

provide also the axial contribution Rðτ;AÞ
ud given by

Rðτ;AÞ
ud ≡ Rðτ;TAÞ

ud þ Rðτ;LÞ
ud ; ð51Þ

while, as already mentioned, the vector contribution Rðτ;VÞ
ud

coincides, in the limit of degenerate up and down quarks in

which we work, with Rðτ;TVÞ
ud . The overall accuracy that we

obtained for the different contributions is very good,
typically of order Oð1%Þ or smaller, and motivates us
to undertake the task of computing the leading isospin
breaking corrections for this quantity, which, given that
αem ≃ ðmd −muÞ=ΛQCD ≃Oð1%Þ, are expected to be of
the same order of magnitude as our present total (statistical
and systematic) uncertainty.
In Fig. 7 we compare our lattice results, with the

experimental data from the ALEPH [33] and OPAL [34]

collaborations. As the figure shows, we find for RðτÞ
ud=jVudj2

a good agreement between our results and the experimental
measurements. For the vector and axial contributions, we
observe some differences with respect to the experimental
data, which are more pronounced in the axial channel (at
the level of 1.6σ and 2.4σ if we compare with the ALEPH

INCLUSIVE HADRONIC DECAY RATE OF THE τ … PHYS. REV. D 108, 074513 (2023)

074513-11



FIG. 5. Continuum extrapolation of Rðτ;LÞ
ud ðσÞ, Rðτ;TV Þ

ud ðσÞ, Rðτ;TAÞ
ud ðσÞ, and of the total RðτÞ

ud ðσÞ at a fixed value of σ ¼ 0.004 and for the
case α ¼ 4 and rmax ¼ 4. The red and blue data points correspond respectively to the lattice data obtained in the tm and OS
regularization. The orange (tm) and light-blue (OS) data points at a2 ≃ 0.006 correspond to the raw data obtained on the B64 and B96
ensembles, and are shown to highlight the size of the FSEs. The different red (for tm) and blue (for OS) lines show a few of the fits
obtained using a constant or linear Ansatz in a2. The histograms shown in the left part of the panels correspond to the distribution of the
continuum extrapolated results obtained after applying the BMA procedure of Eq. (46), using the weights in Eq. (47). The magenta
bands corresponds to our final determination.
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and OPAL results, respectively). This difference is however
at the level of a few percent and might well be attributed
to the missing isospin breaking contributions and/or to
statistical fluctuations. In the rightmost panel of Fig. 7 we
report the HFLAV average [2]

1

jVudj2
RðτÞ
ud ðHFLAVÞ ¼ 3.660ð8Þ; ð52Þ

obtained by combining, for each exclusive decay mode, the
results of several experiments (see Ref. [2] and references
therein for details). This value compares very well with our
theoretical prediction

1

jVudj2
RðτÞ
ud ¼ 3.650ð28Þ: ð53Þ

For the comparison shown in Fig. 7 we used the most
precise determination of jVudj which comes from the study

of the superallowed 0þ → 0þ nuclear beta decays, and it is
given by jVudj ¼ 0.97373ð31Þ [1].
In alternative to the comparison shown in Fig. 7, our

results for RðτÞ
ud=jVudj2 can be used to determine jVudj using

the HFLAVaverage RðτÞ
ud ðHFLAVÞ ¼ 3.471ð7Þ. The analy-

sis yields

jVudj ¼ 0.9752ð39Þ; ð54Þ

in agreement with the determination from the superallowed
nuclear beta decays. Exploiting the unitarity of the CKM
matrix, we also obtain for jVusj the estimate

jVusj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jVudj2 − jVubj2

q
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− jVudj2

q
¼ 0.221ð17Þ:

ð55Þ

TABLE III. The main results obtained in this work. We give, in order from left to right, our predictions for

Rðτ;WÞ
ud =jVudj2 with W ¼ L;TA;TV;T; A. The value in the last column corresponds to the total RðτÞ

ud =jVudj2.
L TA TV T A Total

This work 0.645 (13) 1.094 (27) 1.903 (12) 2.996 (33) 1.746 (22) 3.650 (28)

FIG. 6. σ dependence of the continuum extrapolated values of Rðτ;LÞ
ud ðσÞ, Rðτ;TAÞ

ud ðσÞ, Rðτ;TV Þ
ud ðσÞ, and RðτÞ

ud ðσÞ, as obtained after applying
the BMA procedure of Eqs. (46) and (47). We show the results corresponding to different values of the algorithmic parameters α and
rmax, which have been slightly shifted horizontally for better visibility. In the top left panel, the blue band corresponds to the pion-pole
prediction of Eq. (49). Finally, the gray bands represent the result of the σ ↦ 0 extrapolation using the Ansatz in Eq. (50).
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Finally, another interesting quantity to provide is the
difference between the vector and axial contribution,

normalized over the total ratio RðτÞ
ud , namely

ΔðτÞ
V−A ≡ Rðτ;VÞ

ud − Rðτ;AÞ
ud

RðτÞ
ud

: ð56Þ

This quantity, which is independent from jVudj, vanishes to
any given order of the perturbative expansion (if we neglect
light-quark mass effects), and is thus very sensitive to
nonperturbative physics contributions. The ALEPH and
OPAL collaborations quote the value

ΔðτÞ
V−AðALEPHÞ ¼ 0.026ð7Þ; ΔðτÞ

V−AðOPALÞ ¼ 0.013ð7Þ;
ð57Þ

which can be compared with our determination

ΔðτÞ
V−A ¼ 0.042ð5Þ: ð58Þ

Due to the large cancellation in ΔðτÞ
V−A between the vector

and axial contribution, the resulting uncertainties for
this quantity are, at present, quite sizable: they are of order
Oð10%Þ in the case of our theoretical prediction, and of
order Oð25–30%Þ and Oð50%Þ for the ALEPH and OPAL
results, respectively. The difference between our prediction
and the experimental values in Eq. (57) is at the level of
1.9σ and 3.5σ, if we compare with the ALEPH and OPAL
results, respectively. However, for this quantity, which is

obtained after a strong cancellation between the vector and
axial contribution, the relative impact of the missing isospin
breaking corrections might be stronger, and for this reason,
at present, we cannot claim any discrepancy between the

theoretical prediction and the experimental value of ΔðτÞ
V−A.

In the future, it will be interesting to see whether this
difference increases or vanishes once isospin breaking
corrections are included, and both experimental and theo-
retical uncertainties reduced.

IV. CONCLUSIONS

In this paper we have presented, for the first time, a first-
principles and fully nonperturbative lattice QCD determi-
nation of the inclusive decay rate of the τ lepton. The
method relies on the HLT method of Ref. [9], which allows
one to evaluate the energy integral of spectral density
weighted by smooth analytic kernel functions. In this first
numerical study, we have evaluated the (semi-)inclusive
decay rate τ → Xudντ, where Xud is a generic hadronic state
with ūd flavor quantum numbers, in isospin-symmetric
QCD, i.e., by neglecting strong and electromagnetic
isospin-breaking corrections. The method we propose
does not rely on OPE or perturbative approximations
and proceeds by regularizing the expression for the ratio

RðτÞ
ud of decay rates in Eqs. (21) and (24), which involves an

integral over the spectral form factors ρTðsÞ and ρLðsÞ, by
introducing a nonzero smearing parameter σ. The resulting

regularized ratio RðτÞ
ud ðσÞ [see Eq. (32)] can be then targeted

by the HLT method, and the limit of vanishing σ, which

FIG. 7. Comparison between the lattice results obtained in this work and the experimental measurements by the ALEPH [33] and
OPAL [34] collaborations. We show, from left to right, the vector contribution Rðτ;VÞ

ud , the axial contribution Rðτ;AÞ
ud , and the total RðτÞ

ud . In
the rightmost panel, the data point in magenta corresponds to the HFLAVaverage [2] of the experimental results. For this comparison,

we divided the experimental results for Rðτ;VÞ
ud , Rðτ;AÞ

ud , and RðτÞ
ud by jVudj2 using the value [1] jVudj ¼ 0.97373ð31Þ.
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must be considered in order to recover the physical ratio,
is then taken after the appropriate infinite-volume and
continuum-limit extrapolations.
We have shown that the σ ↦ 0 extrapolation can be

handled in a completely controlled way, thanks to the
analytical result derived in Appendix B for the corrections

to the vanishing σ limit of RðτÞ
ud ðσÞ. For this quantity, the

corrections start at Oðσ4Þ, and numerically we have
found clear evidences of the presence of such behavior.
Furthermore, for σ < 0.04, we are already in the region
where the Oðσ4Þ corrections are negligibly small, and no
dependence on σ can be observed within our current
uncertainties. These findings allow us to take the σ ↦ 0
limit in full confidence.
Making use of the last generation of ensembles produced

in isospin symmetric QCD by the ETMC at three lattice
spacings, two volumes, and with Nf ¼ 2þ 1þ 1 quark
flavors at physical mass values (see Table I and
Refs. [13,25–27]), we have determined both the total ratio

RðτÞ
ud and its individual contributions coming from the

longitudinal or transverse part of the spectral density tensor
in Eq. (16), and from the axial or vector part of the weak
current. We obtained a satisfactory accuracy for all con-
tributions; our final errors are typically of order of Oð1%Þ,
or smaller. These findings motivate us to compute the
only missing piece in our calculation, namely the isospin
breaking corrections, which are parametrically of order
αem ≃ ðmd −muÞ=ΛQCD ≃Oð1%Þ, and thus of the same
order of magnitude as our current (statistical and system-
atic) uncertainties.
From the phenomenological viewpoint, our theoretical

prediction for RðτÞ
ud=jVudj2 can be compared with the

experimental results for RðτÞ
ud , by using an independent

determination of jVudj (e.g., the precise value obtained

from the superallowed β decays [1]). For the total RðτÞ
ud , our

determination compares very well with the HFLAVaverage
of the experimental results [2]. The separate vector and

axial contributions, Rðτ;VÞ
ud =jVudj2 and Rðτ;AÞ

ud =jVudj2, can be
instead compared with the experimental determination
provided by the ALEPH [33] and OPAL [34] collabora-
tions. In the axial channel, we observe some difference with
the experimental results, which is at the level of 1.6σ and
2.4σ, if we compare with the ALEPH and OPAL measure-
ments, respectively. Clearly, such difference might be due
to the missing isospin breaking corrections, as well as to
statistical fluctuations. We also provided our prediction

for the jVudj-independent ratio ΔðτÞ
V−A in Eq. (56), which

vanishes to any given order of the perturbative expansion
in massless QCD, and is thus very sensitive to the non-
perturbative contributions. Also for this quantity we
observe some difference with respect to the experimental
data, in particular, again, with the OPAL results (at the level
of 3.5σ). Once isospin breaking corrections will be

included, it will be extremely interesting to check whether
this difference increases or disappears.
Finally, we would like to briefly discuss the prospects for

the extraction of the CKMmatrix elements from inclusive τ
decays. In the ud-flavor channel, as already mentioned, the
current most precise determination of jVudj comes from the
superallowed β decays, and has a striking uncertainty of
Oð0.03%Þ. In order to match such level of accuracy, the

experimental uncertainty on RðτÞ
ud should be reduced by a

factor ≃3, while from the theory side, the lattice QCD

(þQED) errors on RðτÞ
ud=jVudj2 should be reduced by

approximately one order of magnitude. While matching
such level of accuracy seems unfeasible in the short term,
having an independent and gradually more precise deter-
mination of jVudj is important, since it allows one to
monitor whether the (currently existing) agreement
between inclusive and exclusive determinations of jVudj
remains, as the errors get reduced.
The approach we discussed here considering the ud-

flavor channel can be immediately applied to the us-flavor
channel as well. In this case, having a precise determination
of jVusj from the (semi-)inclusive decay τ → Xusντ would
be even more interesting from a phenomenological point
of view. Indeed, the typical accuracy of the current most
precise determinations of jVusj is approximately in the
range 0.3%–0.7%, which could be matched by the pre-

cision of the lattice calculation of RðτÞ
us =jVusj2. From the

experimental side instead, the present uncertainty on RðτÞ
us is,

according to the HFLAV review [2], of about 1.6%, which
would allow for an extraction of jVusj at the 0.8%
precision level. This is not yet at the level of precision
already reached by other methods, but it could be expected
that the experimental accuracy will improve over the next
years. In this respect, we believe that providing a first-
principles and fully nonperturbative determination of

RðτÞ
us =jVusj2 will encourage the experimentalists to work

in this direction.
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APPENDIX A: INCLUSIVE DECAY RATE,
OPTICAL THEOREM,

AND THE CUTKOSKY RULE

In this appendix we present an alternative derivation

of the expression for the inclusive decay rate ΓðτÞ
ud of

Eq. (11) based on the optical theorem and the Cutkosky
rule (the relevant Feynman diagram and the corresponding
cut are shown in Fig. 8).
The optical theorem relates the inclusive decay rate ΓðτÞ

to the forward matrix element of the transition matrix T
(with S ¼ 1þ iT),

ΓðτÞ ¼ 1

2mτ
2ImTττ; ðA1Þ

where Tττ ¼ hτjTjτi. At the leading order in the Fermi
effective theory, and for intermediate hadronic states
with flavor quantum number ūd, the transition amplitude
is expressed by

iTττ ¼
�
GFffiffiffi
2

p
�

2

jVudj2
Z

d4pν

ð2πÞ4
i

p2
ν þ iε

Lαβðpτ; pνÞiΠαβ
udðqÞ;

q ¼ pτ − pν; ðA2Þ

where Lαβðpτ; pνÞ is the leptonic tensor of Eq. (7) and

Παβ
udðqÞ is the hadronic vacuum polarization tensor,

Παβ
udðqÞ ¼ i

Z
d4x eiqxh0jT

�
JαudðxÞJβudð0Þ†

�
j0i: ðA3Þ

In order to evaluate the imaginary part of the transition
amplitude, it is useful to consider for Παβ

udðqÞ its Källen-
Lehmann representation, which reads

−iΠαβ
udðqÞ ¼

Z
∞

0

dM2

2π

i
q2 −M2 þ iε

ραβudðqMÞ; ðA4Þ

where ραβudðqÞ is the spectral density of Eq. (10) and

qM ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ q2

p
; qÞ (so that q2M ¼ M2). By inserting

Eq. (A4) into Eq. (A2), one obtains

iTττ ¼
�
GFffiffiffi
2

p
�

2

jVudj2
Z

d4pν

ð2πÞ4
Lαβðpτ; pνÞ
p2
ν þ iε

×
Z

∞

0

dM2

2π

ραβudðqMÞ
q2 −M2 þ iε

: ðA5Þ

The imaginary part of the transition amplitude can now
be evaluated in terms of the discontinuity of the amplitude
across the real axis, in the complex-p2 plane, which is
related to ImðTÞ by

Disc½Tðp2Þ� ¼ Tðp2 þ iεÞ − Tðp2 − iεÞ ¼ 2iIm½Tðp2Þ�:
ðA6Þ

In turn, the discontinuity of T can be evaluated using the
Cutkosky rule, which requires replacing each propagator in
the cuts of a diagram with its discontinuity across the real
axis, namely

i
p2 −m2 þ iε

→ Disc

�
i

p2 −m2 þ iε

�
¼ 2πδþðp2 −m2Þ;

ðA7Þ

where δþðp2 −m2Þ ¼ δðp2 −m2Þθðp0Þ. Applied to the
Källen-Lehmann representation of Παβ

udðqÞ in Eq. (A4),
the Cutkosky rule leads to

2Im½Παβ
udðqÞ� ¼ Disc½−iΠαβ

udðqÞ�

¼
Z

∞

0

dM2δþðq2 −M2ÞραβudðqMÞ

¼ ραβudðqÞ; ðA8Þ

which shows that the spectral density is just twice the
imaginary part of the polarization tensor Παβ

udðqÞ. Applying
instead the Cutkosky rule to the neutrino’s propagator
in Eq. (A5), the integral over the neutrino four-momentum
is reduced to an integral over the phase space of the
external particle,Z

d4pν

ð2πÞ4
i

p2
ν þ iε

→
Z

d4pν

ð2πÞ4 2πδ
þðp2

νÞ ¼
Z

d3pν

ð2πÞ32Eν
:

ðA9Þ

Thus, from the optical theorem of Eq. (A1), and using
Eqs. (A5), (A8), and (A9), one arrives at

FIG. 8. Feynman diagram representing, through the optical
theorem, the inclusive τ decay rate.
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ΓðτÞ
ud ¼ G2

FjVudj2
4mτ

Z
d3pν

ð2πÞ32Eν
Lαβðpτ; pνÞραβudðqÞ;

q ¼ pτ − pν; ðA10Þ
in agreement with the result obtained in Eq. (11).

APPENDIX B: CORRECTIONS TO THE σ ↦ 0
SPECTRAL DENSITIES RECONSTRUCTION

In this appendix we derive the corrections to the σ ↦ 0

limit of the inclusive ratio RðτÞ
ud ðσÞ of Eq. (32). To this end

we start by rewriting Eq. (32) as follows:

RðτÞ
ud ðσÞ ¼

Z þ∞

0

dxð1 − xÞ2ρ̃ðxÞΘσð1 − xÞ; ðB1Þ

where x ¼ E=mτ and where we have defined

ρ̃ðxÞ ¼ 12πSEWjVudj2xð1þ xÞ2

×

�
ð1þ 2x2ÞρTðm2

τx2Þ þ ρLðm2
τx2Þ

�
: ðB2Þ

By noticing the properties

ΘσðxÞ ¼ Θ1

�
x
σ

�
; Θ1ðxÞ þ Θ1ð−xÞ ¼ 1;

xp∂qx½1 − Θ1ðxÞ� ¼x↦∞ Oðe−xÞ ∀ p; q∈N; ðB3Þ

satisfied by the smeared theta function ΘσðxÞ, see Eq. (31),
the corrections to the σ ↦ 0 result

ΔRðτÞ
ud ðσÞ ¼ RðτÞ

ud ðσÞ − RðτÞ
ud ðB4Þ

can be written as

ΔRðτÞ
ud ðσÞ ¼

Z
∞

0

dxfΘσð1− xÞ− θð1− xÞgð1− xÞ2ρ̃ðxÞ

¼
Z

∞

0

dx



Θ1

�
1− x
σ

�
− θ

�
1− x
σ

��
ð1− xÞ2ρ̃ðxÞ

¼−σ3
Z

1
σ

−∞
dyfθðyÞ−Θ1ðyÞgy2ρ̃ð1− σyÞ: ðB5Þ

In the previous expressions we have used the fact that
θðxÞ ¼ θðx=σÞ for σ > 0 and made the change of variables
y ¼ ð1 − xÞ=σ. By splitting the integral appearing in the
last line of Eqs. (B5),

ΔRðτÞ
ud ðσÞ ¼ −σ3


Z
1
σ

0

dy½1 − Θ1ðyÞ�y2ρ̃ð1 − σyÞ −
Z

0

−∞
dyΘ1ðyÞy2ρ̃ð1 − σyÞ

�
; ðB6Þ

and by relying again on Eqs. (B3), we have

ΔRðτÞ
ud ðσÞ ¼ −σ3


Z
1
σ

0

dy½1 − Θ1ðyÞ�y2ρ̃ð1 − σyÞ −
Z

∞

0

dyΘ1ð−yÞy2ρ̃ð1þ σyÞ
�

¼ −σ3

Z

∞

0

dy½1 − Θ1ðyÞ�y2ρ̃ð1 − σyÞ −
Z

∞

0

dyΘ1ð−yÞy2ρ̃ð1þ σyÞ
�
þO

�
e−

1
σ

�

¼ σ3
Z

∞

0

dy½1 − Θ1ðyÞ�y2½ρ̃ð1þ σyÞ − ρ̃ð1 − σyÞ� þO
�
e−

1
σ

�
: ðB7Þ

In deriving the previous result we only assumed that ρ̃ðxÞ is
a tempered distribution and therefore that, as such, it grows
at most as a power in the x ↦ ∞ limit. In order to make
further progress we now need to know the behavior of ρ̃ðxÞ
around x ¼ 1. Indeed, as we are now going to show,

the behaviour of ΔRðτÞ
ud ðσÞ with respect to σ is strongly

dependent upon the behavior of ρ̃ðxÞ around x ¼ 1.
Since, axiomatically, ρ̃ðxÞ is a tempered distribution, we

cannot exclude a singular behavior at x ¼ 1. We therefore
consider the following rather general decomposition:

ρ̃ðxÞ ¼ ρ̃regðxÞ þ ρ̃þðxÞθð1 − xÞ þ
XNd

d¼0

ρ̃d∂
d
xδð1 − xÞ;

ðB8Þ

where we assume that ρ̃regðxÞ and ρ̃þðxÞ are C∞ regular
functions at x ¼ 1. The contributions proportional to the
θð1 − xÞ and to the derivatives of δð1 − xÞ have been
introduced to parametrize possible discontinuities and
δ-function singularities at x ¼ 1. We are now going to

analyze in turn the three contributions to ΔRðτÞ
ud ðσÞ,

ΔRðτÞ
ud ðσÞ ¼ ΔRregðσÞ þ ΔRþðσÞ þ ΔRδðσÞ; ðB9Þ

corresponding to the decomposition of ρ̃ðxÞ given
in Eq. (B8).
The asymptotic expansion of ΔRregðσÞ can readily be

obtained by substituting in Eq. (B7) the Taylor series
expansion
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ρ̃regð1þ σyÞ − ρ̃regð1 − σyÞ ¼
X∞
n¼0

2ðσyÞ2nþ1

ð2nþ 1Þ! ρ̃
ð2nþ1Þ
reg ð1Þ

ðB10Þ

and by defining the numeric coefficients

Cn
Θ ¼

Z
∞

0

dy½1 − Θ1ðyÞ�yn: ðB11Þ

We have

ΔRregðσÞ ¼ σ4
X∞
n¼0

2ðσÞ2n
ð2nþ 1Þ! ρ̃

ð2nþ1Þ
reg ð1ÞC2nþ3

Θ ¼ Oðσ4Þ:

ðB12Þ

Therefore, under the assumption that ρLðE=mτÞ and
ρTðE=mτÞ are both regular at E ¼ mτ, we have thus
derived the result stated in Eq. (48) and used in the main

text to fit Rðτ;IÞ
ud ðσÞ according to Eq. (50).

We now discuss the singular contributions ΔRþðσÞ
and ΔRδðσÞ. The asymptotic expansion of ΔRþðσÞ can
be derived by first noticing that the term proportional to
θð1 − ð1þ σyÞÞ gives no contribution to the integral of
Eq. (B7) and then by substituting in that expression the
expansion

ρ̃þð1 − σyÞ ¼
X∞
n¼0

ð−σyÞn
n!

ρ̃ðnÞþ ð1Þ; ðB13Þ

we get

ΔRþðσÞ ¼ −σ3
X∞
n¼0

ð−σÞn
ðnÞ! ρ̃ðnÞþ ð1ÞCnþ2

Θ ¼ Oðσ3Þ: ðB14Þ

In order to derive the asymptotic expansion of ΔRδðσÞ it
is convenient to start from the representation of ΔRðτÞ

ud ðσÞ
given in Eq. (B5). We have

ΔRδðσÞ ¼ σ3
XNd

d¼0

ρ̃d

Z
1
σ

−∞
dy½Θ1ðyÞ − θðyÞ�y2 ∂

d

∂
dð1 − σyÞ δðσyÞ

¼ σ2
XNd

d¼0

ð−1Þdσ−dρ̃d
Z 1

σ

−∞
dy½Θ1ðyÞ − θðyÞ�y2∂dyδðyÞ

¼ σ2
XNd

d¼0

σ−dρ̃d∂
d
yfy2½Θ1ðyÞ − θðyÞ�gy¼0: ðB15Þ

The results derived in this appendix deserve some
remarks. We presented a rather general analysis of the

asymptotic behavior of ΔRðτÞ
ud ðσÞ for small values of σ. Our

results have been obtained by parametrizing the possible
singularities of the tempered distributions ρLðE=mτÞ and/or
ρTðE=mτÞ according to Eq. (B8). Correspondingly, see
Eq. (B9), we studied the contribution to the asymptotic

behavior of ΔRðτÞ
ud ðσÞ induced by the regular part of the

spectral densities [ΔRregðσÞ] and by the possible occur-
rence of discontinuities [ΔRþðσÞ] or δ-function singular-
ities [ΔRδðσÞ]. This has been done because, from the
axiomatic viewpoint, we cannot exclude singularities of the
hadronic spectral densities at E ¼ mτ. On the other hand,
from the physical viewpoint, it is extremely unlikely that
the infinite volume hadronic spectral densities are singular
at a value of the energy corresponding to a leptonic scale,
i.e., at E ¼ mτ.

Unphysical singularities at E ¼ mτ might accidentally
be observed at finite volume. This might happen if one
considers too-small values of the smearing parameter σ
before performing the infinite volume limit of the lattice
data. In this case, according to Eqs. (B14) and (B15), one

might even see a singular behavior of ΔRðτÞ
ud ðσÞ for (too)

small values of σ.
In absence of singularities our result of Eq. (B12) shows

that only even powers of σ appear in the asymptotic

expansion of ΔRðτÞ
ud ðσÞ and that the leading behavior is

ΔRðτÞ
ud ðσÞ ¼ Oðσ4Þ. The numerical results presented in the

main text are fully compatible with the expected regular
behavior (see Fig. 6) and this, in the light of the previous
observations, can be seen as a reassuring evidence con-
cerning the fact that we performed the infinite volume limit
of our lattice data by estimating reliably the associated
systematic errors.
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