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Interplay between activity, elasticity, and liquid transport in self-contractile biopolymer gels1
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Active gels play an important role in biology and in inspiring biomimetic active materials, due to their ability
to change shape, size, and create their own morphology. We study a particular class of active gels, generated by
polymerizing actin in the presence of cross-linkers and clusters of myosin as molecular motors, which exhibit
large contractions. The relevant mechanics for these highly swollen gels is the result of the interplay between
activity and liquid flow: gel activity yields a structural reorganization of the gel network and produces a flow
of liquid that eventually exits from the gel boundary. This dynamics inherits lengthscales that are typical of the
liquid flow processes. The analyses we present provide insights into the contraction dynamics, and they focus on
the effects of the geometry on both gel velocity and fluid flow.
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I. INTRODUCTION19

Self-contractile active gels are usually generated by poly-20

merizing actin in the presence of cross-linkers and clusters21

of myosin as molecular motors [1–7]. The mechanics of ac-22

tive gels presents interesting characteristics: self-contractions23

generate internal stresses and stiffen the material, thus driving24

the network into a highly nonlinear, stiffened regime [2]; mor-25

phing from flat to curved geometries can be expected when26

thin disks of active elastic gels are considered [5]; boundaries27

affect morphing [3].28

A distinctive feature of active gels is the fact that the source29

that drives the system out of equilibrium is local, rather than30

at the system’s boundaries as in passive gels, where boundary31

tractions and/or fluxes and changes in the chemical equilib-32

rium of the external ambient are the driving forces [8]. From33

that, we get the definition of active gels as soft materials in34

which detailed balance is broken locally [9].35

The first models of active gels are based on a description36

of the contraction dynamics within the framework of active37

generalized hydrodynamics, which deal with gel mechanics,38

liquid transport, and gel activity [5,8–12]. The characteristics39

of these model are as follows: (i) the liquid flow is described40

through the mass conservation law and the Stokes equations;41

(ii) the overall stress in the gel is decomposed in an elastic42
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component, borrowed from the linear elasticity, and an active 43

component, which mimics the active contractile stress gener- 44

ated by the embedded motors; (iii) the overall stress satisfies 45

the balance of forces under a friction force resulting from 46

the relative velocity of the gel and liquid components. The 47

friction force and the active stress make gel mechanics, liquid 48

transport, and gel activity fully coupled. 49

Hydrodynamic models are very accurate in describing the 50

contraction dynamics at the network mesh scale, and less 51

interested in coupling that dynamics with the nonlinear me- 52

chanics of active gels, which is strongly affected by the liquid 53

flow and important when the description of shape transitions 54

in active gels is of interest [5]. More recently, the mechanics 55

of active gels has been at the center of a few theoretical 56

studies, set within the framework of nonlinear mechanics. 57

The interactions between elastic stresses and liquid flow have 58

been investigated in the presence of gel activity, which affects 59

the behavior of the material, and they have been included 60

through different approaches [13–15]. The common point of 61

view is that activity provides structural changes of the net- 62

work, which induce liquid motion within the gel. Differently 63

from generalized hydrodynamics, gel and liquid motion are 64

modeled using the stress-diffusion theory, a refined version 65

of nonlinear poroelasticity where liquid mass conservation 66

governs liquid transport, and Fick’s law takes the place of 67

Darcy’s law [16–18]. 68

In [13], a dynamic cross-linking mechanism is introduced 69

that drives an evolution of the mechanical stiffness of the 70

polymeric network and brings the system out of thermody- 71

namic equilibrium. The consequent gradient in the chemical 72

potential of the liquid drives the liquid flow in the active gel. 73

In the approach exploited in [14,15] by some of the authors, 74
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gel activity acts as a local time-dependent source of strain,75

driven by generalized forces, whose action breaks locally the76

thermodynamic equilibrium of the system.77

Here, we describe the active gel state in terms of the liq-78

uid density, the large displacement of the gel, and the active79

strain, as in [14,15]. In addition, we introduce the relationships80

between active strains and changes in the natural mesh size81

of the polymer, defined as the distance between cross-links82

at zero free-energy; we solve the transient problem for gel83

disks of different aspect ratio; with reference to those disks,84

we discuss the regimes of fast and slow liquid transport; we85

identify the characteristic times of the contraction dynamics;86

and we study the changes in the overall stress state in gel disks87

of different aspect ratio.88

The characteristics of this model are as follows: (i) the89

liquid flow is described through the mass conservation law,90

which prescribes the change in liquid concentration in the91

gel and delivers the liquid velocity relative to the gel; (ii)92

the total large deformation of the gel is the product of an93

active component, which mimics the contraction generated by94

the embedded motors, and an elastic component, following95

the active strain approach, which has already been success-96

fully exploited to describe morphing and growth in active97

materials [19–21]; (iii) the overall stress depends on the elastic98

component through a nonlinear constitutive equation and sat-99

isfies the balance of forces under zero external force; (iv) the100

generalized forces driving gel activity satisfy a balance equa-101

tion, equivalent to a flow rule for the local time-dependent102

active strain.103

Finally, it is worth noting that, in the limit of small104

deformations, the active strain approach yields an overall105

stress that is the sum of a passive and an active component,106

as in generalized hydrodynamics [19].107

The goal of the model is describing the interactions108

between activity, elasticity, and liquid transport through a109

boundary value problems with initial conditions. Changes in110

boundary and initial conditions allow us to model a variety111

of dynamical phenomena and, hopefully, to inspire further112

experiments to improve the design of the active characteristics113

of the gel and of its relevant mechanics.114

Specifically, we aim to reproduce qualitatively the ex-115

perimental findings presented in [5], where the contraction116

dynamics of an active gel disk has been followed and de-117

scribed in great detail. In doing so, the analysis of the118

competitive role of gel contractility and liquid flow in driving119

the mechanics of the active gel is exploited. It is shown that the120

shortest lengthscale is relevant for the contraction dynamics,121

whereas the aspect ratio of the disk (diameter to thickness122

ratio) affects the evolution of the disk size and the stress123

distribution.124

In Sec. II, the basic characteristics of the active gel model125

are presented and contrasted with those of standard passive126

gels. In Sec. III, liquid flow, stresses, and gel contractions are127

introduced, and the equations driving the transient behavior128

of the disks are presented under the cylindrical symmetry129

hypotheses. In Sec. IV, the steady states of the active gel130

are presented. In Sec. V, the regimes of fast and slow liquid131

transport are identified, and the contraction dynamics of active132

gel disks of different aspect ratios is studied through a set of133

numerical experiments.134

II. POLYMER FRACTION AND ACTIVE VOLUME 135

Differently from passive polymer gels, active gels have the 136

ability to reorganize their mesh, that is, to reduce their natural 137

mesh size by means of motor-induced filaments sliding. A 138

few characteristics of the active and passive gel mechanics are 139

contrasted here through a simple analysis to highlight the key 140

elements that can be described by the macroscopic models of 141

passive and active gels [15,17,18,22–24]. 142

The mechanics of passive polymer gels is commonly 143

studied within the Flory-Rehner model [25,26]. The model 144

assumes the free energy to be the sum of an elastic energy 145

of the network and a mixing energy for the interactions 146

solvent/network. The elastic energy depends on the stretch 147

of the polymer chains from the dry conditions through a 148

nonlinear spring model. The mixing energy depends on the 149

polymer fraction φ, that is, the ratio between the volume Vp 150

occupied by the polymer and the current volume v of the gel: 151

φ = Vp

v
with v = Vp + vl , (1)

where vl is the volume of solvent content. Formula (1) is based 152

on the assumption that a given mass of polymer occupies a 153

constant volume Vp, and any change of the current volume v 154

must be entirely due to the solvent volume vl . The zero-energy 155

state, that is, the natural state of the gel, corresponds to the 156

dry state (φ = 1). Any change in the solvent content, driven 157

by changes in the chemical potential, stretches the chains, 158

mixes solvent and polymer, and increases the free energy. The 159

balance between the mixing energy, which favors swelling, 160

and the elastic energy, which hampers swelling, yields the 161

thermodynamic equilibrium state. 162

Our active gel model uses the same assumptions for the 163

free energy, but relieves the constraint of a constant polymer 164

volume. The volume of the polymer can vary because of a 165

change of the natural length of the mesh size due to the pulling 166

of molecular motors, and this new volume va is named active 167

volume. It is worth noting that Vp and va correspond to the 168

same mass of dry polymer; thus, activity, by changing only 169

the gel volume v, varies the ratio between the polymer mass 170

and the overall gel volume, that is, the effective gel density. 171

Moreover, as liquid is expelled during contraction, gel density 172

increases, a phenomenon called densification. For the active 173

gel model, the polymer fraction is given by 174

φ = va

v
with v = va + vl . (2)

Thus, we may have the same polymer fraction φ with different 175

pairs va, vl : 176

φ = vao

vao + vlo
= va1

va1 + vl1
⇒ va1

vao
= vl1

vlo
(3)

as 1/φ = 1 + vl0/va0 = 1 + vl1/va1. From (3), it follows that 177

a contraction of the polymer network yields a proportional 178

reduction of its solvent content, that is, for va1 < va0 it holds 179

that vl1 < vl0. For example, if we have va0 = 1 mm3 and 180

vl0 = 1000 mm3, we have φ = 1/1001. We may have the 181

same polymer fraction φ, with a contraction that halves 182

the polymer volume, that is, va1 = 0.5 mm3, and reduces 183

the solvent content to vl1 = 500 mm3. 184
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FIG. 1. The disk is dry at the reference configuration Bd , and
swollen at the initial one Bo. The volume of Bo is much larger than
that of Bd due to liquid content: Ho and 2Ro are the thickness and
diameter of Bo, which are λo times larger than the corresponding
reference lengths. The initial configuration is given by xo = λo X ,
where the stretch λo is determined by the bath’s chemical potential.

The natural state of the active gel corresponds to φ = 1,185

and changes in the solvent content can be driven also at con-186

stant chemical potential of the bath: liquid flow is generated by187

active contraction. We anticipate a key feature of the model: to188

maintain a steady gel volume, that is, a volume that remains189

constant in time, motor activity is required. This latter is a190

distinctive feature of active gels compared to passive ones.191

Indeed, passive gels under external loads stay in their equi-192

librium state until a change at the system’s boundaries occurs.193

On the contrary, active gels are brought out of thermodynamic194

equilibrium by the action of local molecular motors [8].195

This key point inspired us. The model presents a new196

evolution equation, which describes gel activity; it is driven197

by a source term representing the local magnitude of motor198

activity, which brings the system out of equilibrium [9]. This199

activity in turn generates a solvent flow in the gel: contraction200

of the polymer mesh, driven by the motors, yields solvent flow201

towards the boundary of the body, favoring its release.202

We conclude this section by writing the relations between203

the average mesh sizes of the gel and its volumes. Continuing204

with the example above, the current mesh size ξ is related205

to the current gel volume v by v ∼ ξ 3; likewise, the natural206

mesh size ξa is related to the active volume va by va ∼ ξ 3
a .207

Thus, the ratio between the two active volumes va0 and va1 =208

vao/2 would scale as ξa1/ξao = (1/2)1/3 � 0.8. Both ξa and ξ209

may be very different from the reference mesh size ξd of the210

dry polymer (before contraction acts), i.e., the passive one,211

due to activity and liquid flow, as it has been shown in [5]212

by fluorescence micrographs of a polymerizing and actively213

contracting actomyosin network (see the cartoon in Fig. 2).214

III. LIQUID FLOWS, STRESSES, AND GEL215

CONTRACTIONS216

The active gel model is formulated in the framework of217

three-dimensional (3D) continuum mechanics (see [14,15]218

FIG. 2. Schematics of the gel: (a) Dry-reference mesh (red) of
size ξd with cross-links (blue dots). (b) Dry-contracted mesh: mesh
size ξa is reduced with respect to ξd , and cross-link density is higher.
(c) Swollen mesh: liquid molecules (light blue dots) swell the dry-
contracted mesh: the free energy is proportional to the stretch ξ/ξa

between the contracted mesh and the swollen one.

for details), which allows us to set up initial-boundary value 219

problems relevant to describe real experiments. Here, inspired 220

by the experiments in [5], we consider a disklike continuum 221

body. At the initial time, the swollen, flat gel disk Bo has 222

radius Ro and thickness Ho. Both Ro and Ho are λo times larger 223

than the radius and thickness of the corresponding dry disk 224

Bd assumed as a reference configuration of the active gel 225

disk (see Fig. 1). The model describes the state of the gel 226

at any material point X ∈ Bd and time τ ∈ T , with T the 227

time interval, by using the following three state variables: the 228

solvent concentration cd (X, τ ) per unit of dry volume ([cd ] = 229

mol/m3), the mechanical displacement ud (X, τ ) ([ud ] = m), 230

and the active strain tensor Fa(X, τ ) ([Fa] = 1). To these three 231

state variables of the model, there correspond three balance 232

equations, which control liquid flow, stress state, and active 233

contractions. 234

The current position x of the point X of the gel is given 235

by x = X + ud (X, τ ) and the deformation gradient ∂x/∂X is 236

Fd = I + ∇ud . We denote with Bτ the current configuration 237

of the gel at time τ ; the initial configuration Bo is thus given by 238

xo = X + ud (X, 0) = λo X , where the stretch λo is determined 239

by the bath’s chemical potential. 240

Solvent concentration cd and displacement ud are the stan- 241

dard state variables of the Flory-Rehner model; the active 242

strain Fa is the new variable used to describe the gel contrac- 243

tion, that is, the local change of the natural shape of the mesh 244

due to motor activity (see Fig. 2). The tensor Fa is the 3D local 245

equivalent of the volume va mentioned in the previous section: 246

given the reference volume element dVd , the correspond- 247

ing contracted and current volume elements dva and dv are 248

given by 249

dva = Ja dVd and dv = Jd dVd , (4)

with Ja = det Fa and Jd = det Fd . The deformation between 250

the current and the contracted state is measured by the elastic 251

deformation Fe = Fd F−1
a ; see [19,27]. It is worth noting that 252

no contraction corresponds to Fa = I, Ja = 1, and we recover 253

the standard stress-diffusion model of passive gels. Moreover, 254

the time-dependent symmetric tensor Ca = FT
a Fa corresponds 255

to the target or natural metric used in [20,21], and the symmet- 256

ric tensor Ce = FT
e Fe describes the so-called elastic metric, 257

which affects stress distribution in the network [19]. 258
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At any point X ∈ Bd and time τ ∈ T , the solvent content259

of a volume element is dvl = � cd dVd , with � the molar260

volume of the liquid ([�] = m3/mol). The requirement that261

the current volume element dv is the sum of the active volume262

dva plus the liquid volume dvl , that is, dv = dva + dvl , yields263

an important relation that couples the three state variables of264

the problem,265

Jd (X, τ ) = Ja(X, τ ) + � cd (X, τ ). (5)

Looking at the mesh size, we have the same scaling as in the266

previous 1D example: dv ∼ ξ 3, dva ∼ ξ 3
a , ξa/ξd � J1/3

a , and267

ξ/ξd � J1/3
d .268

The polymer fraction φ, that is, the ratio between dva and269

dv, is now a function of X and τ , and is given by270

φ(X, τ ) = Ja(X, τ )

Jd (X, τ )
= 1

Je(X, τ )
with Je = det Fe. (6)

In the following, we shall study highly swollen active gels271

whose polymer fraction φ � 10−3, while Jd ranges between272

1000 and 50. Thus, most of the gel volume is due to liquid273

content, and given the assumption that the mass of the solid274

matrix remains constant, the gel densification can be measured275

by the ratio dvo/dv = Jdo/Jd , where dvo = Jdo dVd is the276

volume element of the initial configuration Bo. During the277

contraction, this ratio becomes much larger than 1, as a large278

volume of liquid is expelled from the gel. This phenomenon279

has been observed in experiments [5] and is reproduced by our280

physical model.281

A. Liquid flows282

Any gel contraction deforms the gel and drives liquid flow283

through it; thus, liquid flows within a moving medium. In284

the spatial frame, the liquid content dvl of a volume ele-285

ment is described by the current concentration c, defined by286

dvl = � cd dVd = � c dv. From (4), it follows that cd = c Jd .287

Analogously, the gel velocity u̇d is described by the spatial288

velocity v. The local liquid mass conservation in the current289

configuration is290

ċ + div (h + c v) = 0 in Bt , (7)

and it shows that the solvent flux is the sum of a diffusive291

component h and a convective component c v, due to gel292

velocity v, ([h] = [c v] = mol/m2 1/s). Equation (7) can be293

rewritten as follows:294

ċ + div (c vl ) = 0 with vl = h
c

+ v, (8)

where vl represent the liquid velocity. Hence, the liquid flux h295

depends on the relative liquid velocity to the gel as h = c(vl −296

v). The cartoon in Fig. 3 shows the consequences of Eq. (8)297

for some values of the relative liquid/gel velocity vl − v. The298

liquid volume-rate d v̇l through the boundary da of a volume299

element dv is given by300

d v̇l = −� h · n da = −� c (vl − v) · n da. (9)

It holds that d v̇l > 0 when liquid is uptaken and d v̇l < 0 when301

it is expelled. The same volume-rate d v̇l can be written in the302

material frame by using a standard pull-back map; we have303

d v̇l = −� h · n da = −� hd · m dAd , (10)

FIG. 3. Given a point (circle) on the boundary (vertical thick
line), the current flux h through the boundary (blue arrow) depends
on the relative velocity (vl − v). The cartoon shows four cases with
different vl (red arrow), whose outcome ranges from zero flux (top)
to a very large flux (bottom).

with n and m the unit normals to the area elements da and 304

dAd , respectively. Equation (10) yields the definition of the 305

reference flux hd = J F−1h. 306

Also, the local liquid mass conservation (7), written in the 307

current configuration, can be pulled back from Bt to Bd : the 308

corresponding liquid mass conservation written in the material 309

frame Bd is given by 310

ċd + div hd = 0 in Bd . (11)

Equation (11) is the one we shall use and solve in our model. It 311

is worth noting that by writing the liquid mass conservation in 312

the material frame, it could not be noticed at a glance that the 313

liquid flux hd is the sum of a diffusive term plus a convective 314

one. 315

B. Stresses and active contractions 316

The overall stress in the current configuration is measured 317

by the Cauchy stress tensor T, which gives the force Tn 318

per unit current area da. To T there corresponds a nominal 319

stress Sd = TF�
d/J , which gives the force Sd m per unit refer- 320

ence area dA [therein, F�
d = (FT

d )−1]. The balance equation of 321

forces in the reference configuration Bd is written in terms of 322

Sd as 323

div Sd = 0 in Bd and Sd m = 0 on ∂Bd . (12)

The right side of (12) is zero because we are neglecting inertial 324

forces (as timescales associated with diffusion and activity are 325

considerably longer than those associated with inertia). The 326

right side of (12) is zero because we are assuming that the 327

boundary pressure exerted by the liquid in the bath on the gel 328

is negligible, and we do not have any other external boundary 329

tractions. 330

Balance of forces holds at any time t and, when the liq- 331

uid flux h = 0, characterizes the thermodynamic equilibrium 332

in passive gels. In active gels we have one more balance 333

equation describing the contraction dynamics. It produces a 334
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dissipative dynamics in the form of a flow rule for the local335

time-dependent active strain Fa as336

Ḟa = M−1{[B − Esh(F, cd )]}Fa, (13)

where the generalized force B mimics the action of the molec-337

ular motors, and the Eshelby tensor Esh brings in the model the338

effect of the chemomechanical state of the body. Finally, the339

power density dissipated in the system due to active contrac-340

tion is MḞa · Ḟa, and the dissipation tensor M is assumed to be341

positive-definite (to get a positive dissipation power density)342

and diagonal.343

C. Model equations under cylindrical symmetry344

We exploit the cylindrical symmetry that greatly simplifies345

the evolution equations of the problem; thus, the reference346

disk Bd is represented by its vertical cross section Sd spanned347

by the radial coordinate r ∈ (0, Rd ) and the vertical one z ∈348

(0, Hd ). With this, the displacement ud has two nonzero com-349

ponents: the radial u and the vertical w component; within350

the class of tensors Fa, which are cylindrically symmetric,351

we choose a diagonal one and write Fa = diag(γr, γθ , γz ).352

The consequence of this choice is that our active contraction353

provides a change in the natural mesh size that acts as a354

local time-dependent source of volumetric and linear strains,355

whereas shear strains are neglected.356

The state variables of the problem are reduced to the fol-357

lowing six scalar fields: the solvent concentration cd , the two358

displacements (u,w), and the three contractions (γr, γθ , γz );359

each field is a function of the coordinates (r, z) and the time τ .360

Moreover, we assume that the derivatives u,z and w,r are zero,361

that is, we neglect any possible small shearing between the362

vertical and radial directions. It follows that the deformation363

gradient Fd reduces to Fd = diag(λr, λθ , λz ) with the radial,364

hoop, and vertical deformations defined as365

λr = 1 + u,r , λθ = 1 + u/r, λz = 1 + w,z , (14)

respectively. Under the symmetry assumption, the volumetric366

constraint (5) takes the form367

λrλθλz = 1 + � cd . (15)

The state of the active gel is ruled by the set of balance368

equations introduced above. Under the cylindrical symmetry369

hypotheses, Eq. (11) reduces to370

−ċd = hr,r + hr

r
+ hz,z, [3mm] (16)

where hr and hz are the radial and vertical components of371

the solvent flux. So, the liquid volume rate through the372

lateral surface of the disk is 2πRd � hr (Rd , z) dz, whereas373

the liquid volume rate through the top face of the disk is374

2π r � hz(r, Hd ) dr. Equations (12) reduce to375

sr,r + sr − sθ

r
= 0 and sz,z = 0, (17)

where sr , sθ , and sz are the radial, hoop, and vertical com-376

ponents of the nominal stress (also called symmetric Piola377

stress), that is, the stress components on an area element dAd378

orthogonal to the radial direction, to the azimuthal direction,379

and to the vertical direction.380

Fluxes hr and hz, chemical potential μ, and stresses sr , 381

sθ , and sz are related to the stretches λi and the contractions 382

γi (i = r, θ, z) by constitutive equations, whose derivation is 383

fully described in several texts and papers (see [16,18,27]). 384

Shortly, liquid transport in the gel is described by a kinetic 385

law, based on the assumption that the liquid molecules move 386

across the gel pores following Fick’s law (linear dependence 387

on the chemical potential gradient): 388

hr = − D cd

R T λ2
r

μ,r and hz = − D cd

R T λ2
z

μ,z , (18)

where D is the diffusion coefficient, which has been assumed 389

to be the same in the radial and vertical directions, R and T are 390

the gas constant and the temperature, respectively, and μ = 391

μ(Je, p) is the chemical potential of the solvent in the gel: 392

μ = R T g(Je) + � p, Je = det Fe = Jd

Ja
, (19)

with 393

g(Je) =
[

log

(
Je − 1

Je

)
+ 1

Je
+ χ

J2
e

]
. (20)

Therein, the parameter χ is the nondimensional disaffinity 394

parameter, which controls the attraction between liquid and 395

network, and the pressure field p is the Lagrangian mul- 396

tiplier of the constraint Jd = Ja + � cd [Eq. (5)] [22]. The 397

characteristic time l2/D = τd of the liquid transport, with l 398

a characteristic length of the problem, will be compared with 399

the characteristic times brought in the model by contraction 400

dynamics to identify different regimes. 401

Finally, the overall stresses are given by constitutive equa- 402

tions of the form 403

sr = G λr
γθγz

γr
− pλθλz,

sθ = G λθ

γrγz

γθ

− pλr λz,

sz = G λz
γrγθ

γz
− pλr λθ , (21)

where G is the shear modulus of the dry polymer network 404

([G] =J/m3). The corresponding Cauchy stresses are σr = 405

sr/λθλz, σθ = sθ /λrλz, and σz = sz/λθλr . 406

Finally, Eq. (13) specializes to three scalar equations, 407

which deliver the flow rules for the active contractions γi 408

(i = r, θ, z) [28]: 409

γ̇r = 1

ηr
(βr − Er )γr,

γ̇θ = 1

ηθ

(βθ − Eθ )γθ ,

γ̇z = 1

ηz
(βz − Ez )γz. (22)

These equations show that flow rules are driven by (βi − Ei ) 410

(i = r, θ, z), that is, by the difference between the generalized 411

forces βi and the components Ei of the Eshelby tensor, which 412

depends constitutively on the chemomechanical state of the 413

gel. We assume βi(X, τ ) = β(τ ), corresponding to assuming 414

an isotropic and homogeneous distribution of motors in the 415

gel, and we view it as the control parameter of the contraction 416

004600-5



ANNE BERNHEIM-GROSWASSER et al. PHYSICAL REVIEW E 00, 004600 (2024)

process. On the contrary, we cannot control the components417

Ei, which are in general neither homogeneous nor constant418

and, within the Flory-Rehner thermodynamics, depend on the419

state of the gel as420

Ei = ey − Jd σi (i = r, θ, z) (23)

with421

ey = R T

�
Ja F (Ce) − cd μ(Je, p). (24)

The function F (Ce) is the dimensionless free-energy den-422

sity per unit natural volume, and it reads F (Ce) = fc(Je) +423

m fe(Ce), with fc and fe the dimensionless mixing and elas-424

tic free-energy, where m = G�/R T is the ratio between the425

elastic energy and the mixing energy:426

fc(Je) = (Je − 1)log

(
1 − 1

Je

)
+ χ

(
1 − 1

Je

)
,

fe(Ce) = 1

2
(trCe − 3). (25)

Equations (22)–(25) show that the interplay between activity,427

elasticity, and liquid transport depends on the effective con-428

trols (β − Ei ); in general, the dissipation constants ηi can be429

different in the three directions and can bring in the model430

more than one characteristic time τηi = ηi/RT/�; large dissi-431

pation constants yield small contraction time rates (γ̇r, γ̇ϑ , γ̇z ),432

under the same effective input.433

We assume that the disk is not constrained, nor loaded, the434

entire disk boundary is permeable, and chemical equilibrium435

holds at the boundary, that is,436

μ = μe on ∂Sd , (26)

where μe is the difference between the chemical potential437

of the bath and that of pure water (μe = 0 corresponds to a438

pure water bath). Finally, the initial conditions for the dis-439

placements u,w, the concentration cd , and the contractions440

γi (i = r, θ, z) are the following:441

u = (λo − 1) r, w = (λo − 1) z, cd = cdo, γi = 1,

(27)

corresponding to the deformation fo(X ) = λo X for any X ∈442

Bd from Bd to B0 (see Fig. 1).443

IV. INITIAL AND FINAL EQUILIBRIUM STATES444

The controls μe and β trigger contraction-liquid transport445

dynamics between the initial and the final state (see Fig. 4).446

We assume that both μe and β have a characteristic evolution447

dynamics from their initial values (μ0, β0) to their final values448

(μ1, β1), described by the following time laws:449

μe = μe(τ ) = μ0 + (μ1 − μ0) s(τ/τμ),

β = β(τ ) = β0 + (β1 − β0) s(τ/τβ ), (28)

where s(·) is a smoothed step function [29] running from 0450

to 1 in the interval (0,1), and τμ and τβ are characteristic451

times [30], which have been tuned to match the results pre-452

sented in [5]; see Table I. For the motors, the characteristic453

time depends on the binding/unbinding kinetics of the motors454

to the actin filaments, whereas for the chemical potential, the455

FIG. 4. β goes from β0 to β1 in τβ = 20 s (dashed and solid red
lines); μ stays constant in scenario (a) and goes from μ0 = 0 to μ1

in τμ = 100 s (solid blue). β axis at left, μ axis at right.

characteristic time reflects the mixing kinetic of possibly free 456

biopolymer chains and the liquid in the bath. 457

The initial state and the final one are equilibrium states, 458

that is, hd = 0, which implies ċd = 0 and γ̇i = 0 (i = r, θ, z). 459

We assume that at the initial and final equilibrium states, 460

Fd and Fa are uniform and spherical, that is, Fd = λ I, Fa = 461

γ I, and that the overall stress is null. With this, and with 462

Eqs. (21), (19), and (23), we can represent the chemical po- 463

tential and the Eshelby components at those equilibrium states 464

as functions of Ja = γ 3 and Jd = λ3: 465

μ = μ(Jd/Ja) = μ(Je) and Ei = ey(Ja, Je). (29)

Moreover, the equilibrium states are guaranteed by constant 466

and homogeneous chemical potential μe and bulk source β 467

such that 468

μe = μ and β = Ei. (30)

Equations (29) and (30) deliver the relation between the pair 469

(Ja, Jd ) and the pair (μe, β) which must hold at the equilib- 470

rium states: 471

μe = μ(Je) and β = ey(Ja, Je). (31)

TABLE I. Material and geometrical parameters.

Shear modulus G = 135 Pa
Flory parameter χ = 0.4
Water molar volume � = 1.8 × 10−5 m3/mol
Temperature T = 293 K
Energy ratio m = G �/R T = 1 × 10−6

Diffusivity D = 1 × 10−3 m2/s
Dissipation η = 1 × 105 Pa s
Initial radius Ro = 1500 μm
Initial swollen volume and stretch ratio Jo = 1000, λo = 10
Initial aspect ratio AR = 2 Ro/Ho = 20–40
Initial thickness Ho = 150–75 μm
Final volume/initial volume Ja1 = 0.05
Control time for β τβ = 20 s
Control time for μ τμ = 100 s
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We label (Jd0, Ja0) the pair corresponding to the initial equi-472

librium state and (Jd1, Ja1) the pair corresponding to the final473

state; the same labels hold for all the other quantities.474

1. Material parameters475

The values assigned to the initial thickness and aspect476

ratio (AR) have been prompted by [5], and the successive477

parametric analyses always consider values of AR and Ho not478

too far from the initial ones. The discrepancy between our479

value for the shear modulus G and the value reported in [5]480

is due to the fact that the former is the shear modulus at dry481

conditions, while the latter is the effective shear modulus Geff482

measured at the swollen state, with Geff � G/J1/3
d0 . We set the483

diffusivity constant D and the dissipation ηr = ηθ = ηz = η in484

order to get a time evolution from Bo to B1 similar to that taken485

by the real disk to reach a mechanically stable state (steady486

state), that is, ∼200 s. With this, we set the characteristic time487

τη, leaving τd free to get different values, depending on Ho,488

which are in any case always higher than τη (see Table I for489

the complete list of material parameters).490

2. Initial state491

We assume a fully swollen state as the initial state of the492

gel, characterized by a not contracted mesh size ξa equal to the493

reference mesh size ξd . From an experimental point of view, it494

means that self-contraction and liquid release are going to be495

initiated; from the modeling point of view, it means that the496

active gel is still not contracted and is in its thermodynamic497

equilibrium, that is,498

μe(0) = μ0 = 0 J/mol and Ja0 = 1. (32)

By putting these values in Eqs. (31), we find the initial change499

in volume Jd0 = Je0 = λ3
0 of the gel and the initial value β0500

of the generalized force which maintains that initial state.501

Specifically, Eqs. (31) take the form502

0 = μ(Jd0/Ja0) and β0 = ey(Ja0, Je0). (33)

The zero stress condition at the initial time delivers p0 =503

G/λo. With this, the constitutive Eqs. (19) and (20) for the504

chemical potential and Eq. (33) deliver505

0 =
[

log

(
1 − 1

λ3
0

)
+ 1

λ3
0

+ χ

λ6
0

]
+ m

λ0
. (34)

Equation (34) can be solved for λ0, and Eq. (33) determines506

the initial value β0 which the control has to get to guarantee507

null contraction (ξa = ξd ) and the free swelling stretch λ0:508

�

R T
β0 = (λ3

0 − 1)

(
λ3

0 − 1

λ6
0

χ − 1

λ3
0

)
+ m

(
1

λ0
+ λ2

0

2
− 3

2

)
.

(35)

It is worth noting that Eq. (34) is standard in stress-diffusion509

theories based on Flory-Rehner thermodynamics [25,26]; it510

is easy to verify that, given μ0, the free-swelling stretch λ0511

increases as m decreases. On the contrary, Eq. (35) does not512

belong to standard stress-diffusion theory, and it is peculiar to513

the present augmented model.514

The initial values of Jd , Je, cd , p, and β, corresponding to 515

the material parameter in Table I, can be easily evaluated. In 516

particular, we get Jd0 = 1000. 517

3. Final states 518

We consider two different scenarios: (a) where only a 519

change in the generalized force drives the active contractions 520

and liquid transport, that is, β1 �= β0 and μ1 = μ0; (b) where 521

also a change in the chemical potential of the bath drives the 522

active contractions and liquid transport, that is, β1 �= β0 and 523

μ1 �= μ0. 524

The differences between the two scenarios are noteworthy. 525

Indeed, in passive gels the input that drives the system out 526

of equilibrium is at the system’s boundaries, that is, a change 527

of the chemical potential in the bath starts liquid transport. 528

On the contrary, a distinctive feature of active gels is the fact 529

that the input that drives the system out of equilibrium is 530

local. Through the analysis of the two scenarios, we compare 531

dynamics due to only local input, that is, a change in the 532

generalized force, and to both local and boundary input, that 533

is, a change in both the generalized force and the chemical 534

potential of the bath. 535

In both the scenarios, however, and in accordance with the 536

experiments in [5], we assume that at the final state the mesh 537

is contracted by ξa/ξd = J1/3
a1 � 0.38 with respect to the dry 538

mesh size, that is, Ja1 = (ξa/ξd )3 = 0.05. The estimation of 539

the final value Ja1 allows us, within the model, to estimate the 540

final value β1 of the generalized force, as is shown below by 541

describing step-by-step the procedure to infer those data from 542

the equations of the model. 543

Scenario a (fluid flow induced by active contractility). We 544

assume 545

μ1 = μ0 = 0 J/mol, Ja1 = 0.05, (36)

and we put these values in Eqs. (31) to obtain the final 546

swelling ratio Jd1 and the generalized force β1. Specifically, 547

the two equations take the form 548

0 = μ(Jd1/Ja1) and β1 = ey(Ja1, Je1). (37)

With our data, we find Jd1 = 50. Comparing this value with 549

the change in volume delivered under the same chemical 550

conditions, that is, Jd0 = 1000, we can conclude that, due to 551

self-contraction, an effective bulk stiffening is predicted by 552

the model, as has already been recognized as crucial in other 553

works [10]. 554

Scenario b (fluid flow generated by the active contractility 555

and changes in the chemical potential of the liquid bath). 556

Typically, in the experiments, the chemical potential of the 557

bath is not controlled. While previously assumed constant 558

[see (a)], it is possible that chains, small fragments, and even 559

monomers can be broken from the gel and released into the 560

solution upon contraction of the gel, by changing the chemical 561

potential of the bath [31]. This motivated our choice to study 562

the impact of a change in μe on the contraction dynamics. 563

We assume that at the final equilibrium state, Jd1 is half the 564

value of case (a), while Ja1 is the same as before, that is, 565

Jd1 = 25, Ja1 = 0.05. (38)
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TABLE II. Data about the aspect ratios; values of Ro and Ho are
in mm.

Constant Ro Constant Ho

Ho(Ro = 1.5) Ro(Ho = 0.1) AR

0.15 1.0 20
0.12 1.25 25
0.1 1.50 30
0.086 1.75 35
0.075 2.0 40
0.066 2.25 45

By putting these values in Eqs. (31), we obtain the pair566

(μ1, β1). Specifically, the two equations take the form567

μ1 = μ(Jd1/Ja1) and β1 = ey(Ja1, Je1). (39)

Of course, other choices would be possible; for example, apart568

from setting different values for Jd1, we could first set μ1 and569

then determine Jd1 from Eqs. (31). What we aimed to remark570

is that the same value of β1 can deliver a quite different value571

of the final change in volume Jd1 of the disk (25 versus 50)572

when liquid transport and release is driven by both the mesh573

contraction and the change in the chemical conditions of the574

bath.575

V. CONTRACTION DYNAMICS576

Gel activity does not have any characteristic lengths, since577

motor activity is assumed to be homogeneous across the sys-578

tem. However, contraction dynamics inherits the characteristic579

length of the dynamic of liquid transport. The disks built and580

tested in [5] represent a good basis for a pilot study aimed to581

discuss the relations between the two dynamics in terms of582

the key geometrical parameter, which is the aspect ratio of the583

disks.584

We carried on the analysis by either changing the disk ini-585

tial thickness Ho, for a fixed initial disk radius Ro = 1.5 mm,586

or by varying the disk initial radius at a fixed thickness Ho =587

0.10 mm. The investigated range of parameter AR is described588

in Table II: it goes from disks of initial aspect ratio 20 (thick589

disks) to disks of initial aspect ratio 45 (thin disks).590

We show the results obtained for gel disks that contract due591

to motor only [so-called scenario (a)]. All the experiments592

start with Jd0 = 1000, i.e., at a highly swollen initial state,593

and Ja0 = 1, and they evolve towards their final steady values594

Jd1 = 50 and Ja1 = 0.05. As stated above, these values corre-595

spond to a reduction in mesh size = ξa1/ξao = 0.051/3 = 0.38,596

where ξa1 represents the final mesh size, and, as stated above,597

we consider the final state to be stress-free.598

In the regime under study, the system reaches its final599

steady state after τ1 � 200 s, that is, we have τβ << τ1 and600

the dynamics is ruled by the redistribution of water across601

the gel mesh until its eventual expulsion through the disk602

boundary.603

A. Diffusion-limited regime604

Given the equations of the model, there are different605

characteristic times whose values have an influence on the606

FIG. 5. Plot of J̄d (solid) and J̄a (dashed) vs time for different
values of AR; disk geometry is given in the first column of Table II.
Being τη � τβ , all the J̄a curves (dashed) are superimposed, as J̄a

evolves at the same pace of β, and this evolution is not affected by
AR. The J̄d curves (solid) depends strongly on AR, and the thicker
the disk, the slower the volume change. This is a consequence of the
fact that the liquid must exit through the boundary, and the thickness
is the important geometric parameter within our range of AR.

different solution regimes. In particular, the characteristic time 607

τη which governs mesh contraction is not size-dependent, 608

being τη ∝ η �/RT , while the characteristic time τd which 609

governs liquid transport has a length scale, which for our 610

geometries is the current height H , that is, τd ∝ H2/D. Given 611

our choice of η, we have τη � 10−3 s; the estimation of a value 612

for τd is much more difficult because of the large size-change 613

experienced by the disks during contraction. 614

Our experiments shows that, for our choice of parameters 615

and geometry, the contraction dynamics is diffusion-limited, 616

as is affected by the lengthscale. The opposite regime, the so- 617

called motor-limited regime, can be realized when τd � τη. 618

The simplest way to discuss the different regimes is through 619

the analysis of the flow rule for Ja, which can be easily derived 620

from Eqs. (22)–(24). Cylindrical symmetry implies 621

Ja = γrγθγz and J̇a = Ja

(
γ̇r

γr
+ γ̇θ

γθ

+ γ̇z

γz

)
. (40)

With this, the flow rule for Ja can be derived from those for γi 622

by Eqs. (22), and it takes the form 623

J̇a = 1

η
[3(β − ey) + Jd tr T]Ja. (41)

Equation (41) and the equation governing the dynamics of 624

diffusion allow us to discuss some of the evidences of our 625

numerical experiments. 626

To discuss contraction dynamics, we define the averages 627

J̄d (τ ) and J̄a(τ ) of Jd (r, z, τ ) and Ja(r, z, τ ), respectively, 628

which well represent the main features of the phenomenon 629

under study, and give a global glance at the contraction dy- 630

namics. Due to the cylindrical symmetry of the system, both 631

averages are evaluated on the two-dimensional domain Sd of 632

area Rd · Hd . 633

In Fig. 5, we plot J̄a (dashed) and J̄d (solid) versus time for 634

different values of AR; the figure shows two major findings. 635
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FIG. 6. Plane (J̄d , J̄a): evolution path at constant radius Ro =
1.5 mm for different values of AR; disk geometry is given in the
first column of Table II. Lower AR correspond to the evolution path
far from equilibrium; higher AR corresponds to paths that tend to the
quasistatic stress (dashed line).

First, all the curves for J̄a are superimposed, as τη � τβ , that636

is, the evolution of β is slow with respect to the characteristic637

time τη, and J̄a(τ ) has the same dynamics of β(τ ); in partic-638

ular, the evolution of J̄a can be approximated as a sequence639

of equilibrium problems, which depend on β. Moreover, as640

contraction is a local mechanism, this dynamics is much faster641

than diffusion, and it is not affected by AR.642

Secondly, the curves for J̄d , representing the volume643

change, strongly depend on AR, and the thicker the disk, the644

slower the volume change. This is a consequence of the fact645

that the liquid must exit through the boundary, and for the646

range of AR under investigation, the thickness is the important647

geometric parameter.648

B. Dynamics in the plane (J̄d, J̄a)649

We now focus on the evolution paths in the plane (J̄d , J̄a)650

for scenario (a), that is, μe = μo = const. In this plane, a651

quasistatic stress-free path is represented by a straight line at652

constant J̄e = J̄d/J̄a, and the dashed line in Figs. 6 and 7. This653

path corresponds to a sequence of equilibrium states where654

the current swollen volume J̄d corresponds to a free swelling655

for a dry mesh whose current natural volume is J̄a.656

Due to the choices made in Table I, which yields a657

diffusion-limited regime, liquid transport is affected by the658

lengthscale. Thus, thinner disks (higher AR) show an evo-659

lution in the plane that is closer to the stress-free path, that660

is, under the same contraction dynamics, liquid transport is661

faster for these disks, which can quickly recover the original662

stress-free state. On the contrary, for thicker disks (lower AR),663

the evolution path is very far from the quasistatic regime:664

namely, motor-induced contraction is faster than the water665

transport across the gel mesh, which makes the thick gels666

highly stressed during their evolution.667

We investigated the evolution paths for different AR for668

varying Ho at constant Ro (Fig. 6) and varying Ro at constant669

Ho (Fig. 7). In the first case, Fig. 6 shows that by increasing670

the thickness Ho, that is, the characteristic lengthscale across671

FIG. 7. Plane (J̄d , J̄a ): evolution path at constant thickness Ho =
0.1 mm for different values of AR; disk geometry is given in the
second column of Table II. All the paths are superimposed and the
master curve is the one corresponding to AR = 30 in Fig. 6.

which water flows, it increases the characteristic timescale of 672

water transport (from yellow to blue solid lines). As τη 
 τd 673

for any values of Ho, the quasistatic path is never realized; 674

however, the thinner the disk is, the closer is the evolution 675

path to the quasistatic one. 676

To confirm our expectations that the important lengthscale 677

for water exit is Ho, we also studied disk geometries having 678

constant thickness and varying radius. Figure 7 shows the 679

results for the same range of AR: it might be noticed that all 680

the curves are now superimposed as, being that the shortest 681

lengthscale Ho is constant, AR has no effect on the dynamics. 682

C. Gel contraction velocity 683

We studied the contraction velocity of the lateral boundary 684

of the disk, i.e., the radial velocity and the effects of AR on it. 685

To do so, we evaluate the average radial stretch �r as follows: 686

�r (τ ) = 1 + 1

Hd

∫ Hd

0

u(Rd , z, τ )

Rd
dz ; (42)

it is easy to verify that the average stretch �r also corresponds 687

to the average λ̄r (τ ) of the radial deformation λr (r, z, τ ) on the 688

cross section Sd of area Rd · Hd . 689

We also defined an average current radius R(τ ) and a radial 690

contraction velocity Ṙ(τ ) with the formulas 691

R(τ ) = �r (τ )Rd and Ṙ(τ ) = �̇r (τ ) Rd . (43)

It follows from (43) and the definition of AR that the radial 692

velocity can also be rewritten as Ṙ(τ ) = �̇r (τ ) Hd
2 AR. The 693

radial velocity Ṙ(τ ) is always negative, as the gel disk is 694

contracting and negative is also the generalized force β that 695

produces a contraction. So, in both Figs. 8 and 9 we repre- 696

sented −Ṙ(τ ) and −β/β0. 697

Figure 8 shows that, for a constant radius, the radial veloc- 698

ity Ṙ(τ ) is characterized by two timescales, one for the time 699

interval during which the velocity increases, and the second 700

for the following interval where the velocity decreases. In 701

the first time interval, the curves fit to a linear law, that 702

is, Ṙ(τ ) ∝ τ/τr , with τr the characteristic time of rising. 703
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FIG. 8. The time evolution of β (dashed) and corresponding
radial contraction velocity Ṙ of the lateral boundary of the disk
at constant radius Ro = 1.5 mm for different values of AR; disk
geometry is given in the first column of Table II. The color code
is the same as in Figs. 6 and 7. The small wiggle in the blue line at
τ � 17 s is due to a mechanical buckling: the disk departs from the
flat shape; see Fig. 12, panel (c). Velocity ranges over the left vertical
axis and β/βo over the right vertical axis.

During the decreasing time interval, curves fit to an ex-704

ponential law Ṙ(τ ) ∝ vmax exp(− τ/τdecay), with τdecay the705

characteristic time of decay. The characteristic times of rising706

and decay have been estimated for any aspect ratio and are707

listed in Table III.708

The inset in Fig. 8 shows that the maximum radial veloc-709

ity vmax, attained at peak time τp, depends on the geometric710

parameter AR [32].711

Actually, the analysis of Eqs. (42) and (43) shows that712

when AR changes with Hd (or, equivalently, with Ho as the713

FIG. 9. The time evolution of β (dashed) and corresponding
radial contraction velocity Ṙ of the lateral boundary of the disk at
constant thickness Ho = 0.1 mm for different values of AR; disk
geometry is given in the second column of Table II. Color code is
the same as in Figs. 6 and 7. Velocity ranges over the left vertical
axis and β/βo over the right vertical axis.

TABLE III. Max velocity vmax, peak time τp, rising time τr , and
decay time τdecay for different values of aspect ratio AR.

AR vmax (μm/s) τp (s) τr (s) τdecay (s)

20 44 � 16 0.22 13
25 52 � 16 0.22 13
30 74 � 17 0.18 8
35 84 � 17 0.14 3
40 104 � 17 0.12 2
45 111 � 17 0.11 1.5

initial free-swelling is homogeneous), with Ro constant, the 714

dependence of Ṙ on AR is also affected by Hd and cannot 715

be linear. The same equations show that, for Hd constant, the 716

dependence of Ṙ on AR is simply linear. This is what the inset 717

in Fig. 9 shows for the maximum velocity vmax relative to the 718

study at varying radius. 719

We can split the average stretch �r into an elastic compo- 720

nent �e and an active component �a, related to the analogous 721

decomposition of the deformation gradient F = FeFa and of 722

the radial deformation λr . Thus, the stretching velocity �̇r can 723

be written as the sum of two terms, and the radial velocity Ṙ 724

is represented by 725

Ṙ = (�̇a �e + �a �̇e) Rd , (44)

where �a is the average of the active radial deformation γr , 726

and it depends on self-contraction, while �e is the average of 727

the elastic radial deformation λr/γr , and it depends on liquid 728

transport. 729

Equation (44) highlights the existence of two timescales 730

for Ṙ: for τ < τβ the stretching velocity is dominated by the 731

time evolution of β(τ ), while for τ > τβ it is dominated by 732

liquid transport, that is, 733

Ṙ � �̇a �e Rd τ < τβ, (45a)

Ṙ � �a �̇e Rd τ > τβ. (45b)

Equation (45a) shows that for t < τβ = 20 s, the radial veloc- 734

ity Ṙ changes with the same rate of �a, which in turns depends 735

on β, as Figs. 8 and 9 show (compare the colored lines with 736

the dashed black line in both figures). 737

On the other side, Eq. (45b) shows that for t > τβ = 20 s, 738

the radial velocity Ṙ changes with the rate of �e, which 739

depends on liquid transport and on the smallest lengthscale 740

of the disk, which in our case is Ho, as a comparison between 741

Figs. 8 and 9 shows. The same pair of figures also show clearly 742

that the maximal velocity is reached when τ approaches τβ , 743

that is, when contraction is near to its maximum value—as 744

was suggested in [5] [see Fig. 4(f) in [5]]. 745

Finally, it is worth noting that the active control β, needed 746

to change the target mesh size, does not change further once it 747

has taken its maximal value. Beyond that, the system evolves 748

towards its steady state by releasing liquid until a new free 749

swollen configuration is reached; at this final state, the effects 750

of the network elasticity balance the active control. 751

We conclude this section by showing a comparison with 752

experimental results obtained for a very thin disk with 753

AR = 50. By properly tuning the diffusivity D and the dis- 754

sipation η, our theoretical model is able to reproduce quite 755
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FIG. 10. Radial contraction velocities vs time. Radial Ṙ (solid
blue) contraction velocity of the disk compared with experimental
data (dashed with markers). Disk geometry: Ro = 1.5 mm, AR = 50;
material parameters: D = 0.951 × 10−4 m2/s, η = 1.51 × 105 Pa s.

well the time course of the radial contraction velocity Ṙ.756

Figure 10 compares the predicted results (solid-blue) with the757

experimental ones (dashed-black, circle markers).758

D. Densification and stress distribution759

As observed in [5], the network starts contracting from the760

boundary, and the actual mesh size starts decreasing from the761

boundary to the center of the gel disk. This contraction mode762

yields boundary effects, which are detected on the gel density,763

defined as the ratio between the polymer mass and the overall764

gel volume, and on the overall stress state in the disk.765

In [5], a gel densification was observed, that is, an increase766

of the gel density starting at the periphery and propagating767

into the gel interior.768

Within the model, we use the ratio Jd0/Jd to measure the769

densification from the initial state. Figure 11 shows the den-770

FIG. 11. Densification at the middle cross section of the disk.
Ratio Jdo/Jd in the plane (R, τ ); color map: blue is more wet, red is
more dry. Densification (red color) starts at the boundary and then
propagates inward; disk radius contracts from Ro = 1.5 mm to R1 �
0.55 mm.

sification at the middle cross section of the disk by plotting 771

the ratio Jd0/Jd in the plane (R, τ ), with R = r + u the cur- 772

rent radial position. It is noted that, when τ ≡ τβ = 20 s and 773

contraction is fully developed, a narrow red strip of densifica- 774

tion appears at the periphery; then, it propagates towards the 775

interior until the whole cross section is more dense. The repre- 776

sentation in the current domain determines the peculiar “boot” 777

shape of the profile: as time goes on, the disk contracts and its 778

radius contracts from Ro = 1.5 mm to R1 � 0.55 mm. On the 779

other hand, stress analysis in the active disk can be relevant, as 780

overall stress distribution might drive mechanical instability, 781

which leads to a variety of different shapes at the end of 782

the contraction [5,20,33,34]. The analysis of instabilities is 783

beyond the scope of the present work, and it will mark our 784

future efforts. However, through the aforementioned studies, 785

we might have interesting clues about shape transitions by 786

investigating the effects of AR on the evolution of radial stress 787

σr and the hoop one σθ in the disk, which may drive further 788

experiments. 789

We only report results for the case of constant radius. We 790

compare the stress state in a thick (AR � 20) and a thin 791

(AR � 45) disk. Panels (a) and (b) of Fig. 12 show the ex- 792

istence of two stress patterns: in a core region (beige), the 793

stress is constant along the radius and spherical, that is, σr = 794

σθ ; in the periphery (cyan), the stress varies with the radius 795

and σr �= σθ . As the bulk contraction β is homogeneous and 796

isotropic in the whole disk, these two regions are determined 797

by the dynamics of liquid transport. In particular, the width of 798

the peripheral region is of the order of the thickness because 799

the solvent in this region can escape from both the lateral 800

boundary and the top and bottom surfaces. In contrast, for 801

the solvent in the core, the shortest path to exit the gel disk 802

is through the top and bottom surfaces. Corresponding to our 803

values of AR, we have Hthin � 0.04Rd and Hthick = 0.1Rd . 804

In particular, in Fig. 12, for AR = 20 we have essentially 805

σr < 0 along all the radius, and σθ varying from negative to 806

positive [see panel (a)]; for AR = 45 we have σr > 0 along 807

all the radius, and σθ varying from positive to negative [see 808

panel (b)]. The stress distribution for these two cases is typical 809

of that found in frustrated domelike or saddlelike disks [see 810

Fig. (12), panels (c) and (d)] [20,33,34]. 811

That is a preliminary requirement for observing instability 812

patterns that can deliver domes or saddles, depending on other 813

key factors, which are not investigated in the present paper. 814

E. Evolution of the aspect ratio during contraction 815

Finally, the geometry of the gel body suggests that we in- 816

vestigate the possibility of having dissipations ηr and ηθ in the 817

plane, different from the vertical dissipation ηz. Dissipations 818

are related to the resistances of the mesh to reorganize, which 819

can be expected to be different. Our conjecture needs to be 820

validated, and the analysis may stimulate further experiments 821

in this direction. 822

As noted at the end of Sec. II, the system is controlled 823

by the pair (μe, β ), and here we also analyze the combined 824

effects of varying the chemical potential μe and active force β 825

(scenario b). 826

We always consider a homogeneous and isotropic general- 827

ized force β. Nevertheless, during gel contraction, the radial 828
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FIG. 12. Effect of AR on stress distribution for disks with constant radius. Panels (a) and (b) show the radial σr (red) and hoop σθ (blue)
overall stresses vs the nondimensional radius r/Rd at τ = 20 s, for AR = 20 and 45. (a) AR = 20: the hoop stress is negative in the core
(beige) and positive at the periphery (cyan), a typical pattern of frustrated domelike shape.

and vertical stretches might differ locally, and each one of829

them can vary in time and space. We use the average values830

R(τ ) and H (τ ) of radius and thickness to describe the change831

in the aspect ratio of the disk, with R(τ ) defined by Eq. (43)832

and H (τ ) defined as H (τ ) = �z(τ ) Hd with833

�z(τ ) = 1 + 1

Rd

∫ Rd

0

w(r, Hd , τ )

Hd
dr. (46)

At any time τ , the ratio H (τ )/Ho can be plotted against the834

ratio R(τ )/Ro to illustrate the evolution path of the radial and835

vertical stretches, that is, the curve τ �→ (R(τ )/Ro, H (τ )/Ho),836

plotted in the plane (R/Ro, H/Ho). In Fig. 13, the curve has837

been represented for a disk with AR = 22 and Ro = 1.5 mm.838

In that plot, the dashed line represents an isotropic evolution,839

during which the aspect ratio remains constant during network840

contraction.841

For each of the two analyzed cases, corresponding to842

scenario (a) (red) and (b) (blue), we show two curves, one843

corresponding to equal dissipations (diamond markers), ηr =844

ηθ = ηz, and the other with different horizontal and vertical845

dissipations (asterisk markers), ηr = ηθ = 2 ηz. We note that846

the evolution is very sensitive to dissipation, while the dif-847

ferences between scenarios (a) and (b) are less noticeable.848

For all simulations, the system evolves via a characteristic849

path. It departs from the isotropic contraction path, but in850

the case with equal dissipations the steady-state configuration851

ends on the dashed line (i.e., on the isotropic path), while852

the case with different dissipations ends far from it. In par-853

ticular, when ηr = ηz, the contraction is almost isotropic until854

H/Ho = R/Ro ∼ 0.8; then, the radial contraction is faster, and855

eventually the vertical one becomes faster. When ηr = 2 ηz,856

the vertical contraction is much faster than the radial one, and857

the final state is not isotropic.858

These first clues deserve to be investigated further both ex- 859

perimentally and numerically to stress the morphing chances 860

of active gel. 861

FIG. 13. Thickness ratio H/Ho vs radius ratio R/Ro during con-
traction for cases (a) (red) and (b) (blue) with equal friction ηr = ηz

(diamond) and differential friction ηr = 2 ηz (star); ηr = 105 Pa s.
The dashed line represents isotropic contractions; with different
frictions, the radial and vertical contractions are not isotropic. Disk
geometry: Ro = 1.5 mm, AR = 22.

004600-12



INTERPLAY BETWEEN ACTIVITY, ELASTICITY, AND … PHYSICAL REVIEW E 00, 004600 (2024)

VI. CONCLUSIONS AND FUTURE DIRECTIONS862

We discussed the interplay between elasticity, liquid trans-863

port, and self-contractions in active gel disks from the864

perspective of continuum mechanics. The transient problem865

for gel disks of different aspect ratios has been solved, and dif-866

ferent aspects of the problem have been discussed: the regimes867

of fast and slow liquid transport, the characteristic times of the868

contraction and liquid transport dynamics, and the changes in869

the stress state in gel disks of different thickness. In doing so,870

the analysis of the competitive role of gel contractility and871

liquid flow in driving the mechanics of the active gel has been872

exploited.873

To keep the model easy, the numerical model has been de-874

veloped under the hypothesis of cylindrical symmetry, which875

excludes the challenge to observe disk morphings, which are876

not compatible with the cylindrical symmetry. Actually, we877

are planning to give up the symmetry hypothesis above and878

investigate the blossom of stresses in the disk, which may879

drive instability patterns and, consequently, a variety of steady880

shapes of the gel. This was beyond the scope of the present881

work, and it will mark our future efforts.882

Giving up the symmetry hypothesis also makes more in-883

teresting the identification of the determinants of possible884

changes in shape, whose control would make it possible to885

get actuators based on self-contractile gels, a promising field886

that can be set within the framework here presented.887
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APPENDIX 899

1. Details of finite-element analysis 900

Equations (15), (16), and (22), together with the bound- 901

ary (26) and initial (27) conditions, are rewritten in a weak 902

form and implemented in the software COMSOL MULTIPHY- 903

ISICS by using the Weak-Form physics interface. The calculus 904

domain is the rectangular domain Sd , which is meshed with 905

triangular elements whose maximum mesh size is Hd/10, 906

yielding about 200 K DOFs. Lagrangian polynomials are 907

used as shape functions: polynomials of order 4 for the dis- 908

placement and the solvent concentration, of order 3 for the 909

volumetric constraint, of order 2 for the boundary conditions 910

(also implemented in weak form), and of order 1 for the 911

remodeling variables. The whole set of coupled equations are 912

solved by using the Newton method with variable damping as 913

the nonlinear solver; the linear solver is the direct solver Par- 914

diso, while the time-dependent solver uses the BDF method 915

with order 1–2. The time-dependent analysis starts at the 916

initial state Bo and stops at a final equilibrium state B1, which 917

is preselected. 918
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