
1

Enabling Visual Action Planning for Object
Manipulation through Latent Space Roadmap

Martina Lippi*1,2, Petra Poklukar*1, Michael C. Welle*1, Anastasia Varava1,
Hang Yin1, Alessandro Marino3, and Danica Kragic1

Abstract—We present a framework for visual action plan-
ning of complex manipulation tasks with high-dimensional state
spaces, focusing on manipulation of deformable objects. We
propose a Latent Space Roadmap (LSR) for task planning
which is a graph-based structure globally capturing the system
dynamics in a low-dimensional latent space. Our framework
consists of three parts: (1) a Mapping Module (MM) that maps
observations given in the form of images into a structured
latent space extracting the respective states as well as generates
observations from the latent states, (2) the LSR which builds and
connects clusters containing similar states in order to find the
latent plans between start and goal states extracted by MM, and
(3) the Action Proposal Module that complements the latent plan
found by the LSR with the corresponding actions. We present
a thorough investigation of our framework on simulated box
stacking and rope/box manipulation tasks, and a folding task
executed on a real robot.

I. INTRODUCTION

In task and motion planning, it is common to assume that
the geometry of the scene is given as input to the planner.
In contrast, modern representation learning methods are
able to automatically extract state representations directly
from high-dimensional raw observations, such as images or
video sequences [1]. This is especially useful in complex
scenarios where explicit analytical modeling of states is
challenging, such as in manipulation of highly deformable
objects which is recently gaining increasing attention by the
research community [2], [3]. In these manipulation tasks, the
state of the object cannot be easily established in a unique
manner as opposed to manipulation of rigid objects, where
their configuration can be made analytically explicit.

Unsupervised State Representation Learning. Given raw
observations, state representation learning is commonly per-
formed in an unsupervised way using for example Autoen-
coders (AEs) [4] or Variational Autoencoders (VAEs) [5]. In
these frameworks, two neural networks – an encoder and a
decoder – are jointly trained to embed the input observation
into a low-dimensional latent space, and to reconstruct it given
a latent sample. The resulting latent space can be used as a

This work was supported by the Swedish Research Council, Knut and
Alice Wallenberg Foundationm, by the European Research Council (ERC-
884807), by the European Commission (Project CANOPIES-101016906), and
by Dipartimento di Eccellenza granted to DIEI Department, University of
Cassino and Southern Lazio.

*These authors contributed equally (listed in alphabetical order)
1KTH Royal Institute of Technology, Stockholm, Sweden
2Roma Tre University, Rome, Italy
3University of Cassino and Southern Lazio, Cassino, Italy

Fig. 1: Examples of visual action plans for a stacking task (top), a
rope/box manipulation task (middle) and a shirt folding task (bottom).

low-dimensional representation of the state space, where the
encoder acts as a map from a high-dimensional observation
(an image) into the lower-dimensional state (a latent vector).

However, to be useful for planning, it is desirable to
have a particular structure in the latent space: states that
are similar should be encoded close to each other, while
different states should be separated. Such information does
not always coincide with the similarity of the respective
images: two observations can be significantly different with
respect to a pixel-wise metric due to task-irrelevant factors
of variation such as changes in the lighting conditions and
texture, while the underlying state of the system (e.g., the
shape and the pose of the objects) may be identical. The
opposite is also possible: two observations may be relatively
close in the image space, because the respective change in
the configuration of the scene does not significantly affect the
pixel-wise metric, while from the task planning perspective
the two states are fundamentally different.

Challenges of State Representation Learning for Planning.
For planning, the system dynamics should also be captured in
the latent space. We therefore identify three main challenges
when modeling the state space representation for planning: i)
it needs to be low dimensional, while containing the relevant
information from high-dimensional observations; ii) it needs to
properly reflect similarities between states; and iii) it needs to
efficiently capture feasible transitions between states allowing
complex tasks such as deformable object manipulation.

In this work, we address i) by extracting the low-
dimensional states directly from images of the scene through
a Mapping Module (MM). For this, we deploy a VAE

2

framework and compare it to AE. We address ii) by explicitly
encouraging the encoder network to map the observations that
correspond to different states further away from each other
despite their visual similarity. This is done by providing a
weak supervision signal: we record a small number of actions
between observation pairs, and mark the observations as
“same” or “different” depending on whether or not an action
is needed to bring the system from one state to the successor
one. We use this action information in an additional loss term
to structure the latent space accordingly. Finally, we tackle
iii) by building the Latent Space Roadmap (LSR), which is
a graph-based structure in the latent space used to plan a
manipulation sequence given a start and goal image of the
scene. The nodes of this graph are associated with the system
states, and the edges model the actions connecting them. For
example, as shown in Fig. 1, these actions can correspond
to moving a box or a rope, or folding a shirt. We identify
the regions containing the same underlying states using
hierarchical clustering [6] which accounts for differences in
shapes and densities of these regions. The extracted clusters
are then connected using the weak supervision signals.
Finally, the action specifics are obtained from the Action
Proposal Module (APM). In this way, we capture the global
dynamics of the state space in a data-efficient manner without
explicit state labels, which allows us to learn a state space
representation for complex long-horizon tasks.

Contributions. Our contributions can be summarized as:
1) We define the Latent Space Roadmap that enables to

generate visual action plans based on weak supervision;
2) We introduce an augmented loss function with dynamic

parameter to favourably structure the latent space;
3) We validate our framework on simulated box stacking

tasks involving rigid objects, a combined rope and
box manipulation task involving both deformable and
rigid objects, and on a real-world T-shirt folding task
involving deformable objects. Complete details can be
found on the website1.

This work is an extensively revised version of our earlier
conference paper [7], where we first introduced the notion
of Latent Space Roadmap. The main novelties of the present
work with respect to [7] are: i) extension of the LSR build-
ing algorithm with an outer optimisation loop improving its
performance, ii) new training approach for the MM with a
dynamic adjustment of the key hyperparameter used in the
additional loss term, iii) large scale simulation campaigns
investigating the effect of the additional loss term and hy-
perparameter choices, iv) restructuring of the framework into
three main components leading to a more modular setup, v)
introduction of a more challenging box stacking task and a task
involving manipulation of a rope and two boxes, enabling a
thorough ablation study on all components of our framework,
vi) comparison with the state-of-the-art solutions in [8] and [9]
on the simulation tasks as well as comparison of the improved
framework with its predecessor [7] on the T-shirt folding
task performed on a real robot, vii) comparison with other

1https://visual-action-planning.github.io/lsr-v2/

potentially suitable clustering algorithms used to build the
LSR, viii) comparison of VAE and AE for the mapping
module, ix) comparison of different realizations of the APM.

II. RELATED WORK

Methods for planning in complex scenarios in which the
system state cannot be analytically established can be divided
into two main categories based on where the planning is
performed: i) directly in a high-dimensional image space and
ii) in low-dimensional latent space. Belonging to i), a visual
foresight framework was designed in [10] where a video
prediction model based on Long-Short Term Memory blocks
was employed to predict stochastic pixel flow from frame
to frame. Trained on video, action and state sequences, the
model provides an RGB prediction of the scene that is then
used to perform visual model predictive control. The data was
collected using ten identical real world setups with different
camera angles. To tackle long-horizon tasks, Reinforcement
Learning (RL) combined with graph search over replay buffer
was proposed in [11] and validated with a visual navigation
task. Planning in the image space has also been successfully
applied to deformable objects as in [12], where the manipula-
tion of a rope from an initial start state to a desired goal state
was analyzed. In particular, a visual foresight plan is produced
containing the intermediate steps to deform the rope using a
Context Conditional Causal InfoGAN (C3IGAN). To this aim,
the results of [13] were exploited where 500 hours worth of
data collection were used to learn the rope inverse dynamics.

To mitigate the time burden of collecting data on real robots,
simulators with deformable objects have also been employed,
for example, in [14], where a custom fabric simulator [15] was
used to learn fabric dynamics building on the visual foresight
model [10]. The learned dynamic models are reusable and
can be applied to different tasks given a single image goal-
conditioned policy. In [16] the authors employed model free
RL algorithms trained in simulation in an end-to-end manner
by resorting to expert demonstrations. Optimal expert demon-
strations were also exploited in [17] to derive a controller
based on random forests.

In contrast, planning in a low-dimensional latent state space
significantly reduces the complexity of the input image space,
albeit introducing the challenges for capturing the global
structure and dynamics of the system in the latent space dis-
cussed in Sec. I. Embed-to-Control [18] pioneers in learning a
latent linear dynamical model for planning continuous actions.
Variational inference was used to infer a latent representation
and dynamical system parameters to reconstruct a sequence
of images. In addition to estimating transition and observation
models, [9] proposed a deep planning network which also
learns a reward function in the latent space. The latter was then
used to find viable trajectories resorting to a Model Predictive
Control (MPC) approach. A comparison between our method
and a baseline inspired by this approach can be found in
Sec. IX-C1.

RL in the latent space was applied in [19], where a VAE
encodes trajectories into the latent space that is optimized
to minimize the KL-divergence between the proposed latent

https://visual-action-planning.github.io/lsr-v2/

3

plans and those that have been encountered during self-play
exploration. Long-horizon visual planning was instead the
focus of [20], which introduced latent space goal-conditioning
to carry out long-horizon planning by reducing the search
space and performing hierarchical optimization.

The low dimensionality of the latent embeddings also en-
ables the employment of traditional planning strategies in the
latent space. In this regard, a framework for global search in
a latent space was designed in [21] which is based on three
components: i) a latent state representation, ii) a network to
approximate the latent space dynamics, and iii) a collision
checking network. Motion planning is then performed directly
in the latent space by an RRT-based algorithm. In [22] the
same authors combined the insights of RRT-based search in the
latent space with the self play in [19] and introduce Broadly-
Exploring Local-policy Trees that produce long-horizon, se-
quential plans via a model-based, task-conditioned tree search.
Imitation learning was instead leveraged in [23]. In particular,
a latent space Universal Planning Network was designed
in [23] to embed differentiable planning policies. The process
is learned in an end-to-end fashion from imitation learning
and gradient descent is used to find optimal trajectories.
Alternatively, a motion planning network with active learning
procedure was developed in [24] to reduce the data for training
and actively ask for expert demonstrations only when needed.

Graph structures have also been employed in the literature
to perform planning in the latent space. In this regard, a
graph neural network (GNN) was used in [25] to model the
relations and transitions given the representations of objects in
the scene, which were obtained with contrastive learning and
Convolutional Neural Network (CNN). Moreover, combining
RL with the idea of connecting states in the latent space
via a graph was proposed in Semi-Parametric Topological
Memory (SPTM) framework [8], where an agent explores the
environment and encodes observations into a latent space using
a retrieval network. Each encoded observation forms a unique
node in a memory graph built in the latent space. This graph
is then used to plan an action sequence from a start to a
goal observation using a locomotion network. As discussed
in Sec. IX-C1, where we compare our method with the SPTM
framework, the latter is optimized for the continuous domain
with action/observation trajectories as input and builds on the
assumption that each observation is mapped to a unique latent
code. The work in [26] builds upon SPTM by additionally
leveraging temporal closeness of the subsequent observations
in the trajectories, while the study in [27] performs merging
of the same underlying states using a two-way consistency
criterion.

Latent representations are also suitable for tasks considering
deformable objects as these are intrinsically hard to model
analytically. In [28], contrastive learning was used to learn
a predictive model in the latent space for planning rope
and cloth flattening actions. In addition, [29] proposed a
feedback latent representation framework for semantic soft
object manipulation using geodesic path-based algorithms to
perform planning in the latent space.

In this work, we leverage weak labels extracted from
demonstrated actions in the dataset to capture the global

structure of the state space and its dynamics in a data-
efficient manner. More specifically, we build a graph in a low-
dimensional latent state space to perform planning for rigid
and deformable object manipulation tasks.

III. PROBLEM STATEMENT AND NOTATION

Variable Meaning
I Space of observations, i.e., images
U Space of actions
Z Low-dimensional latent space
PI , Pu, Pz Planned sequence of images, actions and

latent states from assigned start and goal
observations, respectively

Zisys Covered region i of the latent space
Zsys Overall covered region of the latent space
ρ Specifics of the action that took place be-

tween two images I1 and I2
TI , Tz Datasets containing image tuples (I1,I2,ρ)

and their embeddings (z1,z2,ρ), respectively
ξ Latent mapping function from I to Z
ω Observation generator function from Z to I
dm Minimum distance encouraged among action

pairs in the latent space
p Metric Lp
τ Clustering threshold for LSR building
cmax Maximum number of connected components

of the LSR
Nεz (z) The εz-neighbourhood of a covered state z

containing same covered states
εi εz associated with all the states in the cov-

ered region Zisys, i.e. εi = εz ∀z ∈ Zisys

Table I: Main notations introduced in the paper.

The goal of visual action planning, also referred to as
“visual planning and acting” in [12], can be formulated
as follows: given start and goal images, generate a path as
a sequence of images representing intermediate states and
compute dynamically valid actions between them. We now
formalize the problem and provide notation in Table I.

Let I be the space of all possible observations of the
system’s states represented as images with fixed resolution
and let U be the set of possible control inputs or actions.

Definition 1: A visual action plan consists of a visual
plan represented as a sequence of images PI = {Istart =
I0, I1..., IN = Igoal} where Istart, Igoal ∈ I are images
capturing the underlying start and goal states of the system,
respectively, and an action plan represented as a sequence of
actions Pu = {u0, u1, ..., uN−1} where un ∈ U generates a
transition between consecutive states contained in the obser-
vations In and In+1 for each n ∈ {0, ..., N − 1}.

To retrieve the underlying states represented in the observa-
tions as well as to reduce the complexity of the problem we
map I into a lower-dimensional latent space Z such that each
observation In ∈ I is encoded as a point zn ∈ Z extracting
the state of the system captured in the image In. We call this
map a latent mapping and denote it by ξ : I → Z . In order

4

Fig. 2: Illustrative representation of the latent space Z . In the middle, possible transitions (arrows) between covered regions (sketched with
circles) are shown. On the left, details of the covered regions with different shapes and representative points are provided. On the right,
observations from a box stacking tasks are shown. In detail, the ones obtained from covered regions (in pink and blue) contain meaningful
task states, while the ones generated from not covered regions (in red) show fading boxes that do not represent possible states of the system.

to generate visual plans, we additionally assume the existence
of a mapping ω : Z → I called observation generator.

Let TI = {I1, ..., IM} ⊂ I be a finite set of input observa-
tions inducing a set of covered states Tz = {z1, ..., zM} ⊂ Z ,
i.e., Tz = ξ(TI). In order to identify a set of unique covered
states, we make the following assumption on Tz .

Assumption 1: Let z ∈ Tz be a covered state. Then
there exists εz > 0 such that any other state z′ in the
εz−neighborhood Nεz (z) of z can be considered as the same
underlying state.

This allows both generating a valid visual action plan and
taking into account the uncertainty induced by imprecisions
in action execution. Let

Zsys =
⋃
z∈Tz

Nεz (z) ⊂ Z (1)

be the union of εz-neighbourhoods of the covered states z ∈
Tz . Given Zsys, a visual plan can be computed in the latent
space using a latent plan Pz = {zstart = z0, z1, ..., zN =
zgoal}, where zn ∈ Zsys, which is then decoded with the
observation generator ω into a sequence of images.

To obtain a valid visual plan, we study the structure of
the space Zsys which in general is not path-connected, i.e.,
does not contain all the points on linear interpolations between
any two states z1, z2 ∈ Zsys. As we show in Fig. 2 on the
right, such interpolation may result in a path containing points
from Z−Zsys that do not correspond to covered states of the
system and are therefore not guaranteed to be meaningful. To
formalize this, we define an equivalence relation in Zsys

z ∼ z′ ⇐⇒ z and z′ are path-connected in Zsys, (2)

which induces a partition of the space Zsys into m equivalence
classes [z1], . . . , [zm]. Each equivalence class [zi] represents a
path-connected component of Zsys

Zisys =
⋃
z∈[zi]

Nεz (z) ⊂ Zsys (3)

called covered region. To connect the covered regions, we
define a set of transitions between them:

Definition 2: A transition function f i,jz : Zisys × U → Zjsys
maps any point z ∈ Zisys to an equivalence class representative
zjsys ∈ Zjsys, where i, j ∈ {1, 2, ...,m} and i 6= j.

Equivalence relation (2) and Assumption 1 imply that two
distinct observations I1 and I2 which are mapped into the same

covered region Zisys contain the same underlying state of the
system, and can be represented by the same equivalence class
representative zisys. Given a set of covered regions Zisys in
Zsys and a set of transition functions connecting them we can
approximate the global transitions of Zsys as shown in Fig. 2
on the left. To this end, we define a Latent Space Roadmap
(see Fig. 2 in the middle):

Definition 3: A Latent Space Roadmap is a directed graph
LSR = (VLSR, ELSR) where each vertex vi ∈ VLSR ⊂ Zsys
for i ∈ {1, 2, ...,m} is an equivalence class representative
of the covered region Zisys ⊂ Zsys, and an edge ei,j =
(vi, vj) ∈ ELSR represents a transition function f i,jz between
the corresponding covered regions Zisys and Zjsys for i 6= j.
Moreover, weakly connected components of an LSR are called
graph-connected components.

IV. METHODOLOGY

We first present the structure of the training dataset and then
provide an overview of the approach.

A. Training Dataset

We consider a training dataset TI consisting of generic
tuples of the form (I1, I2, ρ) where I1 ⊂ I is an image of
the start state, I2 ⊂ I an image of the successor state, and
ρ a variable representing the action that took place between
the two observations. Here, an action is considered to be
a single transformation that produces any consecutive state
represented in I2 different from the start state in I1, i.e., ρ
cannot be a composition of several transformations. On the
contrary, we say that no action was performed if images I1
and I2 are observations of the same state, i.e., if ξ(I1) ∼ ξ(I2)
with respect to the equivalence relation (2). The variable
ρ = (a, u) consists of a binary variable a ∈ {0, 1} indicating
whether or not an action occurred as well as a variable u
containing the task-dependent action-specific information. The
latter, if available, is used to infer the transition functions
f i,jz . We call a tuple (I1, I2, ρ = (1, u)) an action pair and
(I1, I2, ρ = (0, u)) a no-action pair. For instance, Fig. 4
shows an example of an action pair (top row) and a no-
action pair (bottom row) for the folding task. In this case,
the action specifics u contain the pick and place coordinates
to achieve the transition from the state captured by I1 to
the state captured by I2, while the no-action pair images

5

Fig. 3: Overview of the proposed method. Start and goal images (left) are mapped to the latent space Z by the latent mapping ξ. A latent
plan is then found with the LSR (cyan circles and arrows) and is decoded to a visual plan using the observation generator ω. The APM
(red) proposes actions to achieve the transitions between states in the visual plan. The final result is a visual action plan (green) from start
to goal. A re-planning step can also be added after every action to account for execution uncertainties as in Fig. 12.

are different observations of the same underlying state of
the system represented by slight perturbations of the sleeves.
When the specifics of an action u are not needed, we omit them
from the tuple notation and simply write (I1, I2, a). By abuse
of notation, we sometimes refer to an observation I contained
in any of the training tuples as I ∈ TI . Finally, we denote by
Tz the encoded training dataset TI consisting of latent tuples
(z1, z2, ρ) obtained from the input tuples (I1, I2, ρ) ∈ TI by
encoding the inputs I1 and I2 into the latent space Zsys with
the latent mapping ξ. The obtained states z1, z2 ∈ Zsys are
called covered states.

Remark 1: The dataset TI is not required to contain all
possible action pairs of the system but only a subset of
them that sufficiently cover the dynamics, which makes our
approach data efficient.

Fig. 4: Example of action (a) and no-action (b) pairs in folding task.

B. System Overview

Generation of visual action plans consists of three compo-
nents visualized in Fig. 3:
• Mapping Module (MM) used to both extract a low-

dimensional representation of a state represented by a
given observation, and to generate an exemplary obser-
vation from a given latent state (Sec. V);

• Latent Space Roadmap (LSR) built in the low dimen-
sional latent space and used to plan (Sec. VI);

• Action Proposal Module (APM) used to predict action
specifics for executing a latent plan found by the LSR
(Sec. VII).

The MM consists of the latent mapping ξ : I → Z and
the observation generator ω : Z → I. To find a visual plan
between a given start observation Istart and goal observation

Igoal, the latent mapping ξ first extracts the corresponding
lower-dimensional representations zstart and zgoal of the un-
derlying start and goal states, respectively. Ideally, ξ should
perfectly extract the underlying state of the system such that
different observations containing the same state are mapped
into the same latent point. In practice, however, the unknown
true latent embedding ξ is approximated with a neural network
which implies that different observations containing the same
state could be mapped to different latent points. In order to
perform planning in Z , we thus build the LSR which is a
graph-based structure identifying the latent points belonging
to the same underlying state and approximating the system
dynamics. This enables finding the latent plans Pz between the
extracted states zstart and zgoal. For the sake of interpretabil-
ity, latent plans Pz are decoded into visual plans PI , consisting
of a sequence of images, by the observation generator ω.

We complement the generated visual plan PI with the action
plan Pu produced by the APM, which proposes an action
ui that achieves the desired transition f i,i+1

z (zi, ui) = zi+1

between each pair (zi, zi+1) of consecutive states in the latent
plan Pz found by the LSR.

The visual action plan produced by the three components
can be executed by any suitable framework.

Remark 2: If open loop execution is not sufficient for the
task, as for deformable object manipulation, a re-planning step
can be added after every action. This implies that a new visual
action plan is produced after the execution of each action
until the goal is reached. A visualization of the re-planning
procedure is shown in Fig. 12 on the T-shirt folding task
presented in Sec. X.

Remark 3: Our method is able to generate a sequence of
actions {u0, . . . , uN−1} to reach a goal state in IN from a
given start state represented by I0, even though the tuples in
the input dataset TI only contain single actions u that represent
the weak supervision signals.

V. MAPPING MODULE (MM)

The mappings ξ : I → Z and ω : Z → I as well
as the low-dimensional space Z can be realized using any
encoder-decoder based algorithms, for example VAEs, AEs
or Generative Adversarial Networks (GANs) combined with
an encoder network. The primary goal of MM is to find

6

the best possible approximation ξ such that the structure
of the extracted states in the latent space Z resembles the
one corresponding to the unknown underlying system. The
secondary goal of MM is to learn an observation generator ω
which enables visual interpretability of the latent plans. Since
the quality of these depends on the structure of the latent
space Z , we leverage the action information contained in the
binary variable a of the training tuples (I1, I2, a) to improve
the quality of the latent space. We achieve this by introducing
a contrastive loss term [30] which can be easily added to the
loss function of any algorithm used to model the MM.

More precisely, we introduce a general action term

Laction(I1, I2)=

{
max(0, dm − ||z1 − z2||p) if a = 1

||z1 − z2||p if a = 0
(4)

where z1, z2 ⊂ Zsys are the latent encodings of the input
observations I1, I2 ⊂ TI , respectively, dm is a hyperparameter,
and the subscript p ∈ {1, 2,∞} denotes the metric Lp.
The action term Laction naturally imposes the formulation of
the covered regions Zisys in the latent space. On one hand,
it encodes identical states contained in the no-action pairs
close by. On the other hand, it encourages different states
to be encoded in separate parts of the latent space via the
hyperparameter dm.

As we experimentally show in Sec. IX-B1, the choice of
dm has a substantial impact on the latent space structure.
Therefore, we propose to learn its value dynamically during
the training of the MM. In particular, dm is increased until the
separation of action and no-action pairs is achieved. Starting
from 0 at the beginning of the training, we increase dm
by ∆dm every kth epoch as long as the maximum distance
between no-action pairs is larger then the minimum distance
between action pairs. The effect of dynamically increasing dm
is shown in Fig. 5 where we visualize the distance ||z1−z2||1
between the latent encodings of every action training pair
(in blue) and no-action training pair (in green) obtained at
various epochs during training on a box stacking task. It can
be clearly seen that the parameter dm is increased as long as
there is an intersection between action and no-action pairs.
Detailed investigation of this approach as well as its positive
effects on the structure of the latent space are provided in
Sec. IX-B1. Note that the dynamic adaptation of the parameter
dm eliminates the need to predetermine its value as in our
previous work [7].

We use a VAE such that its latent space represents the
space Z , while the encoder and decoder networks realize the
mappings ξ and ω, respectively. We validate this choice in
Sec. IX-B3 by comparing it to AE. In the following, we
first provide a brief summary of the VAE framework [5],
[31] and then show how the action term can be integrated
into its training objective. Let I ⊂ TI be an input image,
and let z denote the unobserved latent variable with prior
distribution p(z). The VAE model consists of encoder and
decoder neural networks that are jointly optimized to represent
the parameters of the approximate posterior distribution q(z|I)
and the likelihood function p(I|z), respectively. In particular,

VAE is trained to minimize

Lvae(I)=Ez∼q(z|I)[log p(I|z)] + β ·DKL (q(z|I)||p(z)) (5)

with respect to the parameters of the encoder and decoder
neural networks. The first term influences the quality of the
reconstructed samples, while the second term, called Kullback-
Leibler (KL) divergence term, regulates the structure of the
latent space. The trade-off between better reconstructions or a
more structured latent space is controlled by the parameter β,
where using a β > 1 favors the latter [32], [33]. The action
term (4) can be easily added to the VAE loss (5) as follows:

L(I1, I2) =
1

2
(Lvae(I1)+Lvae(I2))+γ ·Laction(I1, I2) (6)

where I1, I2 ⊂ TI and the parameter γ controls the influence
of the distances among the latent encodings on the latent
space structure. Note that the same procedure applies for
integrating the action term (4) into any other framework that
models the MM.

Fig. 5: An example showing histograms of distances ||z1 − z2||1
for latent action (in blue) and no-action pairs (in green) obtained
at epochs 1, 5 and 50 during the training of VAE on the hard
box stacking task (more details in Sec. IX). The figure shows
the separation of the action and no-action distances induced by
dynamically increasing the minimum distance dm in Laction.

VI. LATENT SPACE ROADMAP (LSR)

The Latent Space Roadmap, defined in Definition 3, is
built in the latent space Z obtained from the MM. LSR is a
graph that enables planning in the latent space which identifies
sets of latent points associated with the same underlying
state and viable transitions between them. Each node in
the roadmap is associated with a covered region Zisys. Two
nodes are connected by an edge if there exists an action pair
(I1, I2, ρ = (1, u1)) in the training dataset TI such that the
transition f1,2z (z1, u1) = z2 is achieved in Zsys.

The LSR building procedure is summarized in Algorithm 1
and discussed in Sec. VI-A. It relies on a clustering algorithm
that builds the LSR using the encoded training data Tz and
a specified metric Lp as inputs. The input parameter τ is
inherited from the clustering algorithm and we automatically
determine it using the procedure described in Sec. VI-B.

A. LSR Building

Algorithm 1 consists of three phases. In Phase 1 (lines 1.1−
1.5), we build a reference graph G = (V, E) induced by Tz
and visualized on the left of Fig. 6. Its set of vertices V is the
set of all the latent states in Tz , while edges exist only among

7

Algorithm 1 LSR building
Require: Dataset Tz , metric Lp, clustering threshold τ

Phase 1
1: init graph G = (V, E) := ({}, {})
2: for each (z1, z2, a) ∈ Tz do
3: V ← create nodes z1, z2
4: if a = 1 then
5: E ← create edge (z1, z2)

Phase 2
1: M ← Average-Agglomerative-Clustering(Tz, Lp) [6]
2: W ← get-Disjoint–Clusters(M, τ)

3: Zsys ← {}
4: for each Wi ∈ W do
5: εi ← get-Cluster-Epsilon(Wi)

6: Zisys := ∪w∈WiNεi(w)

7: Zsys := Zsys ∪ {Zisys}
Phase 3

1: init graph LSR = (VLSR, ELSR) := ({}, {})
2: for each Zisys ∈ Zsys do
3: wi := 1

|Wi|
∑
w∈Wi w

4: zisys := argminz∈Zisys ||z − w
i||p

5: VLSR ← create node zisys
6: for each edge e = (v1, v2) ∈ E do
7: find Zisys,Zjsys containing v1, v2, respectively
8: ELSR ← create edge (zisys, zjsys)

return LSR

the latent action pairs. It serves as a look-up graph to preserve
the edges that later induce the transition functions f i,jz .

In Phase 2, Algorithm 1 identifies the covered regions
Zisys ⊂ Zsys. We achieve this by first clustering the training
samples and then retrieving the covered regions from these
clusters. We start by performing agglomerative clustering [6]
on the encoded dataset Tz (line 2.1). Agglomerative clustering
is a hierarchical clustering scheme that starts from single
nodes of the dataset and merges the closest nodes, according
to a dissimilarity measure, step by step until only one node
remains. It results in a stepwise dendrogram M , depicted in
the middle part of Fig. 6, which is a tree structure visualizing
the arrangement of data points in clusters with respect to the
level of dissimilarity between them. We choose to measure
this inter-cluster dissimilarity using the unweighted average
distance between points in each cluster, a method also re-
ferred to as UPGMA [34]. More details about other possible
clustering algorithms and dissimilarity measures are discussed
in Sec. IX-C4. Next, the dissimilarity value τ , referred to as
clustering threshold, induces the set of disjoint clusters W ,
also called flat or partitional clusters [35], from the stepwise
dendrogram M [6] (line 2.2). Points in each cluster Wi are
then assigned a uniform εi (line 2.5), i.e. the neighbourhood
size from Assumption 1 of each point z ∈ Wi is εz = εi.
We discuss the definition of the εi value at the end of this
phase. The union of the εi-neighbourhoods of the points in
Wi then forms the covered region Zisys (line 2.6). Illustrative
examples of covered regions obtained from different values of
τ are visualized on the right of Fig. 6 using various colors.
The optimization of τ is discussed in Appendix-B. The result
of this phase is the set of the identified covered regions

Zsys = {Zisys} (line 2.7).
We propose to approximate εi as

εi = µi + σi (7)

where µi and σi are the mean and the standard deviation of the
distances ‖zij−zik‖p among all the training pairs (zij , z

i
k) ∈ Tz

belonging to the ith cluster. The approximation in (7) allows to
take into account the cluster density such that denser clusters
get lower εi. In contrast to our previous work [7], we now
enable clusters to have different ε values. We validate the
approximation (7) in Secs. IX-C5 and X-C1 where we analyze
the covered regions identified by the LSR.

In Phase 3, we build the LSR = (VLSR, ELSR). We first
compute the mean value wi of all the points in each cluster
Wi (line 3.3). As the mean itself might not be contained
in the corresponding path-connected component, we find the
equivalence class representative zisys ∈ Zisys that is the
closest (line 3.4). The found representative then defines a node
vi ∈ VLSR representing the covered region Zisys (line 3.5).
Lastly, we use the set of edges E in the reference graph built
in Phase 1 to infer the transitions f i,jz between the covered
regions identified in Phase 2. We create an edge in LSR if
there exists an edge in E between two vertices in V that
were allocated to different covered regions (lines 3.6 − 3.8).
The right side of Fig. 6 shows the final LSRs, obtained with
different values of the clustering threshold τ .

Note that, as in the case of the VAE (Sec. V), no action-
specific information u is used in Algorithm 1 but solely the
binary variable a indicating the occurrence of an action.

B. Optimization of LSR Clustering Threshold τ

The clustering threshold τ , introduced in Phase 2 of Al-
gorithm 1, heavily influences the number and form of the
resulting clusters. Since there is no inherent way to prefer
one cluster configuration over another, finding its optimal
value is a non-trivial problem and subject to ongoing research
[36], [37], [38]. However, in our case, since the choice of τ
subsequently influences the resulting LSR, we can leverage
the information about the latter to optimize τ . As illustrated
in Fig. 6, the number of vertices and edges in LSRτi changes
with the choice of τi. Moreover, the resulting LSRs can
have different number of graph-connected components. For
example, LSRτ1 in Fig. 6 has 2 graph-connected components,
while LSRτ2 and LSRτ3 have only a single one. Ideally, we
want to obtain a graph that exhibits both good connectivity
which best approximates the true underlying dynamics of
the system, and has a limited number of graph-connected
component. Intuitively, high number of edges increases the
possibility to find latent paths from start to goal state. At
the same time, this possibility is decreased when the graph
is fragmented into several isolated components, which is why
we are also interested in limiting the maximum number of
graph-connected components.

While we cannot analyze the clusters themselves, we can
evaluate information captured by the LSR that correlates with
the performance of the task, i.e., we can assess a graph by the
number of edges and graph-connected components it exhibits

8

Fig. 6: Illustrative example visualising the LSR building steps and the effect of the clustering threshold τ . The left shows the reference graph
built in Phase 1 of Algorithm 1. The middle part visualizes a dendrogram M obtained from the clustering algorithm in Phase 2. On the
right, three examples of LSRs are shown together with the covered regions (marked with various colors) corresponding to different clustering
thresholds τ (with τ1 < τ2 < τ3) chosen from M .

as discussed above. This induces an objective which we can
use to optimize the value of the clustering threshold τ . We
formulate it as

ψ(τ, cmax) =

{
|ELSRτ | if cLSRτ ≤ cmax,

−∞ otherwise,
(8)

where |ELSRτ | is the cardinality of the set ELSRτ , cLSRτ
represents the number of graph-connected components of the
graph LSRτ induced by τ , and the hyperparameter cmax

represents the upper bound on the number of graph-connected
components. The optimal τ in a given interval [τmin, τmax] can
be found by any scalar optimization method. In this work, we
use Brent’s optimization method [39] maximizing (8):

max
τmin≤τ≤τmax

ψ(τ, cmax). (9)

This optimization procedure is summarized in Algorithm 2.
It takes as an input the encoded training data Tz , the metric
Lp, the search interval where the clustering parameter τ is to
be optimized, and the upper bound cmax to compute the opti-
mization objective in (8). After initialization of the parameter
τ (line 1), for example, by considering the average value of
its range, the Brent’s optimization loop is performed (lines 2-
5). Firstly, the LSR with the current τ is built according to
Algorithm 1 (line 3). Secondly, the optimization objective (8)
is computed on the obtained LSRτ (line 4). Thirdly, the
parameter τ as well as the bounds τmin and τmax are updated
according to [39] (line 5). The optimization loop is performed
until the convergence is reached, i.e., until |τmax − τmin| is
small enough according to [39]. Lastly, the optimal τ∗ (line
6) is selected for the final LSRτ∗ .

Note that even though Algorithm 2 still needs the selection
of the hyperparameter cmax, we show in Sec. IX-C3 that it is
rather robust to the choice of this parameter.

C. Visual plan generation

Given a start and goal observation, a trained VAE model and
an LSR, the observations are first encoded by ξ into the VAE’s
latent space Z where their closest nodes in the LSR are found.
Next, all shortest paths in the LSR between the identified nodes
are retrieved. Finally, the equivalence class representatives of
the nodes comprising each of the found shortest path compose
the respective latent plan Pz , which is then decoded into the
visual plan PI using ω.

Algorithm 2 LSR input optimization

Require: Dataset Tz , metric Lp, search interval [τmin, τmax], cmax

1: τ ← init(τmin, τmax)

2: while |τmax − τmin| not small enough do
3: LSRτ ← LSR-building(Tz, Lp, τ) [Algorithm 1]
4: ψ ← Evaluate(LSRτ) [Eq. (8)]
5: τ, τmin, τmax ← Brent-update(ψ) [39]

6: τ∗ ← τ

return LSRτ∗

VII. ACTION PROPOSAL MODULE (APM)

The final component of our framework is the Action Pro-
posal Module (APM) which is used to complement a latent
plan, produced by the LSR, with an action plan that can be
executed by a suitable framework. The APM allows to gener-
ate the action plans from the extracted low-dimensional state
representations rather than high-dimensional observations. The
action plan Pu corresponding to a latent plan Pz produced
by the LSR is generated sequentially: given two distinct
consecutive latent states (zi, zi+1) from Pz , APM predicts an
action ui that achieves the transition f i,i+1(zi, ui) = zi+1.
Such functionality can be realized by any method that is
suitable to model the action specifics of the task at hand.

We model the action specifics with a neural network called
Action Proposal Network (APN). We deploy a multi layer
perceptron and train it in a supervised fashion on the latent
action pairs obtained from the enlarged dataset Tz as described
below. We validate this choice in Sec X-D where we compare
it to different alternatives that produce action plans either by
exploiting the LSR or by using the observations as inputs
rather than extracted low-dimensional states.

The training dataset Tz for the APN is derived from TI
but preprocessed with the VAE encoder representing the latent
mapping ξ. We encode each training action pair (I1, I2, ρ =
(1, u)) ∈ TI into Z and obtain the parameters µi, σi of the
approximate posterior distributions q(z|Ii) = N(µi, σi), for
i = 1, 2. We then sample 2S novel points zs1 ∼ q(z|I1) and
zs2 ∼ q(z|I2) for s ∈ {0, 1, . . . , S}. This results in S+1 tuples
(µ1, µ2, ρ) and (zs1, z

s
2, ρ), 0 ≤ s ≤ S, where ρ = (1, u) was

omitted from the notation for simplicity. The set of all such
low-dimensional tuples forms the APN training dataset Tz .

Remark 4: It is worth remarking the two-fold benefit of this

9

preprocessing step: not only does it reduce the dimensionality
of the APN training data but also enables enlarging it with
novel points by factor S + 1. Note that the latter procedure is
not possible with non-probabilistic realizations of ξ.

VIII. ASSUMPTIONS, APPLICABILITY AND LIMITATIONS
OF THE METHOD

In this section, we briefly overview our assumptions, de-
scribe tasks where our method is applicable, and discuss its
limitations. In order for our method to successfully perform a
given visual action planning task, the observations contained
in the training dataset TI should induce the covered states
(defined in Sec. III) that are considered in the planning.
Furthermore, it is required that sufficiently many transitions
among them are observed such that the obtained LSR ade-
quately approximates the true underlying system dynamics.
For example, the training datasets TI in the box stacking tasks
consist of 2500 pairs of states of the system instead of all
(i.e., 41616) possible combinations. On the other hand, if the
system contains many feasible states, it can be challenging
to collect a dataset TI that covers sufficiently many states and
transitions between them. Even though the performance of the
LSR would deteriorate with such incomplete dataset, we do
not consider this as the limitation of the method itself as this
can be mitigated with online learning approaches, e.g., [40],
that dynamically adapt the LSR based on the interaction with
the environment.

Given the assumptions on the format of the dataset TI
introduced in Sec. IV-A, our method is best applicable to visual
action planning tasks where feasible states of the system are
finite and can be distinguished in TI such that meaningful
unambiguous actions to transition among them can be defined.

Therefore, our approach does not generalize well to entirely
novel states of the system not contained in the training set. This
is expected, as the model has no prior knowledge about the
newly appeared state, such as, for example, an entirely new
fold of a T-shirt or a new piece of garment. Such generalization
could be achieved by integrating active learning approaches
which is indeed an interesting future direction. We emphasise
that the proposed method is not limited by the dimensionality
of the system’s states since that is reduced via MM.

IX. SIMULATION RESULTS

We experimentally evaluated our method on three different
simulated tasks: two versions of a box stacking task (Fig. 7
left) and a combined rope and box manipulation task (Fig. 7
right), which we refer to as rope-box manipulation task. We
considered the initial box stacking task used in our previous
work [7] (top left), and a modified one where we made the
task of retrieving the underlying state of the system harder.
We achieved this by i) using more similar box textures which
made it more difficult to separate the states, and ii) by intro-
ducing different lighting conditions which made observations
containing the same states look more dissimilar. We refer to the
original setup as the normal stacking task denoted by ns, and
to the modified one as the hard stacking task denoted by hs.
In the rope-box manipulation task (Fig. 7 right), denoted by

rb, a rope connects two boxes constraining their movement.
To challenge the visual action planning, we again introduced
different lighting conditions as well as the deformability of
the rope.

These three setups enable automatic evaluation of the struc-
ture of the latent space Zsys, the quality of visual plans PI
generated by the LSR and MM, and the quality of action
plans Pu predicted by the APN. Moreover, they enable to
perform a more thorough ablation studies on the introduced
improvements of our framework which were not possible in
our earlier version of the LSR [7] since the resulting visual
action plans achieved a perfect evaluation score.

All setups were developed with the Unity engine [41] and
the resulting images have dimension 256 × 256 × 3. In the
stacking tasks, four boxes with different textures that can be
stacked in a 3×3 grid (dotted lines in Fig. 7). A grid cell can
be occupied by only one box at a time which can be moved
according to the stacking rules: i) it can be picked only if
there is no other box on top of it, and ii) it can be released
only on the ground or on top of another box inside the 3× 3
grid. In both versions of the stacking task, the position of each
box in a grid cell was generated by introducing ∼ 17% noise
along x and y axes which was applied when generating both
action and no-action pairs. The action-specific information u,
shown in Fig. 7 left, is a pair u = (p, r) of pick p and
release r coordinates in the grid modelled by the row and
column indices, i.e., p = (pr, pc) with pr, pc ∈ {0, 1, 2}, and
equivalently for r = (rr, rc).

In the rope-box manipulation task, two boxes and a rope
can be moved in a 3× 3 grid with 4 pillars according to the
following manipulation rules: i) a box can only be pushed
one cell in the four cardinal directions but not outside the
grid, ii) the rope can be lifted over the closest pillar, iii) the
rope cannot be stretched over more that two cells, meaning
the boxes can never be more than one move apart from being
adjacent. In this task, the action-specific information u, shown
in Fig. 7 right, denotes whether the rope is moved over the
closest pillar (top) or a box is moved in the grid (bottom) with
respective pick p and release r coordinates.

Fig. 7: Examples of actions u in the normal (top) and hard (bottom)
box stacking tasks (left) and in the rope-box task (right). The blue
circle shows the picking location p, and the green one the release
position r. The action ‘rope’ for moving the rope over the closest
pillar is shown in top right.

10

According to the above rules, the training datasets TI for
stacking tasks contain all possible 288 different grid configura-
tions, i.e., the specification of which box, if any, is contained
in each cell. In case of the rope-box manipulation task, TI
contains 157 different grid configurations comprising the po-
sition of the rope and boxes. These 288/157 grid configurations
represent the covered states in these tasks. Note that the exact
number of underlying states is in general not known. Given a
pair of states and the task rules, it is possible to analytically
determine whether or not an action is allowed between them.
In addition, we can determine the grid configuration associated
with an image (i.e., its underlying state) contained in the
produced visual plan PI using classifiers. These were trained
on the decoded images and achieved accuracy greater than
98.8% on a holdout dataset composed of 750 samples for both
versions of the stacking task and the rope-box task. All the
implementation details can be found on our code repository2.

A. Experiment Objectives and Implementation Details

Our experiments are designed to answer the following
questions:

1) MM What is the impact of the action term (4) in the
augmented loss function (6) on the structure of the latent
space? How do the respective parameters (e.g., minimum
distance) influence the overall LSR performance? Lastly,
how does the VAE framework perform compared to the
AE one for modelling the mappings ξ and ω in the MM?

2) LSR What is the performance of the LSR compared to
state of the art solutions like [8] and [9], and what is the
influence of the action term (4) on it? How do the respec-
tive LSR parameters (e.g., number of components) and
the choice of the clustering algorithm impact the overall
LSR performance? How good is the LSR approximation
of the covered regions?

3) APM What is the performance of the APN model?
In this section, we present the implementation details and

introduce the notation used to easily refer to the models
in consideration. For VAEs (used in MM), each model is
annotated by VAEld -task-d where ld denotes the dimension
of the latent space, task denotes the version of the task and
is either ns, hs or rb for the normal stacking task, hard
stacking tasks or rope-box manipulation task, respectively. The
parameter d indicates whether or not the model was trained
with the action loss term (4). We use d = b to denote a
baseline VAE trained with the original VAE objective (5),
and d = L1 to denote an action VAE trained with the loss
function (6) including the action term (4) using metric L1.
Compared to [7], we consider only L1 metric in our simulated
experiments due to its superior performance over the L2 and
L∞ metrics established in [7].

All VAE models used a ResNet architecture [42] for the
encoder and decoder networks. They were trained for 500
epochs on a training dataset TI , composed of 65% action pairs
and 35% no-action pairs for stacking tasks, and 50% action
pairs and 50% no-action pairs for rope-box manipulation task.

2 https://github.com/visual-action-planning/lsr-v2-code

For each combination of parameters ld, task, and d, we trained
5 VAEs initialized with different random seeds. Same seeds
were also used to create training and validations splits of the
training dataset. The weight β in (5) and (6) was gradually
increased from 0 to 2 over 400 epochs, while γ was fixed
to 100. In this way, models were encouraged to first learn to
reconstruct the input images and then to gradually structure
the latent space. The minimum distance dm was dynamically
increased every fifth epoch starting from 0 using ∆dm = 0.1
as described in Sec. V. The effect of this dynamic parameter
increase is shown in Fig. 5.

For LSR, we denote by LSR -L1 a graph built using the
metric L1 in Algorithm 1. The parameters τmin and τmax in the
LSR optimization (9) were set to 0 and 3, respectively. Unless
otherwise specified, we fixed ld = 12 for all tasks. Moreover,
the number of graph-components cmax in the optimization of
the clustering threshold (8) was set to 1 for ns, and 20 for hs
and rb. These choices are explained in detail in the following
sections. Given an LSR, we evaluated its performance by
measuring the quality of the visual plans found between 1000
randomly selected start and goal observations from an unseen
holdout set containing 2500 images. To automatically check
the validity of the found paths, we used the classifiers on
the observations contained in the visual plans to get the
respective underlying states. We then defined a checking
function (available on the code repository) that, given the
states in the paths, determines whether they are allowed or
not according to the the stacking or the manipulation rules. In
the evaluation of the planning performance we considered the
following quantities: i) percentage of cases when all shortest
paths from start to goal observations are correct, denoted as %
All, ii) percentage of cases when at least one of the proposed
paths is correct, denoted as % Any, and iii) percentage of
correct single transitions in the paths, denoted as % Trans. We
refer to the % Any score in ii) as partial scoring, and to the
combination of scores i)-iii) as full scoring. Mean and standard
deviation values are reported over the 5 different random seeds
used to train the VAEs.

For APNs, we use the notation APNld -task-d analogous
to the VAEs. The APN models were trained for 500 epochs
on the training dataset Tz obtained following the procedure
described in Sec VII using S = 1. Similarly as for LSR, we
report the mean and standard deviation of the performance
obtained over the 5 random seeds used in the VAE training.

B. MM Analysis

In this section, we validate the MM module answering the
questions in point 1) of Sec. IX-A. In the first experiment,
we investigated the influence of the dynamic parameter dm
on the LSR performance. We then studied the structure of
the latent space by analyzing the distance between encodings
of different states. Lastly, we compared the LSR performance
when modelling MM with an AE framework instead of a VAE.

1) Influence of dynamic dm: A key parameter in the
action term (4) is the minimum distance dm encouraged among
the action pairs. We considered the hard stacking and rope-
box manipulation tasks and validated the approach proposed

https://github.com/visual-action-planning/lsr-v2-code

11

Fig. 8: Comparison of LSR performance using the dynamic dm (solid
lines) and static dm (cross markers with dashed lines) for the hard
stacking (blue) and rope-box manipulation (orange) tasks. Non linear
x-axis scale showing the values of dm is used for better visualization.

in Sec. V, which dynamically increases dm to separate action
and no-action pairs (see Fig. 5). At the end of the training,
the approach results in dm = 2.3 ± 0.1 and dm = 2.6 ± 0.2
for the hard stacking and rope-box tasks, respectively.

Figure 8 shows the performance of the LSR using partial
scoring on the hard stacking task (blue) and rope-box ma-
nipulation task (orange) obtained for the dynamic dm (solid
lines), and a selected number of static dm parameters (cross
markers with dashed lines) ranging from low (dm = 0) to
high (dm = 100) values. Among the latter, we included
the static dm = 11.6 and dm = 6.3 obtained using our
previous approach in [7] on the stacking and the rope-box
tasks, respectively. We observed that: i) the choice of dm
heavily influences the LSR performance, where same values
of dm can lead to different behavior depending on the task
(e.g., dm = 11.6), ii) the dynamic dm leads to nearly optimal
performance regardless of the task compared to the grid
searched static dm. Note that even though there are static dm
values where the performance is higher than in the dynamic
case (e.g., dm = 3 with 93.1% for stacking and dm = 9 with
91.2% for the rope-box task), finding these values a priori
without access to ground truth labels is hardly possible.

This approach not only eliminates the need for training the
baseline VAEs as in [7] but also reaches a value of dm that
obtains a better separation of covered regions Zisys without
compromising the optimization of the reconstruction and KL
terms. In fact, as discussed in Sec. V, the reconstruction,
KL and action terms in the loss function (5) have distinct
influences on the latent space structure which can be in
contrast to each other. The proposed dynamic increase of
dm results in a lower dm value than in [7], which in turn
yields small distances between the action pair states while
still being more beneficial than a simple static dm = 0. Such
small distances in the action term are desirable as they do not
contradict the KL term. This can explain why the LSRs with
higher values of dm reach worse performance compared to the
dynamic one. On the other hand, the quality of the obtained
visual plans demonstrates that the resulting dm neither affects
the reconstruction capabilities of the MM.

2) Separation of the states: We investigated the effect
of the action loss (4) on the structure of the latent space
by analyzing the separation of the latent points z ∈ Tz

corresponding to different underlying states of the system. For
simplicity, we report only results for the normal stacking task
but we observed the same conclusions for the hard stacking
and the rope-box manipulation tasks. Recall that images in
TI containing the same state looked different because of
the introduced positioning noise in the stacking tasks (and
different lightning conditions in the case of hs as well as the
deformability of the rope in rb).

Let z̄s be the centroid for state s defined as the mean point
of the training latent samples {zs,i}i ⊂ Tz associated with the
state s. Let dintra(zs,i, z̄s) be the intra-state distance defined
as the distance between the latent sample i associated with the
state s, namely zs,i, and the respective centroid z̄s. Similarly,
let dinter(z̄s, z̄p) denote the inter-state distance between the
centroids z̄s and z̄p of states s and p, respectively.

Figure 9 reports the mean values (bold points) and the
standard deviations (thin lines) of the inter- (in blue) and
intra-state (in orange) distances for each state s ∈ {1, ..., 288}
in the normal stacking task when using the baseline model
VAE12 -ns-b (top) and the action model VAE12 -ns-L1 (bot-
tom). In case of the baseline VAE, we observed similar intra-
state and inter-state distances. This implies that samples of
different states were encoded close together in the latent space
which can raise ambiguities when planning. On the contrary,
when using VAE12 -ns-L1, we observed that the inter- and
intra-state distances approach the values 5 and 0, respectively.
These values were imposed with the action term (4) as the
minimum distance dm reached 2.6. Therefore, even when there
existed no direct link between two samples of different states,
and thus the action term for the pair was never activated, the
VAE was able to encode them such that the desired distances in
the latent space were respected. Similar conclusions also hold

Fig. 9: Mean values (bold points) and standard deviations (thin lines)
of inter- (blue) and intra- (orange) state distances for each state
calculated using the baseline VAE (top) and the action VAE12 -ns-L1

model (bottom) on normal stacking task.

for the hard stacking and the rope-box manipulation tasks,
whose plots are omitted for the interest of space.

Finally, we analyzed the difference between the minimum
inter-state distance and the maximum intra-state distance for
each state. The higher the value the better separation of states
in the latent space since samples of the same state are in this
case closer to each other than samples of different states. When
the latent states were obtained using the baseline VAE12 -ns-b,

12

we observed a non-negative distance for 0/288 states with
an average value of ≈ −1.2. This implies that only weak
separation occurred in the latent space for samples of different
states. On the other hand, when calculated on points encoded
with VAE12 -ns-L1, the difference became non-negative for
284/288 states and its mean value increased to ≈ 0.55,
thus achieving almost perfect separation. In the hard stacking
task, we similarly found that VAE12 -hs-b reached an average
difference of −5.86 (being non-negative for 0/288 states),
while the action model VAE12 -hs-L1 reduced the average
difference to −0.04 (being non-negative for 121/288 states).
This result demonstrates the difference in the difficulty be-
tween the two versions of the box stacking task and highlights
the challenges of visual action planning on the harder stacking
task where worse separation of states was achieved. For the
rope-box manipulation task we obtained, coherently with the
box stacking results, an average difference of −2.95 (being
non-negative for 37/157 states) with the baseline model, which
improved to 0.15 with the action model VAE12 -rb-L1 (being
non-negative for 100/157 states).

In Appendix-A, we performed an ablation study on the
latent space dimension, justifying the choice ld = 12 in our
simulations.

We conclude that the action term (4) and the dynamic dm
contribute to a better structured latent space Zsys.

3) VAE compared to AE: VAE framework is only one
of the possible models for the MM. We justify this modeling
choice by comparing it to the AE framework. Similarly as
VAE, an AE model consists of an encoder and a decoder
network which are jointly trained to minimize the the Mean
Squared Error (MSE) between the original input and its
decoded output. In contrast to VAEs, the two networks in AEs
do not model a probability distribution. Since the KL diver-
gence in VAE acts as a regularization term, we employed the
stable weight-decay Adam optimizer from [43] with default
parameters to make the comparison more fair. We denote the
model by AE-b. Analogously to VAE, the original AE loss was
augmented with the action loss (4) weighted by the parameter
γ, which we denote by AE-L1. Note that L1 refers only to
the metric in (4) and not in the MSE calculation.

We modelled the AE encoder and decoder networks using
the same ResNet [42] architecture as in case of VAEs. We set
ld = 12, γ = 1000 and increased the minimum distance dm
dynamically every fifth epoch starting from 0 using ∆dm = 1,
as described in Sec. V. The LSR was built using the same
τmin = 0 and τmax = 3 (Algorithm 2).

Table II shows the LSR performance using partial scoring
on all simulated tasks when MM was modelled as an AE
(top two rows) and as a VAE (bottom row). Not only we
observed a superior performance of VAE compared to the AE
but once again the effectiveness of the action term (4) on all
the tasks as it increased the average AE performance from
0.1% to 36.3% for ns, from 0.1% to 33.6% for hs, and 0.1%
to 9.8% for rb. This comparison shows that the probabilistic
modeling adopted by VAEs resulted in a latent space that is
more adequate for visual action planning with respect to the
considered AEs. As future work, we aim to investigate the
benefits of more advanced models, such as Vector Quantised-

VAE [44], which are out of the scope of this work.

Model ns [%] hs [%] rb [%]
AE-b+LSR-L1 0.1± 0.0 0.0± 0.0 0.1± 0.1

AE-L1+LSR-L1 36.3± 26.9 33.6± 10.3 9.8± 5.4
VAE-L1+LSR-L1 100.0 ± 0 92.1 ± 2.9 90.4 ± 2.9

Table II: Comparison of the LSR performance using partial scoring
when modelling MM with an AE (top two rows) and a VAE (bottom
row) framework on all the simulated tasks. Best results in bold.

C. LSR Analysis
In this section, we analyze the LSR performance by an-

swering the questions stated in point 2) of Sec. IX-A. Firstly,
we compared the LSR performance to the method in [8] and
one inspired by [9]. Secondly, we investigated the influence
of the action term (4) on the LSR performance. Thirdly, we
investigated the influence of the upper bound on the number of
connected components cmax used in (8). Next, we performed
an extensive comparison of the LSR algorithm using different
clustering algorithms in Phase 2 of Algorithm 1. Finally, we
analyzed the covered regions determined by the LSR.

1) LSR comparison: We compared the performance of
the LSR on all simulated tasks with two benchmark methods
introduced below. In all the experiments, we considered the
baseline models VAE12-b and the action VAE12-L1 trained
with the action term (4). We compared our method with
Semi-Parametric Topological Memory (SPTM) framework [8]
discussed in Sec. II and an MPC-based approach inspired
by [9].

In SPTM, we connected action pairs (treated as one-step
trajectories) and no-action pairs (considered temporarily
close) in the latent memory graph. As in [8], we added
Nsc more shortcut edges connecting the encodings that are
considered closest by the retrieval network to the memory
graph. In the localization step, we used the median of
k = 5 nearest neighbours of the nodes in the memory
graph as recommended in [8]. To select the waypoint, we
performed a grid search over sreach ∈ {0.75, 0.9, 0.95} and
chose sreach = 0.95. We also performed a grid search over
Nsc ∈ {0, 2 · 102, 1 · 104, 1 · 105, 1 · 106, 1.5 · 106, 2 · 106} and
used the values Nsc = 1.0 · 106, 1.5 · 106, 2.0 · 106 for ns,
hs and rb, respectively. We used high number of shortcuts
compared to Nsc = 2 · 102 in [8] because we only had
access to one-step trajectories instead of full roll-outs.
Using low number of shortcuts resulted in a memory graph
consisting of large amount of disconnected components
which impeded planning. For example, in hard stacking task
using Nsc = 2 · 102 yielded a graph with 2243 connected
components which led to almost zero correct transitions over
the 1000 test paths. A higher number of shortcuts instead
improved the connectivity of the graph and thus its planning
capabilities.

The MPC-inspired baseline is composed of a learned tran-
sition model ft(·) and a learned action validation model fa(·),
both taking the current latent state z1 and the applied action
u as inputs. The transition model then predicts the next state
z2 = ft(z1, u), while the validation model fa(z1, u) predicts
whether the given action u was allowed or not.

13

These models are used in a MPC-style approach, where
first a search tree is constructed for a given start state z1 by
iterating over all allowed action using fa(z1, u) with u ∈ U
and predicting the consecutive states with the transition model
ft(·). The search is performed at each time step and until the
search tree has reached a specified horizon N . Lastly, the path
in the built tree leading to the state closest to the goal using
L1 distance is selected and the first action in the sequence is
applied. This procedure is repeated until all proposed actions
lead further from the goal. In our case, the resulting state
and action sequence is decoded into a visual action plan and
evaluated in the same way as the LSR.

We implemented ft and fa as a three layer MLP-regressor
and MLP-classifier, respectively, with 100 hidden units. For a
fair comparison, we trained ft and fa using training encodings
Tz from the same MM that was used for building the LSR.
As Tz only includes allowed actions, we augmented the
training data for fa(·) with an equal amount of negative
examples by randomly sampling u ∈ U . We used horizon
N = 4. The trained ft models achieved R2 coefficient of
determination [45] of 0.96, 0.96, and 0.88 (highest 1) for
the normal, hard stacking and rope-box datasets, respectively.
The fa(·) model was evaluated on 1000 novel states and by
applying all possible actions on each state. It achieved an
accuracy score of 88.5±1.8, 97.3±0.2, and 87.4±0.8 for the
normal, hard stacking and rope-box datasets, respectively. Note
that the normal and hard stacking tasks has exactly 48 unique
actions with ≈ 9.4% of them being allowed on average. The
rope-box task on the other hand has 25 unique actions with
an average of ≈ 17.1% being allowed per state.

Table III shows the result of our method (VAE-L1 + LSR-
L1), the SPTM framework and the MPC-based approach
(VAE-L1 + MPC) evaluated on the full scoring on the normal
box stacking (top), hard box stacking (middle), and rope-box
manipulation task (bottom). We observed that the proposed
approach (VAE-L1 + LSR-L1) significantly outperformed the
considered benchmark methods. This can be explained by the
fact that SPTM- and MPC-based methods are more suited for
tasks where the provided data consists of rolled out trajectories
in which small state changes are recorded in consecutive states,
which is also a potential shortcoming of [26].

In contrast, as discussed in Sec. VIII, our method is best
applicable when actions lead to distinguishable different obser-
vations. This allows to consider only pairs of observations as
input dataset instead of requiring entire trajectories. Moreover,
a core difference between our approach and SPTM is that
we do not assume that each observation maps into a unique
underlying state, but rather, as described in Sec. IV, we struc-
ture and cluster observations in such a way that observations
associated with the same underlying state are grouped together.
We reiterate that this approach is best suited for tasks with
finite and distinguishable states, which differ from continuous
RL setting used by SPTM.

2) Influence of the action term: We investigated how
the LSR performance is affected by the action term (4) by
comparing it to the variant where MM was trained without it
(VAE-b + LSR-L1). The results on the full scoring for all the
tasks are shown in Table III. We observed deteriorated LSR

performance when using baselines VAE12-b compared to the
action VAEs regardless the task. This indicates that VAEs-b
were not able to separate states in Zsys. We again conclude
that the action term (4) needs to be included in the VAE loss
function (6) in order to obtain distinct covered regions Zisys.
In addition, the results underpin the different level of difficulty
of the tasks as indicated by the drop in the LSR performance
on hs and rb compared to ns using the action VAE-L1.

In summary, this simulation campaign demonstrates the
effectiveness of the LSR on all the considered simulated tasks
involving both rigid and deformable objects compared to
existing solutions, as well as supports the integration of the
action term in the VAE loss function.

Task Model % All % Any % Trans.

ns

VAE-L1 + MPC 2.3± 0.3 2.3± 0.3 69.3± 1.0
SPTM [8] 0.2± 0.1 0.5± 0.3 51.9± 1.4

VAE-b+ LSR-L1 2.5± 0.5 4.1± 1.0 59.7± 4.9
VAE-L1+ LSR-L1 100.0 ± 0 100.0 ± 0 100.0 ± 0

hs

VAE-L1 + MPC 2.1± 0.4 2.1± 0.4 76.8± 0.3
SPTM [8] 0.0± 0.0 0.0± 0.0 23.6± 0.7

VAE-b+ LSR-L1 0.2± 0.1 0.2± 0.1 38.0± 2.0
VAE-L1+ LSR-L1 90.9 ± 3.5 92.1 ± 2.9 95.8 ± 1.3

rb

VAE-L1 + MPC 6.2± 0.5 6.2± 0.5 73.8± 0.8
SPTM [8] 0.0± 0.0 0.4± 0.3 25.2± 9.7

VAE-b+ LSR-L1 0.2± 0.1 0.2± 0.1 0.2± 0.1
VAE-L1+ LSR-L1 89.7 ± 3.7 90.4 ± 2.9 96.2 ± 1.5

Table III: Planning performance using full scoring for the normal
(top) and hard (middle) box stacking tasks and rope-box manipulation
task (bottom) using MPC and SPTM [8] methods, baseline VAE-b
and action VAE-L1. Best results in bold.

3) Influence of the maximum number of connected
components: The optimization method described in Sec. VI-B
requires setting an upper bound on the number of graph-
connected components cmax of the LSR. Table IV shows
how different choices of upper bounds influence the LSR
performance on all simulated tasks.

cmax ns [%] hs [%] rb [%]
1 100.0 ± 0.0 65.3± 24.6 4.5± 5.6
5 99.5± 0.4 88.6± 5.4 55.8± 28.8
10 99.0± 0.3 91.5± 3.8 80.4± 10.6
20 97.5± 0.5 92.1 ± 2.9 90.4 ± 2.9
50 91.3± 1.1 88.2± 2.0 89.4± 1.9
100 80.0± 1.4 77.9± 2.1 76.0± 2.8

Table IV: LSR performance on all simulated tasks for different cmax
values. Best results in bold.

We observed that the results are rather robust with respect
to the cmax value. For all tasks, the performance dropped for
a very high cmax, such as cmax = 100, while in the hard
stacking task and especially in the rope-box manipulation task,
we additionally observed a drop for a very low cmax, such as
cmax = 1. This behavior can be explained by the fact that the
lower the cmax the more the system is sensitive to outliers,
while the higher the cmax the greater the possibility that
the graph is disconnected which potentially compromises its
planning capabilities. For example, in the hard stacking task,
outliers arise from different lightning conditions, while in the
rope-box manipulation task they arise from the deformability

14

of the rope. In contrast, no outliers exist in the normal stacking
task which is why a single connected component is sufficient
for the LSR to perform perfectly. For all further evaluation,
we set cmax = 1 for ns and cmax = 20 for hs and rb.

This result demonstrates the robustness of the approach with
respect to cmax as well as justifies the choices of the cmax
values in the rest of simulations.

4) Comparing different clustering methods for Phase 2:
We showcase the effect of the outer optimization loop de-
scribed in Algorithm 2 on several different clustering methods
used in Phase 2 in Algorithm 1 on the hard stacking task. We
considered Epsilon clustering used in our earlier work [7],
Mean-shift [46], OPTICS [47], Linkage (single, complete and
average) [48] and HDBSCAN [49] algorithms. We provide a
summary of the considered algorithms in Appendix-B. The
performance of the considered clustering methods (except for
HDBSCAN) depends on a single input scalar parameter that
is hard to tune. However, as described in Sec. VI-B, we are
able to optimize it by maximizing the objective in (8).

Table V reports the LSR performance with different cluster-
ing algorithms when performing grid search to determine their
input scalar parameters (left) and when using our automatic
optimization (right). Partial scoring using VAE12 -hs-L1 is
shown. Note that the grid search was only possible in this
problem setting as the ground truth can be retrieved from the
trained classifiers but it is not generally applicable. Firstly,
the results show that average-linkage, used for our LSR
in Sec. VI-A, together with our automatic input parameter
optimization outperformed the other alternatives. The results
of the grid search show that the automatic criteria for iden-
tifying different cluster densities, adopted by OPTICS and
HBDSCAN, did not effectively retrieve the underlying covered
regions. Meanshift performed better but its approximation
of spherical clusters did not lead to the optimal solution.
Similar performance to Meanshift was obtained with single-
and complete-linkage algorithms showing that the respective
distance functions are not either suited for identifying covered
regions. The same applies for the epsilon clustering.

Concerning the optimization results, they highlight the
effectiveness of the optimization procedure in Algorithm 2
as they are comparable to the ones obtained with the grid
search for all clustering methods. Note that grid search led
to a slightly lower performance than the optimization for
meanshift, complete-linkage and average-linkage. In these
cases, the grid was not fine enough which points out the
difficulty of tuning the respective parameters.

This investigation demonstrates the effectiveness of our pro-
posed optimization loop and shows that the average-linkage
clustering algorithm led to the best LSR performance among
considered alternatives for the hard box stacking task.

5) Covered regions using LSR: To show that the LSR cap-
tures the structure of the system, we checked if observations
corresponding to true underlying states of the system, that
have not been seen during training, are properly recognized as
covered. Then, we checked if observations from the datasets of
the remaining simulated tasks as well as from the 3D Shapes
dataset [50] are marked as uncovered since they correspond

Clust. method Grid Search [%] Optimization [%]
Epsilon [7] 83.5± 4.8 65.8± 12.2
Meanshift 78.2± 3.3 80.2± 5.9
OPTICS 44.3± 8.7 40.8± 6.1
HDBSCAN 16.1± 5.7 -
Single-linkage 79.3± 8.8 65.8± 12.2
Complete-linkage 79.1± 6.4 81.4± 4.8
Average-linkage 91.1± 2.5 92.1 ± 2.9

Table V: Comparison of the LSR performance for different clustering
algorithms for the hard box stacking task. Partial scoring is reported
when applying grid search (left column) and when using the opti-
mization in Algorithm 2 (right column). Best results in bold.

to out-of-distribution observations. The covered regions Zisys
were computed using the epsilon approximation in (7).

Table VI reports the results of the classification of covered
states obtained by the models trained on normal (first row) and
hard (second row) box stacking tasks and rope-box manipula-
tion task (third row). Holdout datasets for each simulated task
were used. For the normal stacking task, results show that
the LSR almost perfectly recognized all the covered states
(ns column) with the average recognition equal to 99.5%,
while it properly recognized on average 4694/5000 samples
(93.9% - hs column) hard version. An almost perfect average
recognition was also obtained on the rope-box manipulation
task (99.6% - rb column). For out-of-distribution observations,
the lower the percentage the better the classification. Table VI
shows that the models trained on ns (first row, columns
hs, rb, 3D Shapes) and hs (second row, columns ns, rb,
3D Shapes) were able to perfectly identify all non-covered
states, while worse performance was observed for the rope-box
models which misclassified ≈ 10% of the uncovered datasets
(third row, columns ns, hs, 3D Shapes). This decrease in
performance could be explained by the fact that capturing the
state of a deformable object is much more challenging than
rigid objects.

We conclude that LSR provides a good approximation of
the global structure of the system as it correctly classified
most of the observations representing possible system states as
covered, and out-of-distribution observations as not covered.

ns [%] hs [%] rb [%] 3D Sh. [%]
ns 99.47± 0.27 0.0± 0.0 0.0± 0.0 0.0± 0.0
hs 0.0± 0.0 93.71± 0.61 0.0± 0.0 0.0± 0.0
rb 9.48± 7.45 13.5± 8.57 99.6± 0.1 9.72± 8.38

Table VI: Classification of covered states for the normal (first row)
and hard (second row) box stacking models and rope-box models
(third row) when using as inputs novel images from the tasks (ns,
hs and rb columns) and the 3D Shapes (3D Sh. column) datasets.

D. APM Analysis

We evaluated the accuracy of action predictions obtained by
APN-L1 on an unseen holdout set consisting of 1611, 1590
and 948 action pairs for the normal stacking, hard stacking and
rope-box manipulation tasks, respectively. As the predicted
actions can be binary classified as either true or false, we
calculated the percentage of the correct proposals for picking

15

and releasing, as well as the percentage of pairs where both
pick and release proposals were correct. For rope-box task, we
additionally calculated the percentage of the correct proposal
for either rope or box action. We evaluated all the models
on 5 different random seeds. For both stacking versions, all
the models performed with accuracy 99% or higher, while
rope-box models achieved ≈ 96%. This is because the box
stacking task results in an 18-class classification problem for
action prediction which is simple enough to be learned from
any of the VAEs, while the classification task in the rope-box is
slightly more challenging due to the required extra prediction
whether to move a rope or a box.

X. FOLDING EXPERIMENTS

In this section, we validate the proposed approach on a
real world experiment involving manipulation of deformable
objects, namely folding a T-shirt. As opposed to the simulated
tasks, the true underlying states were in this case unknown and
it was therefore not possible to define an automatic verification
of the correctness of a given visual action plan.

The folding task setup is depicted in Fig. 12 (middle).
We used a Baxter robot equipped with a Primesense RGB-
D camera mounted on its torso to fold a T-shirt in different
ways. The execution videos of all the performed experiments
and respective visual action plans can be found on the project
website. A summary of the experiments can also be found in
the accompanying video. For this task, we collected a dataset
TI containing 1283 training tuples. Each tuple consists of two
images of size 256× 256× 3, and action specific information
u defined as u = (p, r, h) where p = (pr, pc) are the picking
coordinates, r = (rr, rc) the releasing coordinates and h
picking height. An example of an action and a no-action pair
is shown in Fig. 4. The values pr, pc, rr, rc ∈ {0, . . . , 255}
correspond to image coordinates, while h ∈ {0, 1} is either
the height of the table or a value measured from the RGB-
D camera to pick up only the top layer of the shirt. Note
that the separation of stacked clothing layers is a challenging
task and active research area on its own [51] and leads to
decreased performance when it is necessary to perform it, as
shown in Sec. X-E2. The dataset TI was collected by providing
task demonstrations by human operators, i.e., by manually
selecting pick and release points on images showing a given T-
shirt configuration, and recording the corresponding action and
following configuration. No-action pairs, representing ≈ 37%
of training tuples in TI , were generated by slightly perturbing
the cloth appearance.

A. Experiment Objectives and Implementation Details

The experiments on the real robot were designed to answer
the following questions:

1) MM Does the action loss term (4) improve the structure
of the latent space for the folding task?

2) LSR How good is the approximation of the covered
regions provided by the LSR for a real world dataset?

3) APM How does the APN perform in comparison to
alternative implementations of the APM?

4) System How does the real system perform and how
does it compare to our earlier work [7]? What is the
performance on a folding that involves picking the top
layer of the shirt?

Following the notations introduced in Sec. IX-A, we denote
by VAEld -f -d a VAE with ld-dimensional latent space, where
f stands for the folding task and d indicates whether or not
the model was trained with the action loss (4). We use d = b
for the baseline VAEs which were trained with the original
training objective (5). We use d = Lp for the action VAEs
trained with the objective (6) containing the action term (4)
using metric Lp for p ∈ {1, 2,∞}. We modelled VAEs with
the same ResNet architecture and same hyperparameters β, γ
and dm as in the box stacking task introduced in Sec. IX but
increased the latent space dimension to ld = 16. We refer the
reader to the code repository2 for implementation details.

For the LSR, we denote by LSR -Lp a graph obtained by
using metric Lp in Algorithm 1. We set the upper bound cmax

in (8) to 5, and the search interval boundaries τmin and τmax

in Algorithm 2 to 0 and 3.5, respectively.
The performance of the APMs and the evaluation of the

system was based on the VAE16 -f -L1 realization of the MM.
We therefore performed the experiments using APN16 -f -L1

which was trained on latent action pairs Tz extracted by the
latent mapping ξ of VAE16 -f -L1. We trained 5 models for
500 epochs using different random seeds as in case of VAEs,
and used 15% of the training dataset as a validation split to
extract the best performing model for the evaluation.

We compared the performance of our system S-OUR con-
sisting of VAE16 -f -L1, LSR -L1 and APN16 -f -L1 with the
systems S-L1, S-L2 and S-L∞ introduced in [7], using metrics
L1, L2 and L∞, respectively, on the same folding tasks. The
major novelties of S-OUR with respect to the systems in [7]
are reported in Sec. I. The start configuration was the fully
unfolded shirt shown in Fig. 10 on the left, while the 5
goal configurations are shown on the right. The latter are of
increasing complexity requiring a minimum of 2, 2, 3, 3, and
4 folding steps for folds 1-5, respectively.

Fig. 10: Start state (right) followed by 5 different goal configurations
for the folding task [7]. The lower right configuration requires to pick
a layer on top of the T-shirt.

Each fold was repeated 5 times and scored in the same
way as in [7]. In particular, we scored the system performance
where a folding was considered successful if the system was
able to fold the T-shirt into the desired goal configuration.

16

As the state space of the T-shirt is high-dimensional, there
exists no objective measure that would evaluate the success
of the fold automatically. Therefore, the evaluation of the full
folding procedure was manually done by a human (one of the
authors) but all execution videos of all folds and repetitions can
be found on the project website. We additionally evaluated the
percentage of successful transitions of the system. A transition
was considered successful if the respective folding step was
executed correctly. Lastly, we evaluated the quality of the
generated visual plans PI and the generated action plans Pu.
We considered a visual (action) plan successful if all the
intermediate states (actions) were correct. Even for a correctly
generated visual action plan, the open loop execution is not
robust enough for a real robot system. We therefore added
a re-planning step after each action completion as shown in
Fig. 12. This accounts, as instance, for potential execution
uncertainties, inaccuracies in grasping or in the positioning
phases of pick-and-place operations which led to observations
different from the ones planned in PI . Note that after each
action execution, the current observation of the cloth was
considered as a new start observation, and a new visual action
plan was produced until the goal observation is reached or
the task is terminated. Such re-planning setup was used for
all folding experiments. As the goal configuration does not
allude to how the sleeves should be folded, the LSR suggests
multiple latent plans. A subset of the corresponding visual
action plans is shown on the left of Fig. 12. If multiple plans
were generated, a human operator selected one to execute.
After the first execution, the ambiguity arising from the sleeve
folding was removed and the re-planning generated a single
plan, shown in the right.

To deal with the sparse nature of the collected dataset, if no
path was found from the start to the goal node, the planning
was repeated using the closest nodes to the current start and/or
goal nodes in the latent space. This procedure was repeated
until a path was found.

B. MM Analysis

We answered question 1) by evaluating the separation of
action and no-action pairs during the training.

1) Influence of dynamic dm: We investigated the influ-
ence of the dynamic increase of dm in the action term (4)
on the structure of the latent space. Figure 11 shows the
histogram of action (in blue) and no-action (in green) pair
distances calculated at different epochs during training using
VAE16 -f -b (top row) and VAE16 -f -L1 (bottom row). The
figure shows that the separation was complete in case of
action VAEs but was not achieved with the baseline VAEs.
To precisely quantify the amount of overlap between action
and no-action pairs, we calculated the difference between
the minimum action-pair distance and maximum no-action
pair distance on the training dataset, that is reported in the
following. A positive difference value implies that action
pairs were successfully separated from the no-action pairs.
For VAE16 -f -b (top row), the difference evaluated to −31.8,
−19.2, and −19.4 for epoch 1, 100, and 500, respectively,
while it was improved to −6.3, −1.6, and 1.5 in case of

the action VAE16 -f -L1 (bottom row). This shows that the
dynamic selection of dm successfully separated the actions
and no-action pairs also for the folding task.

Fig. 11: Histograms of action (in blue) and no-action (in green) pair
distances at different training epochs (1, 100 and 500 from the left,
respectively) for the folding task. Results obtained with baseline (top,
a)) and action (bottom, b)) models are shown.

C. LSR Analysis

Similarly to the simulated tasks, we exploited the LSR
to investigate the covered regions of the latent space Z ,
thus answering question 2) listed in Sec. X-A. Note that in
Sec. X-E, the LSR was also employed to perform the folding
task with the real robotic system.

1) Covered regions using LSR: We used VAE16 -f -L1

model and reproduced the experiment from Sec. IX-C5, where
we measured the accuracy of various novel observations being
recognized as covered. We inputted 224 novel observations
that correspond to possible states of the system not used
during training, as well as 5000 out-of-distribution samples
from each of the three datasets of the simulated tasks and
the standard 3D Shapes dataset. We observed that the LSR
achieved good recognition performance even in the folding
task. More precisely, on average 213/224 samples representing
true states of the system were correctly recognized as covered,
resulting in 95± 2.4% accuracy averaged over the 5 different
random seeds. For the four out-of-distribution datasets, all
samples were correctly recognized as not covered.

This analysis illustrates the effectiveness of the LSR in
capturing the covered regions of the latent space.

D. APM Comparison

In this section we validate the choice of the APM by
comparing it to several possible alternatives.

The Action Proposal Network, described in Sec. VII, was
built upon the one introduced in [7] to which we added dropout
regularization layers. The APN receives as inputs latent action
pairs contained in a latent plan found by the LSR, and outputs
the predicted action specifics. We refer to the earlier version
in [7] as e-APN and to the current version APN16 -f -L1 as
APN. We compared the performance of APN to e-APN as well
as several alternatives introduced below.
Action Averaging Baseline (AAB) Firstly, we investigated
whether the action predictions can be retrieved directly from

17

Method X Pick Y Pick X Release Y Release Height Total
e-APN [7] 144.1± 52.2 52.8± 18.3 317.2± 143.3 159.9± 17.4 0.0 ± 0.0 674.0± 147.6

C-APN 498.0± 63.8 47.4± 7.7 818.8± 121.9 226.5± 92.5 0.0 ± 0.0 1590.8± 155.0
R-APN 697.2± 345.1 246.2± 174.9 792.4± 388.8 268.9± 157.0 0.0 ± 0.0 2004.6± 908.2
AAB 113.0 22.4 201.4 194.7 0.0 531.5

APN (Ours) 82.6 ± 22.9 29.3± 2.2 270.6± 158.2 71.8 ± 15.0 0.0 ± 0.0 454.3 ± 153.8

Table VII: Comparison of MSE achieved with different realizations of the Action Proposal Modules. Best results in bold.

Fig. 12: Execution of the folding task with re-planning. On the left, a set of initial visual action plans reaching the goal state is proposed.
After the first execution, only one viable visual action plan remains.

the LSR instead of a separate module. The basic idea is to use
the latent action pairs in the training dataset to calculate the
average action specifics associated with each edge in the LSR.
Let E ijsys = {(z1, z2) ∈ E|z1 ∈ Zisys, z2 ∈ Zjsys} be the set of
edges from the reference graph E connecting covered regions
Zisys and Zjsys (Algorithm 1). We parameterized each edge
eijLSR = (ziLSR, z

j
LSR) ∈ ELSR with the action uijLSR obtained

by averaging actions corresponding to the edges in E ijsys

uijLSR =
1

|E ijsys|

∑
(z1,z2)∈Eijsys

uz1z2 (10)

where uz1z2 is the action specification associated with the
action pair (z1, z2) in the training dataset Tz . The parametriza-
tion (10) yields the action plan associated with a path Pz .

Secondly, we investigated how the use of the latent encod-
ings as inputs to the APM influences the LSR performance.
We compared APN-d with two distinct versions of APMs that
use images as inputs.
C-APN is a neural network that uses a convolutional encoder
followed by the APN. The encoder in C-APN was trained
using only MSE loss. During the inference, the observations
given to C-APN as input are obtained by decoding the latent
plan found by the LSR with the observation generator ω.
R-APN is an extension of C-APN that uses a ResNet encoder
identical to the VAE encoder.

Detailed architectures of all the models can be found in
our code repository. The training details for APN and APN-d
are described in Sec. X-A. For C-APN-d and R-APN-d, we
similarly trained 5 models using different random seeds but
on a training dataset TI obtained by decoding Tz with the
observation generator ω of VAE16 -f -L1. This is because the
visual plans, given to C-APN-d and R-APN-d, are produced by
decoding the latent plans with ω. Moreover, C-APN-d and R-
APN-d were trained for 1000 epochs to ensure the convergence
of the initialized encoders. Note that we can only obtain one
AAB model for a chosen VAE as AAB is defined by the LSR.

We evaluated the performance of all the models on a holdout

dataset consisting of 41 action pairs. Given a holdout action
pair, we calculated the mean squared error (MSE) between the
predicted and the ground truth action specifics. We report the
mean and standard deviation of the obtained MSE calculated
across the 5 random seeds (except for AAB). The results
are shown in Table VII where we separately report the error
obtained on picking and releasing as well as the total model
error. Firstly, we observed that the added regularization layer
positively affected the result as APN achieved lower error than
our earlier version e-APN [7]. Secondly, APN significantly
outperformed both C-APN and R-APN. Using the latent
encodings as inputs also significantly decreased the size of
the models and reduces the computational power needed for
their training. Lastly, our APN also on average outperformed
AAB with respect to the total model error. Although the
enhancement compared to the AAB was not as significant
as for the other models, APN is beneficial since it is less
prone to averaging errors obtained from the LSR and can be
easily adapted to any realization of action specifics. Moreover,
a neural network realization of the APM potentially allows
more accurate modeling of more complex action specifics. In
summary, using a separate neural network to predict action
specifics from latent representations led to a lower prediction
error and can be easily adapted to different types of actions.

E. System Analysis

We benchmarked our method against our earlier method
in [7] on the same T-shirt folding task, and additionally mea-
sured the performance on a more challenging fold involving
picking a layer of the cloth on top of another layer.

1) Folding performance and comparison with [7]: We
performed each fold 5 times per configuration using the unseen
goal observations shown in Fig. 10 and framework S-OUR,
consisting of VAE16 -f -L1, LSR -L1 and APN16 -f -L1, and
compared the performance with the results from our earlier
work [7] obtained using S-L1, S-L2 and S-L∞.

18

Method Syst. Trans. PI Pu
Fold 1 to 5 - comparison to [7]

S-OUR 96% 99% 100% 100%
S-L1 [7] 80% 90% 100% 100%
S-L2 [7] 40% 77% 60% 60%
S-L∞ [7] 24% 44% 56% 36%

Fold layer
S-OUR 50% 83% 100% 100%

Table VIII: Results (best in bold) for executing visual action plans on
5 folding tasks (each repeated 5 times) shown in the top. The bottom
row shows the results on the fold requiring to pick the top layer of
the garment (repeated 10 times).

The results are shown in Table VIII, while, as previously
mentioned, all execution videos, including the respective vi-
sual action plans, are available on the website1. We report
the total system success rate with re-planning, the percentage
of correct single transitions, and the percentage of successful
visual plans and action plans from start to goal. We observed
that S-OUR outperformed the systems from [7] with a notable
96% system performance, only missing a single folding step
which results in a transition performance of 99%. As for S-
L1, S-OUR also achieved optimal performance when scoring
the initial visual plans PI and the initial action plans Pu. We
thus conclude that the improved MM, LSR and APM modules
together contribute to a significant better system than in [7].

2) Folding with multiple layers: As the previous folds
resulted in nearly perfect performance of our system, we
challenged it with an additional much harder fold that requires
to pick the top layer of the garment. The fold, shown in
Fig. 10 bottom right, was repeated 10 times. An example of
the obtained visual action plan is shown in Fig. 13 and the
final results are reported in Table VIII (bottom row).

Fig. 13: Visual action plan for the fold requiring to pick the top
layer of the garment. The step where the top layer is to be picked is
indicated in purple (see accompanying video for further details).

Experiments showed that the system had no trouble plan-
ning the folding steps from the initial configuration and was
able to properly plan layer folds (with pick location marked
in purple). Concerning the execution of the plan, the robot
managed to correctly fold in 80% of the cases, excluding
the last fold, using the re-planning strategy. However, failure
cases often occurred during the execution of the last layer
fold, resulting in the robot picking up multiple layers at the
same time. When this happened, the T-shirt deformed into
unseen states that were very dissimilar from the ones in TI and
that rendered the re-planning step inefficient. A more precise
manipulation system, either using a specialized gripper or
custom methods for separating cloth layers, could potentially
boost the performance of our system on this specific folding
task. We leave these improvements for future work.

XI. CONCLUSIONS

In this work, we presented an extended version of the Latent
Space Roadmap first introduced in [7] which allows visual
action planning of manipulation tasks. Firstly, we improved
the building procedure of the LSR in the latent space by
introducing an outer optimization loop that eliminates the
need for a hard-to-tune clustering parameter. Secondly, we
improved the training procedure of the VAE, used to represent
the Mapping Module, by dynamically increasing the desired
distance between action pairs. We thoroughly investigated the
structure of the latent space, and presented a deep insight
into the effects that each of the improvements have for the
system. In addition, we compared different realizations of the
Action Proposal Module and showcased the benefits of using
latent representations for generating action plans. Lastly, we
evaluated the LSR on three simulated tasks as well as real-
world folding task. We introduced a harder version of the box
stacking task and a rope-box manipulation task involving a
rigid and deformable object, which enabled a more informative
ablation study. We showed that the improved LSR significantly
outperforms the one presented in [7] on the same folding task.

We are convinced that in order to advance state-of-the-art
manipulation techniques for rigid and deformable objects, im-
provements on two fronts are necessary: learning a structured
latent space as well as its exploration. We believe that our
proposed method is a step toward achieving this goal which
also opens many interesting future directions. For example, we
wish to expand our method to encode full trajectories to further
structure the latent space, or to apply it to reinforcement
learning settings with active exploration.

Martina Lippi received the M.Sc. (cum laude)
and Ph.D. degrees in Information Engineering from
the University of Salerno, Italy, in 2017 and 2020,
respectively. She has been a Visiting Scholar with
the KTH Royal Institute of Technology, Sweden, in
2019. She was a Postdoctoral researcher at Roma Tre
University, Italy from November 2020 to June 2022.
Since June 2022, she is Assistant Professor at Roma
Tre University, Italy. Her research interests include
human–robot interaction, multimanipulator systems,
and distributed control.

Petra Poklukar is a machine learning researcher
focusing on representation learning and deep gen-
erative models. She received her Master’s degree in
theoretical mathematics from University of Ljubl-
jana in 2016, and her PhD degree from KTH Royal
Institute of Technology in 2022, supervised by Dan-
ica Kragic.

19

Michael C. Welle is a Postdoctoral Researcher
at KTH Royal Institute of Technology EECS/RPL
focusing on representation learning for deformable
object manipulation since January 2022. He obtained
his MSc in Systems, Control and Robotics at KTH
in January 2018. His subsequent Ph.D. research was
performed under the supervision of Danica Kragic at
KTH. The title of his thesis is ”Learning Structured
Representations for Rigid and Deformable Object
Manipulation” published in December 2021.

Anastasia Varava obtained her PhD in Computer
Science from KTH, Sweden in 2019. Her main
research interests lie in designing and evaluating effi-
cient representations for various applications, includ-
ing robotics, molecular science, and social network
analysis. She is particularly interested in applying
tools and methods from computational geometry and
topology to create mathematically rigorous represen-
tations and study their properties.

Hang Yin is a postdoctoral researcher with the
Division of Robotics, Perception and Learning, KTH
Royal Institute of Technology. He received Bachelor
degrees in Mechanical Engineering and Computer
Engineering (2007), Master in Mechatronics (2010),
both at Shanghai Jiao Tong University, and his PhD
degree from Swiss Federal Institute of Technology
Lausanne (EPFL) and IST, University of Lisbon
(2018). His research interests include modeling, rep-
resenting, learning and control robot motion and
application in human-robot interaction tasks.

Alessandro Marino received the M. Sc. degree cum
laude in Computer Science Engineering from the
University of Naples Federico II, Italy, in 2006, and
the Ph.D. degree in automation and robotics from the
University of Basilicata, Italy, in 2010. Since 2018,
he is an Associate Professor with the University of
Cassino and Southern Lazio. His research interests
include modeling and control of robotic systems,
multi-robot systems, human-robot-interaction, dis-
tributed control.

Danica Kragic is a Professor at the School of Elec-
trical Engineering and Computer Science at KTH
in Stockholm. She received MSc in Mechanical
Engineering from the Technical University of Rijeka,
Croatia in 1995 and PhD in Computer Science
from KTH in 2001. Danica received the 2007 IEEE
Robotics and Automation Society Early Academic
Career Award. She is a member of the Swedish
Royal Academy of Sciences and Swedish Academy
of Engineering Sciences. Her research spans over
areas of robotics, machine learning and computer

vision.

REFERENCES

[1] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-conditional
video prediction using deep networks in atari games,” in Adv. Neural
Inf. Process. Syst., pp. 2863–2871, 2015.

[2] I. Garcia-Camacho, M. Lippi, M. C. Welle, H. Yin, R. Antonova,
A. Varava, J. Borras, C. Torras, A. Marino, G. Alenyà, and D. Kragic,
“Benchmarking bimanual cloth manipulation,” IEEE Robot. Autom.
Lett., vol. 5, no. 2, pp. 1111–1118, 2020.

[3] H. Yin, A. Varava, and D. Kragic, “Modeling, learning, perception, and
control methods for deformable object manipulation,” Science Robot.,
vol. 6, no. 54, 2021.

[4] D. H. Ballard, “Modular learning in neural networks.,” in AAAI, pp. 279–
284, 1987.

[5] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” Int.
Conf. Learn. Represent., 2015.

[6] D. Müllner, “Modern hierarchical, agglomerative clustering algorithms,”
arXiv preprint arXiv:1109.2378, 2011.

[7] M. Lippi, P. Poklukar, M. C. Welle, A. Varava, H. Yin, A. Marino,
and D. Kragic, “Latent space roadmap for visual action planning of
deformable and rigid object manipulation,” in IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, pp. 5619–5626, 2020.

[8] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topological
memory for navigation,” in Int. Conf. Learn. Represent., 2018.

[9] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,” in
Int. Conf. Mach. Learn., pp. 2555–2565, 2019.

[10] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in IEEE Int. Conf. Robot. Autom., pp. 2786–2793, 2017.

[11] B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search on the replay
buffer: Bridging planning and reinforcement learning,” in Adv. Neural
Inf. Process. Syst., pp. 15246–15257, 2019.

[12] A. Wang, T. Kurutach, P. Abbeel, and A. Tamar, “Learning robotic
manipulation through visual planning and acting,” in Robotics: Science
and Systems, 2019.

[13] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine,
“Combining self-supervised learning and imitation for vision-based rope
manipulation,” in IEEE Int. Conf. Robot. Autom., pp. 2146–2153, 2017.

[14] R. Hoque, D. Seita, A. Balakrishna, A. Ganapathi, A. Tanwani, N. Ja-
mali, K. Yamane, S. Iba, and K. Goldberg, “VisuoSpatial Foresight for
Multi-Step, Multi-Task Fabric Manipulation,” in Robotics: Science and
Systems (RSS), 2020.

[15] D. Seita, A. Ganapathi, R. Hoque, M. Hwang, E. Cen, A. K. Tanwani,
A. Balakrishna, B. Thananjeyan, J. Ichnowski, N. Jamali, et al., “Deep
imitation learning of sequential fabric smoothing from an algorithmic
supervisor,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 9651–9658, IEEE, 2020.

[16] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement
learning for deformable object manipulation,” in Conf. Robot Learn.,
pp. 734–743, PMLR, 2018.

[17] B. Jia, Z. Pan, Z. Hu, J. Pan, and D. Manocha, “Cloth manipulation
using random-forest-based imitation learning,” IEEE Robot. Autom.
Lett., vol. 4, no. 2, pp. 2086–2093, 2019.

[18] M. Watter, J. Springenberg, J. Boedecker, and M. Riedmiller, “Embed
to control: A locally linear latent dynamics model for control from raw
images,” in Adv. Neural Inf. Process. Syst., vol. 28, 2015.

[19] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and
P. Sermanet, “Learning latent plans from play,” in Conf. Robot Learn.,
pp. 1113–1132, PMLR, 2020.

[20] K. Pertsch, O. Rybkin, F. Ebert, C. Finn, D. Jayaraman, and S. Levine,
“Long-horizon visual planning with goal-conditioned hierarchical pre-
dictors,” in Adv. Neural Inf. Process. Syst., 2020.

[21] B. Ichter and M. Pavone, “Robot Motion Planning in Learned Latent
Spaces,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2407–2414, 2019.

[22] B. Ichter, P. Sermanet, and C. Lynch, “Broadly-exploring, local-policy
trees for long-horizon task planning,” in CoRL, 2021.

[23] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal
planning networks,” in Int. Conf. Mach. Learn., 2018.

[24] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion planning
networks: Bridging the gap between learning-based and classical motion
planners,” IEEE Trans. Robot., pp. 1–19, 2020.

[25] T. Kipf, E. van der Pol, and M. Welling, “Contrastive learning of
structured world models,” in Int. Conf. Learn. Represent., 2020.

[26] K. Liu, T. Kurutach, C. Tung, P. Abbeel, and A. Tamar, “Hallucinative
topological memory for zero-shot visual planning,” in Int. Conf. Mach.
Learn., pp. 6259–6270, PMLR, 2020.

20

[27] S. Emmons, A. Jain, M. Laskin, T. Kurutach, P. Abbeel, and D. Pathak,
“Sparse graphical memory for robust planning,” in Adv. Neural Inf.
Process. Syst., 2020.

[28] W. Yan, A. Vangipuram, P. Abbeel, and L. Pinto, “Learning predictive
representations for deformable objects using contrastive estimation,”
Conf. Robot Learn., 2020.

[29] P. Zhou, J. Zhu, S. Huo, and D. Navarro-Alarcon, “Lasesom: A latent
and semantic representation framework for soft object manipulation,”
IEEE Robot. Autom. Lett., vol. 6, no. 3, pp. 5381–5388, 2021.

[30] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by
learning an invariant mapping,” in IEEE Computer Society Conf. Com-
puter Vision and Pattern Recognition, vol. 2, pp. 1735–1742, 2006.

[31] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropaga-
tion and approximate inference in deep generative models,” in Int. Conf.
Mach. Learn., pp. 1278–1286, 2014.

[32] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “β-vae: Learning basic visual concepts
with a constrained variational framework,” Int. Conf. Learn. Represent.,
2017.

[33] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins,
and A. Lerchner, “Understanding disentangling in β-vae,” arXiv preprint
arXiv:1804.03599, 2018.

[34] R. R. Sokal, “A statistical method for evaluating systematic relation-
ships.,” Univ. Kansas, Sci. Bull., vol. 38, pp. 1409–1438, 1958.

[35] M. E. Celebi, Partitional clustering algorithms. Springer, 2014.
[36] P. Langfelder, B. Zhang, and S. Horvath, “Defining clusters from a hier-

archical cluster tree: the dynamic tree cut package for r,” Bioinformatics,
vol. 24, no. 5, pp. 719–720, 2008.

[37] D. Bruzzese and D. Vistocco, “Despota: Dendrogram slicing through a
pemutation test approach,” J. Classif., vol. 32, no. 2, pp. 285–304, 2015.

[38] A. Pasini, E. Baralis, P. Garza, D. Floriello, M. Idiomi, A. Ortenzi,
and S. Ricci, “Adaptive hierarchical clustering for petrographic image
analysis.,” in EDBT/ICDT Workshops, 2019.

[39] R. P. Brent, “An algorithm with guaranteed convergence for finding a
zero of a function,” Computer J., vol. 14, no. 4, pp. 422–425, 1971.

[40] G. Maeda, M. Ewerton, T. Osa, B. Busch, and J. Peters, “Active
incremental learning of robot movement primitives,” in Conf. Robot
Learn., pp. 37–46, 2017.

[41] Unity Technologies, “Unity.”
[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in IEEE Conf. Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

[43] Z. Xie, I. Sato, and M. Sugiyama, “Stable weight decay regularization,”
arXiv preprint arXiv:2011.11152, 2020.

[44] A. van den Oord, O. Vinyals, et al., “Neural discrete representation
learning,” in Adv. Neural Inf. Process. Syst., pp. 6306–6315, 2017.

[45] R. Berk, “A primer on robust regression,” Modern methods of data
analysis, p. 292–324, 1990.

[46] Y. Cheng, “Mean shift, mode seeking, and clustering,” IEEE Trans.
Pattern. Anal. Mach. Intell., vol. 17, no. 8, pp. 790–799, 1995.

[47] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
ordering points to identify the clustering structure,” ACM Sigmod record,
vol. 28, no. 2, pp. 49–60, 1999.

[48] W. H. Day and H. Edelsbrunner, “Efficient algorithms for agglomerative
hierarchical clustering methods,” J. Classif., vol. 1, no. 1, pp. 7–24, 1984.

[49] L. McInnes, J. Healy, and S. Astels, “HDBSCAN: Hierarchical density
based clustering,” J. of Open Source Software, vol. 2, no. 11, p. 205,
2017.

[50] C. Burgess and H. Kim, “3d shapes dataset.”
https://github.com/deepmind/3dshapes-dataset/, 2018.

[51] J. Qian, T. Weng, L. Zhang, B. Okorn, and D. Held, “Cloth region seg-
mentation for robust grasp selection,” in IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, pp. 9553–9560, IEEE, 2020.

[52] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.,”
in Kdd, vol. 96, pp. 226–231, 1996.

[53] R. J. Campello, D. Moulavi, and J. Sander, “Density-based clustering
based on hierarchical density estimates,” in Pacific-Asia Conf. Knowl-
edge Discovery and Data Mining, pp. 160–172, Springer, 2013.

APPENDIX

A. Latent space dimension

The problem of choosing a suitable latent space dimension
has not received much attention in the literature. In Table IX

we report the partial scoring on normal and hard stacking
and rope-box tasks using VAE models with various latent
dimensions. The results demonstrate an evident drop in the
performance when the latent dimension was too small, such as
ld = 4. As ld increased, we observed gradual improvements in
the performance where a satisfactory level was achieved using
ld ≥ 6 for ns, and ld ≥ 12 for hs and rb. Therefore, hs and rb
required more dimensions in order to capture all the relevant
and necessary features. This result not only demonstrates the
complexity of each task version but also justifies the choice
ld = 12 in the simulations.

ld ns [%] hs [%] rb [%]
4 7.9± 2.2 8.8± 7.9 62.7± 13.9
6 99.96± 0.08 56.2± 23.1 74.9± 5.0
8 99.96± 0.08 62.7± 18.7 80.6± 5.3
12 100.0± 0.0 92.1± 2.9 90.4± 2.9
16 100.0± 0.0 95.9± 1.4 92.2± 1.1
32 97.5± 4.33 96.4± 0.4 92.6± 2.0

Table IX: Comparison of the LSR performance when using VAEs
with different latent dimensions for all the simulated tasks.

B. Overview of clustering algorithms

In this section, we provide a brief overview of the ablated
clustering methods considered in Sec. IX-C4.
Epsilon clustering: used in our earlier work [7] and function-
ally coincident with DBSCAN [52]. Its performance is affected
by the parameter ε, i.e., radius of the ε-neighborhood of every
point, and deteriorates when clusters have different densities.
Mean-shift: centroid-based algorithm [46] with moving win-
dow approach to identify high density regions. At each iter-
ation, the centroid candidates associated to the windows are
updated to the mean of the points in the considered region. The
window size has a significant influence on the performance.
OPTICS: improved version of DBSCAN introduced by [47]
in which a hierarchical reachability-plot dendrogram is built,
whose slope identifies clusters with different densities. The
parameter Ξ ∈ [0, 1] is used to tune the slope and heavily
affects the outcome of the algorithm. However, its influence
is not easy to understand intuitively, as discussed in [53].
Linkage: hierarchical, agglomerative clustering algorithm dis-
cussed in Sec. VI-A. Possible dissimilarity functions to merge
points are single, based on the minimum distance between
any pair of points belonging to two distinct clusters, complete,
based on the maximum distance, and average, based on the
unweighted average of the distances of all points belonging to
two distinct clusters.

As discussed in Sec. VI-A, the clustering threshold τ
determines the vertical cut through the dendrogram and con-
sequently influences the performance of the algorithm.
HDBSCAN: agglomerative clustering algorithm in which the
branches of the dendrogram are optimized for non-overlapping
clusters using a notion of “cluster stability” based on their
longevity. HDBSCAN automatically identifies clusters with
different densities and requires specifying only the minimum
cluster size prior to the training.

	Introduction
	Related Work
	Problem Statement and Notation
	Methodology
	Training Dataset
	System Overview

	Mapping Module (MM)
	Latent Space Roadmap (LSR)
	LSR Building
	Optimization of LSR Clustering Threshold
	Visual plan generation

	Action Proposal Module (APM)
	Assumptions, Applicability and limitations of the method
	Simulation results
	Experiment Objectives and Implementation Details
	MM Analysis
	Influence of dynamic bold0mu mumu dmdm2005/06/28 ver: 1.3 subfig packagedmdmdmdm
	Separation of the states
	VAE compared to AE

	LSR Analysis
	LSR comparison
	Influence of the action term
	Influence of the maximum number of connected components
	Comparing different clustering methods for Phase 2
	Covered regions using LSR

	APM Analysis

	Folding Experiments
	Experiment Objectives and Implementation Details
	MM Analysis
	Influence of dynamic bold0mu mumu dmdm2005/06/28 ver: 1.3 subfig packagedmdmdmdm

	LSR Analysis
	Covered regions using LSR

	APM Comparison
	System Analysis
	Folding performance and comparison with ouriros
	Folding with multiple layers

	Conclusions
	Biographies
	Martina Lippi
	Petra Poklukar
	Michael C. Welle
	Anastasia Varava
	Hang Yin
	Alessandro Marino
	Danica Kragic

	References
	Latent space dimension
	Overview of clustering algorithms

