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Hydrogen sulfide production does not affect antibiotic 
resistance in Pseudomonas aeruginosa
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ABSTRACT Hydrogen sulfide (H2S) has been proposed to protect bacteria from 
antibiotics, pointing to H2S-producing enzymes as possible targets for the develop
ment of antibiotic adjuvants. Here, MIC assays performed with Pseudomonas aeruginosa 
mutants producing altered H2S levels demonstrate that H2S does not affect antibiotic 
resistance in this bacterium. Moreover, correlation analyses in a large collection of P. 
aeruginosa cystic fibrosis isolates argue against the protective role of H2S from antibiotic 
activity during chronic lung infection.
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M ulti-drug resistant (MDR) bacterial pathogens rapidly spread, and only a few novel 
antibacterial drugs are in the pipeline (1). This alarming situation calls for new 

therapies to treat MDR infections (2), including the development of adjuvants that 
re-empower antibiotic action (3). In this context, hydrogen sulfide (H2S) production 
has attracted the attention of scientists (4, 5), as some studies demonstrated that 
endogenously produced H2S reduces bacterial susceptibility to antibiotics (6–9) and 
that H2S-producing enzymes are promising targets for the development of antibiotic 
adjuvants (10–13).

Pseudomonas aeruginosa is a primary opportunistic human pathogen, being 
responsible for over 300,000 deaths annually (14), and a major cause of chronic lung 
infection in individuals with cystic fibrosis (CF) (15). This bacterium possesses the genes 
coding for the H2S-synthesizing enzymes cystathionine γ-lyase (CSE), cystathionine 
β-synthase (CBS) (6, 10), and mercaptopyruvate sulfurtransferase (3MST) (7), although 
the role of 3MST in H2S production in P. aeruginosa remains unexplored. Additionally, P. 
aeruginosa utilizes sulfide:quinone oxidoreductases (SQR1 and SQR2) and the persulfide 
dioxygenase (PDO) to dispose of H2S and prevent sulfide accumulation (16). To date, the 
actual involvement of H2S production in P. aeruginosa resistance to clinically relevant 
antibiotics has been seldom investigated (6, 7, 10). Therefore, the potential efficacy of 
drugs targeting H2S production for anti-P. aeruginosa therapies remains uncertain.

To assess the effect of H2S production on P. aeruginosa antibiotic resistance, 
markerless deletion mutants producing higher or lower levels of H2S compared to 
the parental strain PAO1 were generated by multi-step allelic exchange (17, 18). H2S 
released by cultures of PAO1 and its isogenic mutants was quantified by using an 
optimized protocol based on lead acetate-soaked paper strips (6, 10, 16, 19), as detailed 
in Supplementary Materials and Methods. Briefly, this method relies on the staining of 
a lead acetate-soaked paper strip, whose intensity positively correlates with the amount 
of H2S released by the bacterial culture, as confirmed by using increasing concentrations 
of the H2S-donor sodium hydrosulfide (NaHS) (Fig. S1). This analysis revealed that 3MST 
contributes to H2S production in P. aeruginosa, as the ∆3mst mutant produced ca. 50% 
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H2S relative to PAO1 in Lysogeny Broth (LB) (Fig. 1A). Based on this evidence, the ∆3syn 
mutant deleted in the three genes contributing to H2S production in P. aeruginosa 
(i.e., 3mst, cbs, and cse) was constructed; this mutant showed <8% residual H2S levels 
compared to PAO1 (Fig. 1A). The same strategy was used to construct the ∆3ox mutant, 
deleted in the three genes implicated in H2S disposal in P. aeruginosa (i.e., sqr1, sqr2, and 
pdo); this mutant exhibited ca. 6.4-fold higher H2S levels compared to PAO1 (Fig. 1A).

FIG 1 (A) Fold change in the H2S levels released by the ∆3mst, ∆3syn, and ∆3ox mutants relative to PAO1. 

H2S levels were determined via densitometric analyses of lead acetate-soaked paper strips exposed for 20 

hours to the bacterial cultures grown in LB. The average values of three independent experiments, each 

performed on eight bacterial cultures, are reported with standard deviations. Asterisks denote statistically 

significant differences with respect to PAO1 (**P < 0.01; ***P < 0.001; and ****P < 0.0001; unpaired t-test). 

(B) Growth curves of PAO1 (solid lines, full circles), ∆3syn (dotted lines, empty circles), and ∆3ox (solid 

lines, empty triangles) in LB (mock; gray lines) or in LB supplemented with the indicated antibiotics 

at sub-MIC concentrations (1/4 MIC). Cb, carbenicillin (blue lines); Chl, chloramphenicol (purple lines); 

Cip, ciprofloxacin (red lines); Gen, gentamicin (yellow lines); Nor, norfloxacin (orange lines); and Tet, 

tetracycline (green lines). The average values of three independent experiments are reported with 

standard deviations.
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The standard microdilution method (20) was used to perform MIC assays for the 
PAO1, Δ3syn, and Δ3ox strains grown in cation-adjusted Mueller-Hinton broth (MHB-
II), LB, or tryptic soy broth supplemented with L-cysteine (TSB-cys). The addition of 
L-cysteine to the medium is known to increase H2S production (6). LB and TSB-cys were 
also used to reproduce experimental settings used in previous studies (6, 10). Antibiotics 
previously tested in studies focused on H2S production in P. aeruginosa (i.e., carbenicillin, 
chloramphenicol, ciprofloxacin, gentamicin, norfloxacin, and tetracycline) (6, 7, 10) and 
other antibiotics of clinical relevance for P. aeruginosa (i.e., colistin, meropenem, and 
tobramycin) were tested. As H2S is a volatile molecule, to limit its possible leakage, MIC 
assays in MHB-II were also performed by sealing the microtiter plates with an adhesive 
plastic sheet not permeable to H2S (Fig. S2). The Δ3syn and Δ3ox mutants produced 
lower and higher levels of H2S relative to PAO1, respectively, also in the experimental 
conditions used for the MIC assays (Fig. S3). MIC values of all the tested antibiotics 
were the same for PAO1, Δ3syn, and Δ3ox in all conditions (Table 1). Notably, the PAO1, 
Δ3syn, and Δ3ox strains showed comparable growth curves when treated with sub-MIC 
concentrations of previously tested antibiotics in LB (Fig. 1B) or in LB supplemented with 
L-cysteine or NaHS (Fig. S4). This demonstrates that H2S levels do not affect P. aeruginosa 
growth kinetics in the presence of antibiotics.

Resistance to many clinically relevant classes of antibiotics is frequently observed in 
P. aeruginosa strains isolated from CF patients with chronic lung infection (21, 22). To 
assess a possible correlation between H2S production and antibiotic resistance in clinical 
isolates, we quantified the H2S levels produced by 100 clinical isolates of P. aeruginosa 
from CF lungs with distinct antibiotic resistance profiles (Fig. 2A) (23, 24). This analysis 
revealed that H2S levels are lower in resistant and MDR isolates relative to sensitive 
ones (Fig. 2B) and that a decrease in H2S production parallels the progression of chronic 
infection (Fig. 2C). Hence, high levels of H2S production appear to be counter-selected 
during in vivo infection in the CF lung, despite antibiotic resistance increases.

Overall, our data argue against the role of H2S in conferring antibiotic resistance 
during CF lung infection. While it is possible that specific host-associated stimuli 
could boost P. aeruginosa H2S production to protective levels in vivo, this possibility 
is discredited by the evidence that H2S does not protect P. aeruginosa from antibiotics 
even when produced at high levels, as observed in the ∆3ox mutant.

Our data do not support the protective role of H2S against antibiotics claimed for 
P. aeruginosa in previous studies (6, 7, 10). Similar discrepancies have been reported 
for Staphylococcus aureus; while some studies reported that H2S production confers 
antibiotic resistance to this bacterium (6, 10), a contrasting study indicated that 
endogenous H2S levels are not sufficient to protect S. aureus from aminoglycosides 

TABLE 1 MIC values for PAO1 and its isogenic mutants Δ3syn and Δ3ox

MIC (µg/mL)a

Medium Strain Cb Chl Cip Col Gen Mer Nor Tet Tob

MHB-II PAO1 128 64 0.25 1 4 1 1 32 2
Δ3syn 128 64 0.25 1 4 1 1 32 2
Δ3ox 128 64 0.25 1 4 1 1 32 2

MHB-II wps PAO1 128 64 0.25 1 4 1 1 32 2
Δ3syn 128 64 0.25 1 4 1 1 32 2
Δ3ox 128 64 0.25 1 4 1 1 32 2

LB PAO1 128 64 0.25 1 4 1 1 16 2
Δ3syn 128 64 0.25 1 4 1 1 16 2
Δ3ox 128 64 0.25 1 4 1 1 16 2

TSB-cys PAO1 128 64 0.125 1 4 1 0.5 32 1
Δ3syn 128 64 0.125 1 4 1 0.5 32 1
Δ3ox 128 64 0.125 1 4 1 0.5 32 1

aCb, carbenicillin; Chl, chloramphenicol; Cip, ciprofloxacin; Col, colistin; Gen, gentamicin; Mer, meropenem; Nor, 
norfloxacin; Tet, tetracycline; Tob, tobramycin; MHB-II wps, MHB-II sealed with plastic sheet; and TSB-cys, tryptic 
soy broth supplemented with 200 µM L-cysteine.
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and that exogenous provision of H2S decreases S. aureus resistance to non-aminoglyco
side antibiotics (25). H2S decreases antibiotic resistance in Acinetobacter baumannii too 
(26). Interestingly, a mutant of Fusobacterium nucleatum substantially deficient in H2S 

FIG 2 (A) Antibiotic resistance pattern of 100 CF isolates categorized by the duration of the lung 

infection (23, 24). FI, first isolate (n = 40); EC, early chronic (n = 25); LC, late chronic (n = 35); S, susceptible 

to all antibiotics tested (n = 48); R, resistant to one or two antibiotics of different classes (n = 32); and 

MDR, multi-drug resistant (non-susceptible to at least one agent in three or more classes of antibiotics) 

(n = 20). (B) Relative H2S levels released in LB by the CF isolates grouped by antibiotic resistance pattern. 

(C) Relative H2S levels produced in LB by the CF isolates grouped by the duration of the chronic lung 

infection. For panels B and C, each circle represents the average of three independent experiments for 

a given strain; the percentages refer to the H2S level measured in PAO1 in LB, considered as 100%. 

Horizontal lines indicate median values. Asterisks denote statistically significant differences between 

groups (*P < 0.05; ***P < 0.001; and ****P < 0.0001; Kolmogorov-Smirnov test).
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production gained significant sensitivity to nalidixic acid and resistance to kanamycin 
(9). By providing evidence that H2S production is not a defense mechanism against 
antibiotics in P. aeruginosa, our data support the notion that H2S does not act as a 
protective molecule in all bacterial species.
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