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ABSTRACT

This paper aims is to show an automated intelligent measurement system for the detection of adhesion
defects between architectural antique plaster layers. The method emulates the traditional conservators’
procedure based on acoustical perturbations, auscultation, detection and classification. The system makes
use of a hardware device, known in literature as PICUS, for the generation and acquisition of acoustic
signals, while the processing of the acquired signals is handled by a deep learning (DL) architecture de-
signed ad hoc. After a brief description of the PICUS system and the acoustic data acquisition procedure,
the whole architecture of the DL system is carefully described. The proposed method has been validated
by a significant case study. The system shows an accuracy of up to 82% (£ 2%) in multi-class classifica-
tion and up to 99% (+ 1%) in binary classification. In particular, the obtained results suggest a satisfactory

Non destructive testing

precision in the detection of areas where stabilization is necessary.

PICUS © 2024 The Author(s). Published by Elsevier Masson SAS on behalf of Consiglio Nazionale delle Ricerche

(CNR).
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction and research aim

Depending on the conservator’s sensitivity, the “detachment
system” produces a response detected as an acoustic wave and vi-
bration. The presence of air between layers of a poorly preserved
antique plaster, which would otherwise be adjacent and adherent,
results in a easily perceptible “hollow” sound. The operator can
hear the sound and then interprets it based on their subjective
perception. They naturally analyze the sound’s characteristics, con-
sidering its variations in volume and pitch over time [1].

An inherent challenge in the conservator’s evaluation process is
its susceptibility to personal biases, which may result in subjective
classifications. This can lead to either the rejection of defect-free
parts (false negatives) or the acceptance of defective parts that sur-
pass the defined limits outlined by relevant standards (false posi-
tives).

These subjective evaluations underscore the importance of
comprehensive considerations of both human and technical ele-
ments in assessing the reliability and repeatability of the inspec-
tion process.

* Corresponding author.
E-mail address: giosue.caliano@uniroma3.it (G. Caliano).
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This paper aims to introduce a complete automatic system
(hardware and software) that can be calibrated and adjusted ac-
cording to the surface under detection, as a support instrument for
professionals involved in this task.

Recently a hardware system, called PICUS, which emulates the
tapping and hearing behavior of an expert conservation profes-
sional, has been proposed in [1]. The system consists of an electro-
acoustic device that gently taps the surfaces and detects the sound
produced using a transducer, returning it in the form of a sampled
signal. The PICUS system will be here used as an auscultation ac-
quisition tool.

In terms of handling the acoustic signals obtained by PICUS, we
will introduce a software solution built on Deep Learning princi-
ples. Deep Learning (DL), due to its ability to learn directly from
raw data [2], has been garnering considerable attention in many
fields of signal processing from medical to engineering, and so
on [3-5]. DL bases its working by using Neural Networks. Convo-
lutional Neural Networks (CNNs) are the algorithms most imple-
mented for detecting patterns by rough data [6,7]. CNNs can ex-
tract latent features inside the signal by means of suitable filters
(learnable filters). Combinations of hundreds of learnable filters al-
low to capture different features (latent features) or patterns hid-
den into acquired raw signal [8]. This capability circumvents the
laborious process of feature extraction and reduces biases inherent
in handcrafted feature selection, thereby enhancing scalability.
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Fig. 1. Flowchart of the proposed method.

For defect recognition, an approach supervised by artificial in-
telligence [9] is therefore presented. The designed Al is trained to
use data from well known cases acquired by PICUS. For each in-
dividual case, the nature of a defect, or its absence, was labeled
by conservation experts according to a pre-established protocol de-
scribed in detail below.

Although training these algorithms takes a long time, running a
trained algorithm is extremely fast. To create a baseline for iden-
tifying audio signals, the approach uses a mock-up object on pur-
pose that simulates an antique plaster, also described below.

We have initially established eight different classes: one with
a gap value of zero, which indicates a stable state that does not
require restoration work, and seven classes progressively closer to
the maximum depth of the defect. We subsequently established
two different classes for defect identification only, i.e. a class with
a zero gap and a class with the presence of a defect, thus a generic
defect identification. The datasets used in this work consist of N
records for M classes (with N= 800 and M=8 for dataset 1 and
N= 1500 and M=2 for dataset 2). The data provides the basis for
training a CNN specifically designed for this purpose. This neural
network takes audio samples as input and provides a class predic-
tion of the membership inspected area.

The following sections will offer a detailed description of the
proposed method. In particular, the tool used for signal acqui-
sition and the configuration of audio acquisition is explained in
Section 2.1. The acquired data, used for the CNN train proposal
are explained in Section 2.3; and the details of the neural network
architecture, including the parameters and validation mechanisms
used, are explained in Section 2.4. In Section 3 the experimental
results obtained are presented. The 4 and 5 sections address the
discussion and conclusions respectively.

2. Materials and methods

The proposed methodology is visually depicted through a com-
prehensive flowchart, facilitating a clear understanding of the pro-
cedural framework in Fig. 1. The signal is acquired using the PICUS
system on a mock-up test object (top left). The audio files (on the
top right) were stored and then fed as input to the 1D convolu-
tional neural network (CNN1D), which classifies its class and en-
ables the creation of a color map (bottom centre). This color map
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is subsequently interpolated and overlaid on the test object (bot-
tom left).

2.1. Data acquisition setup

An electro-acoustic system [10] called “PICUS” has been used
as an acquisition system of artificial auscultation. PICUS mecha-
nizes the auscultation technique used by experts in the field of cul-
tural heritage conservation. The PICUS experimental setup includes
a probe equipped with an electro-mechanical percussion element,
which gently taps the surface to generate a sound converted into a
voltage signal by a suitable microphone. A low-cost Arduino-like
board acquires and processes the acoustic signals. The analogue
signal is sampled at a frequency of 48 kHz and the system ac-
quires 2048 samples: they contain the entire sound response of the
point stimulated by the system [11-14]. The position of the probe
is identified through an infrared camera on-board which detects an
infrared LED source that lights up the scene.

2.2. Experimental configuration for supervised acquisition

Fig. 2 shows the test object, a mock-up reproducing a strati-
fied antique plaster according to antique and direct sources and a
bibliography on the art of plastering [14]. The support is a 50 x
50 x 7.5 cm handmade brick tile.

The preparation, or “arriccio”, has been applied on the support
in a 3 cm thick layer and is composed of lime, pozzolana and river
sand. Using circular shapes, with diameters of 13, 10, 6 and 8 cm
(A, B, C and D in Fig. 2(a)), four cavities with sharp edges and
known profiles were created in the overlapping layer of “intonaco”
(plaster), 2.5, 2, 2.5 and 2 cm deep, respectively. Next, on the in-
tonaco, a superficial layer of mortar, of 1 cm thickness and finer
aggregates called “intonachino”, has been applied. Once the mock-
up was dry, defect A was chosen to be classified for the DL train-
ing. To capture the variability in defect levels, a setup of multiple
concentric circles was conceived. (Fig. 2(b)).

The defects were categorized into eight classes (next indicated
by CO, Cl... C7), where CO represents the defect-free area and from
C1 to C7 it represents the gravity of the detachment from the
edges towards the centre as illustrated in Fig. 2(b).

Every class represents a different degree of structural problems.
To ensure the accuracy of the ground truth labels for supervised
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(a) Mock-up of an antique plaster
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(b) Classes related to the defect area A

(a) The test-object: a mock-up of an antique plaster with three layers of mortar, with four defective areas (A-D). (b) Classes related to the defect area A.
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Fig. 3. 3 Random signals for each class.

training, each instance of the induced defect was meticulously la-
beled by an expert.

2.3. Data set acquisition

This study employed two distinct datasets. The first dataset has
been used as a training and test set for the first neural network,
tasked for classifying detachment type. For each of the eight des-
ignated classes, a collection of 100 audio samples was acquired.
Representative examples from this dataset are visually illustrated
in Fig. 3. Each class corresponded with a level of structural defect,
and their audio signals were recorded using the microphone of the
PICUS strategically positioned within the concentric circle setup.
The second dataset was used to identify the presence of detach-
ments across the entire surface of the material based on binary-
labeled data from a single section, thus including the portion of
the solid surface containing no detachment between the 0-label
levels and acquisitions on the region of the detachment with la-
bel 1. The entire second dataset comprised 700 instances classified
as defect-free areas and 800 instances classified as defective areas,
for a total of 1,500 acquisitions.

2.4. Proposed convolutional neural network architecture

In the field of machine learning, convolutional neural net-
works (CNNs) have emerged as the standard over the past decade.
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These networks, characterised by feed-forward neural networks
with convolutional and sub-sampling layers, have demonstrated an
exceptional ability to discern complex patterns and objects within
large visual datasets, after proper training with labelled data. As a
result, they have become indispensable tools in various engineer-
ing applications, particularly those dealing with 2D signals such as
images and video frames. For processing 1D signals as in this case,
researchers introduced 1D CNNs, which quickly proved their worth
by achieving state-of-the-art performance in a multitude of fields.
In particular, these applications include classification of biomedical
data [15], early diagnosis of diseases [16], structural health mon-
itoring [17], anomaly detection in power electronics and fault de-
tection in electric motors.

The 1D forward propagation in each CNN layer is stated as fol-
lows:

N1

X = b+ conviD (wi' si71)
i1

(1)
Given that x}c represents the input, bf( is the bias of the kth neu-
ron at layer 1,55‘1 denotes the output of the ith neuron at layer

-1, and wﬁ; 1 represents the kernel from the ith neuron at layer
I —1 to the kth neuron at layer I. Conv1D() is used to perform 1D
convolution. Therefore, the dimension of the input array, xf(, is less

than the dimension of the output arrays, sf.‘1. The intermediate
output, yL, can be expressed by passing the input xL through the
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Table 1

The first convolutional neural network (CNN) architecture designed for classifying
defects in ancient coverings, categorized from class CO to C7. The size of x is defined
by the batch size.

Layer (type) Output Shape Param # Connected to
ConviD (x, 2048, 32) 128

MaxPooling1D (x, 1024, 32) 0 Conv1D
ConvlD (x, 1024, 32) 3104

Dropout (x, 1024, 32) 0 Conv1D
MaxPooling1D (x, 512, 32) 0 Dropout
Flatten (x, 16384) 0 MaxPooling1D
Dense (x, 32) 524320 Flatten

Dense (x, 8) 264 Dense

activation function, f(.), as,

V= f(xfc) and s, =y} | ss (2)
I

Here, s, represents the output of the kth neuron of layer I, and
“| ss” denotes the down-sampling operation with a scalar factor ss
[16]. After the CNN layers, which perform the newly defined 1D
forward propagation (1D-FP), the back-propagation (BP) algorithm
is implemented to perform error back-propagation from the output
MLP layer [18].

Given the significant network abilities introduced, a customized
architecture of 1D CNN was developed to classify the audio sig-
nals to detect and classify the state of ancient coverings. Several ar-
chitectures were examined, and the empirically chosen model was
fine-tuned to achieve optimal performance.

The model architectural design follows a sequential structure
using the Keras Sequential API [19] with TensorFlow [20] in the
back-end. It begins with a 1D convolutional layer, serving as the
cornerstone for feature extraction. This layer employs 32 filters
with a kernel size of 3, utilizing the Rectified Linear Unit (ReLU)
activation function for introducing non-linearity.

Following the convolutional layer, a max-pooling layer with a
pool size of 2 is introduced. This strategic down-sampling opera-
tion helps reduce spatial dimensions while retaining crucial fea-
tures. The subsequent layer is a second 1D convolutional layer,
again with 32 filters and a kernel size of 3. To mitigate the over-
fitting, a dropout layer with a dropout rate of 0.3 is inserted.

Continuing the architectural flow, another max-pooling layer
with a pool size of 2 is applied, further enhancing the network’s
ability to recognize invariant spatial patterns. The flattened layer
then transforms the multidimensional output from the previous
layers into a form suitable for fully connected layers.

The first dense layer, consisting of 32 units and ReLU activa-
tion, fosters global relationships among the learned features. Fi-
nally, the output layer, comprising a number of units equal to the
total classes in the dataset, employs the softmax activation func-
tion for multi-class classification. Table 1 shows the neural network
architecture and its parameters.

For the identification of detachments, the model architecture
was slightly modified to better adapt to the second dataset. Since
binary classification requires fewer neurons in the output layers,
the structure was revised as follows: the first dense layer was re-
duced from 32 to 10 neurons and the output layer was reduced
from 8 to 1 neuron. The activation function of the output layer was
changed from softmax to sigmoid function as it is more suitable for
binary classification. Reducing the number of neurons in the out-
put layer improves the adaption of the model to the number of
classes.

2.5. Metrics

For a complete evaluation of the effectiveness of the classifier
in all categories, the confusion matrix was used, to effectively indi-
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Table 2
An example of a confusion matrix.

Predicted Class 1 Predicted Class 2

Actual Class 1
Actual Class 2

True Positive (TP)
False Positive (FP)

False Negative (FN)
True Negative (TN)

cate the correspondence between actual and predicted class labels,
identifying cases of misclassification with an immediate visual un-
derstanding, useful for statistical analysis. The correct classification
of a sample is referred to as true positive, while an error in the
classification of a sample is referred to as true negative. When an
algorithm incorrectly identifies a sample as contending faults, it is
referred to as a false positive. Conversely, when the algorithm in-
correctly classifies a sample as having defects when in fact it does
not, it is called a false negative. Table 2 shows a confusion matrix
representation.

The Accuracy, Precision, Recall and F1-score metrics provide a
detailed analysis of the classifier’s performance for each individ-
ual class, clarifying the extent of its effectiveness within individual
categories.

Accuracy measures the overall correctness of a classification
model. It is calculated as the ratio of correctly predicted instances
to the total number of instances. It represents the proportion of
true results (both true positives and true negatives) among all the
cases examined.

TP+ TN 3
TP+TN+FP+FN 3

The Precision quantifies the accuracy of positive predictions

made by the model. It is calculated as the ratio of true positive

predictions to the total number of positive predictions made by the
model.

Accuracy =

L 4)
+FP

Recall, also known as sensitivity, measures the ability of the model
to find all the relevant cases within a dataset. It is calculated as
the ratio of true positive predictions to the total number of actual
positive instances in the dataset.

Recall (Sensitivity) =TPZ-—PFN (5)

The F1-score is the harmonic mean of precision and recall. The F1-
score reaches its best value at 1 (perfect precision and recall) and
worst at 0. It is calculated as 2 times the product of precision and
recall, divided by the sum of precision and recall.

Precision =

2 . Precision - Recall

F1- = —
score Precision + Recall

(6)

The macro/micro-average metrics offer aggregated assessments
across all classes, providing a comprehensive perspective on the
classifier’s effectiveness. The macro average measures are also re-
ported to computes the mean of performance metrics across all
classes, assigning equal importance to each class irrespective of its
size. Conversely, the weighted average adjusts for class imbalances
by assigning weights proportional to the class sizes, thereby pro-
viding a more representative measure of overall performance. The
receiver Operating Characteristic (ROC) curve is also used along the
multi-class Area Under the ROC Curve (AUC).

This statistical approach evaluates the detectable flaw and
aligns quantitative and qualitative parameters.

2.6. Data augmentation

We have introduced a data augmentation procedure applied to
audio arrays to increase the dataset by 10 times. Specifically this
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Graphical ilustration of the data
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Fig. 4. This figure visually depicts the data augmentation procedure applied to au-
dio arrays using the rolling technique. The illustration shows three of the ten ex-
amples involved in rolling the array by acquired data, highlighting how this specific
augmentation method contributes to improving the diversity of the audio dataset
for training and validation.

is performed using a specific function in NumPy used to roll ar-
ray elements along a given axis [21]. In detail, each input vector
was randomly shifted 10 times with values in the range of 0 to
256. In this way, temporally shifted versions of the original data
are created. The evaluation of the augmented samples is empiri-
cally scaled to ensure adequate representation. Data augmentation
is a crucial technique in DL, significantly increasing the training
dataset, therefore improving the network’s ability to generalize ef-
fectively. In our case, given the limited size of the dataset, the data
augmentation reduces overfitting, as a model trained on a small
dataset can store specific patterns in the data but fails to gener-
alise to new examples [22]. Data augmentation introduces varia-
tions, causing the model to learn more robust features. Enhance
generability by training the model on a wider array of data vari-
ations, thereby increasing its adaptability to real-world scenarios
with nuanced data characteristics. [23,24]. In the Fig. 4 we can see
an example of a data augmentation procedure. To improve visual
understanding only 3 samples of 10 generated are plotted. This ap-
proach not only validates the best model but also strengthens its
generalization, leading to more reliable results in real-world appli-
cations.

2.7. Training, test split and cross-validation technique

We provide a two-step approach for the optimal evaluation of
the model. The data was first divided into training (70%) and test-
ing (30%) sets, allowing us to explore a variety of model archi-
tectures. To validate the model in a thorough and rigorous way,
we implemented a k-fold cross-validation (k=5) technique on the
datasets. It was performed, by partitioning the dataset into five
distinct subsets. During each iteration, four subsets were used for
training the model (80%), while the remaining subsets were used
for testing (20%). This process was repeated five times, ensuring
that each subset was used exactly once as the test set.

The results of each cross-validation iteration were averaged to
improve the reliability of the performance metrics, ensuring that
our study’s findings are statistically significant and generalizable.

The adoption of K-Fold Cross-Validation [25] in our work pro-
vides a comprehensive assessment of the model’s performance by
leveraging different subsets of the data for the test, thus mitigat-
ing the potential bias and variance associated with a single train-
test split. Hence it ensures a thorough evaluation of the proposed
method’s performance, enhancing the reliability of our findings in
the domain of architectural coverings’ detachment monitoring with
AL

3. Results

The proposed model shows interesting classification capabilities
in the classification task. In particular, the results of the CNN 1D
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Table 3

AVG Classification Report k-fold cross validation.
Class Precision Recall F1-score Support
Cco 0.98 + 0.02 0.97 + 0.04 0.98 + 0.02 20
C1 0.75 £ 0.09 0.69 + 0.14 0.70 + 0.06 20
c2 0.58 + 0.08 0.64 + 0.12 0.59 + 0.06 20
c3 0.78 &+ 0.03 0.73 £ 0.12 0.75 £ 0.07 20
C4 1.00 + 0.00 1.00 + 0.00 1.00 + 0.00 20
C5 0.81 + 0.06 0.76 + 0.10 0.78 + 0.07 20
Cc6 0.82 £ 0.05 0.87 £ 0.07 0.84 + 0.06 20
Cc7 0.94 + 0.04 0.93 + 0.02 0.94 + 0.02 20
Accuracy 0.82 + 0.02 160
Macro Avg 0.83 + 0.02 0.82 + 0.02 0.82 + 0.02 160
Weighted Avg 0.83 £ 0.02 0.82 + 0.02 0.82 + 0.02 160

are illustrated in the confusion matrix and ROC curve shown in
Fig. 5.

The confusion matrix (Fig. 5(a)) gives a representation of sta-
tistical classification accuracy with the advantage of an immediate
visual representation of the performance of the inter-class model.
In this case, we observe a clear distinction between the outer-
most class of the detachment (CO) and the classes inside the de-
fect (C1-C7). In particular, the CO class reported a high number of
true positives and a low number of false positives and false nega-
tives. Classes C1-C7 still presented good performance, with a num-
ber of true positives higher than false positives and false negatives.
It is worth noting that most of the classification errors were re-
ported on contiguous classes, which are physically very close to
each other. In particular, classes C5 and C6 exhibited classification
errors almost exclusively between the two contiguous classes.

Similar outcomes were achieved by the analysis of AUC re-
ported in Fig. 5(b), where the CNN classifier showed the highest
AUC value in the CO and C4 classifications. The curve showcases
the trade-off between sensitivity and specificity, providing a com-
prehensive visualization of the classification performance and the
model’s ability to discriminate between different classes.

The results of the classification task are promising. The neural
network has shown good potential for classifying audio with la-
tent features. The diversified and augmented dataset has played a
pivotal role in refining the model’s generalization capabilities, ul-
timately contributing to an advanced and robust audio processing
framework.

In view of the interesting results shown on the single test of the
chosen 1D CNN architecture model, we use K-fold cross-validation
to validate the proposed model, extending the results in a com-
prehensive report shown in Table 3 that emphasises its inter-class
classification capabilities.

As shown in the report, the proposed neural network achieved
remarkable performance in terms of accuracy, precision, and F1
score. Specifically, the neural network achieved an average ac-
curacy of 82% (+ 2% of standard deviation). This suggests that
the data derived from inspection in regions with defects exhibits
common characteristics among areas with defects of the same
depth (concentric areas), enabling the network to accurately clas-
sify them. Notably, there is an excellent inter-class sensitivity, par-
ticularly in recognizing class CO, which is perfectly distinguished
from other classes. The high sensitivity in distinguishing this class
is crucial for the correct identification of solid zones and areas
with potential detachments.

In light of the practical feedback from deploying the system in
situ and considering the excellent classification results of class CO
compared to others, a subsequent analysis led to the development
of another classification type - binary classification. The aim was
therefore to generalise the results of a single defect to others, in
particular between CO and classes C1, C2, C3, C4, C5, C6 and C7. To
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Multi-Class ROC Curve
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Fig. 5. (a): Confusion matrix shows the accuracy and precision of the performance in class prediction with easy identification of false positives or false negatives. (b): The
ROC curve provides a concise assessment of the model’s ability to identify different states of preservation of the architectural layer. The representation of these metrics
provides a concise assessment of the model’s ability to identify the classes related to the different states of preservation of antique plaster layers.
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(a) Confusion matrix for binary classification
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Fig. 6. (a): The confusion matrix shows accurate performance for binary classification of the area without flaws compared to the area with flaws. (b): The classification
report in terms of mean of 5-fold cross-validation for the binary classification. In this case, the standard deviation was not made explicit due to the low variance values.

balance the dataset, additional samples of class CO were required.
Consequently, dataset 2 was used for training a different neural
network with a modified structure. The small architectural changes
of the first one used were necessary to adapt it to the new purpose
of binary classification, i.e. with a single output neuron.

Test results showed average values of 99% (4+ 1%) on the test
area. Detailed results are shown in Fig. 6.

Once the correct architecture was implemented and validated,
the whole dataset was used to train the neural network. The neural
network trained on the entire dataset was then used to construct
a c-map on the entire portion of the model. In particular, the sub-
sequent acquisition of data on the entire model, independent from
the test area was used as the test database needed for the c-map.
In detail, the test object was divided into a 16x16 grid, resulting
in 256 acquisitions that were classified by the binary classification
model. The results belonging to class 0 or 1 were mapped onto the
acquisition coordinates and thus allowed the generation of the c-
map. This approach made it possible to use the network trained on
a single portion (defect A) to inspect the entire test object. This fa-
cilitated the creation of a c-map highlighting other defects present
in the test artefact, which were not used for training the neural
network. The neural network provided consistent results from por-
tions of the material that had never been seen before, meaning it
was trained in a different region than the training area. Fig. 7 il-
lustrates the results: the left portion shows the neural network’s
raw output without interpolation, whereas the right part shows
the outcome of interpolation, with the darker zone defining the
detachment area identified by the traditional analysis performed
by the restorer.

It is noteworthy that the defect with which the neural network
was trained was perfectly recognized, along with two other de-
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fects, albeit the fourth defect in the top right was partially rec-
ognized, as can be observed. The reason for this partial recognition
of defect C may be related to the internal collapse of the structure,
partly due to the laboratory environmental conditions that affected
the setting and curing of the mortars of the test-object.

4. Discussion

The conservation and stabilization of covering layers, whether
decorated or not, rely heavily on the expertise of professionals in
the field. Their refined skills and extensive experience enable them
to detect and classify regions that need of stabilization compared
to stable areas. However, the current process is complex and faces
numerous challenges.

Entrusting the task to a single individual, especially in the case
of extensive mappings, consumes considerable time. On the other
hand, involving many restoration specialists, while addressing tim-
ing issues, introduces a potential bias in measurement due to vari-
ations in experience and precision of inspection. Moreover, the
transcription on a map of the information acquired through auscul-
tation is another step prone to interpretation, so it is not repeat-
able. In addition, the complexity and arduousness of this task are
further compounded by the physical strains that arise from pro-
longed exertion, leading to discomfort and fatigue. Consequently,
the current procedure suffers from biases and lacks scalability.

An innovative and ergonomic instrument was therefore de-
veloped, together with a specifically designed measuring method
(the PICUS System) that replicates the action of the restorer, tap-
ping on the surface to analyse the sound emitted. Sound recogni-
tion capabilities, developed through extensive on-site experience
by conservators-restorers, were replicated using a convolutional
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Fig. 7. On the left: the output of the neural network in the test matrix, without interpolation. On the right, a c-map with the (interpolated) defect detection levels based on
the outputs of the PICUS system, superimposed on a traditional auscultation map (in grey) and the defect location of the test object.

neural network (CNN) trained on a comprehensive dataset of sam-
ples, so far based on a test-object simulating an ancient covering
with known defects. These samples were meticulously labelled by
experts focusing on detachment severity.

The implementation of neural network has proven highly effec-
tive in identifying and classifying detachment types, thereby en-
hancing the defect mapping process for ancient covering.

To this end, the study examined the potential of a deep learn-
ing algorithm to be integrated into the PICUS system to assist re-
storers in analysing surfaces. The acquisition process carried out
by experienced conservators included eight proposed class, from
CO (defect-free area) to C1-C7 (areas with defects of increasing
depth). To improve the training process, the experimentally ac-
quired datasets were subjected to a data augmentation procedure
designed for this purpose. Subsequently, a k-fold cross-validation
was conducted to ensure the reliability and stability of the accu-
racy measurements. This classification produced interesting results
regarding inter-class classification. Notably, during the evaluation
process, a particular accuracy was observed in distinguishing the
un-flaw class (CO) from others. Additional analysis of results made
possible to study the nature of the errors, which were mainly con-
centrated in the classes contiguous to those under investigation.
Although this reduces the overall accuracy, it is still a significant
result for the researchers, as the error in the contiguous classes has
less impact on the analysis results. Building upon these findings,
the decision was made to unify flaws-containing classes, leading
to the creation of a useful binary classification system for defect
identification. This binary classification approach was then applied
in conjunction with the first neural network for the multi-class
classification of defect gravity. The second classification performed
with a customized neural network achieved remarkably high accu-
racy results and enabled the identification of defects by means of
binary classification. In fact, the CO class, i.e. the defect-free class,
was recognised in both classifications with high accuracy. This as-
pect is of great relevance in the routine application of the tool, as
the distinction between areas that require intervention and areas
that do not is of primary importance. High accuracy leads restor-
ers to trust the classification made, with considerable advantages.
Following thorough testing and validation procedures, the network
was deployed to explore and categorize regions of the test material
not included in the training dataset. Encouragingly, the results re-
mained consistent with the desired output, demonstrating the net-
work’s ability to accurately identify and categorize defects.

This classification method enabled the generation of a compre-
hensive defect map (c-map) that covered the entire surface of the
test-object, offering valuable insights into the presence and distri-
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bution of defects within the material. This comprehensive mapping
facilitates informed decision-making during the restoration pro-
cess, ensuring targeted interventions to preserve and protect an-
cient layers effectively. Hence, this development represents a sig-
nificant advance that offers cultural heritage professionals a valu-
able tool, especially when dealing with large areas.

Moreover, by incorporating tracking capabilities via an infrared
camera, it becomes possible to map the area with unparalleled
precision. This integration of advanced technology not only en-
hances the accuracy and detail of the defect map but also provides
real-time monitoring and feedback, allowing for prompt and tar-
geted interventions during the restoration process.

The use of the PICUS can also be extended to different sur-
faces, as the force applied in the percussor unit can be calibrated,
so it can be adjusted according to the specific surface to be anal-
ysed, thus applying only the minimum force necessary to replicate
the restorers’ gentle touch. It is important to note that the de-
vice is intended for use exclusively by professional restorers. Only
professionals possess the necessary expertise to operate the PI-
CUS safely and effectively, ensuring both accurate results and the
preservation of the analyzed surfaces. The system now integrates
digital technologies, leading to a futuristic AI-PICUS, that can au-
tomate repetitive tasks and enhance precision, thereby mitigating
measurement biases. The findings of this study align with previ-
ous research in the field of cultural heritage conservation. So far,
Al can be employed to meticulously analyze images and data to
monitor [26] and assess damage to cultural heritage objects [27].
This allows for the proactive identification of potential problems
or defects [28], enabling timely interventions to prevent further
damage [29]. Al can also play a role in raising public awareness
about cultural heritage [30]. This valuable information can then be
used to develop and implement targeted conservation plans [8,31].
A revolutionary implementation is in defect detection in materi-
als and infrastructure: leak detection [32], crack identification in
metals [33], concrete strength prediction [29], bridge health eval-
uation [34,35] ultrasonic flaw detection [36], steel corrosion risk
modelling [27], and Al-powered structural health monitoring [26].

Despite the above-cited Al applications in cultural heritage, to
the best of our knowledge, this implementation represents the pi-
oneering use of a listening device for the identification of plaster
detachments across multiple levels, facilitated by Al. This ground-
breaking achievement serves as a catalyst for further advance-
ments in the conservation of our invaluable artistic heritage, a
legacy from our ancestors. It underscores the imperative to defend
and conserve these treasures in the most effective manner possi-
ble, leveraging innovative tools such as artificial intelligence.
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Overall, the synergy between human expertise, classification
techniques, probability assessment, interpolation methods, and
infrared tracking presents a comprehensive solution that empow-
ers restorers with the tools and insights necessary to monitor and
predict the evolution of the state of conservation together with
helping to design complex conservation and restoration projects,
with confidence and precision.

5. Conclusions

The Al-based method outlined in this paper offers numerous
advantages compared to the traditional auscultation approach
in use within the community of professionals dedicated to con-
servation and restoration, who daily have to face sensitivity to
boundary conditions and potential physical strain. Although op-
erated by humans, the Al-based method is less susceptible to
biases and boundary conditions. It operates on objective criteria,
enhancing the repeatability of condition assessments. This can
lead to better resource planning and more efficient use of funds.

The Al method demonstrates remarkable efficiency and accu-
racy, thanks to the advanced capabilities of artificial intelligence.
By leveraging Al algorithms, the method can swiftly and precisely
identify defects and areas in need of intervention, streamlining the
overall process.

We have introduced an innovative Al-based method tailored
for the conservation of cultural heritage multilayered structures
and renders, demonstrating its effectiveness through real-world
case studies. This method has proven instrumental in generating
detailed defect maps, empowering conservators-restorers to work
with enhanced efficiency and precision.

The significance of this Al-based approach extends beyond its
immediate applications. Future endeavours will concentrate on re-
fining the method’s accuracy and implementing tests on cultural
heritage cases of study. The journey towards harnessing Al's full
potential in restoration endeavours is just beginning, promising ex-
citing prospects for the future of heritage conservation.

The Al-based method offers efficiency, accuracy, objectivity, ac-
cessibility, and versatility, representing a significant advancement
in the field of restoration. By embracing this innovative approach,
the restoration community can enhance their preservation efforts
and safeguard our cultural heritage for future generations.

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.culher.2024.07.012.

References

[1] G. Caliano, F. Mariani, P. Calicchia, PICUS: a pocket-sized system for simple and

fast non-destructive evaluation of the detachments in ancient artifacts, Appl.

Sci. 11 (8) (2021) 3382.

I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT press, 2016.

Z. Li, FE Liu, W. Yang, S. Peng, J. Zhou, A survey of convolutional neu-

ral networks: analysis, applications, and prospects, IEEE Trans. Neural Netw.

Learn.Syst. 33 (12) (2021) 6999-7019.

N. Aloysius, M. Geetha, A review on deep convolutional neural networks,

in: 2017 International Conference on Communication and Signal Processing

(ICCSP), IEEE, 2017, pp. 0588-0592.

M. Krichen, Convolutional neural networks: a survey, Computers 12 (8) (2023)

151.

T. Wiatowski, H. Bolcskei, A mathematical theory of deep convolutional neu-

ral networks for feature extraction, IEEE Trans. Inf. Theory 64 (3) (2017)

1845-1866.

[7] Y.H. Liu, Feature extraction and image recognition with convolutional neural
networks, in: Journal of Physics: Conference Series, 1087, IOP Publishing, 2018,
p. 062032.

[8] X. Ye, T. Jin, C. Yun, A review on deep learning-based structural health moni-
toring of civil infrastructures, Smart Struct. Syst 24 (5) (2019) 567-585.

[2]
131

[4

(5

(6]

85

Journal of Cultural Heritage 69 (2024) 78-85

[9] B. Zhu, Nondestructive testing method of engineering material defects based
on artificial intelligence algorithm, in: 2023 2nd International Conference
on 3D Immersion, Interaction and Multi-sensory Experiences (ICDIIME), IEEE,
2023, pp. 302-307.

[10] G. Caliano, F. Mariani, P. Calicchia, PICUS: a pocket-sized system for simple and
fast non-destructive evaluation of the detachments in ancient artifacts, Appl.
Sci. (Switzerland) 11 (8) (2021), doi:10.3390/app11083382.

[11] FE. Mariani, A.S. Savoia, G. Caliano, An innovative method for in situ monitor-
ing of the detachments in architectural coverings of ancient structures, J. Cult.
Heritage 42 (2020), doi:10.1016/j.culher.2019.07.013.

[12] G. Caliano, F. Mariani, A. Salvini, A portable and autonomous system for the
diagnosis of the structural health of cultural heritage (PICUS), 2023. ISBN:
978-92-990090-6-2

[13] G. Caliano, F. Mariani, F. Vitali, P. Pogliani, The “PICUS” system in the detec-
tion of defects on panel paintings and wooden boards, 2022 IEEE International
Ultrasonics Symposium (IUS), 2022, doi:10.1109/1US54386.2022.9958892.

[14] F. Mariani, C. Giosué, F. Di Stasio, P. Pogliani, Evaluation of detachment be-
tween layers of ancient plaster renderings: comparison between the traditional
technique and a new and innovative automated procedure called PICUS, 2024,
doi:10.26650/B/AA9PS34.2024.006.014.

[15] E Li, M. Liu, Y. Zhao, L. Kong, L. Dong, X. Liu, M. Hui, Feature extraction and
classification of heart sound using 1D convolutional neural networks, EURASIP
J. Adv. Signal Process. 2019 (1) (2019) 1-11.

[16] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, DJ. Inman, 1D convolu-
tional neural networks and applications: a survey, Mech. Syst. Signal Process.
151 (2021) 107398.

[17] O. Avci, O. Abdeljaber, S. Kiranyaz, D. Inman, Structural damage detection in
real time: implementation of 1D convolutional neural networks for SHM ap-
plications, in: Structural Health Monitoring & Damage Detection, Volume 7:
Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dy-
namics 2017, Springer, 2017, pp. 49-54.

[18] . Li, ].-h. Cheng, J.-y. Shi, F. Huang, Brief introduction of back propagation (BP)
neural network algorithm and its improvement, in: Advances in Computer Sci-
ence and Information Engineering: Volume 2, Springer, 2012, pp. 553-558.

[19] Keras Sequential Model, 2024, (https://keras.io/guides/sequential_model/). Ac-
cessed: April 10.

[20] G. TensorFlow, Large-scale machine learning on heterogeneous systems, 2015,
(https://tensorflow.org).

[21] N. Developers, NumPy: The fundamental package for scientific computing
with Python, 2023. https://numpy.org/doc/stable/reference/generated/numpy.
roll.html.

[22] CEG.D. Santos, ].P. Papa, Avoiding overfitting: a survey on regularization meth-
ods for convolutional neural networks, ACM Comput. Surv. (CSUR) 54 (10s)
(2022) 1-25.

[23] C. Shorten, T.M. Khoshgoftaar, A survey on image data augmentation for deep
learning, J. Big Data 6 (1) (2019) 1-48.

[24] L. Taylor, G. Nitschke, Improving deep learning with generic data augmenta-
tion, in: 2018 IEEE Symposium Series on Computational Intelligence (SSCI),
IEEE, 2018, pp. 1542-1547.

[25] Scikit-learn: KFold documentation, 2024, (https://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.KFold.html). Accessed: April 10.

[26] A. Sabato, S. Dabetwar, N.N. Kulkarni, G. Fortino, Noncontact sensing tech-
niques for Al-aided structural health monitoring: a systematic review, IEEE
Sens. J. 23 (5) (2023) 4672-4684.

[27] ].-S. Chou, N.-T. Ngo, W.K. Chong, The use of artificial intelligence combiners
for modeling steel pitting risk and corrosion rate, Eng. Appl. Artif. Intell. 65
(2017) 471-483.

[28] Z. Wang, D. Zhu, An accurate detection method for surface defects of complex
components based on support vector machine and spreading algorithm, Mea-
surement 147 (2019) 106886.

[29] Y.R. Wang, Y.L. Lu, D.L. Chiang, Adapting artificial intelligence to improve

in situ concrete compressive strength estimations in rebound hammer tests,

Front. Mater. 7 (2020) 568870.

D. Schreiber, C. Picus, D. Fischinger, M. Boyer, The defalsif-Al project: protect-

ing critical infrastructures against disinformation and fake news, Elektrotech.

Informationstech. 138 (7) (2021) 480.

[31] P.G. Asteris, V.G. Mokos, Concrete compressive strength using artificial neural
networks, Neural Comput. Appl. 32 (15) (2020) 11807-11826.

[32] B. Ahn, J. Kim, B. Choi, Artificial intelligence-based machine learning consider-
ing flow and temperature of the pipeline for leak early detection using acoustic
emission, Eng. Fract. Mech. 210 (2019) 381-392.

[33] A. Ali, B. Hu, O.M. Ramabhi, Intelligent detection of cracks in metallic surfaces
using a waveguide sensor loaded with metamaterial elements, Sensors 15 (5)
(2015) 11402-11416.

[34] S. Yehia, O. Abudayyeh, 1. Abdel-Qader, A. Zalt, Ground-penetrating radar, chain
drag, and ground truth: Correlation of bridge deck assessment data, Transp.
Res. Record. 2044 (1) (2008) 39-50, doi:10.3141/2044-05.

[35] S. Yehia, O. Abudayyeh, 1. Abdel-Qader, A. Zalt, Ground-penetrating radar, chain
drag, and ground truth: correlation of bridge deck assessment data, Transp.
Res. Record. 2044 (1) (2008) 39-50.

[36] S. Cantero-Chinchilla, P.D. Wilcox, AJ. Croxford, Deep learning in automated
ultrasonic NDE-developments, axioms and opportunities, NDT & E Int. 131
(2022) 102703.

(30]



