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Abstract

We consider the gravity water waves system with a periodic one-dimensional in-
terface in infinite depth and give a rigorous proof of a conjecture of Dyachenko-
Zakharov [16] concerning the approximate integrability of these equations. More
precisely, we prove a rigorous reduction of the water waves equations to its in-
tegrable Birkhoff normal form up to order 4. As a consequence, we also obtain
a long-time stability result: periodic perturbations of a flat interface that are ini-
tially of size " remain regular and small up to times of order "�3. This time scale
is expected to be optimal. © 2022 The Authors. Communications on Pure and
Applied Mathematics published by Wiley Periodicals LLC.
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1 Introduction
We consider an incompressible and irrotational perfect fluid, under the action of

gravity, occupying at time t a two-dimensional domain with infinite depth, periodic
in the horizontal variable, given by

(1.1) D� WD f.x; y/ 2 T �RW �1 < y < �.t; x/
	
; T WD R=.2�Z/;

where � is a regular enough function. The velocity field in the time-dependent
domain D� is the gradient of a harmonic function �, called the velocity potential.
The time evolution of the fluid is determined by a system of equations for the two
functions .t; x/! �.t; x/, .t; x; y/! �.t; x; y/. Following Zakharov [36], given
�.t; x/ and the restriction  .t; x/ WD �.t; x; �.t; x// of the velocity potential at
the top boundary, one can recover �.t; x; y/ as the unique solution of the elliptic
problem

(1.2) �� D 0 in D�; @y�! 0 as y ! �1; � D  on fy D �.t; x/g:
The .�;  / variables then satisfy the gravity water waves system

(1.3)

8<:
@t� D G.�/ 

@t D �g� � 1

2
 2x C

1

2

.�x x CG.�/ /2

1C �2x

where G.�/ is the Dirichlet-Neumann operator

(1.4) G.�/ WD
q
1C �2x.@n�/

���
yD�.t;x/

D .@y� � �x@x�/.t; x; �.t; x//;
and n is the outward unit normal at the free interface y D �.t; x/. Without loss of
generality, we set the gravity constant to g D 1.

It was first observed by Zakharov [36] that (1.3) is the Hamiltonian system

(1.5) @t� D r H.�; /; @t D �r�H.�; /;



BIRKHOFF NORMAL FORM FOR PERIODIC GRAVITY WATER WAVES 3

where r denotes the L2-gradient, with Hamiltonian

(1.6) H.�; / WD 1

2

Z
T

 G.�/ dx C 1

2

Z
T

�2 dx

given by the sum of the kinetic and potential energy of the fluid. Note that the
mass

R
T
� dx is a prime integral of (1.3) and, with no loss of generality, we can fix

it to zero by shifting the y-coordinate. Moreover, (1.3) is invariant under spatial
translations and Noether’s theorem implies that the momentum

R
T
�x.x/ .x/dx

is a prime integral of (1.5).
Let H s.T / WD H s , s 2 R, be the Sobolev spaces of 2�-periodic functions

of x. It is natural to consider � in the subspace of zero average functionsH s
0 .T / �

H s.T /, and  in the standard homogeneous Sobolev space PH s.T /.1 Moreover,
since the space averages y�0.t/ WD 1

2�

R
T
�.t; x/dx, y 0.t/ WD 1

2�

R
T
 .t; x/dx

evolve according to the decoupled equations2 @t y�0.t/ D 0, @t y 0.t/ D �gy�0.t/,
we may restrict, with no loss of generality, to the invariant subspace with y�0.t/ D
y 0.t/ D 0.

The main result of this paper (Theorem 1.1) proves a conjecture of Dyachenko-
Zakharov [16], supported by Craig-Worfolk [12] on the approximate integrability
of the water waves system (1.3). More precisely, we prove that (1.3) can be conju-
gated, via a bounded and invertible transformation in a neighborhood of the origin,
to its Hamiltonian Birkhoff normal form, up to order 4. This latter—in the PDE
literature sometimes referred to as the “resonant system”—was formally computed
in [12,16] (see also [11]) and, remarkably, shown to be integrable. Despite several
attempts, the formal approach in [12, 16] has never been translated into a rigorous
result. The proof we give in this paper is actually based on a completely different
approach to the Birkhoff normal form reduction, which we describe at the end of
this introduction. As a consequence of Theorem 1.1, we also obtain a long-time
stability result (Theorem 1.2): periodic perturbations that are initially "-close to the
flat equilibrium lead to solutions that remain regular and small for times of order
"�3. This time scale is expected to be optimal. These results have been announced
in [8].

While in recent years several results have been obtained for quasilinear equa-
tions with initial data that decay sufficiently fast at infinity, fewer results are avail-
able in the periodic setting. In this context, the achievement of Birkhoff normal
forms reductions is a key step to provide an accurate description of the long-term
dynamics of evolution PDEs like (1.3). We also remark that the stability result in
Theorem 1.2 is obtained by completely different mechanisms compared to most

1 The spaces PH s.T / andH s
0 .T / are isometric. Thus we will conveniently identify  with a zero

average function.
2 Since the domain D� has infinite depth, if � solves (1.2), then �c.x; y/ WD �.x; y � c/,

8c 2 R, solves the same problem in D�Cc assuming the Dirichlet datum  at the free boundary
� C c. Therefore G.� C c/ D G.�/ and

R
T
r�K dx D 0 where K WD 1

2

R
T
 G.�/ dx denotes

the kinetic energy.
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recent works; see, for example, [21,23,26,34], which obtain a shorter "�2 stability
time in the absence of cubic resonances (see (1.25)). Indeed, we deduce Theorem
1.2 by the complete conjugation of the water waves equations (1.3) to its integrable
Birkhoff normal form.

1.1 Main results
We denote the horizontal and vertical components of the velocity field at the free

interface by

V WD V.�;  / WD  x � �xB; B WD B.�;  / WD G.�/ C �x x

1C �2x
;(1.7)

and the “good unknown” of Alinhac

(1.8) ! WD  �OpBW.B.�;  //�;

as introduced in [3] (see Definition 2.4 for the definition of the paradifferential
operator OpBW).

To state our first main result concerning the rigorous reduction to Birkhoff nor-
mal form of the system (1.3), let us assume that, for N large enough and some
T > 0, we have a classical solution

.�;  / 2 C 0.��T; T �IHNC 1
4 �HNC 1

4 /(1.9)

of the Cauchy problem for (1.3) with the initial height satisfying

(1.10)
Z
T

�.0; x/dx D 0:

The existence of such a solution for small enough T is guaranteed by the local well-
posedness theory (see, for example, Theorem 1.3) under the regularity assumption
.�;  ; V; B/jtD0 2 XN�.1=4/ where we denote

(1.11) Xs WD H sC 1
2 �H sC 1

2 �H s �H s:

Defining the complex scalar unknown

(1.12) u WD 1p
2
jDj� 14�C ip

2
jDj 14!;

we deduce, by (1.9), that u 2 C 0.��T; T �IHN /, and u solves an equation of
the form @tu C ijDj1=2u D M�2.u; u/ where M�2.u; u/ is a fully nonlinear
vector field that contains up to first-order derivatives of u. Moreover, since the
zero average condition (1.10) is preserved by the flow of (1.3), it follows thatZ

T

u.t; x/dx D 0 8t 2 ��T; T �:(1.13)

This is our first main result.
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THEOREM 1.1 (Birkhoff normal form). Let u be defined as in (1.12), with ! as in
(1.8), for .�;  / solution of (1.3) satisfying (1.9)–(1.10). There exist N � K � 1

and 0 < x"� 1 such that, if

(1.14) sup
t2��T;T �

KX
kD0

@kt u.t/ PHN�k � x";

then there exist a bounded and invertible transformation B D B.u/ of PHN , which
depends (nonlinearly) on u, and a constant C WD C.N/ > 0 such that

(1.15) kB.u/kL. PHN ; PHN /
C k.B.u//�1kL. PHN ; PHN /

� 1C Ckuk PHN ;

and the variable ´ WD B.u/u satisfies the equation

(1.16) @t´ D �i@x́HZD.´; x́/C XC
�4

where

(1) the Hamiltonian HZD has the form

HZD D H
.2/
ZD CH

.4/
ZD; H

.2/
ZD.´; x́/ WD

1

2

Z
T

��jDj 14´��2 dx;(1.17)

with

(1.18)

H
.4/
ZD.´; x́/ WD

1

4�

X
k2Z

jkj3�j´kj4 � 2j´kj2j´�kj2�
C 1

�

X
k1;k22Z;

sign.k1/Dsign.k2/;
jk2j<jk1j

jk1jjk2j2
��j´�k1 j2j´k2 j2 C j´k1 j2j´k2 j2

�

where ´k denotes the kth Fourier coefficient of the function ´.

(2) XC
�4 WD XC

�4.u; xu; ´; x́/ is a quartic nonlinear term satisfying, for some
C WD C.N/ > 0, the “energy estimate”

(1.19) Re
Z
T

jDjNXC
�4 � jDjN´ dx � Ck´k5PHN

:

The main point of Theorem 1.1 is the construction of the bounded and invert-
ible transformation B.u/ in (1.15) which recasts the water waves system (1.3)
into the equation (1.16)–(1.19). Theorem 1.1 rigorously relates the flow of the
full water waves system (1.3) to the flow of the system (1.16), which is made by
the explicit Hamiltonian term �i@x́HZD plus remainders of higher homogeneity.
These remainders are under full control thanks to the energy estimates (1.19). The
Hamiltonian HZD is integrable, as observed in [12, 16], and its flow preserves all
the Sobolev norms; see Theorem 1.4. Thus, relying on Theorem 1.1, we can prove
the following result:
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THEOREM 1.2 (Long-time existence). There exists3 s0 > 0 such that, for all s �
s0, there is "0 > 0 such that, for any initial data .�0;  0/ satisfying (recall (1.11))

(1.20) k.�0;  0; V0; B0/kXs � " � "0;
Z
T

�0.x/dx D 0;

where V0 WD V.�0;  0/, B0 WD B.�0;  0/ are defined by (1.7), the following
holds: there exist constants c > 0 and C > 0, and a unique classical solution
.�;  ; V; B/ 2 C 0.��T"; T"�; Xs/ of the water waves system (1.3) with initial con-
dition .�;  /jtD0 D .�0;  0/ with

(1.21) T" � c"�3;
satisfying

(1.22)

sup
��T";T"�

�k.�;  /kH s�H s C k.V; B/kH s�1�H s�1

� � C";Z
T

�.t; x/dx D 0:

Let us briefly describe some of the key points of the above results:

(1) To our knowledge, Theorem 1.2 is the first normal form "�3 existence re-
sult for dispersive PDEs with a quadratic nonlinearity in the absence of external
parameters (and excluding equations admitting conserved quantities that control
high Sobolev norms). One of the main difficulties is that (1.3) presents a fam-
ily of nontrivial quartic resonances, the Benjamin-Feir resonances (1.27), which
are potentially a strong obstruction to controlling the dynamics for times of order
"�3. For parameter-depending PDEs with external parameters one can avoid such
nontrivial resonances by modulating the dispersion relation, cf. paragraph “Param-
eters” below Theorem 1.4.

(2) The stability time � "�3 in Theorem 1.2 is expected to be optimal in
view of the presence of quintic resonances as exhibited by Craig-Worfolk [12] and
Dyachenko-Lvov-Zakharov [15]. In other words, one cannot expect a stability time
� "�4 for all initial data.

(3) We develop a general method to justify the formal/heuristic calculations of
the Hamiltonian Birkhoff normal form of any Hamiltonian PDE. Applying several
nonlinear flow conjugation maps (generated by paradifferential or smoothing op-
erators) we transform (1.3) in Poincaré-Birkhoff normal form (see (1.29)–(1.30)),
which is not a priori explicit. Then, a key step in the proof of Theorem 1.1 is a nor-
mal form uniqueness argument to identify the cubic Poincaré-Birkhoff resonant
system with the Hamiltonian equations associated to the Hamiltonian HZD com-
puted by a formal expansion in [11,12,15,16] (see (1.17)–(1.18)). The uniqueness

3 We did not try to optimize the regularity index s0. With a more careful analysis one could likely
pick some s0 � 30. In any case, the Sobolev regularity is an unimportant aspect in the study of the
long-time behavior of classical solutions to quasilinear problems.
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of the normal form is based on the absence of cubic resonances. An inspiration
for this identification argument is the famous Moser’s indirect proof of the conver-
gence of the Lindsted power series to the KAM quasi-periodic solutions [30].

We also make a couple of technical comments about the rigorous conjugation of
(1.3) to its cubic Poincaré-Birkhoff normal form.

� Besides the resonant interactions, one also needs to pay attention to near
resonances, which can prevent the boundedness of Poincaré-Birkhoff nor-
mal form transformations. We overcome this issue by performing an iter-
ative reduction of the water waves equations (1.3) to constant integrable
coefficients, modulo smoothing remainders; see (1.28). In this process
we identify and exploit specific algebraic cancellations of (1.3) in infinite
depth.

� Since the dispersion relation
pjkj is sublinear, our reduction procedure

substantially differs from the recent work of Berti-Delort [6], where the
dispersion relation � jkj3=2 is superlinear. Moreover, in contrast to [6] we
have to deal with nontrivial resonances (the Benjamin-Feir resonances) that
we cannot eliminate modulating the surface tension parameter as in [6],
and we do not restrict to even initial data. However, we still employ the
paradifferential framework of [6] as it readily provides us with a convenient
paralinearization of the Dirichlet-Neumann operator (1.4).

We have chosen to formulate the long-time existence result of Therem 1.2 using
the original symplectic variables .�;  / as well as the velocity components .V; B/
in (1.7) consistently with the following local existence result.

THEOREM 1.3 (Local existence [1]). Let s > 3=2 and consider .�0;  0/ such that
.�0;  0; V0; B0/ is in Xs; see (1.11).

Then there exists Tloc > 0 such that the Cauchy problem for (1.3) with initial
data .�0;  0/ has a unique solution .�;  / 2 C 0.�0; Tloc�;H

sC.1=2/ �H sC.1=2//
with .V; B/ 2 C 0.�0; Tloc�;H

s �H s/. Moreover, denoting by T� the maximal time
of existence of .�;  /, if, for some T0 > 0,

(1.23) sup
�0;T0�

k.�;  ; V; B/.t/kX5 < C1;

then T0 < T� and sup�0;T0� k.�;  ; V; B/.t/kXs < C1.

Theorem 1.3 is essentially the local existence result [1, theorem 1.2], stated in
the case of the torus T , for a fluid in infinite depth. The result is based on en-
ergy methods for hyperbolic symmetrizable quasi-linear systems, which are the
same in Td and in Rd . By time reversibility, the solutions of (1.3) are defined in
a symmetric interval ��T; T �. In agreement with Theorem 1.3, at any time t the
solution .�;  ; V; B/ of Theorem 1.2 belongs to the same space Xs as the initial
datum (see (1.20)), but in (1.22) we control only a weaker norm of the solution.
This is a well-known phenomenon of the pure gravity water waves equations (see,
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for instance, [1, 2]): in the variables .�; !/ the Sobolev regularity of the solution
is preserved along the flow, but there is a loss of derivatives in passing to the un-
knowns .�;  /. The weaker bound (1.22) is still more than sufficient to apply the
continuation criterion of Theorem 1.3.

1.2 Some literature, the Dyachenko-Zakharov conjecture, and some ideas of
the proof

The local well-posedness of the water waves and free boundary Euler equations
has been addressed by many authors (see, for example, [1, 10, 31, 33]), and it is
presently well understood; we refer to the review [27, sec. 2] for an extensive list
of references. In particular, for smooth enough initial data that are of size ", the
solutions exist and stay regular for times of order "�1. When the horizontal variable
x 2 Rd , for sufficiently small and spatially localized initial data, it is possible to
construct global-in-time solutions exploiting the dispersive properties of the flow.
Results for (1.3) have been proved in [2, 22, 24, 32, 34] and in [20, 35] for the 3-D
case. We refer again to [27] and to the introduction of [14], for a more detailed
presentation of these results.

Long-time existence on tori. When the horizontal variable x 2 Td , there are
no dispersive effects that control solutions for long times, and a tool to extend the
lifespan of solutions is normal form theory. To explain the idea, let us consider a
generic evolution equation of the form

(1.24) @tuC i!.D/u D Q.u; xu/; u.t D 0/ D u0; ku0kHN � ";
where !.D/ is a real Fourier multiplier, and Q is a quadratic nonlinearity that
depends on .u; xu/ and their derivatives in a quasi-linear way. In the case of (1.3)
the dispersion relation is !.k/ D pjkj. An energy estimate for (1.24) of the form
d
dt
E.t/ . ku.t/kHNE.t/, where E.t/ � ku.t/k2

HN , allows the construction of
local solutions on time scales of O."�1/. In order to prove existence for times of
O."�2/ one can try to obtain a quartic energy inequality of the form d

dt
E.t/ .

ku.t/k2HNE.t/. For (1.3) inequalities of this type have been proven in [2, 21, 24,
34]; see also [23,26] for capillary waves, and [7] for gravity-capillary water waves
(relying on methods developed in this paper). Although some delicate analysis is
needed due to the quasilinearity of the PDE, the possibility of proving such quartic
energy estimates ultimately relies on the absence of 3-waves resonances, that is,
nonzero integers .n1; n2; n3/ solving, for some �j 2 fC;�g,
(1.25) �1!.n1/C �2!.n2/C �3!.n3/ D 0; �1n1 C �2n2 C �3n3 D 0:

The Dyachenko-Zakharov conjecture. In order to extend the lifespan of solutions
of (1.3) up to times of order "�3 one may try to obtain a quintic energy estimate
like d

dt
E.t/ . ku.t/k3HNE.t/. At a formal level, this would be possible in the
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absence of nontrivial 4-waves resonances, namely integer solutions of

(1.26)
�1!.n1/C �2!.n2/C �3!.n3/C �4!.n4/ D 0;

�1n1 C �2n2 C �3n3 C �4n4 D 0;

which do not appear in pairs with corresponding opposite signs. This property is
not satisfied by the gravity water waves system (1.3). Indeed, as shown in [16],
there are many solutions to (1.26). For example, if �1 D �3 D 1 D ��2 D ��4,
in addition to the trivial solutions .n1; n2; n3; n4/ D .k; k; j; j /, there is the two-
parameter family of solutions, called Benjamin-Feir resonances,[

�2Znf0g;b2N

�
n1 D ��b2; n2 D �.b C 1/2;

n3 D �.b2 C b C 1/2; n4 D �.b C 1/2b2
	
:

(1.27)

We then perform a diagonalization of the paralinearized system (3.7) up to smooth-
ing remainders, obtaining system (3.33); see Proposition 3.10.

Applying a purely formal reduction to Birkhoff normal form up to order 4, the
trivial resonances give rise to benign integrable monomials of the form j´kj2j j́ j2,
whereas the Benjamin-Feir resonances could give nonintegrable monomials of the
form ´��b2´�.bC1/2´�.b2CbC1/2´�.bC1/2b2 C c.c. We refer to Section 6.1 for
more details. A striking property proved in [16] (see also [11, 12]), is that the
coefficients of the formal Birkhoff Hamiltonian that are supported on (1.27) are
actually zero. In particular, one has the following:

THEOREM 1.4 (Formal integrability at order 4 [11, 12, 15, 16]). There exists a for-
mal transformation � such that the truncation of H �� at order 4 of homogeneity
is given by HZD as in (1.18). Moreover, HZD is integrable (can be written in
action-angle variables as (6.18)) and possesses the actions j´nj2, n 2 Z n f0g, as
prime integrals. In particular, its flow preserves all Sobolev norms.

This result is a purely formal calculation, and no actual relation is established
between the flow of H (which is well-posed for short times) and that of H � �
or HZD . This is the goal of Theorem 1.1. Before describing some ideas for the
proof of Theorem 1.1 we recall some other normal form results when the dispersion
relation !.k/ in (1.24) depends on additional parameters.

Parameters. Under suitable nondegeneracy conditions one could prove that, for
most values of the parameters, there are no N -waves resonances, that is, integer
solutions of

PN
jD1 �j!.nj / D 0,

PN
jD1 �jnj D 0, except the trivial resonances.

In this direction we mention the normal form results [5, 13] for Hamiltonian semi-
linear, resp., quasi-linear, Klein-Gordon equations. For 1-D, resp., 2-D, gravity-
capillary water waves, the first "�N , resp., "�5=3C, existence result was proved
in [6], resp., [28], for almost all values of the surface tension. See also [19] for fully
nonlinear 1-D Schrödinger equations with an external convolution potential used
as a parameter. We finally mention that time quasi-periodic, even in x, solutions
have been constructed in [9], resp., [4], for 1-D gravity-capillary, resp., gravity,
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water waves using the surface tension, resp., the depth, as a parameter. We remark
that a key point of Theorems 1.1 and 1.2 is the absence of external parameters.

1.3 Ideas of the proof of Theorem 1.1.
Step 1. Diagonalization up to smoothing remainders.

We begin our analysis by paralinearizing the water waves system (1.3), ex-

pressed in the complex variable U WD
�
u

xu
�

introduced in (1.12); see Propositions

3.1 and 3.3.
Step 2. Reduction to constant, integrable coefficients and Poincaré-Birkhoff nor-

mal forms. In Section 4 we reduce all the paradifferential operators in the diago-
nalized system (3.33) to constant-in-x coefficients, which are “integrable” in the
sense of Definition 4.1, up to smoothing remainders of homogeneity 2 and 3, and
higher-order “admissible” contributions satisfying energy estimates of the form
(1.19) (see Proposition 4.4). The most delicate reductions concern the highest-
order fully nonlinear transport term iOpBW.V �/w and the quasilinear dispersive
term iOpBW..1C a.0//j�j 12 /w in the right-hand side of (3.33).

Let us briefly describe how to deal with the transport term. At the highest order,
system (3.33) looks like @tw D �iOpBW.V �/w C � � � where V D V1.uI x/ C
V2.uI x/ and the functions V1; V2 are, respectively, linear and quadratic in u. In
Sections 4.1 and 4.1 we construct a bounded and invertible map �� as the flow of
the paradifferential operator iOpBW.b.uI �; x/�/ where

b.uI �; x/ D �.uI �; x/
1C ��x.uI �; x/ and �.uI x/ D �1.uI x/C �2.uI x/

is a real-valued function to be determined. Here �1.uI x/, �2.uI x/ are functions
respectively linear and quadratic in u. Setting v D ��D1u we obtain @tv D
�iOpBW

�
.V .uI x/C @t�.uI x/CQ.V1; �1//�

�
v C � � � where Q.V1; �1/ is a real

function, quadratic in .V1; �1/, and “ � � � ” denote paradifferential operators of order
less than 1, or admissible terms satisfying (1.19). Then we look for � solving
V.uI x/C @t�.uI x/CQ.V1; �1/ D �.u/C O.u3/ where �.u/ is constant-in-x.
However, in general, one can only obtain

@t�.u/C V.u/CQ.V1; �1/

D
X

n2Znf0g

�
V
.1/
2

�C�
n;n

junj2 C
X

n2Znf0g

�
V
.1/
2

�C�
n;�nunu�ne

i2nx CO.u3/;



BIRKHOFF NORMAL FORM FOR PERIODIC GRAVITY WATER WAVES 11

where .V.1/2 /C�n1n2 are some coefficients depending on the function V . We then

verify the essential4 cancellation .V.1/2 /C�n;�n � 0, thus obtaining

@tv D �iOpBW�.�.u/CO.u3//�
�
v C � � � ; �.u/ D 1

�

X
n2Znf0g

njnjjunj2:

Note that this equation reads, in Fourier,

Pvn D � i
�

� X
j2Znf0g

j jj jjvj j2
�
nvn;

up to higher-order admissible terms, where the cubic vector field contains only
Poincaré-Birkhoff resonant cubic monomials, namely of the form (1.30), which
are integrable, i.e., of the special form cj;njvj j2vn.

Similar arguments allow us to reduce to constant coefficients—and in Poincaré-
Birkhoff normal form—the modified dispersive term i.1C a2/j�j1=2 and all other
lower-order operators. We then obtain a system of the form

@t´ D ��.´/@x´ � ijDj 12´C r�1=2.´ID/�´�CR.´/C X�4(1.28)

where r�1=2 is a constant-coefficient integrable symbol of order�1=2,R.´/ a very
regular nonlinear term, and X�4 an admissible remainder satisfying (1.19). Note
that the cubic integrable vector field��.´/@x´Cr�1=2.´ID/�´� in (1.28) is already
in Poincaré-Birkhoff normal form.

Step 3. Poincaré-Birkhoff transformations and normal form identification.
In Section 5 we apply transformations to eliminate all nonresonant quadratic and

cubic nonlinear terms in R.´/. Here, potential losses from small divisors created
by near-resonances (see Proposition 5.3) are compensated by the smoothing prop-
erties of R. We then obtain a new system that is in Poincaré-Birkhoff normal form
(Proposition 5.2)

@t´ D ��.´/@x´ � ijDj 12´C r�1=2.´ID/�´�CRres.´/C X�4(1.29)

Rres.´/ WD
X

�1n1C�2n2C�3n3Dn
�1!.n1/C�2!.n2/C�3!.n3/D!.n/

c�1;�2;�3n1;n2;n3
´�1n1´

�2
n2
´�3n3e

inx; c�1;�2�3n1;n2;n3
2 C:(1.30)

At this stage we do not know if the equation (1.29)–(1.30) is Hamiltonian since
we have performed nonsymplectic transformations. This is why we call (1.29)–
(1.30) the cubic Poincaré-Birkhoff normal form of (1.3), and not its (Hamiltonian)

4 While we do verify explicitly several key cancellations, some, but not all, of them can be derived
by the following invariance properties: (i) the water waves vector fieldX.�; / in the right-hand side
of (1.3) is reversible with respect to the involution

S W

�
�.x/

 .x/

�
7!

�
�.�x/

� .�x/

�
;

i.e., X � S D �S �X . (ii) X maps even functions into even functions.
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Birkhoff normal form. The coefficients c�1;�2;�3n1;n2;n3 are in principle computable, but
their explicit expression is definitively very involved. Then, the last main step in
Section 6.2 is an identification argument to prove that the cubic Poincaré-Birkhoff
terms in (1.29)–(1.30) are uniquely determined and coincide with the Hamiltonian
system generated by the fourth-order Birkhoff normal form Hamiltonian HZD in
(1.18), namely

��.´/@x´C r�1=2.´ID/�´�CRres.´/ D �i@x́H .4/
ZD:

The uniqueness of the normal form is based on the absence of cubic resonances. A
related argument in the context of linear KAM norm form is given in [17].

2 Functional Setting and Paradifferential Calculus
In this section we introduce our notation and recall several results on paradif-

ferential calculus, mostly following chapter 3 of [6]. We find convenient the use
of this setup to obtain our initial paralinearization of the water waves equations
(1.3) with multilinear expansions, as stated in Proposition 3.1, and several tools for
conjugations via paradifferential flows, which are contained in Appendix A.2.

Given an interval I � R symmetric with respect to t D 0 and s 2 R we define
the space

CK�
�
I; PH s.T ;C2/

� WD K\
kD0

C k
�
I I PH s�k.T IC2/�;

endowed with the norm

(2.1) sup
t2I

kU.t; �/kK;s where kU.t; �/kK;s WD
KX
kD0

@kt U.t; �/ PH s�k :

We denote by CK�R.I; PH s.T ;C2// the space of functionsU in CK� .I; PH s.T ;C2//

such that U D � uxu �. Given r > 0 we set

(2.2) BKs .I I r/ WD
�
U 2 CK� .I; PH s.T IC2// W sup

t2I
kU.t; �/kK;s < r

	
:

With similar meaning we denote CK� .I I PH s.T IC//. We expand a 2�-periodic
function u.x/, with zero average in x (which is identified with u in the homoge-
neous space), in Fourier series as

(2.3) u.x/ D
X

n2Znf0g
yu.n/ e

inx
p
2�
; yu.n/ WD 1p

2�

Z
T

u.x/e�inx dx:

We also use the notation uCn WD un WD yu.n/ and u�n WD un WD yu.n/. For n 2
N
� WD N nf0g we denote by �n the orthogonal projector from L2.T IC/ to the

subspace spanned by feinx; e�inxg, i.e.,

.�nu/.x/ WD yu.n/ e
inx

p
2�

C yu.�n/e
�inx
p
2�
;
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and we also denote by �n the corresponding projector in L2.T ;C2/. If U D
.U1; : : : ; Up/ is a p-tuple of functions, En D .n1; : : : ; np/ 2 .N�/p, we set

(2.4) �EnU WD .�n1U1; : : : ;�npUp/:

We deal with vector fields X that satisfy the x-translation invariance property

(2.5) X � �� D �� �X 8� 2 R where �� W u.x/ 7! .��u/.x/ WD u.x C �/:

Paradifferential operators. We first give the definition of the classes of symbols
that we are going to use, collecting Definitions 3:1, 3:2, and 3:4 in [6].

DEFINITION 2.1 (CLASSES OF SYMBOLS). Let m 2 R, p;N 2 N with p � N ,
K 0 � K in N, r > 0.

(i) p-homogeneous symbols. We denote by z�mp the space of symmetric p-
linear maps from . PH1.T IC2//p to the space of C1 functions of .x; �/ 2
T � R, U ! ..x; �/ ! a.U I x; �//, satisfying the following. There is
� > 0 and, for any �; � 2 N, there is C > 0 such that

(2.6)
��@�x@�� a.�EnU I x; �/j � C jEn

���C�h�im�� pY
jD1

k�njUj kL2

for any U D .U1; : : : ; Up/ in . PH1.T IC2//p, and En D .n1; : : : ; np/ 2
.N�/p.

Moreover, we assume that, if for some .n0; : : : ; np/ 2 N � .N�/p,
we have �n0a.�n1U1; : : : ;�npUpI �/ ¤ 0, then there exists a choice of
signs �0; : : : ; �p 2 f�1; 1g such that

Pp
jD0 �jnj D 0. This condition is

automatically satisfied by requiring the translation invariance property

(2.7) a.��U I x; �/ D a.U I x C �; �/ 8� 2 R:
For p D 0 we denote by z�m0 the space of constant coefficients symbols
� 7! a.�/ that satisfy (2.6) with � D 0, and the right-hand side replaced
by C h�im�� .

(ii) Non-homogeneous symbols. Let p � 1. We denote by �mK;K0;p�r� the
space of functions .U I t; x; �/ 7! a.U I t; x; �/ defined for U 2 BKs0 .I I r/
for some large enough s0, with complex values such that for any 0 � k �
K � K 0 and any � � s0, there are C > 0, 0 < r.�/ < r , and for
any U 2 BKs0 .I I r.�// \ C kCK

0

� .I; PH� .T IC2// and any �; � 2 N, with
� � � � s0

(2.8)
��@kt @�x@�� a.U I t; x; �/�� � C h�im��kU kp�1kCK0;s0kU kkCK0;� :

(iii) Symbols. We denote by ��mK;K0;p�r; N � the space of functions

.U; t; x; �/! a.U I t; x; �/
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such that there are homogeneous symbols aq 2 z�mq for q D p; : : : ; N � 1
and a nonhomogeneous symbol aN 2 �mK;K0;N �r� such that

(2.9) a.U I t; x; �/ D
N�1X
qDp

aq.U; : : : ; U I x; �/C aN .U I t; x; �/:

We denote by��mK;K0;p�r; N �
M2.C/ the space of 2�2matrices whose entries
are symbols in ��mK;K0;p�r; N �.

Remark 2.2. The property (2.7) means that the dependence with respect to the vari-
able x of the symbol a.U I x; �/ enters only through the function U.x/. It implies
the more general assumption made in [6]: if �n0a.�n1U1; : : : ;�npUpI �/ ¤ 0,
then there is a choice of signs �0; : : : ; �p 2 f�1; 1g such that

Pp
jD0 �jnj D 0. We

mention this condition to be consistent with the notation of [6].

Note that

(2.10)

a 2 z�mp ; b 2 z�m0q ) ab 2 z�mCm0pCq ; @xa 2 z�mp ; @�a 2 z�m�1p I

a 2 �mK;K0;p�r�; K 0 C 1 � K
) @ta 2 �mK;K0C1;p�r�; @xa 2 �mK;K0;p�r�; @�a 2 �m�1K;K0;p�r�I

a 2 �mK;K0;p�r�; b 2 �m
0

K;K0;q�r�) ab 2 �mCm0K;K0;pCq�r�I

a.U I �/ 2 z�mp ) a.U; : : : ; U I �/ 2 �mK;0;p�r� 8r > 0:
Throughout this paper we will systematically use the following expansions, which
are a consequence of (2.7) and u 2 PH1.T IC/. If a1 2 z�m1 , then

(2.11) a1.U I x; �/ D 1p
2�

X
n2Znf0g;�D�

.a1/
�
n.�/u

�
ne

i�nx;

for some .a1/�n.�/ 2 C, and if a2 2 z�m2 , then

(2.12)

a2.U; U I x; �/ D
X

n1;n22Znf0g
�D�

.a2/
��
n1;n2

.�/u�n1u
�
n2

ei�.n1Cn2/x

2�

C
X

n1;n22Znf0g
.a2/

C�
n1;n2

.�/un1un2
ei.n1�n2/x

2�

for some .a2/��
0

n1;n2
.�/ 2 C with �; � 0 D �. In the sequel for simplicity we may

also write a2.U I x; �/ instead of a2.U; U I x; �/.
We also define the following classes of functions in analogy with our classes of

symbols.
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DEFINITION 2.3 (Functions). Fix N 2 N, p 2 N with p � N , K;K 0 2 N with
K 0 � K, r > 0. We denote by zFp, resp., FK;K0;p�r�, �Fp�r; N �, the subspace
of z�0p , resp., �0p �r�, ��

0
p �r; N �, made of those symbols that are independent of

� . We write zFRp , resp., FRK;K0;p�r�, �F
R
p �r; N �, to denote functions in zFp, resp.,

FK;K0;p�r�, �Fp�r; N �, which are real-valued.

Note that functions a1 2 zF1, a2 2 zF2 expanded as in (2.11), (2.12) are real-
valued if and only if

.a1/
C
n D .a1/

�
n ; .a2/

CC
n1;n2 D .a2/

��
n1;n2

; .a2/
C�
n1;n2 D .a2/

C�
n2;n1

:(2.13)

Paradifferential quantization. Given p 2 N we consider smooth functions �p 2
C1.Rp � RIR/ and � 2 C1.R � RIR/, even with respect to each of their
arguments, satisfying, for some 0 < � � 1,

supp�p � f.� 0; �/ 2 Rp �RI j� 0j � �h�ig; �p.� 0; �/ � 1 for j� 0j � �h�i=2;
supp� � f.� 0; �/ 2 R �RI j� 0j � �h�ig; �.� 0; �/ � 1 for j� 0j � �h�i=2:

For p D 0 we set �0 � 1. We assume also that��@�� @��0�p.� 0; �/�� � C�;� h�i���j� j 8� 2 N; � 2 Np;
and ��@�� @��0�.� 0; �/�� � C�;� h�i���� 8�; � 2 N:
A function satisfying the above condition is �.� 0; �/ WD z�.� 0=h�i/ where z� is a
function in C1

0 .RIR/ having a small enough support and equal to 1 in a neighbor-
hood of 0.

DEFINITION 2.4 (Bony-Weyl quantization). If a is a symbol in z�mp , resp., in
�mK;K0;p�r�, we define its Weyl quantization as the operator acting on a 2�-periodic
function u.x/ (written as in (2.3)) as

(2.14) OpW .a/u D 1p
2�

X
k2Z

�X
j2Z

ya
�
k � j; k C j

2

�
yu.j /

�
eikx
p
2�

where ya.k; �/ is the kth-Fourier coefficient of the 2�-periodic function x 7! a.x; �/.
We set, using notation (2.4),

a�p .U I x; �/ WD
X
En2Np

�p.En; �/a.�EnU I x; �/;

a�.U I t; x; �/ WD 1

2�

Z
R

�
�
� 0; �

�ya.U I t; � 0; �/ei�0x d� 0;

where in the last equality ya stands for the Fourier transform with respect to the
x-variable. Then we define the Bony-Weyl quantization of a as

(2.15) OpBW.a.U I �// D OpW .a�p .U I �//; OpBW.a.U I t; �// D OpW .a�.U I t; �//:
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If a is a symbol in ��mK;K0;p�r; N �, that we decompose as in (2.9), we define its
Bony-Weyl quantization

OpBW.a.U I t; �// D
N�1X
qDp

OpBW.aq.U; : : : ; U I �//COpBW.aN .U I t; �//:

� By the translation invariance property (2.7), we have

OpBW.aq.��U; : : : ; ��U I �; �//���V �
D ��

�
OpBW.aq.U; : : : ; U I �; �//�V �

�
:

(2.16)

� The operator OpBW.a/ acts on homogeneous spaces of functions; see Proposi-
tion 2.6.
� The action of OpBW.a/ on homogeneous spaces only depends on the values of
the symbol a D a.U I t; x; �/ (or a.U I t; x; �/) for j�j � 1. Therefore, we may
identify two symbols a.U I t; x; �/ and b.U I t; x; �/ if they agree for j�j � 1=2.
In particular, whenever we encounter a symbol that is not smooth at � D 0, such
as, for example, a D g.x/j�jm for m 2 R n f0g, or sign.�/, we will consider its
smoothed out version �.�/a, where � 2 C1.RIR/ is an even and positive cutoff
function satisfying

(2.17) �.�/ D 0 if j�j � 1
8
; �.�/ D 1 if j�j > 1

4
; @��.�/ > 0 8� 2 �1

8
; 1
4

�
:

� If a is a homogeneous symbol, the two definitions of quantization in (2.15), differ
by a smoothing operator that we introduce in Definition 2.5 below.

Definition 2.4 is independent of the cutoff functions �p, � up to smoothing
operators that we define below (see definition 3:7 in [6]). Given .n1; : : : ; npC1/ 2
N
pC1 we denote by max2.n1; : : : ; npC1/ the second largest among the integers

n1; : : : ; npC1.

DEFINITION 2.5. Let K 0 � K 2 N, N 2 N, N � 1, � 2 R, � � 0, and r > 0.

(i) p-homogeneous smoothing operators. We denote by �R��
p the space of

.pC1/-linear mapsR from the space . PH1.T IC2//p� PH1.T IC/ to the
space PH1.T IC/ symmetric in .U1; : : : ; Up/, of the form

.U1; : : : ; UpC1/! R.U1; : : : ; Up/UpC1
that satisfy the following. There are � � 0, C > 0 such that

k�n0R.�EnU/�npC1UpC1kL2 � C
max2.n1; : : : ; npC1/�C�

max.n1; : : : ; npC1/�

pC1Y
jD1

k�njUj kL2

for any U D .U1; : : : ; Up/ 2 . PH1.T IC2//p, any UpC1 2 PH1.T IC/,
any vector En D .n1; : : : ; np/ 2 .N�/p, any n0; npC1 2 N�. Moreover, if

(2.18) �n0R.�n1U1; : : : ;�npUp/�npC1UpC1 ¤ 0;
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then there is a choice of signs �0; : : : ; �pC1 2 f�1g such that
PpC1
jD0 �jnj D

0. In addition, we require the translation invariance property

(2.19) R.��U/���UpC1� D �� .R.U/UpC1/ 8� 2 R:
(ii) Nonhomogeneous smoothing operators. We denote by R��

K;K0;N �r� the
space of maps .V; t; U / 7! R.V /U defined on

BKs0 .I I r/ � I�CK� .I; PH s0.T ;C// for some s0 > 0;

which are linear in the variable U and such that the following holds true.
For any s � s0 there exist a constant C > 0 and r.s/ 2 �0; r� such that for
any V 2 BKs0 .I I r/ \ CK� .I; PH s.T ;C2//, any U 2 CK� .I; PH s.T ;C//,
any 0 � k � K �K 0, and any t 2 I , we have

(2.20)

k@kt .R.V I t /U /.t; �/k PH s�kC�

�
X

k0Ck00Dk
C
�kU kk00;skV kNk0CK0;s0
C kU kk00;s0kV kN�1k0CK0;s0kV kk0CK0;s

�
:

(iii) Smoothing operators. We denote by �R��
K;K0;p�r; N � the space of maps

.V; t; U /! R.V; t/U that may be written as

R.V I t /U D
N�1X
qDp

Rq.V; : : : ; V /U CRN .V I t /U

for some Rq in zR��
q , q D p; : : : ; N � 1, and RN in R��

K;K0;N �r�.

We denote by�R��
K;K0;p�r; N �
M2.C/ the space of 2�2matrices whose entries

are in �R��
K;K0;p�r;N �.

� If R is in zR��
p , then .V; U / 7! R.V; : : : ; V /U is in R��

K;0;p�r�, i.e., (2.20)
holds with N  p;K 0 D 0.
� If Ri 2 �R��

K;K0;pi
�r; N �, i D 1; 2, then the composition operator R1 � R2 is

in �R��
K;K0;p1Cp2 �r; N �.

The next proposition states boundedness properties on Sobolev spaces of the
paradifferential operators (see proposition 3.8 in [6]).

PROPOSITION 2.6 (Action of paradifferential operator). Let r > 0,m 2 R, p 2 N,
K 0 � K 2 N. Then:

(i) There is s0 > 0 such that for any symbol a 2 z�mp , there is a constant C >

0, depending only on s and on (2.6) with � D � D 0 such that for any U D
.U1; : : : ; Up/

(2.21) kOpBW.a.U I �//UpC1k PH s�m � C
pY
jD1

kUj k PH s0
kUpC1k PH s
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for p � 1, while for p D 0 (2.21) holds by replacing the right-hand side with
CkUpC1k PH s .

(ii) There is s0 > 0 such that for any symbol a 2 �mK;K0;p�r� there is a constant
C > 0, depending only on s, r , and (2.8) with 0 � � � 2, � D 0, such that, for
any t 2 I , any 0 � k � K �K 0,OpBW�@kt a.U I t; �/�L. PH s ; PH s�m/

� CkU p
kCK0;s0 :

� If a 2 ��mK;K0;p�r; N � with m � 0 and p � 1, then OpBW.a.V I t; �//U is in
�RmK;K0;p�r; N �.

Below we deal with classes of operators without keeping track of the number of
lost derivatives in a precise way (see definition 3.9 in [6]). The class �Mm

p denotes
multilinear maps that lose m derivatives and are p-homogeneous in U , while the
class Mm

K;K0;p contains nonhomogeneous maps that lose m derivatives, vanish at
degree at least p in U , and are .K �K 0/-times differentiable in t .

DEFINITION 2.7. Let p;N 2 N, with p � N , N � 1, K;K 0 2 N with K 0 � K,
and m � 0.

(i) p-homogeneous maps. We denote by �Mm
p the space of .pC1/-linear maps

M from the space . PH1.T IC2//p � PH1.T IC/ to the space PH1.T IC/,
which are symmetric in .U1; : : : ; Up/, are of the form .U1; : : : ; UpC1/ !
M.U1; : : : ; Up/UpC1, and satisfy the following. There is a C > 0 such
that

k�n0M.�EnU/�npC1UpC1kL2 � C.n0 C n1 C � � � C npC1/m
pC1Y
jD1

k�njUj kL2

for any U D .U1; : : : ; Up/ 2 . PH1.T IC2//p, any UpC1 2 PH1.T IC/,
any vector En D .n1; : : : ; np/ 2 .N�/p, and any n0; npC1 2 N�. More-
over, the properties (2.18)–(2.19) hold.

(ii) Nonhomogeneous maps. We denote by Mm
K;K0;N �r� the space of functions

.V; t; U / 7! M.V I t /U defined on BKs0 .I I r/ � I�CK� .I; PH s0.T ;C//

for some s0 > 0 that are linear in the variable U and such that the fol-
lowing holds true. For any s � s0 there exist a constant C > 0 and
r.s/ 2 �0; r� such that for any V 2 BKs0 .I I r/ \ CK� .I; PH s.T ;C2//, any
U 2 CK� .I; PH s.T ;C//, any 0 � k � K � K 0, and any t 2 I , we have
k@kt .M.V I t /U /.t; �/k PH s�k�m is bounded by the right-hand side of (2.20).

(iii) Maps. We denote by �Mm
K;K0;p�r; N � the space of maps .V; t; U / !

M.V; t/U that may be written as

M.V I t /U D
N�1X
qDp

Mq.V; : : : ; V /U CMN .V I t /U
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for someMq in �Mm
q , q D p; : : : ; N �1, andMN in Mm

K;K0;N �r�. Finally,
we set�Mp WD

[
m�0

�Mm
p ; MK;K0;p�r� WD

[
m�0

Mm
K;K0;p�r�

and �MK;K0;p�r; N � WD
S
m�0�Mm

K;K0;p�r�.

We denote by �Mm
K;K0;p�r; N � 
M2.C/ the space of 2 � 2 matrices whose

entries are maps in the class �Mm
K;K0;p�r; N �. We also set �MK;K0;p�r; N � 


M2.C/ D
S
m2R�Mm

K;K0;p�r; N �
M2.C/.

� If M is in �Mm
p , p � N , then .V; U /!M.V; : : : ; V /U is in Mm

K;0;N �r�.

� If a 2 ��mK;K0;p�r; N � for p � 1, then the map .V; U /! OpBW.a.V I t; �//U is

in �Mm0

K;K0;p�r; N � for some m0 � m.

� Any R 2 �R��
K;K0;p�r; N � defines an element of �Mm

K;K0;p�r; N � for some
m � 0.
� If M 2 �MK;K0

1
;p�r; N � and �M 2 �MK;K0

2
;1�r; N � p�, then the map

.V; t; U /!M.V C �M.V I t /V I t /�U � is in �MK;K0
1
CK0

2
;p�r; N �.

� If M 2 �Mm
K;K0;p�r; N � and �M 2 �Mm0

K;K0;q�r; N �, then the map M.U I t / ��M.U I t / is in �MmCm0
K;K0;pCq�r; N �.

Note that, given M1 2 �M1, the property (2.19) implies that

(2.22)

M1.U /U D 1

2�

X
n1;n22Znf0g;

�D�

.M2/
��
n1;n2

u�n1u
�
n2
ei�.n1Cn2/x

C 1

2�

X
n1;n22Znf0g

.M2/
C�
n1;n2

un1un2e
i.n1�n2/x

for some coefficients .M2/
�� 0

n1;n2
2 C with �; � 0 D � and n1; n2 2 Znf0g.

Composition theorems. Let &.Dx;D� ;Dy ;D�/ WD D�Dy � DxD� where
Dx WD 1

i @x and D� ;Dy ;D� are similarly defined.

DEFINITION 2.8. [Asymptotic expansion of composition symbol ] Let K 0 � K,
�; p; q be in N, m;m0 2 R, r > 0. Consider a 2 ��mK;K0;p�r; N � and b 2
��m

0

K;K0;q�r; N �. For U in BK� .I I r/ we define, for � < � � s0, the symbol

(2.23)

.a#�b/.U I t; x; �/

WD
�X
kD0

1

k�

�
i
2
&.Dx;D� ;Dy ;D�/

�k
�a.U I t; x; �/b.U I t; y; �/�

����
xDy;�D�
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modulo symbols in ��mCm
0��

K;K0;pCq�r; N �.

� By (2.10) the symbol a#�b belongs to ��mCm
0

K;K0;pCq�r; N �.
� We have the expansion

a#�b D ab C 1

2i
fa; bg C � � � ;

up to a symbol in ��mCm
0�2

K;K0;pCq�r; N �, where fa; bg WD @�a@xb � @xa@�b denotes
the Poisson bracket.
� Note that the terms of even (resp., odd) rank in the asymptotic expansion (2.23)
in the Weyl quantization are symmetric (resp., antisymmetric) in .a; b/. Conse-
quently, the terms of even rank vanish in the symbol of the commutator �OpBW.a/;

OpBW.b/�.

PROPOSITION 2.9. [Composition of Bony-Weyl operators] Let K 0 � K, �; p; q
be inN,m;m0 2 R, r > 0. Consider a 2 ��mK;K0;p�r; N � and b 2 ��m0K;K0;q�r; N �.
Then

R.U / WD OpBW.a.U I t; x; �//�OpBW.b.U I t; x; �//�OpBW�.a#�b/.U I t; x; �/
�

is a nonhomogeneous smoothing remainder in �R��CmCm0
K;K0;pCq �r; N �.

PROOF. See propositions 3.12 and 3.15 in [6]. The homogeneous components
of the symbols a and b satisfy (2.7). Using (2.16) and (2.23) one can check that
the homogeneous components of R.U / satisfy (2.19). �

PROPOSITION 2.10. [Compositions] Letm;m0; m00 2 R,K;K 0; N; p1; p2; p3; � 2
N with K 0 � K, p1 C p2 < N , � � 0, and r > 0. Let a 2 ��mK;K0;p1 �r; N �,
R 2 �R��

K;K0;p2
�r; N �, and M 2 �Mm00

K;K0;p3
�r; N �. Then

(i) R.U I t / � OpBW.a.U I t; x; �//, OpBW.a.U I t; x; �// � R.U I t / are in
�R��Cm

K;K0;p1Cp2 �r; N �.
(ii) R.U I t / �M.U I t / is a smoothing operator in �R��Cm00

K;K0;p2Cp3 �r; N �.
(iii) If R2 2 zR��

p2 , then R2.U; : : : ; U;M.U I t /U / belongs to

�R��Cm00
K;K0;p2Cp3 �r; N �:

(iv) Let c 2 z�mp , p 2 N. Then the symbol

U ! cM .U I t; x; �/ WD c.U; : : : ; U;M.U I t /U I t; x; �/
is in ��mK;K0;pCp3 �r; N �. If c 2 zFp then cM 2 �FK;K0;pCp3 �r; N �.
Moreover if c 2 �mK;K0;N �r� then cM 2 �mK;K0;N �r�.

(v)

OpBW.c.U; : : : ; U;W I t; x; �//jWDM.U It/U D OpBW.b.U I t; x; �//CR.U I t /
where b.U I t; x; �/ WD c.U; : : : ; U;M.U I t /U I t; x; �/ and R.U I t / is in
�R��

K;K0;pCp1 �r; N �.
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PROOF. See propositions 3.16, 3.17, and 3.18 in [6]. The translation invariance
properties for the composed operators and symbols in items (i)–(v) follow as in the
proof of Proposition 2.9. �

Real-to-real operators. Given a linear operator R.U /��� acting on C (it may be a
smoothing operator in �R��

K;K0;1 or a map in �MK;K0;1) we associate the linear
operator defined by the relation

(2.24) xR.U /�V � WD R.U /� xV � 8V 2 C:
We say that a matrix of operators acting in C2 is real-to-real, if it has the form

(2.25) R.U / D
�
R1.U / R2.U /

R2.U / R1.U /

�
:

Note that
� if R.U / is a real-to-real matrix of operators, for V D � vv �, then we have

R.U /�V � DW Z D � ´
x́
�
:

� If a matrix of symbols A.U I x; �/, in some class ��mK;K0;1 
M2.C/, has the
form

A.U I x; �/ D
h
a.U Ix;�/ b.U Ix;�/
b.U Ix;��/ a.U Ix;��/

i
;

then the matrix of operators OpBW.A.U I x; �// is real-to-real.
Notation.

� To simplify the notation, we will often omit the dependence on the time
t from the symbols, smoothing remainders, and maps. Moreover, given a
symbol in ��mK;K0;p we may omit to write its dependence on U when this
does not cause confusion.

� Since in the rest of the paper we only need to control expansions in degrees
of homogeneity of symbols, smoothing operators and maps, up to cubic
termsO.u3/, we fix once and for all N D 3. We will omit the dependence
on r and N D 3 in the class of symbols, writing ��mK;K0;p, instead of
��mK;K0;p�r; 3�, and similarly for smoothing operators and maps.

� A .s B means A � C.s/B where C.s/ > 0 is a constant depending on
s 2 R.

3 Paralinearization and Block Diagonalization
3.1 Complex form of the water waves equations

Following [1, 2], we begin by writing the water waves system (1.3) using the
good-unknown ! D  � OpBW.B.�;  //�; see (1.7)–(1.8). The water waves
equations (1.3), written in the new coordinates

(3.1)
�
�

!

�
D G

�
�

 

�
WD
�

�

 �OpBW.B.�;  //�

�
;

assume the following paralinearized form derived in [6]:
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PROPOSITION 3.1. [Water-waves equations in .�; !/ variables] Let I D ��T; T �
with T > 0. Let K 2 N� and � � 1. There exists s0 > 0 such that, for any
s � s0, for all 0 < r � r0.s/ small enough, if .�;  / 2 BKs .I I r/ solves (1.3), then

(3.2)
@t� D jDj! COpBW��iV � � Vx

2

�
�COpBW.b�1.�I �//!

CR1.�; !/! CR01.�; !/�

@t! D ��COpBW.�iV � C Vx
2
/! �OpBW.@tB C VBx/�

CR02.�; !/! CR002.�; !/�
(3.3)

where the functions V;B defined in (1.7) are in �FRK;0;1, the symbol b�1.�I �/
belongs to���1K;0;1, and the smoothing operators R1, R01, R2, R02 are in�R��

K;0;1.
The vector field in the right-hand side of (3.2)–(3.3) is x-translation invariant, i.e.,
(2.5) holds.

PROOF. The proof follows by the computations in [6] in the absence of capil-
larity, specified in the case of infinite depth, in particular by propositions 7.5 and
7.6 and chapter 8.2 in [6]. The right-hand side in (3.2) is the paralinearization of
the Dirichlet-Neumann operator in [6]. The approach in [6] does not make use of
a variational method to study the Dirichlet-Neumann boundary value problem as
in [1, 3], but uses a paradifferential parametrix à la Boutet de Monvel, introducing
classes of para-Poisson operators whose symbols have a decomposition in multi-
linear terms. Moreover, G.���/��� � D ��G.�/� �, where �� is the translation
operator in (2.5). Hence the functions V;B satisfy the property (2.7), and the map
G in (3.1) satisfies G � �� D �� � G. In conclusion, the whole vector field in the
r.h.s. of (3.2)–(3.3) satisfies the x-invariance property, and the smoothing remain-
ders satisfy (2.19) by difference. �

In Section 3.1 we will provide explicit expansions for the symbols of nonnega-
tive order in (3.2)–(3.3) in linear and quadratic degrees of homogeneity.

Remark 3.2. [Expansion of the Dirichlet-Neumann operator]
(i) Substituting (3.1) in the right-hand side of (3.2), which is equal to G.�/ ,

we have, using the remarks under Definition. 2.7 and the fact thatB.�;  / 2
�FRK;0;1 is linear in  , that G.�/ � jDj is a map in �MK;0;1 and

(3.4) G.�/ D jDj C �M1.�/ C �M2.�/ C �M�3.�/ 

for some maps �M1 2 �M1, �M2 2 �M2, and �M�3 2MK;0;3.
(ii) The Dirichlet-Neumann operator admits a Taylor expansion (see, e.g., for-

mula (2.5) of [11]) of the form

(3.5) G.�/ D jDj CG1.�/ CG2.�/ CG�3.�/ ; D WD �i@x;

(3.6)
G1.�/ WD �@x�@x � jDj�jDj;
G2.�/ WD �1

2

�
D2�2jDj C jDj�2D2 � 2jDj�jDj�jDj�;
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and whereG�3 collects all the terms with homogeneity in � greater than 2.
The notation above jDj�jDj, resp. jDj�jDj�jDj, means the composition
operator jDj���jDj, resp., jDj���jDj���jDj, of the Fourier multiplier
jDj and the multiplication operator for the function �. We then see that the
quadratic and cubic components of the expansions (3.5) and (3.4) coincide,
namely, G1 D �M1 and G2 D �M2. It follows that G�3 is in MK;0;3.

We now write the equations (3.2)–(3.3) in terms of the complex variable u de-
fined in (1.12).

PROPOSITION 3.3 (Water-waves equations in complex variables). Let K 2 N�
and � � 1. There exists s0 > 0 such that, for any s � s0, for all 0 < r � r0.s/

small enough, if .�; !/ solves (3.2)–(3.3) and U WD � uxu � with u defined in (1.12)
belongs to BKs .I I r/, then U solves

@tU D OpBW�iA1.U I x/� C iA1=2.U I x/j�j
1
2 C A0.U I x/

C A�1.U I x; �/
�
U CR.U /U

(3.7)

where

A1.U I x/ WD �� 1 00 1 �V.U I x/(3.8)

A1=2.U I x/ WD
��1 0
0 1

�C ��1 �1
1 1

�
a.U I x/; a WD 1

2
.@tB C VBx/;(3.9)

A0.U I x/ WD �1
4

�
0 1
1 0

�
Vx.U I x/;(3.10)

A�1 is a matrix of symbols in���1K;1;1
M2.C/, andR.U / is a matrix of smooth-
ing operators belonging to �R��

K;1;1 
M2.C/. The vector field in the right-hand
side of (3.7) is x-invariant and it is real-to-real according to (2.25).

PROOF. We first rewrite (3.2)–(3.3) as the system

(3.11) @t

�
�

!

�
D OpBW

���iV ��Vx
2

j�jCb�1
�.1Ca0/ �iV �CVx

2

����
!

�
CR.�; !/

�
�

!

�
;

where R 2 �R��
K;0;1
M2.C/ and the function a0 WD @tBCVBx is in�FRK;1;1.

We now symmetrize (3.11) at the highest order, applying the change of variable

(3.12)
�
�

!

�
WD � jDj1=4 0

0 jDj�1=4
��z�
z!
�
:

The conjugated system is, by Propositions 2.9 and 2.10,
(3.13)

@t

�
z�

z!

�
D OpBW

��
j�j�1=4 0

0 j�j1=4

�
#�
��iV ��

Vx
2 j�jCb�1

�.1Ca0/ �iV �C
Vx
2

�
#�
�
j�j1=4 0

0 j�j�1=4

���z�
z!

�
CR.z�; z!/

�
z�

z!

�

for a new smoothing remainder R in �R��C1
K;1;1 
 M2.C/. Recalling (2.23) we

expand in decreasing orders the symbols in (3.13).



24 M. BERTI, R. FEOLA, AND F. PUSATERI

DIAGONAL SYMBOLS. Up to a symbol in���1K;0;1 we have (using Proposition 2.9
and formula (2.23))

j�j�1=4#�.�iV � � Vx
2
/#�j�j�1=4 D �iV � � Vx

4
:

OFF-DIAGONAL SYMBOLS. Up to a symbol in ���3=2K;0;1 we get (using Proposition
2.9 and formula (2.23)) j�j�1=4#�.j�jC b�1/#�j�j�1=4 D j�j1=2 (recall that b�1 is
in���1K;0;1) and, up to a symbol in���3=2K;1;1, we have�j�j1=4#�.1Ca0/#�j�j1=4 D
�.1C a0/j�j1=2. The expansions above imply that the system (3.13) has the form

(3.14) @t

�z�
z!
�
D OpBW

��
�iV ��Vx

4
j�j1=2

�.1Ca0/j�j1=2 �iV �CVx
4

�
C A�1

��z�
z!
�
CR.z�; z!/

�z�
z!
�

where A�1 is a matrix of symbols in ���1K;1;1 
M2.C/ and R is in �R��C1
K;1;1 


M2.C/.
Finally, we write (3.14) in the complex variable (1.12) (recall (3.12)), and we

deduce (3.7) with matrices as in (3.8), (3.9), (3.10), and a new matrix of symbols
A�1 in ���1K;1;1 
M2.C/ and a new smoothing operator R.U / in �R��

K;1;1 

M2.C/, renaming � � 1 as �. Finally, since the Fourier multiplier transformation
(1.12) trivially commutes with the translation operators �� , the water waves vector
field in (3.7) is x-invariant as the water waves vector field (3.2)–(3.3). �

In some instances we will write the water waves system (3.7) as

(3.15) @tU D �i�U CM.U /�U �; � WD jDj 12 � 1 0
0 �1

�
;

where M.U / is a real-to-real matrix of maps in �Mm1
K;1;1 
 M2.C/ for some

m1 > 0; see the remarks after Definition 2.7. We will also write system (3.15) in
Fourier basis as

(3.16) Pun D �i!nun C i.F2.U /C F�3.U //n; n 2 Z n f0g; !n WD
p
jnj

where F2.U / D M1.U /�U � is the quadratic component of the water waves vector
field and F�3.U / collects all the cubic terms (the second equation of (3.15) for xu
is just the complex conjugated of the one for u). Using the x-invariance property,
the vector field F2.U / can be expanded as

(3.17)

F2.U / D
X

n1;n22Znf0g;�D�
.F2/

��
n1;n2

u�n1u
�
n2

ei�.n1Cn2/x

2�

C
X

n1;n22Znf0g;
.F2/

C�
n1;n2

un1un2
ei.n1�n2/x

2�

with coefficients .F2/��
0

n1;n2
in C. We provide the explicit expression of iF2.U / in

Lemma 3.9.
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Homogeneity expansions
By the expansion of the Dirichlet-Neumann operator in Remark 3.2, we get the

quadratic approximation of the water waves equations (1.3),

@t� D jDj � @x.�@x / � jDj.�jDj /;
@t D �� � 1

2
 2x C 1

2
.jDj /2;(3.18)

up to functions in FRK;1;3. In this section, using this expansion, we compute explic-
itly the quadratic vector field iF2.U / in (3.16), and the homogeneous expansions
up to cubic terms of the functions V and a appearing in (3.8)–(3.10). We write

V D V1 C V2 C V�3; Vj 2 zFRj ; j D 1; 2; V�3 2 FRK;0;3;(3.19)

a D a1 C a2 C a�3 aj 2 zFRj ; j D 1; 2; a�3 2 FRK;1;3:(3.20)

In the following it is useful to note that the relation (1.12) has inverse

(3.21) � WD 1p
2
jDj 14 .uC xu/; ! D 1

i
p
2
jDj� 14 .u � xu/:

LEMMA 3.4. [Expansion of V ] The function V defined in (1.7) admits the expan-
sion

(3.22) V D !x C @x
�
OpBW.jDj!/�� � .jDj!/�x C V�3

where V�3 is a function in FRK;0;3. Thus, in the complex variable u in (1.12), (3.21),
we have

V1 D 1

i
p
2
@xjDj� 14 .u � xu/;(3.23)

V2 D 1

2i
@x

�
OpBW�jDj 34 .u � xu/��jDj 14 .uC xu/��

� 1

2i

�jDj 34 .u � xu/��@xjDj 14 .uC xu/�:(3.24)

PROOF. By (1.7) and using the expansion (3.5), we deduce B D jDj up to a
quadratic function in FRK;0;2. As a consequence, by (1.7) and (3.1), we have

V D  x � B�x D .! COpBW.B/�/x � B�x
D !x C @x

�
OpBW.jDj /�� � .jDj /�x

up to a function in FRK;0;3. Since  D ! plus a quadratic function in FRK;0;2 (see
(3.1)) we get (3.22). �

LEMMA 3.5. [Expansion of @tB] Let B be the function defined in (1.7). Then

@tB D �jDj� � �jDj2�C jDj.�jDj�/C jDj��1
2
!2x � 1

2
.jDj!/2�

C .jDj!/.jDj2!/(3.25)

plus a cubic function in FRK;1;3.
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PROOF. Recalling (1.7), and using (3.5), we have to compute the expansion of

(3.26)
@tB D @t .G.�/ C �x x/

1C �2x
� .G.�/ C �x x/2�x.�t /x

.1C �2x/
2

D @t .G.�/ /C .@t�/x x C �x.@t /x

plus a cubic function in FRK;1;3. For the first term in (3.26) we use the “shape
derivative” formula (see [29])

(3.27) G0.�/�y�� D lim
�!0

1

�
fG.�C �y�/ �G.�/ g D �G.�/.By�/ � @x.V y�/

where V D  x�B�x is in (1.7). Then, using (3.26), (3.27), and (3.18), we obtain,
after simplification,

@tB D �jDj� � 1

2
jDj..jDj /2/ � 1

2
jDj 2x C jDj.�jDj�/

C ��xx �  xxjDj 
(3.28)

plus a cubic function FRK;1;3. Since @xx D �jDj2 and  D ! plus a quadratic
function in FRK;1;2, we have that (3.28) implies (3.25). �

We now expand the function a D 1
2
.@tB C VBx/ that appears in (3.9).

LEMMA 3.6 (Expansion of a). We have

2a D �jDj� � �.jDj2�/C jDj.�jDj�/ � 1
2
jDj.!2x C .jDj!/2/

C .jDj!/.jDj2!/C !x.@xjDj!/
plus a cubic function in FRK;0;3.

PROOF. By (3.22) and (1.7) we have that a D 1
2
.@tB C VBx/ D 1

2
@tB C

1
2
!x.jDj x/ plus a cubic function in FRK;1;3. Hence (3.25) implies the lemma. �

We Fourier develop the functions a1; V1, a2; V2, as in (2.11), (2.12).

LEMMA 3.7. [Coefficients of V1 and V2] The coefficients of V1 and V2 in (3.23)–
(3.24) are, for any n 2 Z n f0g
(3.29) .V1/

C
n D .V1/

�
n D 1p

2
njnj�1=4; .V2/

C�
n;n D njnj; .V2/

C�
n;�n D 0:

PROOF. It follows by explicit computation using (3.23), (3.24), recalling (2.3),
and using Definition 2.4 of the Bony-Weyl quantitation (and (2.14)). �

We now compute the coefficients of the linear and quadratic component of a in
(3.9).

LEMMA 3.8. [Coefficients of a1 and a2] The coefficients of a1 and a2 in (3.20)
satisfy

(3.30) .a1/
C
n D .a1/

�
n D � 1

2
p
2
jnj5=4; .a2/

C�
n;n D 1

2
jnj5=2 8n 2 Z n f0g:
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PROOF. It follows by the explicit expression in Lemma 3.6 and passing to the
variables in (1.12). �

It turns out that .a2/C�n;�n D jnj5=2, but we do not use this information in the
paper.

LEMMA 3.9 (Quadratic water waves vector field iF2.U /). The coefficients
.F2/

C�
n1;n2

defined in (3.17) of the quadratic water waves vector field iF2.U / in
(3.16) satisfy

(3.31) .F2/
C�
n;�n D .F2/

C��n;n D 2�
1
4 jnj 74 :

PROOF. It follows by direct computatiup to ons using equations (3.18), passing
to the variables u; xu defined in (1.12) and recalling that, by (1.7) and (3.5), we have
the approximate identity ! D  �OpBW.jDj /�. �

3.2 Block-diagonalization
The goal of this section is to transform the water waves system (3.7) into the sys-

tem (3.33) below, which is block-diagonal in the variables .u; xu/modulo a smooth-
ing operator R.U /.

PROPOSITION 3.10 (Block-diagonalization). Let � � 1 and K � K 0 WD 2�C 2.
There exists s0 > 0 such that, for any s � s0, for all 0 < r � r0.s/ small enough,
and any solution U 2 BKs .I I r/ of (3.7), the following holds:

(i) there is a map ��diag.U /, � 2 �0; 1�, satisfying, for some C D C.s; r;K/ >

0 @kt ��diag.U /�V �
 PH s�k C

@kt .��diag.U //
�1�V �

 PH s�k

� .1C CkU kK;s0/kV kk;s;
(3.32)

for any 0 � k � K � K 0 and any V D � vxv � in CK�K0�R .I; PH s.T IC2//,
� 2 �0; 1�;

(ii) the function W WD .��diag.U /U /j�D1 solves the system

@tW D OpBW
�h

d.U Ix;�/Cr�1=2.U Ix;�/ 0

0 d.U Ix;��/Cr�1=2.U Ix;��/
i�
W CR.U /�W �

(3.33)

where d.U I x; �/ is a symbol of the form

(3.34) d.U I x; �/ WD �iV.U I x/� � i.1C a.0/.U I x//j�j1=2
where a.0/ is a function that is in �FRK;1;1, r�1=2.U I x; �/ is a symbol in

��
�1=2
K;2�C2;1, and R.U / is a real-to-real matrix of smoothing operators in

�R��
K;2�C2;1 
M2.C/. The function a.0/ has the expansion

(3.35) a.0/ D a1 C a
.0/
2 C a

.0/
�3; a

.0/
2 WD a2 � 1

2
a21 2 zFR2 ;

where a1 and a2 are defined in (3.20).
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Proposition 3.10 is proved by applying a sequence a transformations that iteratively
block-diagonalize (3.7) in decreasing orders. In Section 3.2 we block-diagonalize
(3.7) at the order 1=2, and in Section 3.2 we perform the block-diagonalization
until the negative order ��.

Block-Diagonalization at order 1=2
In this subsection we aim to diagonalize the matrix of symbolsA1=2.U I x/j�j1=2

in (3.7), up to a matrix of symbols of order 0. We apply a parametrix argument con-
jugating the system (3.7) with a paradifferential operator whose principal matrix
symbol is

(3.36)
C WD � f g

g f

�
; f .U I x/ WD 1C aC �Cp

.1C aC �C/2 � a2
;

g.U I x/ WD �ap
.1C aC �C/2 � a2

;

where

(3.37) �� D ��.U I x/ WD �
q
.1C a/2 � a2

are the eigenvalues of A1=2. We have

(3.38) det.C / D f 2 � g2 D 1; C�1 D � f �g
�g f

�
;

and

(3.39)
C�1A1=2C D �C

��1 0
0 1

� D ��.1Ca.0// 0

0 1Ca.0/
�
;

a.0/ WD �C � 1 2 �FRK;1;1:
LEMMA 3.11. There exists a function m�1.U I x/ in �FK;1;1 such that the flow

(3.40)
@��

��1.U / D OpBW.M�1/���1.U /; �0�1.U / D Id;

M�1 WD
� 0 m�1.U Ix/
m�1.U Ix/ 0

�
;

has the form

(3.41)
.���1.U //�j�D1 D OpBW.C�1/CR�.U /;

R�.U / 2 �R��
K;1;1 
M2.C/:

Moreover, if U solves (3.7), then the function

(3.42) W0 WD .���1.U //j�D1U

solves the system

(3.43) @tW0 D OpBW
�h

d.U Ix;�/ 0

0 d.U Ix;��/
i
C A.0/

�
W0 CR.0/.U /W0
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where d.U I x; �/ is the symbol in (3.34) with a.0/.U I x/ defined in (3.39), a matrix
of symbols

(3.44) A.0/ WD
�
c0.U I x; �/ b0.U I x; �/
b0.U I x;��/ c0.U I x;��/

�
; c0 2 ���

1
2

K;2;1; b0 2 ��0K;2;1;

and a real-to-real matrix of smoothing operators R.0/.U / in �R��
K;2;1 
M2.C/.

Moreover, the function a.0/ has the expansion (3.35).

PROOF. Formulæ (3.41) follow by reasoning as in proposition 3:6 and corollary
3:1 in [18]. We conjugate (3.7) with the flow .���1.U //j�D1 using formula (A.2)
in Lemma A.1. By Proposition 2.10 we deduce that, if U solves (3.7), then

@tW0
(3.41)D @tOp

BW.C�1/OpBW.C /W0

COpBW.C�1/OpBW�iA1� C iA1=2j�j
1
2 C A0 C A�1

�
OpBW.C /W0

up to a matrix of smoothing operators in�R��C1
K;2;1 
M2.C/ acting onW0. More-

over, Proposition 2.9 implies that

(3.45) @tW0 D OpBW
�
@tC

�1#�C C C�1#�
�
iA1� C iA1=2j�j

1
2 C A0 C A�1

�
#�C

�
W0

up to terms in �R��C1
K;2;1 
M2.C/. By (3.36), (3.38) we have .@tC�1/#�C D

..@tf /g � .@tg/f /
�
0 1
1 0

�
because differentiating f 2 � g2 D 1 we get .@tf /f �

.@tg/g D 0.
By (3.8), using symbolic calculus and f 2 � g2 D 1 (see (3.38)), we obtain the

exact expansion

C�1#�.iA1�/#�C D �iV �
�
1 0
0 1

�C V.fxg � gxf /
�
0 1
1 0

�
:

By (3.39) we have C�1#�.iA1=2j�j 12 /#�C D i.1 C a.0//j�j 12 ��1 00 1

�
modulo a

matrix of symbols ��
� 1
2

K;1;1 
M2.C/. Moreover, recalling (3.10), we have the

paraproduct expansion C�1#�A0#�C D A0 D �Vx
4

�
0 1
1 0

�
and finally, since A�1

is in ���1K;1;1 
M2.C/ we deduce C�1#�A�1#�C 2 ���1K;1;1 
M2.C/. The
discussion above imply (3.43), (3.44), with a remainder R.0/.U / in �R��

K;2;1 

M2.C/, renaming � � 1 as �. Finally, by (3.39), (3.37) and (3.20) we get the
expansion (3.35). �

Block-Diagonalization at negative orders
The aim of this subsection is to block-diagonalize the system (3.43) (which is

yet block-diagonal at the orders 1 and 1=2) into (3.33).

LEMMA 3.12. For j D 0; : : : ; 2�, there are
� paradifferential operators of the form

Y.j /.U / WD OpBW
�h

d.U Ix;�/ 0

0 d.U Ix;��/
i�
COpBW.A.j //(3.46)
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where d.U I x; �/ is the symbol defined in Lemma 3.11, A.j / is a matrix of symbols
of the form

(3.47)
A.j / D

�
cj .U I x; �/ bj .U I x; �/
bj .U I x;��/ cj .U I x;��/

�
;

cj 2 ���
1
2

K;jC2;1; bj 2 ��
� j
2

K;jC2;1;

� a real-to-real matrix of smoothing operators R.j /.U / in �R��
K;jC2;1 
M2.C/

such that, if Wj , j D 0; : : : ; 2� � 1, solves

(3.48) @tWj D
�
Y.j /.U /CR.j /.U /

�
Wj ; Wj WD

�
wj
xwj
�
;

then

(3.49) WjC1 WD
�
��j .U /Wj

�
j�D1

where ��j .U / is the flow at time � 2 �0; 1� of

(3.50) @��
�
j .U / D iOpBW.Mj .U I x; �//��j .U /; �0j .U / D Id;

with

Mj .U I x; �/ WD
�

0 �imj .U I x; �/
imj .U I x;��/ 0;

�
mj D ��.�/bj .U I x; �/

2i.1C a.0/.U I x//j�j 12
2 ���

jC1
2

K;jC2;1;
(3.51)

and � defined in (2.17) satisfies a system of the form (3.48) with j C 1 instead of j .

PROOF. The proof proceeds by induction.
Initialization. System (3.43) is (3.48) for j D 0 where the paradifferential

operator Y.0/.U / has the form (3.46) with the matrix of symbols A.0/ defined in
Lemma 3.11.

Iteration. We now argue by induction. Suppose that Wj solves system (3.48)
with operators Y.j /.U / of the form (3.46)–(3.47) and smoothing operatorsR.j /.U /
in �R��

K;jC2;1 
M2.C/. Let us study the system solved by the function WjC1
defined in (3.49). Note that the symbols of the matrix Mj defined in (3.51) have
negative order for any j � 0. By formula (A.2) the conjugated system has the
form

(3.52) @tWjC1 D OpBW�.@t�1j .U //��1
j .U /C�1j .U /Y.j /.U /��1

j .U /
�
WjC1

up to a smoothing operator in �R��
K;jC2;1 
M2.C/.

Moreover, the operator .@t�1j .U //�
�1
j .U / admits the Lie expansion in (A.4)

specified for A WD OpBW.Mj .U //. We recall (see (2.23)) that

Mj #�@tMj � @tMj #�Mj D fMj ; @tMj g 2 ���.jC1/�1K;jC3;2



BIRKHOFF NORMAL FORM FOR PERIODIC GRAVITY WATER WAVES 31

up to a symbol in ���.jC1/�3K;jC3;2 .
By Proposition 2.9 we have that AdiOpBW.Mj /�iOp

BW.@tMj /� is a paradifferen-

tial operator with symbol in ���.jC1/�1K;jC3;2 
M2.C/ plus a smoothing remainder
in �R��

K;jC3;2 
M2.C/. As a consequence, we deduce, for k � 2,

AdkiOpBW.Mj /

�
iOpBW.@tMj /

� D OpBW.Bk/CRk;

Bk 2 ��
jC1
2
.kC1/�k

K;jC3;kC1 
M2.C/;

and Rk 2 R��
K;jC3;kC1 
M2.C/. By taking L large enough with respect to �,

we get that .@t�1j .U //�
�1
j .U / is a paradifferential operator with symbol in

��
� jC1

2

K;jC3;1 
M2.C/

plus a smoothing operator in �R��
K;jC3;1 
M2.C/. We now want to apply the

expansion (A.3) with A WD OpBW.Mj .U // and X WD Y.j / in order to study the
second summand in (3.52). We claim that

(3.53)
�1j .U /Y

.j /.U /��1
j .U /

D OpBW.Y.j /.U //C �
OpBW.iMj .U //;Y.j /.U /

�
plus a paradifferential operator with symbol in���.jC1/=2K;jC2;1 
M2.C/ and a smooth-
ing operator belonging to �R��

K;jC2;1 
M2.C/. We first give the expansion of
�OpBW.iMj .U //;Y.j /.U /� using the expression of Y.j /.U / in (3.46). We have

(3.54)

h
OpBW.iMj .U //;OpBW

�h
d.U Ix;�/ 0

0 d.U Ix;��/
i�i

WD OpBW
�h

0 pj .U Ix;�/
pj .U Ix;��/ 0

i�
pj WD 2imj .U I x; �/.1C a.0/.U I x//j�j 12

up to a symbol in ���.jC1/=2K;jC2;1 
 M2.C/. Moreover, since A.j / is a matrix of
symbols of order �1=2, for j � 1, resp., 0 for j D 0 (see (3.47)), we have that�
OpBW.iMj /; OpBW.A.j //

�
belongs to ��

� jC2
2

K;jC2;1 
M2.C/ for j � 1 and to

��
� 1
2

K;2;1
M2.C/ for j D 0 up to a smoothing operator in�R��
K;jC2;1
M2.C/.

It follows that the off-diagonal symbols of order �j=2 in (3.53) are of the form� 0 qj .U Ix;�/
qj .U Ix;��/ 0

�
with

(3.55) qj .U I x; �/ (3.54)WD bj .U I x; �/C 2imj .U I x; �/.1C a.0//j�j 12 :
By the definition of � in (2.17) and the remark under Definition 2.6, the operator
OpBW..1��.�//bj .U I x; �// is in�R��

K;jC2;1
M2.C/ for any � � 0. Moreover,
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by the choice of mj .U I x; �/ in (3.51), we have that

�.�/bj .U I x; �/C 2imj .U I x; �/.1C a.0//j�j 12 D 0:

This implies that �iOpBW.Mj /;Y.j /.U /� is a paradifferential operator with symbol

in ��
� jC1

2

K;jC2;1 
M2.C/ plus a remainder in �R��
K;jC2;1 
M2.C/. Now, using

Proposition 2.9, we deduce, for k � 2,

AdkiOpBW.Mj /
�Y.j /.U /� D OpBW. zBk/C zRk; zBk 2 ��

jC1
2
k

K;jC2;kC1 
M2.C/;

where zRk is in R��
K;jC2;kC1
M2.C/. Using formula (A.3) with L large enough

and the estimates of flow in (3.50) (see Lemma A.2) one obtains the claim in (3.53).
We conclude that (3.49) solves a system of the form 3.46–(3.48) with j  j C
1. �

Proof of Proposition 3.10. For � 2 �0; 1� we define

(3.56) ��diag.U / WD ��2��1.U / � � � � ���0 .U / ����1.U /
where the maps���1.U / and��j .U /, j D 0; 1; : : : ; 2��1 are defined respectively
in (3.42), (3.49). The bound (3.32) follows by Lemma A.2. Lemmata 3.11, 3.12
imply that if U solves (3.7) then the function W WD W2� D .��diag.U /U /j�D1
solves the system (3.48) with j D 2� which is (3.33) with r�1=2 WD c2� and

R.U / WD OpBW
�� 0 b2�.U Ix;�/
b2�.U Ix;��/ 0

��CR.2�/.U /; b2� 2 ����K;2�C2;1;
which is a smoothing operator in �R��

K;2�C2;1 
 M2.C/ by the remark below
Proposition 2.6. The expansion (3.35) is proved in Lemma 3.11. �

4 Reductions to Constant Integrable Coefficients
The aim of this section is to conjugate (3.33) to a system in which the symbols

of the paradifferential operators are constant in the spatial variable x and are “in-
tegrable" according to Definition 4.1 below, up to symbols which are “admissible”
according to Definition 4.2.

DEFINITION 4.1 (Integrable symbol ). A homogeneous symbol f in z�m2 is inte-
grable if it is independent of x and it has the form

(4.1)
f .U I x; �/ D f .U I �/ WD 1

2�

X
n2Znf0g

f C�n;n .�/junj2;

f C�n;n .�/ 2 C; n 2 Z n f0g:
DEFINITION 4.2 (Admissible symbol ). A nonhomogeneous symbolH�3 in �1K;K0;3
is admissible if it has the form

(4.2) H�3.U I x; �/ WD i��3.U I x/� C i��3.U I x/j�j 12 C �3.U I x; �/
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with real-valued functions ��3.U I x/; ��3.U I x/ in FRK;K0;3 and a symbol �3.U I x; �/
in �0K;K0;3. A matrix of symbols H�3 in �1K;K0;3 
M2.C/ is admissible if it has
the form

(4.3) H�3.U I x; �/ D
h
H�3.U Ix;�/ 0

0 H�3.U Ix;��/
i

for a scalar admissible symbol H�3.

The relevance of Definition 4.2 is explained in the next remark.

Remark 4.3. An equation of the form @tv D OpBW.H�3.U I x; �//�v�, where
H�3.U I x; �/ is an admissible symbol in �1K;K0;3, admits an energy estimate of
the form

@tkv.t; �/k2PH s
.s kU.t; �/k3K;s0kv.t; �/k2PH s

for s � s0 � 1; see Lemma 6.4. For this reason vector fields of this form are
“admissible” to prove existence of solutions up to times O."�3/.

The main result of this section is the following.

PROPOSITION 4.4 (Integrability of water waves at cubic degree up to smoothing
remainders). Fix � > 0 arbitrary and K � K 0 WD 2� C 2. There exists s0 > 0

such that, for any s � s0, for all 0 < r � r0.s/ small enough, and any solution
U 2 BKs .I I r/ of (3.7), there is a family of nonlinear maps F� .U /, � 2 �0; 1�, such
that the function Z WD F1.U / solves the system

(4.4) @tZ D �i�Z COpBW��iD.U I �/C H�3
�
Z C R.U /�Z�

where � is defined in (3.15) and
� The symbol D.U I �/ has the form

D.U I �/ WD
h
�.U /�CD�1=2.U I�/ 0

0 �.U /��D�1=2.U I��/
i
;

�.U / WD 1

�

X
n2Znf0g

njnjjunj2;
(4.5)

with an integrable symbol D�1=2.U I �/ 2 z��
1
2

2 (see Definition 4.1).
� The matrix of symbols H�3 2 �1K;K0;3
M2.C/ is admissible (see Defini-

tion 4.2).
� R.U / is a real-to-real matrix of smoothing operators in �R��C4m

K;K0;1 

M2.C/ for some m > 0.

� The family of transformations has the form

(4.6) F� .U / WD F� .U /�U �

with F� .U / real-to-real, bounded, and invertible, and there is a constant
C D C.s; r;K/ such that, 8 0 � k � K �K 0, for any

V 2 CK�K0�R .I I PH s.T IC2//;
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one has @kt F� .U /�V � PH s�k C
@kt .F� .U //�1�V � PH s�k

� kV kk;s.1C CkU kK;s0/;
(4.7)

uniformly in � 2 �0; 1�.
The proof of Proposition 4.4 above is divided into several steps in Sections 4.1–

4.3 below. We combine these steps in Section 4.4.

4.1 Integrability at order 1
By Proposition 3.10 we have obtained, writing only the first line of the system

(3.33)–(3.34),

@tw D OpBW��iV.U I x/� � i.1C a.0/.U I x//j�j1=2 C r�1=2
�
w

CR.U /�W �
(4.8)

where R.U / is a 1 � 2 matrix of smoothing operators in �R��
K;K0;1 with K 0 D

2� C 2 and W D �wxw �. The second component of system (3.33) is the complex
conjugated of the first one. Expanding in degrees of homogeneity the symbol

r�1=2 D r1 C r2 C r�3; r1 2 z��
1
2

1 ; r2 2 z��
1
2

2 ; r�3 2 ��
1
2

K;K0;3;

recalling (3.19) and item (ii) in Proposition 3.10, we rewrite (4.8) as

(4.9)
@tw D OpBW��i

�
V1 C V2

�
� � i

�
1C a1 C a

.0/
2

�j�j1=2 C r1 C r2 CH�3
�
w

CR.U /�W �

where H�3 is an admissible symbol according to Definition 4.2.

Elimination of the linear symbol of the transport
The goal of this subsection is to eliminate the transport operator OpBW.�iV1�/

in (4.9). With this aim we conjugate the equation (4.9) under the flow

(4.10)
@��

�
1.U / D iOpBW.b.U I �; x/�/��1.U /;

�01.U / D Id; b.U I �; x/ WD �.U I x/
1C ��x.U I x/;

where �.U I x/ is a real-valued function in zFR1 of the same form as V1.U I x/, i.e.,

(4.11) �.U I x/ D 1p
2�

X
n2Znf0g

�Cn uneinx C ��n une�inx :

The function �.U I x/ is real if a condition like (2.13) holds, i.e.,

(4.12) �Cn D ��n :
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The flow of the transport equation (4.10) is well-posed by Lemma A.2. We intro-
duce the new variable

(4.13) V1 WD
�
v1
v1

�
D � E��1.U /�W ��j�D1 D �

��1.U /�w�;�
�
1.U /� xw�

�T
j�D1 ;

where the operator ��1.U /��� is defined as in (2.24).

LEMMA 4.5. Define � 2 zFR1 in (4.11) with coefficients

(4.14) �Cn WD �.V1/
C
n

i!n
D inp

2jnj 34
; ��n WD

.V1/
�
n

i!n
D � inp

2jnj 34
; n ¤ 0;

and .�/�0 WD 0; � D �. Then, if w solves (4.9), the function v1 defined in (4.13)
solves

@tv1 D OpBW
�
�iV.1/2 � � i

�
1C a

.1/
2

�j�j 12 C r
.1/
1 C r

.1/
2 CH

.1/
�3
�
v1

CR.1/.U /�V1�
(4.15)

where

� V
.1/
2 2 zFR2 and its coefficients (according to the expansion (2.12)) satisfy

(4.16)
�
V
.1/
2

�C�
n;n

D 2njnj; �
V
.1/
2

�C�
n;�n D 0I

� a
.1/
2 2 zFR2 and its coefficients satisfy

(4.17)
�
a
.1/
2

�C�
n;n

D 0I

� r
.1/
1 2 z��

1
2

1 , r.1/2 2 z��
1
2

2 , H .1/
�3 2 �1K;K0;3 is an admissible symbol, and

R.1/.U / 2 �R��
K;K0;1.

Note that the procedure that eliminates the linear term of the transport in (4.15),
that is, the contribution with degree of homogeneity 1 to the coefficient of � , au-
tomatically also eliminates the contribution with degree of homogeneity 1 to the
coefficient of the symbol of order 1=2.

PROOF OF LEMMA 4.5. Conjugation under the flow in (4.10). We use Lem-
mata A.4 and A.5.

Step 1. We apply Lemma A.5 with � in zFR1 � FRK;0;1 by the fourth remark in
(2.10). Then

@t�
1
1.U /

�
�11.U /

��1 D OpBW.i.�t � �x�t /� CH�3/CR.U /

where H�3 WD ig�3� is an admissible symbol in �1K;1;3 and R.U / belongs to
�R��

K;1;1.



36 M. BERTI, R. FEOLA, AND F. PUSATERI

Step 2. We apply Lemma A.4 with a D �iV �. Thus by (A.14)–(A.17) we
deduce

�11.U /Op
BW.�iV �/.�11.U //

�1

D OpBW��i.V1 C V2/� C i.V1�x � .V1/x�/� CH�3
�CR.U /

where H�3 2 �1K;K0;3 is an admissible symbol and R.U / belongs to �R��C1
K;K0;2.

Step 3. Using Lemma A.4 (see (A.16), (A.17)) we have the expansion

��11.U /OpBW�i�1C a1 C a
.0/
2

�j�j1=2�.�11.U //�1
D OpBW

�
�i
�
1C a1 � �x

2
C a

.0/
2 C .a1/x� � 1

2
�xa1 C 3

8
�2x

�
j�j1=2

C r CH�3
�
CR.U /

where r 2 ��
� 3
2

K;K0;1, H�3 2 �
1
2

K;K0;3 is an admissible symbol, and R.U / is in

�R��C 1
2

K;K0;1.

Step 4. By Lemma A.4 the conjugated operator

�11.U /Op
BW.r1 C r2 CH�3/.�11.U //�1

D OpBW�r.1/1 C r
.1/
2 CH 0�3

�CR.U /

where r.1/1 2 z��
1
2

1 , r.1/2 2 z��
1
2

2 , a new admissible symbol H 0�3 2 �1K;K0;3, and a

smoothing remainder R.U / in �R��C1
K;K0;1.

Step 5. Since also the conjugated operator �11.U /R.U /.�
1
1.U //

�1 of R.U / is
a smoothing remainder, in conclusion, we get that ifw solves (4.9), then v1 defined
in (4.13) satisfies

(4.18)

@tv1 D iOpBW�.�V1 C @t�/� C
��V2 C .V1�x � .V1/x�/ � �x�t

�
�
�
v1

C iOpBW
�
�j�j 12 �

�
a1 � �x

2

�
j�j 12

�
�
a
.0/
2 C .a1/x� � 1

2
�xa1 C 3

8
�2x

�
j�j 12

�
v1

COpBW�r.1/1 C r
.1/
2

�
v1 COpBW.H�3/v1 CR.1/.U /�V1�

where r
.1/
1 2 z��1=21 , r.1/2 2 z��1=22 , H�3 2 �1K;K0;3 is admissible according to

Definition 4.2, and R.1/.U / is a 1� 2 matrix of smoothing operators in �R��
K;K0;1

(renaming �).
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Choice of �. Recall that the coefficients ��n defined in (4.14) satisfy (4.12) and
the function �.U I x/ is real. Using (3.16) we get

(4.19)

@t�.U I x/
D 1p

2�

X
n2Znf0g

.�i!n/�Cn einxun C i!n��n e�inxun C h2 C h�3

where h2, h�3 are defined as

(4.20) hp WD 1p
2�

X
n2Znf0g

�Cn i�Fp.U /�neinx � ��n i�Fp.U /�ne�inx;

with p D 2 or p � 3. By (4.19) and (4.14) we deduce that

(4.21) � V1 C @t� D h2 C h�3:

By (4.12) the functions h2 and h�3 are real. Moreover h2 2 zFR2 and h�3 2 FRK;1;3
by item (iv) of Proposition 2.10 and the fact that F2.U /C F�3.U / D M.U /�U �

for some M in �MK;1;1, see (3.15).

The new equation. From (4.21) and the first line of (4.18) we deduce that V.1/2
in (4.15) is given by

(4.22) � V
.1/
2 WD h2 � V2 � .V1/x�;

having used .V1 � @t�/�x 2 FRK;1;3. By the second line of (4.18) we deduce that

a
.1/
2 in (4.15) is given by

(4.23) a
.1/
2 WD a

.0/
2 C .a1/x� � 1

2
�xa1 C 3

8
�2x 2 zFR2

having noted that the function a1 � �x
2
D 0 by (3.30) and (4.14).

Let us prove (4.16). By (4.22) we have

..V2/
.1//C�n1;n2 D �.h2/C�n1;n2 C .V2/

C�
n1;n2

C i
�
.V1/

C
n1
��n2n1 � .V1/�n2�Cn1n2

�
:

(4.24)

The coefficients .h2/C�n1;n2 associated to h2 defined in (4.20) are

.h2/
C�
n1;n2

D i�Cn1�n2.F2/
C�
n1;n2

� i���.n1�n2/.F2/
C�
n2;n1

with .F2/C�n1;n2 defined by (3.16)–(3.17). We claim that

(4.25) .h2/
C�
n;n D 0; .h2/

C�
n;�n D 0:

The first identity in (4.25) is trivial since the coefficients ��n in (4.14) are zero for
n D 0. To prove the second identity in (4.25) we compute by (4.20) and (3.31)
.h2/

C�
n;�n D i.F2/C�n;�n

�
�C2n � ���2n

� D 0 in view of (4.14). By (4.24), (4.25),

(4.14), and (3.29) we get .V.1/2 /C�n;n D 2njnj and .V.1/2 /C�n;�n D 0.
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To conclude we prove (4.17). From (4.23) we calculate�
a
.1/
2

�C�
n;n

D �
a
.0/
2

�C�
n;n

C in.a1/Cn ��n � in.a1/�n�Cn
� 1
2

in
�
�Cn .a1/�n � ��n .a1/Cn

�C 3
4
�Cn ��n n2

where ��n are defined in (4.14).
By (3.35) we have .a.0/2 /C�n1;n2 D .a2/

C�
n1;n2

� .a1/Cn1.a1/�n2 so that, using (3.30),

we calculate .a.0/2 /C�n;n D 3
8
jnj5=2. Furthermore, one can check directly using the

formulas (3.30) and (4.14), that .a.1/2 /C�n;n D 0. �

Reduction of the quadratic symbol of the transport
The aim of this section is to reduce the transport operator�iOpBW.V

.1/
2 .U I x/�/

in (4.15) into the “integrable” one �iOpBW.�.U /�/ where �.U / is the function,
constant in x, defined in (4.5). To do this we conjugate the equation (4.15) under
the flow of the transport equation

(4.26) @��
�
2.U / D iOpBW.b2.U I �; x/�/��2.U /; �02.U / D Id;

where b2 is defined as in (4.10) in terms of a real-valued function �2.U I x/ 2 zFR2 .
The flow in (4.26) is well-posed by Lemma A.2. We then define the new variable

(4.27) V2 WD
�
v2
v2

�
D � E��2.U /�V1��j�D1 WD �

��2.U /�v1�; �
�
2.U /�v1�

�T
j�D1

where ��2.U / is defined as in (2.24).

LEMMA 4.6. Define �2 2 zFR2 with coefficients for n1; n2 2 Z n f0g,

(4.28)
.�2/

��
n1;n2

WD �.V.1/2 /��n1;n2
i�.!n1 C !n2/

; � D �;

.�2/
C�
n1;n2

WD �.V.1/2 /C�n1;n2
i.!n1 � !n2/

; n1 ¤ �n2;

and .�2/��0;0 WD 0, .�2/C�n;�n WD 0, � D �, where V.1/2 is the real-valued function
defined in Lemma 4.5. If v1 solves (4.15), then the function v2 in (4.27) solves

@tv2 D OpBW��i�.U /� � i
�
1C a

.2/
2

�j�j 12 C r
.1/
1 C r

.2/
2 CH

.2/
�3
�
v2

CR.2/.U /�V2�
(4.29)

where
� �.U / 2 zFR2 is the integrable function defined in (4.5);
� a

.2/
2 2 zFR2 satisfies

(4.30) a
.2/
2 WD a

.1/
2 � 1

2
.�2/x; .a

.2/
2 /C�n;n D 0I
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� r
.1/
1 2 z��

1
2

1 is the same symbol in (4.15), and r.2/2 2 z��
1
2

2 ;
� H .2/

�3 2 �1K;K0;3 is admissible, and R.2/.U / is a 1� 2 matrix of smoothing
operators in �R��

K;K0;1.

PROOF. The function �2 is real-valued since the coefficients .V2/��
0

n1;n2
of the

real function V
.1/
2 in (4.22) satisfy (2.13). In order to conjugate (4.15) under the

map��2 in (4.27) we apply Lemmata A.4 and A.5. By (A.17) and (A.20), and since
�2 is quadratic in u, the only quadratic contributions areOpBW.f�2�;�ij�j 12 g/v2C
iOpBW.@t�2�/v2, implying

(4.31)
@tv2 D OpBW�i��V.1/2 C @t�2

�
� C i

2
.�2/xj�j 12 � i

�
1C a

.1/
2

�j�j 12
C r

.1/
1 C zr.1/2 CH

.1/
�3
�
v2 CR.U /�V2�

where zr.1/2 is a symbol in z��
1
2

2 , H .1/
�3 2 �1K;K0;3 is a new admissible symbol, and

R.U / is a 1 � 2 matrix of smoothing operators in �R��
K;K0;1 (by renaming �). By

the choice of �2 in (4.28), using (3.16), reasoning as in the proof of Lemma 4.5,
and using (4.16) we have

(4.32) � V
.1/
2 C @t�2 D ��.U /C f�3

with �.U / defined in (4.5) and where f�3 is in FRK;1;3. System (4.31) and (4.32)

imply (4.29) where a
.2/
2 is the function defined in (4.30). Recalling (4.17) we

deduce that .a.2/2 /C�n;n D 0. �

4.2 Integrability at order 1/2 and 0

The first aim of this section is to reduce the operator�iOpBW�
a
.2/
2 .U I x/j�j1=2�

in (4.29) to an integrable one. It actually turns out that, thanks to (4.30), we reduce
it to the Fourier multiplier�ijDj1=2; see (4.45). This is done in two steps. In 4.2 we
apply a transformation that is a paradifferential “semi-Fourier integral operator,”
generated as the flow of (4.33). Then, in Section 4.2 we apply the paradifferential
version of a torus diffeomorphism that is “almost” time independent; see (4.41)–
(4.42). Eventually we deal with the operators of order 0 in Section 4.2.

Elimination of the time dependence at order 1=2 up to O.u3/

We conjugate (4.29) under the flow

(4.33) @��
�
3.U / D iOpBW��3.U I x/j�j 12 ���3.U /; �03.U / D Id;

where �3.U I x/ 2 zFR2 is a real-valued function. We set

(4.34) V3 WD
�
v3
v3

�
D � E��3.U /�V2��j�D1 D �

��3.U /�v2�; �
�
3.U /�v2�

�T
j�D1

where ��3.U / is defined as in (2.24).
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LEMMA 4.7. Define �3 2 zFR2 with coefficients

.�3/
��
n1;n2

WD �.a.2/2 /��n1;n2
i�.!n1 C !n2/

; � D �;

.�3/
C�
n1;n2

WD �.a.2/2 /C�n1;n2
i.!n1 � !n2/

; n1 ¤ �n2;
(4.35)

and .�3/��0;0 WD 0, .�3/C�n;�n WD 0, � D �, where a.2/2 is defined in (4.30). If v2
solves (4.29), then

(4.36)
@tv3 D OpBW��i�.U /� � i.1C a

.3/
2 /j�j 12 C ib.3/2 sign.�/

C r
.1/
1 C r

.3/
2 CH

.3/
�3
�
v3 CR.3/.U /�V3�

where

(4.37) a
.3/
2 WD 1

2�

X
n2Znf0g

�
a
.2/
2

�C�
n;�nunu�ne

i2nx; b
.3/
2 WD 1

2
.�3/x;

r
.1/
1 2 z��

1
2

1 is the same symbol in (4.15), r.3/2 2 z��
1
2

2 , H .3/
�3 2 �1K;K0;3 is admissi-

ble, andR.3/.U / is a 1�2 matrix of smoothing operators in�R��
K;K0;1. Moreover,

(4.38)
�
b
.3/
2

�C�
n;n

D �
b
.3/
2

�C�
n;�n D 0:

PROOF. By (4.35) and (2.13) we deduce that �3 is a real function. To conjugate
system (4.29) we apply Lemmata A.6 and A.7 with m  1=2 and m0  1. The
only new contributions at quadratic degree of homogeneity and positive order are
OpBW.f�3j�j1=2;�ij�j 12 g/ and iOpBW.@t�3j�j1=2/. Then we have

@tv3 D OpBW��i�.U /� � i.1C a
.2/
2 � @t�3/j�j 12

C i .�3/x
2

sign.�/C r
.1/
1 C zr.3/2 CH�3

�
v3 CR.U /�V3�

where zr.3/2 2 z��1=22 , the symbolH�3 2 �1K;K0;3 is admissible and R.U / is a 1�2
matrix of smoothing operators in �R��

K;K0;1. By (4.35) and (3.16) we have

(4.39) �ia.2/2 C i@t�3 D �i
X

n2Znf0g

�
a
.2/
2

�C�
n;n

junj2 C
�
a
.2/
2

�C�
n;�nunu�ne

i2nx

up to a function f�3 in FRK;1;3. The conjugation of the remainder R.2/.U / in
(4.29) is another smoothing operator. In conclusion, (4.39) and the vanishing of the
coefficients (4.30) imply (4.36)–(4.37). Finally, (4.38) follows from .b

.3/
2 /C�n1;n2 D

1
2
.�3/

C�
n1;n2

.in1 � in2/. �
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Elimination of the x-dependence at order 1=2 up to O.u3/

The aim of this section is to cancel out the operator

(4.40) � iOpBW
�
1

2�

X
n2Z

�
a
.2/
2

�C�
n;�nunu�ne

i2nx
�

arising by the nonintegrable part of the function a.3/2 .U I x/ in (4.37). Note that the
symbol in (4.40) is a prime integral up to cubic terms O.u3/. We conjugate (4.36)
under the flow

(4.41) @��
�
4.U / D iOpBW.b4.U I �; x/�/��4.U /; �04.U / D Id;

where b4 is defined as in (4.10) in terms of a real-valued function �4.U I x/ 2 zFR2
of the same form of the symbol in (4.40), i.e.,

(4.42) �4.U I x/ D 1

2�

X
n2Znf0g

.�4/
C�
n;�nunu�nei2nx :

The flow in (4.41) is well-posed by Lemma A.2. We set

(4.43) V4 WD
�
v4
v4

�
D � E��4.U /�V3��j�D1 D �

��4.U /�v3�; �
�
4.U /�v3�

�T
j�D1

where ��4.U / is defined as in (2.24).

LEMMA 4.8. Define the function �4 2 zFR2 as in (4.42) with coefficients

(4.44) .�4/
C�
n;�n WD

.a
.2/
2 /C�n;�n

in
; n ¤ 0; .�4/

C�
0;0 WD 0:

If v3 solves (4.36), then

@tv4 D OpBW��i�.U /� � ij�j 12 C ib.3/2 sign.�/C r
.1/
1 C r

.3/
2 CH

.4/
�3
�
v4

CR.4/.U /�V4�

(4.45)

where the symbols b.3/2 , r.1/1 , r.3/2 are the same as in equation (4.36), the sym-
bol H .4/

�3 2 �1K;K0;3 is admissible, and R.4/.U / is a 1 � 2 matrix of smoothing
operators in �R��

K;K0;1.

PROOF. In order to conjugate (4.36) we apply Lemmata A.4 and A.5. The con-
tribution coming from the conjugation of @t is iOpBW

�
.@t�4/�

�
v4 plus a para-

differential operator with symbol i.�.�4/x.�4/t C g�3/� (see (A.20)), which
is admissible, and a smoothing remainder in �R��

K;1;1. One has �i!nunu�n C
uni!�nu�n. Hence, recalling (3.16), we have

(4.46)
d

dt

X
n2Znf0g

.�4/
C�
n;�nunu�nei2nx D h�3
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because !�n D !n and where, arguing as in the proof of Lemma 4.5, h�3 is a
function in FRK;1;3. This implies that the function @t�4 is in FRK;1;3 and therefore
i.@t�4/� is an admissible symbol.

Lemma A.4 implies that the conjugation of the spatial operator in (4.36) is a
paradifferential operator with symbol

(4.47) � i�.U /� � i
�
1C a

.3/
2

�j�j 12 Cf�4�;�ij�j 12 gC ib.3/2 sign.�/C r
.1/
1 C r

.3/
2

plus a symbol in ���3=2K;K0;1, an admissible symbol and a smoothing operator in the

class �R��C1
K;1;1 . Note that f�4�;�ij�j1=2g D i

2
.�4/xj�j1=2 and that this equals

a
.3/
2 ij�j1=2 in view of the definitions of �4 in (4.42) and (4.44), and of a.3/2 in

(4.37). It follows that the symbol in (4.47) reduces to

�i�.U /� � ij�j1=2 C ib.3/2 sign.�/C r
.1/
1 C r

.3/
2 :

We have therefore obtained (4.45) (after slightly redefining �) as desired. �

Integrability at order 0
Our aim here is to eliminate in (4.45) the zeroth-order paradifferential operator

OpBW
�
ib.3/2 sign.�/

�
. We conjugate (4.45) with the flow

(4.48) @��
�
5.U / D OpBW.i�5.U I x/ sign.�//��5.U /; �05.U / D Id;

where �5.U I x/ 2 zFR2 is a real-valued function. We introduce the variable

(4.49) V5 WD
�
v5
v5

�
D � E��5.U /�V4��j�D1 D �

��5.U /�v4�; �
�
5.U /�v4�

�T
j�D1

where ��5.U / is defined as in (2.24).

LEMMA 4.9. Define �5 2 zFR2 (of the form (2.12)) with

.�5/
��
n1;n2

WD .b
.3/
2 /��n1;n2

i�.!n1 C !n2/
; � D �;

.�5/
C�
n1;n2

WD .b
.3/
2 /C�n1;n2

i.!n1 � !n2/
; n1 ¤ �n2;

(4.50)

and .�5/��0;0 WD 0, .�5/C�n;�n WD 0, � D �. If v4 solves (4.45), then

(4.51)
@tv5 D OpBW��i�.U /� � ij�j 12 C r

.5/
1 C r

.5/
2 CH

.5/
�3
�
v5

CR.5/.U /�V5�

where r.5/1 2 z��1=21 , r.5/2 2 z��1=22 , the symbol H .5/
�3 2 �1K;K0;3 is admissible, and

R.5/.U / is a 1 � 2 matrix of smoothing operators in �R��
K;K0;1.
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PROOF. To conjugate (4.45) we apply Lemmata A.6 and A.7. By (4.50) we get

OpBW�i�b.3/2 C @t�5
�
sign.�/

� D iOpBW�b.5/2 sign.�/
�
;

up to symbols with degree of homogeneity greater than 3, and where

b
.5/
2 .U I x/ WD 1

2�

X
n2Znf0g

�
b
.3/
2

�C�
n;n

junj2 C
�
b
.3/
2

�C�
n;�nunu�ne

i2nx (4.38)D 0:

The lemma is proved. �

In the following subsection we will be dealing with negative order operators,
and will not need additional algebraic information about the coefficients and their
vanishing.

4.3 Integrability at negative orders

In this section we algorithmically reduce the linear and quadratic symbols r.5/1 C
r
.5/
2 of order �1=2 in (4.51) into an integrable 1, plus an admissible symbol.

PROPOSITION 4.10. For any j D 0; : : : ; 2� � 1, there exist

� integrable symbols p.j /2 2 z��
1
2

2 (Definition 4.1), symbols q.j /.U I x; �/ 2
��

�mj
K;K0;1 with mj WD jC1

2
, admissible symbols H .j /

�3 in �1K;K0;3, and a
1 � 2 matrix of smoothing operators R.j /.U / in �R��

K;K0;1,
� bounded maps ��jC1.U /, � 2 �0; 1�, defined as the compositions of three

flows generated by paradifferential operators with symbols of order � 0

(see (4.68) and (4.55), (4.59) and (4.65))
such that: if j́ solves

(4.52)
@t j́ D OpBW��i�.U /� � ij�j 12 C p

.j /
2 .U I �/C q.j /.U I x; �/CH

.j /
�3
�
j́

CR.j /.U /�Zj �;

then the first component j́C1 of the vector defined by

(4.53) ZjC1 D
�
j́C1
j́C1

�
WD �

��jC1.U /
�
�D1Zj

solves an equation of the form (4.52) with j C 1 instead of j .

The proof proceeds by induction.
Initialization. Note that equation (4.51) has the form (4.52) with j D 0, denot-

ing ´0 WD v5, p.0/2 WD 0, q.0/ WD r
.5/
1 C r

.5/
2 2 ���1=2K;K0;1, and renaming H .0/

�3 the

admissible symbol H .5/
�3 in (4.51) and R.0/.U / the smoothing operator R.5/.U /.

We remark that the integrable corrections p.j /2 in (4.52) (initially p
.0/
2 D 0) are

generated by the reductions on quadratic symbols made in Lemma 4.12 below.
Iteration. The aim of the iterative procedure is to cancel out the symbol q.j / up

to a symbol of order �mj � 1=2. This is done in two steps.
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Step 1. Elimination of the linear symbols of negative order. We expand the
symbol q.j / D q

.j /
1 Cq

.j /
2 C� � � with q.j /

l
2 ��mj

l
, l D 1; 2. In order to eliminate

the operator OpBW.q
.j /
1 .U I x; �// in (4.52) we conjugate it by the flow

(4.54) @��
�


.1/

jC1

.U / D OpBW� .1/jC1.U I x; �/
�
��

.1/

jC1

.U /; �0

.1/

jC1

.U / D Id;

where  .1/jC1.U I xI �/ is a symbol in z��mj1 . The flow (4.54) is well-posed because

the order of  .1/jC1 is negative. We introduce the new variable

zZjC1 WD
�źjC1
źjC1

�
D �

A�jC1;1.U /�Zj �
�
j�D1

D �
��

.1/

jC1

.U /� j́ �; �
�


.1/

jC1

.U /� j́ �
�T
j�D1

(4.55)

where the map ��

.1/

jC1

.U / is defined as in (2.24).

LEMMA 4.11. Define  .1/jC1 2 z��mj1 with coefficients

(4.56)

�

.1/
jC1

�C
n
WD .q

.j /
1 /Cn
i!n

; .jC1/�n WD
�.q.j /1 /�n

i!n
; n ¤ 0;

.
.1/
jC1/

�
0 WD 0; � D �:

If j́ solves (4.52), then

(4.57)

@t źjC1 D OpBW.�i�.U /� � ij�j 12 C p
.j /
2 .U I �/C zq.j /2 .U I x; �/

C zk.j /1 .U I x; �/C zk.j /2 .U I x; �/�źjC1 COpBW�H .j /
�3
�źjC1

CR.j /.U /� zZjC1�

where p.j /2 .U I �/ 2 z��1=22 is the same of (4.52), zq.j /2 2 z��mj2 , zk.j /1 2 z��mj�
1
2

1 ,

zk.j /2 2 z��mj�
1
2

2 , H .j /
�3 2 �1K;K0C1;3 is admissible and R.j /.U / is a 1 � 2 matrix

of smoothing operators in �R��
K;K0;1.

PROOF. In order to conjugate (4.52) we apply Lemmata A.6 and A.7. The only
contributions at homogeneity degree 1 and order �mj are given by

OpBW�q.j /1 C @t
.1/
jC1

�
up to smoothing remainders. From the time contribution, a symbol that has homo-
geneity 2 and order less than or equal to �mj � 1=2 appears (see the term r1 in
(A.26) of Lemma A.7). By (4.56) and (3.16) we have that

q
.j /
1 C @t

.1/
jC1 D q2;j C q�3; q2;j 2 z��mj2 ; q�3 2 ��mjK;1;3;
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and we set zq.j /2 WD q
.j /
2 Cq2;j , and absorb q�3 in the admissible symbolH .j /

�3 . The
contributions in (4.57) at order less than or equal to�mj� 1

2
, and homogeneity� 2

come from the conjugation of�ij�j1=2. In particular, by formula (A.24), we can set
zk.j /1 WD � i

2
.
.1/
jC1/xj�j�

1
2 sign.�/ and get (4.57) with some zk.j /2 in ��mj�1=22 . �

Step 2. Reduction of the quadratic symbols of negative order. We now cancel
out the symbol zq.j /2 in (4.57), up to an integrable one and a lower-order symbol.
We use two different transformations.
ELIMINATION OF THE TIME DEPENDENCE UP TO O.u3/. We consider the flow
generated by

(4.58) @��
�


.2/

jC1

.U / D OpBW.
.2/
jC1.U I x; �//��.2/

jC1

.U /; �0

.2/

jC1

.U / D Id;

where  .2/jC1.U I xI �/ is a symbol in z��mj2 . We introduce the new variable

MZjC1 WD
� ḾjC1
ḾjC1

�
D �

A�jC1;2.U /� zZj �
�
j�D1

D �
��

.1/

jC1

.U /�źj �; ��

.1/

jC1

.U /�źj �
�T
j�D1

(4.59)

where the map ��

.2/

jC1

.U / is defined as in (2.24).

LEMMA 4.12. Let  .2/jC1.U I xI �/ be a symbol in z��mj2 of the form (2.12) with
coefficients

.
.2/
jC1/

��
n1;n2

WD .zq.j /2 /��n1;n2
i�.!n1 C !n2/

; � D �;

.
.2/
jC1/

C�
n1;n2

WD .zq.j /2 /C�n1;n2
i.!n1 � !n2/

; n1 ¤ �n2:
(4.60)

If źj solves (4.57), then

(4.61)

@t ḾjC1 D OpBW��ij�j 12 � i�.U /� C p
.j /
2 .U I �/� ḾjC1

COpBW
� X
n2Znf0g

.zq.j /2 /C�n;n .�/junj2 C .zq.j /2 /C�n;�n.�/unu�nei2nx
�
ḾjC1

COpBW� Mk.j /1 .U I x; �/C Mk.j /2 .U I x; �/CH
.j /
�3
� ḾjC1 CR.j /.U /� MZjC1�

where Mk.j /1 2 z��mj�1=21 , Mk.j /2 2 z��mj�1=22 , the symbol H .j /
�3 2 �1K;K0;3 is admis-

sible, and R.j /.U / is a 1 � 2 matrix of smoothing operators in �R��
K;K0;1.

PROOF. In order to conjugate (4.57) we apply Lemmata A.6 and A.7. The
contributions at order �mj and degree 2 are given by OpBW

�zq.j /2 C @t
.2/
jC1

�
.
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All the other contributions have homogeneity greater than or equal to 3 and are
admissible. By the choice of  .2/jC1 in (4.60) we have

zq.j /2 C @t
.2/
jC1 D

1

2�

X
n2Znf0g

�zq.j /2 �C�
n;n

�
�/junj2 C

�zq.j /2 �C�
n;�n.�/unu�ne

i2nx

up to a symbol in ��mjK;1;3. �

ELIMINATION OF THE x-DEPENDENCE UP TO O.u3/. In order to eliminate the
nonintegrable symbol

(4.62)
1

2�

X
n2Znf0g

.zq.j /2 /C�n;�n.�/unu�nei2nx

in (4.61) we follow the same strategy used in Section 4.2. We conjugate (4.61) by
the flow

(4.63) @��
�


.3/

jC1

.U / D iOpBW� .3/jC1.U I x; �/
�
��

.3/

jC1

.U /; �0

.3/

jC1

.U / D Id;

where  .3/jC1.U I x; �/ is a symbol in z��mjC1=22 of the same form (4.62), i.e.,

(4.64) 
.3/
jC1.U I x; �/ WD

1

2�

X
n2Znf0g

.
.3/
jC1/

C�
n;�n.�/unu�nei2nx :

We introduce the new variable

ZjC1 WD
�
j́C1
x́jC1

�
D �

A�jC1;3.U /� MZjC1�
�
j�D1

D �
��

.3/

jC1

.U /� ḾjC1�; ��

.3/

jC1

.U /� ḾjC1�
�T
j�D1

(4.65)

where the map ��

.3/

jC1

.U / is defined as in (2.24).

LEMMA 4.13. Define  .3/jC1 in z��mjC
1
2

2 as in (4.64) with coefficients

(4.66)
�

.3/
jC1

�C�
n;�n.�/ WD j�j 12 sign.�/

1

n

�zq.j /2 �C�
n;�n.�/; n ¤ 0:

If Ḿj solves (4.61), then

@t j́C1 D OpBW��i�.U /� � ij�j 12 C p
.jC1/
2 .U I �/

C q.jC1/.U I x; �/CH
.jC1/
�3

�
j́C1

CR.jC1/.U /�ZjC1�

(4.67)
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where p
.jC1/
2 .U I �/ is an integrable symbol in z��1=22 , q.jC1/.U I x; �/ is in

��
�mjC1
K;K0;1 , the symbolH

�
jC1/

�3 2 �1K;K0;3 is admissible, and R.jC1/.U / is a 1� 2
matrix of smoothing operators in �R��

K;K0;1.

PROOF. Reasoning as in (4.46), we have d
dt

.3/
jC1.U I x; �/ D 0 up to a cubic

symbol in ��mjC1=2K;1;3 . In order to conjugate (4.61) we apply Lemmata A.6–A.7.
The contributions with homogeneity 2 and order �mj are

OpBW
�

i
2

�

.3/
jC1

�
x
j�j� 12 sign.�/

C 1

2�

X
n2Znf0g

�zq.j /2 �C�
n;n
.�/junj2 C

�zq.j /2 �C�
n;�n.�/unu�ne

i2nx
�
:

Then, by the choice of  .3/jC1 in (4.64), (4.66), we have that (4.67) follows with the

new integrable symbol p.jC1/2 .U I �/ WD p
.j /
2 .U I �/CPn2Znf0g.zq.j /2 /C�n;n .�/junj2

and a symbol q.jC1/.U I x; �/ in ���mjC1K;K0;1 where mjC1 D mj C 1=2. �

Lemmata 4.11, 4.12, 4.13 imply Proposition 4.10 by defining the map

(4.68) ��jC1.U / WD A�jC1;3.U / �A�jC1;2.U / �A�jC1;1.U /
where A�

jC1;k.U /, for k D 1; 2; 3, are defined, resp., in (4.55), (4.59), and (4.65).

4.4 Proof of Proposition 4.4
We set

(4.69) F� .U / WD ��f in.U / � E��5.U / � � � � E��1.U / ���diag.U /

and F� .U / WD F� .U /�U � as in (4.6), where ��diag.U / is defined in Proposition

3.10, the maps E��j .U /, j D 1; : : : ; 5; are given, resp., in (4.13), (4.27), (4.34),
(4.43), (4.49), and ��

f in
.U / WD ��2�.U / � � � � � ��1 .U / where ��jC1.U /, j D

0; : : : ; 2� � 1, are defined in (4.68). Then, by the construction in Sections 4.1–4.3,
we have that Z WD .F� .U //�D1 solves the system (4.52) with j D 2� � 1, which
has the form (4.4) with D�1=2.U I �/  p

.2��1/
2 .U I �/, H�3  H

.2��1/
�3 , and

R.U / R.2��1/.U /. The bounds (4.7) follow since F� .U / is the composition of
maps constructed using Lemma A.2 (see bounds (A.10)).

5 Poincaré-Birkhoff Normal Forms
The aim of this section is to eliminate all the terms of the system (4.4) up to

cubic degree of homogeneity that are not yet in Poincaré-Birkhoff normal form.
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Such terms appear only in the smoothing remainder R.U /�Z� that we write as

R.U / D R1.U /C R2.U /C R�3.U /; R�3.U / 2 R��
K;K0;3 
M2.C/;(5.1)

Ri .U / D
�
Ri .U //

C

C
Ri .U //

�
C

Ri .U //
C
� Ri .U //

�
�

�
;

.Ri .U //
� 0

� 2 zR��
i ; .Ri .U //

� 0

� D .Ri .U //�� 0�� ;
(5.2)

for �; � 0 D � and i D 1; 2. The third identity in (5.2) means that the matrix of
operators R.U / is real-to-real (see (2.25)). For any �; � 0 D � we expand

(5.3) .R1.U //�
0

� D
X
�D�

.R1;�.U //�
0

� ; .R2.U //�
0

� D
X
�D�

.R2;�;�.U //�
0

� C .R2;C;�.U //�
0

� ;

where .R1;�.U //�
0

� 2 zR��
1 , .R2;�;�0.U //�

0

� 2 zR��
2 with �; �0 D �, are the homo-

geneous smoothing operators

.R1;�.U //
� 0

� ´
� 0 D 1p

2�

X
j2Znf0g

� X
k2Znf0g

.R1;�.U //
� 0;k
�;j ´

� 0

k

�
ei�jx(5.4)

with entries

.R1;�.U //
� 0;k
�;j WD 1p

2�

X
�nC� 0kD�j;n2Znf0g

.r1;�/
�;� 0

n;k
u�n; j; k 2 Z n f0g;(5.5)

for suitable scalar coefficients .r1;�/
�;� 0

n;k
2 C, and

(5.6) .R2;�;�0.U //
� 0

� ´
� 0 D 1p

2�

X
j2Znf0g

� X
k2Znf0g

.R2;�;�0.U //
� 0;k
�;j ´

� 0

k

�
ei�jx

with entries

(5.7)

.R2;�;�0.U //
� 0;k
�;j

WD 1

2�

X
n1;n22Znf0g

�n1C�0n2C� 0kD�j

.r2;�;�0/
�;� 0

n1;n2;k
u�n1u

�0

n2
; j; k 2 Z n f0g;

and suitable scalar coefficients .r2;�;�0/
�;� 0

n1;n2;k
2 C.

DEFINITION 5.1 (Poincaré-Birkhoff Resonant smoothing operator). Let R.U / be
a real-to-real smoothing operator in zR��

2 
M2.C/ with � � 0 and scalar coeffi-
cients .r�;�0/

�;� 0

n1;n2;k
2 C defined as in (5.7). We denote by Rres.U / the real-to-real

smoothing operator in zR��
2 
M2.C/ with coefficients

(5.8)

.Rres
�;�0.U //

� 0;k
�;j

WD
X

n1;n22Znf0g; �n1C�0n2C� 0k��jD0
�!.n1/C�0!.n2/C� 0!.k/��!.j /D0

.r�;�0/
�;� 0

n1;n2;k
u�n1u

�0

n2
; j; k 2 Z n f0g;
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where we recall that !.j / D jj j1=2.

In Sections 5.2 and 5.2 we will reduce the remainder R.U / in (5.1) to its Poincaré-
Birkhoff resonant component. The key result of this section is the following.

PROPOSITION 5.2 (Poincaré-Birkhoff normal form of the water waves at cubic
degree). There exists �0 > 0 such that, for all � � �0, K � K 0 D 2� C 2, there
exists s0 > 0 such that, for any s � s0, for all 0 < r � r0.s/ small enough, and
any solution U 2 BKs .I I r/ of the water waves system (3.7), there is a nonlinear
map F�T .U /, � 2 �0; 1�, of the form

(5.9) F�T .U / WD C� .U /�U �

where C� .U / is a real-to-real, bounded, and invertible operator such that Y WD� y
xy
� D F1T .U / solves

(5.10) @tY D �i�Y � iOpBW.D.Y I �//�Y �C zRres.Y /�Y �C X�4.U; Y /

where:
� � is the diagonal matrix of Fourier multipliers defined in (3.15), and
D.Y I �/ is the diagonal matrix of integrable symbols z�12 
M2.C/ defined
in (4.5);

� the smoothing operator zRres.Y / 2 zR�.���0/
2 
M2.C/ is Poincaré-Birkhoff

resonant (Definition 5.1);
� X�4.U; Y / has the form

(5.11) X�4.U; Y / D OpBW.H�3.U I x; �//�Y �CR�3.U /�Y �

where H�3.U I x; �/ 2 �1K;K0;3 
M2.C/ is an admissible matrix of sym-
bols (Definition 4.2) and R�3.U / is a matrix of real-to-real smoothing
operators in R�.���0/

K;K0;3 
M2.C/.

Furthermore, the map F�T .U / defined in (5.9) satisfies the following proper-
ties:

(i) There is a constant C depending on s, r , and K such that, for s � s0,

(5.12)
k@kt C� .U /�V �k PH s�k C k@kt .C� .U //�1�V �k PH s�k

� kV kk;s.1C CkU kK;s0/C CkV kk;s0kU kK;s;
for any 0 � k � K�K 0, V 2 CK�K0�R .I I PH s.T IC2// and uniformly in � 2 �0; 1�.

(ii) The function Y D F�T .U /j�D1 satisfies

(5.13) C�1kU k PH s � kY k PH s � CkU k PH s :

(iii) The map F�T .U / admits an expansion as

F�T .U / D U C��M1.U /�U �CM .1/
2 .U /�U �

�C�2M .2/
2 .U /�U �CM�3.� IU/�U �;
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where M1.U / is in �M1 
M2.C/, the maps M .1/
2 .U /;M

.2/
2 .U / are in �M2 


M2.C/, and M�3.� IU/ is in MK;K0;3 
M2.C/ with estimates uniform in � 2
�0; 1�.

In the following subsection we provide lower bounds on the “small divisors”
that appear in the Poincaré-Birkhoff reduction procedure. Then, in Section 5.2, we
prove Proposition 5.2.

5.1 Cubic and quartic wave interactions
We study in this section the cubic and quartic resonances among the linear fre-

quencies !.n/ D jnj 12 .

PROPOSITION 5.3 (Nonresonance conditions). There are constants c > 0 and
N0 > 0 such that

� (cubic resonances) for any �; � 0 D � and n1; n2; n3 2 Z n f0g satisfying
n1 C �n2 C � 0n3 D 0 we have

(5.14) j!.n1/C �!.n2/C � 0!.n3/j � c :

� (quartic resonances) For any �; � 0; � 00 D � and n1; n2; n3; n4 2 Z n f0g
such that

(5.15) n1C�n2C� 0n3C� 00n4 D 0 ; !.n1/C�!.n2/C� 0!.n3/C� 00!.n4/ ¤ 0 ;

we have

j!.n1/C �!.n2/C � 0!.n3/C � 00!.n4/j
� cmaxfjn1j; jn2j; jn3j; jn4jg�N0 :

(5.16)

PROOF. We first consider the cubic and then the quartic resonances.
PROOF OF (5.14). If � D � 0 D C, then the bound (5.14) is trivial. Assume

� D C and � 0 D �. By n1 C n2 � n3 D 0 we have that jn3j � jn1j C jn2j and
therefore

j
p
jn1j C

p
jn2j �

p
jn3jj D jjn1j C jn2j � jn3j C 2

pjn1jjn2jjpjn1j Cpjn2j Cpjn3j � 2

2Cp
2

since jn1j; jn2j � 1. The bound (5.14) in the case � D � and � 0 D C is the same.
PROOF OF (5.16). The case � D � 0 D � 00 D C is trivial. Assume � D � 0 D C

and � 00 D �. We have

j!.n1/C !.n2/C !.n3/ � !.n4/j

D jjn1j C jn2j C jn3j � jn4j C 2
pjn1n2j C 2

pjn2n3j C 2
pjn1n3jj

!.n1/C !.n2/C !.n3/C !.n4/
:

The first (momentum) condition in (5.15) implies that jn1jCjn2jCjn3j� jn4j � 0
and hence (5.16) follows (actually with N0 D 0). It remains the case that � D
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� 00 D � and � 0 D C; i.e., we have to prove that the phase

(5.17)

 .n1; n2; n3; n4/

WD jn1j � jn2j C jn3j � jn4j C 2
pjn1n3j � 2pjn2n4j

jn1j1=2 C jn2j1=2 C jn3j1=2 C jn4j1=2
satisfies (5.16). Note that the first (momentum) equality in (5.15) becomes

(5.18) n1 � n2 C n3 � n4 D 0 :

Let jn1j WD maxfjn1j; jn2j; jn3j; jn4jg and assume, without loss of generality, that
n1 > 0 and jn2j � jn4j (the phase (5.17) is symmetric in jn2j; jn4j). We consider
different cases.

Case a. Assume that n1 D jn2j. Then by (5.17) we have that

j .n1; n2; n3; n4/j D jjn3j � jn4jj=.jn3j1=2 C jn4j1=2/:
Since  ¤ 0, then jn3j � jn4j is a nonzero integer and we get (5.16). Thus in the
sequel we suppose

(5.19) n1 > jn2j � jn4j:

Case b. Assume that jn3j � jn4j. Then by (5.17), (5.19) we get

 .n1; n2; n3; n4/ � .jn1j 12 C jn2j 12 /�1;
which implies (5.16). Thus in the sequel we suppose, in addition to (5.19), that

(5.20) n1 > jn2j � jn4j > jn3j:
The case n2 < 0 is not possible. Indeed, if n2 < 0, then (5.18) implies n4 D
n1 C jn2j C n3 > n1 by (5.20), which is in contradiction with n1 > jn4j. Hence
from now on we assume that

(5.21) n1 > n2 � jn4j > jn3j > 0:

Case c1. Assume that all the frequencies have all the same sign, i.e., n1 > n2 �
n4 > n3 > 0. In this case, by (5.17)–(5.18), we get

j .n1; n2; n3; n4/j D j2pn1n3 � 2pn2n4j
jn1j1=2 C jn2j1=2 C jn3j1=2 C jn4j1=2

� 2P4
iD1 jni j1=2

jn1n3 � n2n4jp
n1n3 Cp

n2n4
:

Since  ¤ 0 we have n1n3 ¤ n2n4, and therefore (5.16) follows.

Case c2. Assume now that two frequencies are positive and two are negative,
i.e., n4 < n3 < 0 < n2 < n1. The momentum condition (5.18) becomes n1�n2 D
�jn4j C jn3j and, since n1 > n2, then jn3j > jn4j contradicting (5.21).
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Case c3. Assume that three frequencies have the same sign and one has the
opposite sign. By (5.18) and (5.21) we then have n1 > n2 > n4 > 0 > n3,
n4 > jn3j. Hence by (5.17) we get

(5.22)  .n1; n2; n3; n4/
(5.18)D 2P4

iD1 jni j
1
2

n23 C n1jn3j � n2n4 C 2jn3j
p
n1jn3j

jn3j C
p
n1jn3j C p

n2n4
:

If n2n4 � n1jn3j, then (5.22) implies the bound (5.16). If instead n2n4 > n1jn3j,
we reason as follows. Note that

B WD n23 C n1jn3j � n2n4 � 2jn3j
p
n1jn3j � n23 � 2jn3j

p
n1jn3j

� �jn3j
p
n1jn3j � �1;

in particularB ¤ 0. Then we rationalize again (5.22) to obtain .n1; n2; n3; n4/ D
C � A � B�1 where

A WD .n23 C n1jn3j � n2n4/2 � 4jn3j3n1;
C WD 2P4

iD1 jni j1=2
1

jn3j C
p
n1jn3j C p

n2n4
:

Since  ¤ 0, then A is a nonzero integer and so j j � C jBj�1. Moreover,
jBj � cn21, for some constant c > 0, and (5.16) follows. �

5.2 Poincaré-Birkhoff reductions
The proof of Proposition 5.2 is divided into two steps: in the first (Section 5.2)

we eliminate all the quadratic terms in (4.4); in the second one (Section 5.2) we
eliminate all the nonresonant cubic terms.

Elimination of the quadratic vector field
In this section we cancel out the smoothing term R1.U / in (5.1) of system (4.4).

We conjugate (4.4) with the flow

(5.23) @�B�1.U / D Q1.U /B�1.U /; B01.U / D Id;

with Q1.U / 2 zR��
1 
 M2.C/ of the same form of R1.U / in (5.2)–(5.5), to be

determined. We introduce the new variable Y1 WD
� y1
y1

� D �
B�1.U /�Z�

�
j�D1 .

LEMMA 5.4 (First Poincaré-Birkhoff step). Assume that Q1.U / 2 zR��
1 
M2.C/

solves the homological equation

(5.24) Q1.�i�U/C �
Q1.U /;�i�

�C R1.U / D 0:

Then

(5.25)
@tY1 D �i�Y1 COpBW.�iD.U I �/C H�3/�Y1�

C �
RC2 .U /C RC�3.U /

�
�Y1�
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where � is defined in (3.15), D.U I �/ in (4.5), H�3 is an admissible symbol in
�1K;K0;3 
M2.C/, and RC2 .U / 2 zR��Cm1

2 
M2.C/, RC�3.U / 2 R��Cm1
K;K0;3 


M2.C/, with m1 � 1 as in (3.15).

PROOF. To conjugate (4.4) we apply Lemma A.1 with Q1.U / D iA.U /. By
(A.3) with L D 1 we have

(5.26)

� iB11.U /�.B11.U //�1

D �i�C �
Q1.U /;�i�

�
C
Z 1

0

.1 � �/B�1.U /
�
Q1.U /;

�
Q1.U /;�i�

���
B�1.U /

��1
d�:

Using that Q1.U / belongs to zR��
1 
M2.C/ and applying Proposition 2.10, and

Lemma A.3, the term in (5.26) is a smoothing operator in �R��C1=2
K;K0;2 
M2.C/.

Similarly we obtain

(5.27) � iB11.U /OpBW.D.U I �//�B11.U /��1 D �iOpBW.D.U I �//

up to a term in �R��C1
K;K0;2 
M2.C/, and

(5.28)
B11.U /

�
OpBW.H�3/C R1.U /C R2.U /C R�3.U /

��
B11.U /

��1
D OpBW.H�3/C R1.U /

up to a matrix of smoothing operators in �R��C1
K;K0;2 
M2.C/. Next we consider

the contribution coming from the conjugation of @t . Applying formula (A.4) with
L D 2, we get

(5.29)
@tB11.U /

�
B11.U /

��1 D @tQ1.U /C 1

2

�
Q1.U /; @tQ1.U /

�
C 1

2

Z 1

0

.1 � �/2B�1.U /
�
Q1.U /;

�
Q1.U /; @tQ1.U /

���
B�1.U /

��1
d�:

Recalling (3.15) we have @tQ1.U / D Q1.�i�U C M.U /�U �/ D Q1.�i�U/ up
to a term in �R��Cm1

K;K0;2 
M2.C/, where we used item (iii) of Proposition 2.10.

By the fact that Q1.�i�U/ is in zR��C1=2
1 
M2.C/ we have that the second line

(5.29) belongs to �R��Cm1
K;K0;2 
M2.C/. In conclusion, by (5.26), (5.27), (5.28),

(5.29) and the assumption that Q1 solves (5.24) we deduce (5.25). �

Notation. Given p 2 N we denote max2.jn1j; : : : ; jnpj/ and max.jn1j; : : : ; jnpj/,
resp., the second largest and the largest among jn1j; : : : ; jnpj.

The following lemma is deduced by the definition of smoothing homogeneous
operators in Definition 2.5.
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LEMMA 5.5. An operator R1.U / of the form (5.2)–(5.5) is in zR��
1 
M2.C/ if

and only if, for some � > 0,

(5.30)
��.r1;�/�;� 0n;k

�� � max2.jnj; jkj/�C�
max.jnj; jkj/� ; 8 �; �; � 0 D �; n; k 2 Z n f0g:

An operator R2.U / of the form (5.2)–(5.3) as in (5.6)–(5.7) belongs to zR��
2 


M2.C/ if and only if, for some � > 0,

(5.31)

��.r2;�;�0/�;� 0n1;n2;k

�� � max2.jn1j; jn2j; jkj/�C�
max.jn1j; jn2j; jkj/�

8�; �0; �; � 0 D �; n1; n2; k 2 Z n f0g:
We now solve the homological equation (5.24).

LEMMA 5.6 (First homological equation). The operator Q1 of the form (5.2)–(5.5)
with coefficients

(5.32) .q1;�/
�;� 0

n;k
WD

�.r1;�/�;�
0

n;k

i
�
� jj j1=2 � � 0jkj1=2 � �jnj1=2� ; �j � � 0k � �n D 0;

with �; � 0; � D �, j; n; k 2 Z n f0g solves the homological equation (5.24) and Q1
is in zR��

1 
M2.C/.

PROOF. First note that the coefficients in (5.32) are well-defined since

� jj j 12 � � 0jkj1=2 � �jnj1=2 ¤ 0

for any �; � 0; � D �, n; k 2 Z n f0g, by Proposition 5.3. Moreover, by (5.14) and
Lemma 5.5 we have

j.q1;�/�;�
0

n;k
j � max2.jnj; jkj/�C� max.jnj; jkj/��;

and therefore the operator Q1 is in zR��
1 
M2.C/.

Next, recalling (5.2) and (3.15), the homological equation (5.24) amounts to the
equations, 8�; � 0 D �,

.Q1.�i�U//�
0

� � .Q1.U //� 0� � 0ijDj
1
2 C � ijDj 12 .Q1.U //� 0� C .R1.U //

� 0

� D 0;

and expanding .Q1.U //�
0

� as in (5.3)–(5.5) with entries

(5.33) .Q1;�.U //
� 0;k
�;j D 1p

2�

X
�nC� 0kD�j;n2Znf0g

.q1;�/
�;� 0

n;k
u�n; j; k 2 Z n f0g;

to the equations, for any j; k 2 Z n f0g, � D �,

.Q1;�.�i�U//�
0;k
�;j C .Q1;�.U //

� 0;k
�;j

�
� ijj j 12 � � 0ijkj 12 �
C .R1;�.U //

� 0;k
�;j D 0:

(5.34)
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By (5.33) and (3.15) we have

.Q1;�.�i�U//�
0;k
�;j D 1p

2�

X
n2Znf0g

�nC� 0kD�j

.q1;�/
�;� 0

n;k
.�i�jnj 12 /u�n:

Then one checks that (5.34) is solved by the coefficients .q1;�/
�;� 0

n;k
in (5.32). �

Elimination of the cubic vector field
In this section we reduce to Poincaré-Birkhoff normal form the smoothing term

RC2 .U / 2 zR��Cm1
2 
M2.C/ in (5.25). We conjugate (5.25) with the flow

(5.35) @�B�2.U / D Q2.U /B�2.U /; B02.U / D Id;

where Q2.U / is a matrix of smoothing operators in zR��CN0Cm1
2 
 M2.C/ of

the same form of RC2 .U / to be determined. We introduce the new variable Y2 WD� y2
y2

� D �
B�2.U /�Y1�

�
j�D1 .

Notation. Given the operator Q2.U / in (5.35), we denote by Q2.�i�U/ the oper-
ator of the form (5.2), (5.3), (5.6)–(5.7) with coefficients defined as

.Q2;�;�0.�i�U//�
0;k
�;j

D 1

2�

X
n1;n22Znf0g

�n1C�0n2C� 0kD�j

.q2;�;�0/
�;� 0

n1;n2;k

��i�jn1j 12 � i�0jn2j 12
�
u�n1u

�0

n2
:(5.36)

LEMMA 5.7 (Second Poincaré-Birkhoff step). Assume that

Q2.U / 2 zR��CN0Cm1
2 
M2.C/

solves the homological equation

(5.37) Q2.�i�U/C �Q2.U /;�i��C RC2 .U / D .RC2 /
res.U /:

Then
@tY2 D �i�Y2 COpBW.�iD.U I �/C H�3/�Y2�

C �
.RC2 /

res.U /C R0�3.U /
�
�Y2�

(5.38)

where � is defined in (3.15) and D.U I �/ in (4.5), H�3 is an admissible symbol in
�1K;K0;3
M2.C/, .RC2 /res.U / is a Poincaré-Birkhoff resonant smoothing operator

(cf. Definition 5.1) in zR��Cm1
2 
M2.C/, and R0�3.U / is a matrix of smoothing

operators in R��CN0C2m1
K;K0;3 
M2.C/ with m1 � 1 as in (3.15).

PROOF. To conjugate system (5.25) we apply Lemma A.1 with Q2.U / D iA.U /.
Applying formula (A.3) with L D 1, the fact that Q2.U / is a smoothing operator
in zR��CN0Cm1

2 
M2.C/, Proposition 2.10, and Lemma A.3, we have that

B12.U /.�i�/
�
B12.U /

��1 D �i�C �Q2.U /;�i��
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plus a smoothing operator in R��CN0Cm1C1
K;K0;3 
M2.C/. Similarly, the conjugate of

OpBW
��iD.U I �/CH�3

�CRC2 .U /CRC�3.U / remains the same up to a smoothing

operator in R��CN0Cm1C1
K;K0;3 
M2.C/.

Next we consider the contribution coming from the conjugation of @t . First,
note that, using equation (3.15), @tQ2.U / D Q2.@tU/ D Q2.�i�U/ (defined
in (5.36)) up to a smoothing operator in R��CN0C2m1

K;K0;3 
M2.C/. The operator

Q2.�i�U/ is in eR��CN0Cm1C.1=2/
2 
M2.C/. Then, applying formula (A.4) with

L D 2 we have @tB12.U /.B12.U //�1 D Q2.�i�U/ up to a smoothing operator in
R��CN0C2m1
K;K0;3 
M2.C/.
In conclusion, Q2.�i�U/ C �Q2.U /;�i�� CRC2 .U / collects all the noninte-

grable terms quadratic in U in the transformed system. Since Q2 solves (5.37) we
conclude that Y2 solves (5.38). �

We now solve the homological equation (5.37).

LEMMA 5.8 (Second homological equation). The operator Q2 of the form (5.2)–
(5.3), (5.6)–(5.7) with coefficients

(5.39)

.q2;�;�0/
�;� 0

n1;n2;k
WD8<:
�.rC

2;�;�0
/�;�

0

n1;n2;k

i.� jj j1=2�� 0jkj1=2��jn1j1=2��0jn2j1=2/ ; � jj j1=2 � � 0jkj1=2 � �jn1j1=2 � �0jn2j1=2 ¤ 0;

0; � jj j1=2 � � 0jkj1=2 � �jn1j1=2 � �0jn2j1=2 D 0;

with �; � 0; �; �0 D �, n1; n2; k 2 Z n f0g, satisfying �j � � 0k � �n1 � �0n2 D 0,
solves the homological equation (5.37). We have that Q2 is in zR��CN0Cm1

2 

M2.C/.

PROOF. First note that the coefficients in (5.39) are well-defined thanks to Propo-
sition 5.3, in particular (5.16), and satisfy, using also jj j � jkj C jn1j C jn2j,

(5.40)
j.q2;�;�0/�;�

0

n1;n2;k
j � C j.rC2;�;�0/�;�

0

n1;n2;k
jmax.jn1j; jn2j; jkj/N0

� C max2.jn1j; jn2j; jkj/��m1�N0C�0
max.jn1j; jn2j; jkj/��m1�N0

with �0 D �C N0, because .rC2;�;�0/
�;� 0

n1;n2;k
are the coefficients of a remainder in

zR��Cm1
2 
M2.C/, and so they satisfy the bound (5.31) with � ��m1. The es-

timate (5.40) and Lemma 5.5 imply that Q2.U / belongs to the class zR��Cm1CN0
2 


M2.C/.
Next, the homological equation (5.37) amounts to, for any �; � 0; �; �0 D �,

(5.41)
.Q2;�;�0.�i�U//�

0;k
�;j C .Q2;�;�0.U //

� 0;k
�;j

�
� ijj j 12 � � 0ijkj 12 �

C .RC2;�;�0.U //
� 0;k
�;j D �

.RC2;�;�0
�res
.U /

�� 0;k
�;j
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for any j; k 2 Z n f0g. Recalling (5.36) and (5.8), the left-hand side of (5.41) is
given by

.q2;�;�0/
�;� 0

n1;n2;k
i
�
� jj j 12 � � 0jkj 12 � �jn1j 12 � �0jn2j 12

�C .rC2;�;�0/
�;� 0

n1;n2;k
;

for j; k; n1; n2 2 Z n f0g, �; � 0; �; �0 D �, and �n1 C �0n2 C � 0k D �j . Thus,
recalling Definition 5.1, the operator Q2 with coefficients .q2;�;�0/

�;� 0

n1;n2;k
defined

in (5.39) solves the homological equation (5.37). �

We can now prove the main result of this section.

PROOF OF PROPOSITION 5.2. Let Z be the function given by Proposition 4.4.
We define Y WD .B� .U //�D1�Z� where B� .U / WD B�2.U / � B�1.U /, � 2 �0; 1�,
and B�i .U /, i D 1; 2, are the flow maps defined, resp., in (5.23), (5.35) (see also
Lemmata 5.4, and 5.7). Then Y solves (recall (5.38))

(5.42) @tY D �i�Y COpBW.�iD.U I �/CH�3/�Y �CzRres.U /�Y �CR0�3.U /�Y �

where� and D.U I �/ are defined, resp., in (3.15) and (4.5), the operator zRres.U / WD
.RC2 /res.U / in zR��Cm1

2 
 M2.C/ (being m1 � 1 the loss in (3.15)), H�3 2
�1K;K0;3
M2.C/ is admissible, and R0�3.U / is in R��CN0C2m1

K;K0;3 
M2.C/where
the constant N0 is defined by Proposition 5.3. We define F�T .U / WD C� .U /�U � WD
B� .U /�F� .U /�U � as in (5.9) where F� .U / in (4.6). By Lemma A.3 the maps B�i ,
i D 1; 2; satisfy the bounds (A.13), (A.11) and recall that F� .U / satisfies (4.7).
Then C� .U / satisfies (5.12) and (5.13). By Lemmata A.2 and A.3 applied, resp.,
to F� .U / and B� .U /, we have that the map F�T .U / admits a multilinear expansion
like (A.12), implying item (iii) of Proposition 5.2. Moreover,

(5.43)
Y D �

F�T .U /
�
j�D1 D U C M.U /�U �

where M.U / 2 �MK;K0;1 
M2.C/:

Then, substituting (5.43) in (5.42), we obtain (5.10)–(5.11) with

H�3.U I x; �/ WD �i
�
D.U I �/ � D.U C M.U /�U �I �/�C H�3.U I x; �/;(5.44)

R�3.U / WD zRres.U / � zRres.U C M.U /�U �/C R0�3.U /:(5.45)

Since the integrable symbol D.U I �/ in (4.5) is homogeneous of degree 2 and
zRres.U / 2 zR��Cm1

2 
 M2.C/, we have that the quadratic terms in the r.h.s. of
(5.44) and (5.45) cancel out. Then, by (5.43) and items (iii) and (iv) of Proposition
2.10, we deduce that H�3.U I x; �/ 2 �1K;K0;3 
M2.C/ is an admissible symbol

and R�3.U / 2 �R�.���0/
K;K0;3 
M2.C/ where �0 WD N0 C 2m1. �

6 Long Time Existence
The system

(6.1) @tY D �i�Y � iOpBW�D.Y I �/��Y �C zRres.Y /�Y �;
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obtained retaining only the vector fields in (5.10) up to degree 3 of homogeneity,
is in Poincaré-Birkhoff normal form. In Section 6.2 we will actually prove that
this is uniquely determined and that (6.1) coincides with the Hamiltonian system
generated by the fourth-order Birkhoff normal form Hamiltonian HZD computed
by a formal expansion in [11, 12, 15, 16]; see Section 6.1. Such normal form is
integrable and its corresponding Hamiltonian system preserves all Sobolev norms;
see Theorem 1.4. The key new relevant information in Proposition 5.2 is that the
quartic remainder in (5.11) satisfies energy estimates (see Lemma 6.4). This allows
us to prove in Section 6.3 energy estimates for the whole system (5.10) and thus
the long time existence result of Theorem 1.2.

6.1 The formal Birkhoff normal form
We introduce, as in formula (2.7) in [11], the complex symplectic variable

(6.2)

�
w

xw
�
D �

�
�

 

�
WD 1p

2

 
jDj� 14�C ijDj 14 
jDj� 14� � ijDj 14 

!�
�

 

�

D ��1
�
w

xw
�
D 1p

2

 
jDj 14 .w C xw/

�ijDj� 14 .w � xw/

!
:

Compare this formula with (1.12) and recall that, in view of (1.13), we may disre-
gard the zero frequency in what follows. In the new complex variables .w; xw/, a
vector field X.�; / becomes

(6.3) XC WD �?X WD �X��1:
The push-forward acts naturally on the commutator of nonlinear vector fields (A.32),
namely �?JX; Y K D J�?X;�?Y K D JXC; Y CK:

The Poisson bracket assumes the form

fF;H g D 1

i

X
k2Znf0g

�
@wkH@ xwkF � @ xwkH@wkF

�
:

Given a Hamiltonian F.�;  / we denote by FC WD F ���1 the same Hamiltonian
expressed in terms of the complex variables .w; xw/. The associated Hamiltonian
vector field XFC is

(6.4) XFC D
1p
2�

X
k2Znf0g

��i@wkFC e
ikx

i@wkFC e
�ikx

�
;

which we also identify, using the standard vector field notation, with

(6.5) XFC D
X

k2Znf0g;�D�
�i�@w��

k
FC @w�

k
:

Note that, if XF is the Hamiltonian vector field of F in the real variables, then,
using (6.3), we have

(6.6) XCF WD �?XF D XFC ; FC WD F ���1;
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and

(6.7) JXCH ; X
C

K K D XCfH;Kg D XfHC;KCg:

We now describe the formal Birkhoff normal form procedure performed in [11,
12, 15, 16]. One first expands the water waves Hamiltonian (1.6), written in the
complex variables .w; xw/, in degrees of homogeneity

(6.8) HC WD H ���1 D H
.2/
C

CH
.3/
C

CH
.4/
C

CH
.�5/
C

;

where

H
.2/
C

D
X

j2Znf0g
!jwj xwj ; !j WD

p
jj j;(6.9)

H
.3/
C

D
X

�1j1C�2j2C�3j3D0
H
�1;�2;�3
j1;j2;j3

w
�1
j1
w
�2
j2
w
�3
j3
;(6.10)

H
.4/
C

D
X

�1j1C�2j2C�3j3C�4j4D0
H
�1;�2;�3;�4
j1;j2;j3;j4

w
�1
j1
w
�2
j2
w
�3
j3
w
�4
j4
;(6.11)

can be explicitly computed, and H .�5/
C

collects all the monomials of homogeneity
greater or equal 5.

Step 1. ELIMINATION OF THE CUBIC HAMILTONIAN. One looks for a sym-
plectic transformation �.3/ as the (formal) time 1 flow generated by a cubic real
Hamiltonian F .3/

C
of the form (6.10). A Lie expansion gives

(6.12)
HC ��.3/ D H

.2/
C

C �
F
.3/
C
;H

.2/
C

	CH
.3/
C

CH
.4/
C

C 1

2

�
F
.3/
C
; fF .3/

C
;H

.2/
C
gg C fF .3/

C
;H

.3/
C

	C � � �

up to terms of quintic degree. The cohomological equation

(6.13) H
.3/
C

C �
F
.3/
C
;H

.2/
C

	 D 0

has a unique solution since�
w
�1
j1
w
�2
j2
w
�3
j3
;H

.2/
C

	 D i.�1!.j1/C �2!.j2/C �3!.j3//w
�1
j1
w
�2
j2
w
�3
j3
;

and the system

(6.14) �1j1 C �2j2 C �3j3 D 0; �1!.j1/C �2!.j2/C �3!.j3/ D 0;

has no integer solutions; see Proposition 5.3. Hence, defining F .3/
C

as the solution
of (6.13), the Hamiltonian in (6.12) reduces to

HC ��.3/ D H
.2/
C

CH
.4/
C

C 1

2

�
F
.3/
C
;H

.3/
C

	C quintic terms:
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Step 2. NORMALIZATION OF THE QUARTIC HAMILTONIAN. Similarly, one
can find a symplectic transformation �.4/, defined as the (formal) time 1 flow
generated by a real quartic Hamiltonian F .4/

C
of the form (6.11) such that

(6.15) HC��.3/��.4/ D H
.2/
C
C�ker

�
H
.4/
C
C 1
2

�
F
.3/
C
;H

.3/
C

	�Cquintic terms;

where, given a quartic monomialw�1j1 w
�2
j2
w
�3
j3
w
�4
j4

satisfying �1j1C�2j2C�3j3C
�4j4 D 0, we define

(6.16)

�ker

�
w
�1
j1
w
�2
j2
w
�3
j3
w
�4
j4

�
WD
(
w
�1
j1
w
�2
j2
w
�3
j3
w
�4
j4

if �1!.j1/C �2!.j2/C �3!.j3/C �4!.j4/ D 0

0 otherwise:

The fourth-order formal Birkhoff normal form Hamiltonian in (6.15), that is,

(6.17)
HZD D H

.2/
ZD CH

.4/
ZD; H

.2/
ZD WD H

.2/
C
;

H
.4/
ZD WD �ker

�
H
.4/
C

C 1

2

�
F
.3/
C
;H

.3/
C

	�
;

has been computed explicitly in [11, 12, 15, 16], and it is completely integrable.
In [12] this is expressed as

HZD D
X
k>0

�
2!kI1.k/ �

k3

2�
.I 21 .k/ � 3I 22 .k//

�
C 4

�

X
0<k<l

k2lI2.k/I2.l/

(6.18)

with actions

(6.19) I1.k/ WD wkwk C w�kw�k
2

; I2.k/ WD wkwk � w�kw�k
2

;

where wk denote the Fourier coefficients of w defined in (6.2). The Hamiltonian
HZD is given by (1.17)–(1.18) with wk replaced by ´k . Note in particular that
j´nj2 are prime integrals, as stated in Theorem 1.4.

Remark 6.1 (Comparison with (6.1)). By a direct calculation, the Hamiltonian
equations associated to HZD.´; x́/ can be written in the form

(6.20) Ṕn D �i!n´n � i
�

� X
jj j<�jnj

j jj jj j́ j2
�
n´n C �R.´/�n

where 0 < � < 1 and R.´/ is a smoothing vector field satisfying kR.´/ksC� �
C.s/k´k3s , for any 0 � � � 2s � 3. For a sequence a D faj gj2Z we denoted
kak2s WD P

j2Zhj i2sjaj j2. Note that the second term in the right-hand side in
(6.20) exactly correspondence to the paradifferential transport in (5.10) and (4.5).
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Moreover, (6.20) does not contain paradifferential operators at nonnegative orders,
in agreement with the cubic Poincaré-Birkhoff normal form (6.1).

6.2 Normal form identification
In Sections 3–5 we have transformed the water waves system (1.3) into (5.10),

whose cubic component (6.1) is in Poincaré-Birkhoff normal form. All the conju-
gation maps that we have used have an expansion in homogeneous components up
to degree 4. In this section we identify the cubic monomials left in the Poincaré-
Birkhoff normal form (6.1). The main result is the following.

PROPOSITION 6.2 (Identification of normal forms). The cubic vector field compo-
nent in (5.10), i.e.,

(6.21) XRes.Y / WD �iOpBW�D.Y I �/��Y �C zRres.Y /�Y �;

coincides with the Hamiltonian vector field X
H
.4/
ZD

:

(6.22) XRes D X
�ker.H

.4/

C
C 1
2
fF .3/
C
;H

.3/

C
g/ D X

H
.4/
ZD

where the Hamiltonians H .l/
C

, l D 3; 4, are defined in (6.10) and (6.11), F .3/
C

is
the unique solution of (6.13), and �ker is defined in (6.16).

The rest of the section is devoted to the proof of Proposition 6.2, which is based
on a uniqueness argument for the Poincaré-Birkhoff normal form up to quartic re-
mainders. The idea is the following. We first expand the water waves Hamiltonian
vector field in (1.3), (1.5) in degrees of homogeneity

(6.23)
XH D X1 CX2 CX3 CX�4

where X1 WD XH .2/ ; X2 WD XH .3/ ; X3 WD XH .4/ ;

and X�4 collects the higher-order terms and H .p/ WD H
.p/
C

� �, p D 2; 3; 4,
see (6.8). Then, we express the transformed system (5.10), obtained conjugating
(1.3) via the good-unknown transformation G in (3.1) and F1T in Proposition 5.2,
by a Lie commutator expansion up to terms of homogeneity at least 4. See Lemma
A.10. Then, after some algebraic manipulation, we obtain (6.33). Since the adjoint
operator � �; XC

H .2/ � is injective and surjective, we then obtain the identity (6.35),
and can eventually deduce (6.22).

Notation. We use the Lie expansion (A.33) induced by a time-dependent vector
field S , which contains quadratic and cubic terms. Given a homogeneous vector
field X , we denote by �?SX the induced (formal) push-forward

(6.24) �?SX D X C JS;XKj�D0 C
1

2
JS; JS;XKKj�D0 C

1

2
J@�Sj�D0; XKC � � �

where J � ; �K is the nonlinear commutator defined in (A.32).
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Step 1. THE GOOD UNKNOWN CHANGE OF VARIABLE G IN (3.1)] We first
provide the Lie expansion up to degree 4 of the vector field in (3.2)–(3.3), which
is obtained by transforming the water waves vector field X1 C X2 C X3 in (6.23)
under the nonlinear map G in (3.1).

We first note that G.�;  / D .�� .�;  //�D1 where

�� .�;  / WD .�;  � �OpBW.B.�;  //�/; � 2 �0; 1�:
Since B.�;  / is a function in �FRK;0;1 we have, using the remarks under Defini-
tion 2.7, that the map �� .�;  / has the form (A.27) in which U denotes the real
variables .�;  /, plus a map in MK;0;3 
M2.C/. By Lemma A.9 we regard the
inverse of the map G�3, obtained approximating G up to quartic remainders as the
(formal) time one flow of a nonautonomous vector field of the form

(6.25) S.�/ WD S2 C �S3 where S2 WD S1.�;  /

�
�

 

�
; S3 WD S2.�;  /

�
�

 

�
;

where S1.�;  / 2 �M1 
M2.C/ and S2.�;  / 2 �M2 
M2.C/. By (6.23)–
(6.25), we get

�?S .X1 CX2 CX3/ D X1 CX2;1 CX3;1 C � � �(6.26)

X2;1 WD X2 C JS2; X1K;(6.27)

X3;1 WD X3 C JS2; X2KC 1
2
JS2; JS2; X1KKC 1

2
JS3; X1K:(6.28)

COMPLEX COORDINATES � IN (6.2). In the complex coordinates (6.2), the vector
field (6.26) reads, recalling the notation (6.3),

(6.29)
�?�?S .X1 CX2 CX3/ D �?X1 C�?X2;1 C�?X3;1 C � � �

D XC1 CXC2;1 CXC3;1 C � � �
where XC1 is the linear Hamiltonian vector field

XC1 D XC
H .2/ D �i

X
j;�

�!ju
�
j @u�j

:

Step 2. THE TRANSFORMATION F1T IN PROPOSITION 5.2. We consider the
nonlinear map .F1T /�3 which retains only the terms of the map F1T WD .F�T /j�D1
up to quartic remainders. The approximate inverse of the map .F1T /�3 provided by
Lemma A.8, can be regarded, by Lemma A.9, as the (formal) approximate time-
one flow of a nonautonomous vector field T .�/ WD T2 C �T3 where T2.U / WD
T1.U /�U �, T3.U / WD T2.U /�U �, for some T1.U / in �M1 
M2.C/ and T2.U / 2�M2 
M2.C/. We transform the system obtained retaining only the components
XC1 CXC2;1 CXC3;1 in (6.29). By (6.24) we get

(6.30) �?T�
?�?S .X1 CX2 CX3/ D XC1 CXC2;2 CXC3;2 C � � �
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XC2;2 WD XC2;1 C
q
T2; X

C
1

y
;

XC3;2 WD XC3;1 C
q
T2; X

C
2;1

yC 1
2

q
T2;

q
T2; X

C
1

yyC 1
2

q
T3; X

C
1

y

and, recalling the expressions of X2;1; X3;1 in (6.27), the quadratic and the cubic
components of the vector field (6.30) are given by

XC2;2 D XC2 C q
SC2 C T2; X

C
1

y
(6.31)

XC3;2 D XC3 C q
SC2 C T2; X

C
2

yC 1
2

q
SC2 C T2;

q
SC2 C T2; X

C
1

yy

C 1
2

qq
SC2 C T2; S

C
2

yCSC3 C T3; X
C
1

y
;

(6.32)

where, to obtain the (6.32), we also used the Jacobi identity.

Step 3. IDENTIFICATION OF QUADRATIC AND CUBIC VECTOR FIELDS. The
vector field �?T�

?�?S .X1 C X2 C X3/ in (6.30) is the vector field in the right-
hand side of (6.1), up to quartic remainders. Thus, recalling the expression of the
quadratic, resp. cubic, vector field in (6.31), resp. (6.32), the expansion (6.23),
formula (6.6), and the definition of XRes in (6.21), we have the identification order
by order:

XC1 .Y / D �i�Y; XC
H .3/ C

q
SC2 C T2; X

C

H .2/

y D 0; XC3;2 D XRes:(6.33)

QUADRATIC VECTOR FIELDS. Since F .3/
C

solves (6.13), by (6.7), we have

(6.34) XC
H .3/ C JX

F
.3/

C

; X
H
.2/

C

K D 0:

Subtracting the second identity in (6.33) and (6.34), and since X
H
.2/

C

D XC
H .2/ , we

deduce
q
SC2 C T2 �XF .3/

C

; XC
H .2/

y D 0:

Since the adjoint operator AdXC
H.2/

WD � �; XC
H .2/ � acting on quadratic monomial

vector fields u�1j1 u
�2
j2
@u�
j

satisfying the momentum conservation property �j D
�1j1C�2j2 is injective and surjective (indeed we have that Ju�1j1 u

�2
j2
@u�
j
; XC
H .2/K D

�i.�!.j /��1!.j1/��2!.j2//u�1j1 u
�2
j2
@u�
j

and the system (6.14) has no solutions),
we obtain

(6.35) SC2 C T2 D X
F
.3/

C

:

CUBIC VECTOR FIELDS. The vector field XResr defined in (6.21) is in Poincaré-
Birkhoff normal form, since the symbol D.Y I �/ is integrable (Definition 4.1) and
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zRres.U / is Birkhoff resonant (Definition 5.1). Therefore, defining the linear opera-
tor �ker acting on a cubic monomial vector field u�1j1 u

�2
j2
u
�3
j3
@u�
j

as

(6.36)

�ker

�
u
�1
j1
u
�2
j2
u
�3
j3
@u�
j

�
WD(

u
�1
j1
u
�2
j2
u
�3
j3
@u�
j

if � �!.j /C �1!.j1/C �2!.j2/C �3!.j3/ D 0;

0 otherwise;

we have

(6.37) �ker.XRes/ D XRes:

From the expression for
q
u
�1
j1
u
�2
j2
u
�3
j3
@u�
j
; XC
H .2/

y
we deduce that, for any cubic

vector field G3,

(6.38) �ker
q
G3; X

C

H .2/

y D 0:

We can then calculate

XRes
(6.37)D �ker.XRes/

(6.33);(6.32);(6.38)D �ker

�
XC
H .4/ C

q
SC2 C T2; X

C
2

yC 1

2

q
SC2 C T2;

q
SC2 C T2; X

C
1

yy�
.6.35/;(6.23)D �ker

�
XC
H .4/ C

q
X
F
.3/

C

; XC
H .3/

yC 1

2

q
X
F
.3/

C

;
q
X
F
.3/

C

; X
H
.2/

C

yy�
(6.6);(6.7);(6.13)D �ker

�
X
H
.4/

C
C 1
2
fF .3/
C
;H

.3/

C
g
� (6.36);(6.16)D X

�ker.H
.4/

C
C 1
2
fF .3/
C
;H

.3/

C
g/;

which is (6.22); the second identity follows by the definition of H .4/
ZD in (6.17).

6.3 Energy estimate and proof of Theorem 1.1
We first prove the following lemma.

LEMMA 6.3. Let K 2 N�. There is s0 > 0 such that, for any s � s0, for all
0 < r � r0.s/ small enough, if U belongs to BKs .I I r/ and solves (3.7), then there
is a constant Cs;K > 0 such that

(6.39)
@kt U.t; �/ PH s�k � Cs;KkU.t; �/k PH s 8 0 � k � K:

In particular, we deduce that the norm kU.t; �/kK;s defined in (2.1) is equivalent to
the norm kU.t; �/k PH s for U.t; �/ a solution of (3.7).

PROOF. For k D 0 the estimate (6.39) is trivial. We are going to estimate
@kt U by (3.7). Since the matrix of symbols iA1.U I x/� C iA1=2.U I x/j�j1=2 C
A0.U I x; �/ C A�1=2.U I x; �/ in (3.7) belongs to ��1K;1;0 
 M2.C/ and the
smoothing operator R.U / is in �R��

K;1;1 
M2.C/, applying Proposition 2.6(ii)
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(withK 0 D 1, k D 0), the estimate (2.20) forR.U / (withK 0 D 1, k D 0,N D 1),
and recalling (2.1), we deduce, for s � s0 large enough,

(6.40)
k@tU.t; �/k PH s�1 .s kU.t; �/k PH s

�
1C kU.t; �/k PH s0

C k@tU.t; �/k PH s0�1

�
C k@tU.t; �/k PH s�1kU.t; �/k PH s0

:

Evaluating (6.40) at s D s0 and since kU.t; �/k PH s0
is small, we get

k@tU.t; �/k PH s0�1
.s kU.t; �/k PH s0

:

This and (6.40) imply (6.39) for k D 1, for any s � s0 . Differentiating in t the
system (3.7) and arguing by induction on k, one can similarly obtain (6.39) for any
k � 2. �

We now prove the following energy estimate.

LEMMA 6.4 (Energy estimate). Under the same assumptions as Proposition 5.2
the vector field X�4.U; Y / D �XC

�4.U; Y /;X
C
�4.U; Y /� in (5.11) satisfies, for any

t 2 I , the energy estimate

(6.41) Re
Z
T

jDjsXC
�4.U; Y / � jDjsy dx .s kyk5PH s

:

PROOF. By (5.11) and (4.3), we have that

XC
�4.U; Y / D OpBW.H�3/�y�CRC

�3.U /�Y �;

where H�3 is an admissible symbol as in (4.2) that we write

(6.42)
H�3 D hC�3.U I x; �/C �3.U I x; �/;

hC�3.U I x; �/ WD i��3.U I x/� C i��3.U I x/j�j 12 ;
and RC

�3.U / denotes the first row of R�3. Then the left-hand side of (6.41) is
equal to

1

2

�jDjsy; jDjsOpBW.hC�3/�y�
�
L2

(6.43)

C 1

2

�jDjsOpBW.hC�3/�y�; jDjsy
�
L2

C Re
Z
T

jDjsOpBW.�3/�y� � jDjsy dx(6.44)

C Re
Z
T

jDjsRC
�3.U /�Y � � jDjsy dx:

Since �3 2 �0K;K0;3 and RC
�3.U / is a 1 � 2 matrix of smoothing operators in

R0K;K0;3, the Cauchy-Schwarz inequality, Proposition 2.6, and (2.20) imply that

(6.45) j(6.44)j .s ky.t; �/k2PH s
kU.t; �/k3K;s:
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Since the symbol hC�3 has positive order we write the quantity in (6.43) as

1
2

�jDjsy; jDjs.H�3 CH��3/y
�
L2
C 1

2

�jDjsy; �H��3; jDjs�y
�
L2

C 1
2

�
�jDjs;H�3�y; jDjsy

�
L2
;

(6.46)

where H�3 WD OpBW.hC�3.U I x; �// and H��3 D OpBW.hC�3.U I x; �// is its ad-
joint with respect to the L2-scalar product. Recalling (6.42) and that the functions
��3.U I x/, ��3.U I x/ are real, we have

(6.47) H�3 CH��3 D OpBW�hC�3 C hC�3
� D 0:

Furthermore, by Proposition 2.9 and the remark after the proof of proposition 3.12
in [6], the commutators �H��3; jDjs�, �jDjs;H�3� are paradifferential operators
with symbol in �sK;K0;3, up to a bounded operator in L. PH s; PH 0/ with operator
norm bounded by kU k3K;s0 . Then, applying Proposition 2.6 we get���jDjsy; �H��3; jDjs

�
y
�
L2

��C ����jDjs;H�3
�
y; jDjsy�

L2

��
.s ky.t; �/k2PH s

kU.t; �/k3K;s:
(6.48)

In conclusion, by (6.45)–(6.48), and using Lemma 6.3 and by (5.13), we deduce

Re
Z
T

jDjsXC
�4.U; Y / � jDjsy dx .s ky.t; �/k2PH s

kU.t; �/k3PH s
.s ky.t; �/k5PH s

proving the estimate (6.41). �

We can now prove Theorem 1.1.

PROOF OF THEOREM 1.1. By (1.14), the function U D � uxu �, where u is the
variable defined in (1.12) and ! in (1.8), belongs to the ball BKN .I I r/ (recall
(2.2)) with r D x" � 1 and I D ��T; T �. By Proposition 3.3 the function U
solves system (3.7). Then we apply the Poincaré-Birkhoff proposition 5.2 with
s  N � K � 2� C 2 � 2�0 C 2. The map F1T .U / D C1.U /�U � in (5.9)
transforms the water waves system (3.7) into (5.10), which, thanks to Proposition
6.2, is expressed in terms of the Dyachenko-Zakharov HamiltonianHZD in (1.17),
as @tY D XHZD .Y /CX�4.U; Y /. Renaming y  ´ and recalling (6.4), the first
component of the above system is the equation (1.16), denoting B.u/u the first
component of C1.U /�U �. The bound (1.15) follows by (5.12) with s  N and
k D 0, and Lemma 6.3. The energy estimate (1.19) is proved in Lemma 6.4. �

6.4 Proof of Theorem 1.2
The next bootstrap Proposition 6.5 is the main ingredient for the proof of the

long time existence Theorem 1.2. Proposition 6.5 is a consequence of Theorem
1.1 and the integrability of the fourth-order Hamiltonian H .4/

ZD in (1.18). By time
reversibility we may, without loss of generality, look only at positive times t > 0.
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PROPOSITION 6.5 (Main bootstrap). Fix the constants x";K;N as in Theorem 1.1
and let the function u 2 C 0.�0; T �IHN / be defined as in (1.12), with ! in (1.8)
and .�;  / the solution of (1.3) satisfying (1.9), (1.10). The function u satisfies
(1.13). Then there exists c0 > 0 such that, for any 0 < "1 � x", if

(6.49) ku.0/kHN � c0"1; sup
t2�0;T �

KX
kD0

@kt u.t/HN�k � "1; T � c0"�31 ;

then we have the improved bound

(6.50) sup
t2�0;T �

KX
kD0

@kt u.t/HN�k � "1

2
:

PROOF. In view of (6.49) the smallness condition (1.14) holds and we can apply
Theorem 1.1 obtaining the new variable ´ D B.u/u satisfying the equation (1.16)–
(1.19). The integrability of H .4/

ZD in Theorem 1.4 gives

Re
Z
T

jDjN �i@x́H .4/
ZD

� � jDjN´ dx D 0:

From this, (1.16), and (1.19) we obtain the energy estimate

(6.51)
d

dt
k´.t/k2PHN

.N k´.t/k5PHN
:

Using (1.15) and (6.49) we deduce that, for all 0 � t � T ,

ku.t/k2PHN
.N k´.t/k2PHN

(6.51)
.N k´.0/k2PHN

C
Z t

0

k´.�/k5PHN
d�

� Cku.0/k2PHN
C C

Z t

0

ku.�/k5PHN
d�

for some C D C.N/ > 0. Then, by the a priori assumption (6.49) we get, for all
0 � t � T � c0"�31 ,

ku.t/k2PHN
� Cc20"21 C CT"51 � "21

�
Cc20 C Cc0

�
:(6.52)

The desired conclusion (6.50) on the norms C kt H
N�k
x follows by Lemma 6.3,

(6.52), and recalling that
R
T
u.t; x/dx D 0, choosing c0 small enough depending

on N . �

We now prove the long time existence Theorem 1.2, by Theorem 1.1 and Propo-
sition 6.5.

Step 1. LOCAL EXISTENCE AND PRELIMINARY ESTIMATES. Let s > 3=2. By
the assumption (1.20), Theorem 1.3 guarantees the existence of a time Tloc > 0 and
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a unique classical solution .�;  / 2 C 0.�0; Tloc�IH sC.1=2/ �H sC.1=2// of (1.3),
with initial data as in (1.20) such that

(6.53) sup
t2�0;Tloc�

k.�;  ; V; B/.t/kXs � C";
Z
T

�.t; x/dx D 0:

We now show that for any K > 0, if s � K C �0 for some �0 large enough, and
" is small enough, then the time derivatives .@kt �; @

k
t  /, k D 0; : : : ; K; satisfy, for

all t 2 �0; Tloc�,

(6.54)
@kt �H sC 1

2
�k
C @kt  H sC 1

2
�k
.s k�k

H
sC 1

2
C k k

H
sC 1

2
.s ":

One argues by induction on k. For k D 0 the second estimate in (6.54) is (6.53).
Assume that (6.54) holds for any 0 � j � k�1 � K�1, k � 1. By differentiating
in t the water waves system (1.3) we get, for any k D 1; : : : ; K,

(6.55) @kt � D @k�1t .G.�/ /; @kt  D @k�1t

�
F.�; �x;  x; G.�/ /

�
;

where F is an analytic function vanishing at the origin. Then, using that G.�/ is
expressed from the side of (3.2), Proposition 2.6, (2.20), and the inductive hypoth-
esis, we get@k�1t .G.�/ /


H
sC 1

2
�k
.s

X
k0�k�1

@k0t  H sC 1
2
�kC1

C @k0t �H sC 1
2
�kC1

.s k�k
H
sC 1

2
C k k

H
sC 1

2
:

This implies, in view of the first equation in (6.55), that @kt � is bounded as in (6.54).
To estimate @kt  we use the second equation in (6.55), the inductive estimates for
.@
j
t �; @

j
t  /, 0 � j � k � 1, and the previous bound on k@k�1t .G.�/ /kH sC1=2�k .

Step 2. A PRIORI ESTIMATE FOR THE BASIC DIAGONAL COMPLEX VARI-
ABLE. We now look at the complex variable u defined in (1.12) and (1.8). Since
the function B is in �FRK;0;1 (Proposition 3.1), we deduce, applying Proposi-
tion 2.6 for s � s0 large enough, that ! 2 C 0.�0; Tloc�I PH sC1=2/, and so u 2
C 0.�0; Tloc�IHN / with N D s C 1=4. Moreover, using (1.20), (6.53)–(6.54), we
estimate, for k D 0; : : : ; K, N � K,@kt uHN�k

(1.12);(1.8);Prop:2.6
.N

@kt �HNC 1
4
�k
C @kt  HNC 1

4
�k

(6.54)
.N ";

for any t 2 �0; Tloc�. In conclusion, there is C1 D C1.N / > 0 such that
(6.56)

ku.0/kHN � 2"; sup
t2�0;Tloc�

KX
kD0

k@kt u.t/kHN�k � C1";
Z
T

u.t; x/dx D 0:

Step 3. BOOTSTRAP ARGUMENT AND CONTINUATION CRITERION. With x";
K;N given by Theorem 1.1, and c0 by Proposition 6.5, we choose "0 in (1.20)
small enough so that, for 0 < " � "0, we have 2" � c0x", C1" � x" where C1 is the
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constant in (6.56). Moreover, we take s � s0 large enough in such a way that (6.56)
hold with N given by Theorem 1.1. Hence the first two assumptions in (6.49) hold
with "1 D "maxf2c�10 ; C1g on the time interval �0; Tloc�. Then Proposition 6.5 and
a standard bootstrap argument guarantees that u.t/ can be extended up to a time
T" WD c0"

�3
1 ; consistently with (1.21), and that

(6.57) sup
�0;T"�

ku.t/kHN � "1;
Z
T

u.t; x/dx D 0:

Finally, we prove that the solution of (1.3) satisfies (1.22) and that .�;  ; V; B/.t/
takes values inXs for all t 2 �0; T"�. Expressing .�; !/ in terms of u; xu as in (3.21),
we deduce by (6.57) that

(6.58) sup
�0;T"�

�k�.t/kH s C k!.t/kH sC1=2

�
.s ":

Then, by (1.8), (6.58), and Proposition 2.6, using (3.2) for G.�/ , we estimate

sup
�0;T"�

k .t/kH s C sup
�0;T"�

k.V; B/.t/kH s�1�H s�1 .s ":

The estimates above imply (1.22) and, in particular, that

sup
�0;T"�

k.�;  ; V; B/.t/kXs�1 .s ";

thus guaranteeing (1.23), for s � 1 � 5, on the time interval �0; T"�. The continua-
tion criterion in Theorem 1.3 implies that the solution .�;  ; V; B/ is in C 0.�0; T �;
Xs/ for T � T".

Appendix: Flows and Conjugations
In this appendix we study the conjugation rules of a vector field under flow

maps.

A.1 Conjugation rules
We first give this simple lemma that we use in sections 3.2 and 5.

LEMMA A.1. For U D � uxu � consider a system @tU D X.U /U with X.U / in
�MK;K0;0 
M2.C/ and let �� .U / be the flow of

(A.1) @��
� .U / D iA.U /�� .U /; �0.U / D Id;

where A WD A.U / is in �R0K;K0;1 
 M2.C/. Under the change of variable
V WD .�� .U //�D1U , the new system becomes

(A.2) @tV D XC.U /V; XC.U / WD .@t�
1.U //.�1.U //�1C�1.U /X.U /.�1.U //�1:
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The operator XC.U / is in �MK;K0C1;0 
 M2.C/ and, setting AdiA�X� WD
�iA; X�, it admits the Lie expansion

�1.U /X.U /.�1.U //�1 D X C
LX
qD1

1

q�
AdqiA�X�(A.3)

C 1

L�

Z 1

0

.1 � �/L�� .U /AdLC1iA �X�.�� .U //�1 d�;

.@t�
1.U //.�1.U //�1 D

LX
qD1

1

q�
Adq�1iA �i@tA�(A.4)

C 1

L�

Z 1

0

.1 � �/L�� .U /AdLiA�i@tA�.�
� .U //�1 d�:

PROOF. The expression (A.2) follows by an explicit computation. In order to
prove (A.3) note that the vector field P.�/ WD �� .U /X.U /.�� .U //�1 satisfies
the Heisenberg equation @�P.�/ D �iA; P.�/� with P.0/ D X.U /. We also have
@�P.�/D �� .U /AdiA�X��

� .U /�1. Then (A.3) follows by a Taylor expansion.
To prove (A.4) we reason as follows. We have that

(A.5)
�1.U / � @t � .�1.U //�1 D @t C�1.U /

�
@t .�

1.U //�1
�

D @t �
�
@t�

1.U /
�
.�1.U //�1:

Using the expansion (A.3) with X  @t and (A.5) we get (A.4). By Taylor-
expanding �1.U / using (A.1), we derive that �1.U / � Id is in �MK;K0;1 

M2.C/. The translation invariance property (2.19) of the homogeneous compo-
nents of �1.U / follows since the generator A.U / satisfies (2.19). Then, the oper-
ator XC.U / in (A.2) belongs to �MK;K0C1;0 
M2.C/ by Proposition 2.10 and
the remarks after Definition 2.7. Let us justify the translation invariance property
of the homogeneous components of XC.U /. Denoting by �1�2.U / the sum of its
homogeneous components of degree less than or equal to 2 we get, for any # 2 R,
�#�

1�2.U / D �1�2.�#U/�# , and so �#dU�1�2.U /� yH� D dU�
1�2.�#U/��# yH��# .

Then we deduce �#.@t�1�2.U // D .@t�
1�2.�#U//�# using the translation invari-

ance of X.U /U . By composition we deduce that the homogeneous components of
XC.U / in (A.2) satisfy (2.19). �

In the next subsection we analyze how paradifferential operators change under
the flow maps generated by paradifferential operators.

A.2 Conjugation of paradifferential operators via flows
We consider the flow equation

(A.6) @��
� D iOpBW.f .�; U I x; �//�� ; �0 D Id;
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where f is a symbol assuming one of the following forms:

f .�; U I x; �/ WD b.�; U I x/� WD �.U I x/
1C ��x.U I x/�; �.U I x/ 2 �FRK;K0;1;(A.7)

f .�; U I x; �/ WD f .U I x; �/ WD �.U I x/j�j 12 ; �.U I x/ 2 �FRK;K0;1;(A.8)

f .�; U I x; �/ WD f .U I x; �/ 2 ��mK;K0;1; m � 0:(A.9)

Note that (A.6) with f as in (A.7) is a paradifferential transport equation. This is
used in Section 4.1 and Section 4.2. Flows with f as in (A.8) are used in Section
4.2 and with f as in (A.9) in Section 4.2 and Section 4.3.

LEMMA A.2 (Linear flows generated by a paradifferential operator). Assume that
f has the form (A.7) or (A.8) or (A.9). Then, there is s0 > 0 and r > 0 such that,
for any U 2 CK�R.I I PH s/ \ BKs0 .I I r/, for any s > 0, the equation (A.6) has a
unique solution �� .U / satisfying the following:

(i) the linear map �� .U / is invertible and, for some Cs > 0, 8 0 � k �
K �K 0,

k@kt �� .U /�v�k PH s�k C k@kt .�� .U //�1�v�k PH s�k

� kvkk;s
�
1C CskU kK;s0

�
;

(A.10)

C�1
s kvk PH s � k�� .U /�v�k PH s � Cskvk PH s ;(A.11)

for any v 2 CK�K0� .I I PH s/ and uniformly in � 2 �0; 1�.
(ii) The map�� .U / admits an expansion in multilinear maps as�� .U /�Id 2

�MK;K0;1, � 2 �0; 1�. More precisely, there areM1.U / in �M1 andM .1/
2 .U / and

M
.2/
2 .U / in �M2 (independent of � ) such that

�� .U /�U � D U C �
�
M1.U /�U �CM

.1/
2 .U /�U �

�C �2M
.2/
2 .U /�U �

CM�3.� IU/�U �
(A.12)

where M�3.� IU/ is in Mm
K;K0;3 with estimates uniform in � 2 �0; 1�.

The same result holds for a matrix-valued system @��
� .U / D B.U /�� .U /,

�0.U / D Id, where B.U / D OpBW.B.U I x; �// and B.U I x; �/ is a matrix of
symbols in ��0K;K0;1 
M2.C/.

PROOF. See lemma 3.22 in [6]. The property (2.19) of the flow map�� .U / de-
fined by (A.6) follows by the fact that the homogeneous components of the symbol
f .�; U I x; �/ satisfy (2.7). �

The proof of the next lemma follows by standard theory of Banach space ODEs.

LEMMA A.3 (Linear flows generated by a smoothing operator). Assume that A.U /
in (A.1) is a smoothing operator in �R��

K;0;1 
M2.C/ for some � � 0. Then,
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there is s0 > 0, r > 0 such that, for any U 2 BKs .I I r/, for any s > s0, the
equation (A.1) has a unique solution �� .U / satisfying, for some Cs > 0,

k@kt .�� .U //�1�v�k PH sC��k

� kvkk;s
�
1C CskU kK;s0

�C Cskvkk;s0kU kK;s;
(A.13)

for any v 2 CK�K0� .I I PH s/, 0 � k � K � K 0, and uniformly in � 2 �0; 1�.
Moreover, �� .U / satisfies a bound like (A.11) and (ii) of Lemma A.2.

We now provide the conjugation rules of a paradifferential operator under the
flow �� .U / in (A.6). We first give the result in the case when f has the form
(A.7); i.e., (A.6) is a transport equation.

LEMMA A.4 (Conjugation of a paradifferential operator under transport flow). Let
�� .U / be the flow of (A.6) given by Lemma A.2 with f .�; U I x; �/ as in (A.7)
and U 2 CK�R.I I PH s0/ \ BKs0 .I I r/. Consider the diffeomorphism of T given by
 U W x 7! x C �.U I x/: Let a.U I x; �/ be a symbol in ��mK;K0;q for some q 2 N,
q � 2, K 0 � K, r > 0, andm 2 R. If s0 is large enough and r small enough, then
there is a symbol a�.U I x; �/ in ��mK;K0;q such that

(A.14) �1.U /OpBW.a.U I x; �//.�1.U //�1 D OpBW.a�.U I x; �//CR.U /

where R.U / is a smoothing remainder in �R��Cm
K;K0;qC1. Moreover, a� admits an

expansion as

(A.15) a�.U I x; �/ D a
.0/
� .U I x; �/C a

.1/
� .U I x; �/

where

(A.16) a
.0/
� .U I x; �/ D a

�
U I U .t; x/; �@y. �1U .t; y//jyD U .t;x/

� 2 ��mK;K0;q
and a.1/� .U I x; �/ is a symbol in��m�2K;K0;qC1. In addition, if a.U I x; �/ D g.U I x/�,

then a.1/� D 0.

Furthermore, the symbol a.0/� in (A.16) admits an expansion in degrees of ho-
mogeneity as

(A.17) a
.0/
� D aC f��; ag C 1

2

��
��; f��; ag	C f���x�; ag

�
up to a symbol in �mK;K0;3 which is real-valued as a.0/� if a.U I x; �/ is real-valued.

PROOF. Formulas (A.14)–(A.16) are proved in [6, theorem 3.27] (with homo-
geneity degree N D 3), and it is shown that the symbol

a
.0/
� .U I x; �/ D a0.�; U I x; �/j�D1

and a0.�/ solves the transport equation

(A.18)
d

d�
a0.�/ D fb.�; U I x/�; a0.�/g; a0.0/ D a:
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The claim that, if a.U I x; �/ D g.U I x/�, then a.1/� D 0 follows because in for-
mula (3.5.37) of [6], the symbol r��;3 D 0. Finally, we deduce (A.17) by a Taylor
expansion in � using (A.18) (note that b and � have degree of homogeneity 1
in u). Since the homogeneous components of �.U I x/ satisfy the invariance con-
dition (2.7), the flow �1.U / satisfies (2.19), and so the left-hand side in (A.14).
The proof shows that the symbol a� in (A.15) satisfies (2.7), and therefore the
remainder R.U / in (A.14) satisfies (2.19) by difference. �

LEMMA A.5 (Conjugation of @t under transport flow). Let �� .U / be the flow of
(A.6) given by Lemma A.2 with f .�; U I x; �/ as in (A.7). Then

(A.19)
�
@t�

1.U /
��
�1.U /

��1 D iOpBW.g.U I x/�/CR.U /

where g.U I x/ is a function in �FRK;K0C1;1 and R.U / is a smoothing operator in
�R��

K;K0C1;1. In addition, the function g.U I x/ admits the expansion in degrees of
homogeneity

(A.20) g.U I x/ D �t � �x�t C g�3.U I x/; g�3.U I x/ 2 FRK;K0C1;3:

PROOF. By the proof of proposition 3.28 of [6] (see formulæ (A.5) and (3.5.55)
in [6]) the operator P.�/ WD .@t�

� .U //.�� .U //�1 solves

(A.21)
d

d�
P.�/ D

�
iOpBW.b.�; U I x/�/; P.�/

�
C iOpBW.@tb.�; U I x/�/; P.0/ D 0:

We claim that the solution of (A.21) is, up to smoothing remainders, P.�/ D
OpBW.p0.�; x; �//, where the symbol p0.�; x; �/ solves the forced transport equa-
tion

(A.22)
d

d�
p0.�; x; �/ D fb.�; U I x/�; p0.�; x; �/g C i@tb.�; U I x/�;

p0.0/ D 0;

Indeed, the solution of (A.22) is

(A.23) p0.�; x; �/ D i
Z �

0

@tf .s; U I��;s.x; �//ds

where f .s; U I x; �/ WD b.s; U I x/� and ��;s.x; �/ is the solution of the character-
istic Hamiltonian system8<:

d
ds
x.s/ D �b.s; x.s//;

d
ds
�.s/ D bx.s; x.s//�.s/;

with initial condition ��;� D Id. Note that ��;s.x; �/ D �0;s��;0 where

��;0.x; �/ D .x C ��.U I x/; �.1C @y.U I �; y/jyDxC��.U Ix//
where y C .U I �; y/ is the inverse diffeomorphism of x C ��.U I x/ (see lemma
3.21 in [6]). Then ��;s.x; �/ is linear in �; hence also p0.�; x; �/ in (A.23) is linear
in � . Since both b.�; U I x/� and p0.�; x; �/ are linear in � we deduce that the
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commutator
�
iOpBW.b.�; U I x/�/;OpBW.p0.�; x; �//

�
is given, up to smoothing

operators, by OpBW.fb.�; U I x/�; p0.�; x; �/g/. Moreover, by lemma 3.23 in [6],
f .s; U I��;s.x; �// is in ��1K;K0;1 with estimates uniform in j� j; jsj � 1. Then
(A.19) follows by setting ig.U I x/� WD p0.1; x; �/. Finally, we deduce (A.20) by
a Taylor expansion in � of the symbol p0.�/, using (A.22). The function �t �
�x�t satisfies the translation invariance property (2.7) as �. As in Lemma A.1
the operator .@t�1.U //.�1.U //�1 in (A.19) is translation invariant, and R.U /
satisfies the property (2.19) by difference. �

We now provide the conjugation of a paradifferential operator under the flow
�� .U / in (A.6) if f has the form (A.8) or (A.9).

LEMMA A.6 (Conjugation of a paradifferential operator). Let�� .U / be the flow of
(A.6) given by Lemma A.2 with symbol f .U I x; �/ in ��mK;K0;1 with m � 1=2, of

the form (A.8) or (A.9). Let a.U I x; �/ be a symbol in ��m
0

K;K0;q for some q 2 N,
q � 2, K 0 � K, r > 0, and m0 2 R. Then

(A.24)
�1.U /OpBW.a.U I x; �//.�1.U //�1

D OpBW
�
aC ff; ag C 1

2
ff; ff; agg C r1 C r2 C r3

�
CR.U /

where r1 2 ��mCm
0�3

K;K0;qC1, r2 2 ��2mCm
0�4

K;K0;qC2 , r3 2 �3mCm
0�3

K;K0;3 , and R.U / 2
�R��

K;K0;qC1. In addition, if a.U I x; �/ is real, then also the symbols ri , i D
1; 2; 3, are real-valued as well.

PROOF. The result follows by a Lie expansion. Using (A.3) we have, forL � 3,

(A.25)

�1.U /OpBW.a/.�1.U //�1

D OpBW.a/C �
OpBW.if /;OpBW.a/

�C 1

2
Ad2OpBW.if /�Op

BW.a/�

C
LX
kD3

1

k�
AdkOpBW.if /�Op

BW.a/�

C 1

L�

Z 1

0

.1 � �/L�� .U /�AdLC1
OpBW.if /�Op

BW.a/�
�
.�� .U //�1 d�:

By Propositions 2.9, 2.10 replacing the smoothing index � by some z� chosen below
large enough, we get

AdOpBW.if /�Op
BW.a/� D �

OpBW.if /;OpBW.a/
�

D OpBW�ff; ag C r1
�
; r1 2 ��mCm0�3K;K0;qC1;

up to a smoothing operator in �R�z�CmCm0
K;K0;qC1 . Moreover,

Ad2OpBW.if /�Op
BW.a/� D OpBW.ff; ff; agg C r2/; r2 2 ��2mCm0�4K;K0;qC2 ;
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up to a smoothing operator in �R�z�C2mCm0
K;K0;qC2 . By induction, for k � 3 we have

AdkOpBW.if /�Op
BW.a/� D OpBW.bk/; bk 2 ��k.m�1/Cm

0

K;K0;qCk ;

up to a smoothing operator in �R�z�Cm0Ckm
K;K0;qCk . We choose L in such a way that

.LC1/.1�m/�m0 � � and LC1 � 3 so that the operatorOpBW.bLC1/ belongs
to R��

K;K0;3. The integral Taylor remainder in (A.25) belongs to R��
K;K0;3 as well;

see lemma 5.6 in [6]. Then we choose z� large enough so that z��m0�.LC1/m � �
and the remainders are �-smoothing. By the third remark under Definition 2.8 we
deduce that if a.U I x; �/ is real, then the symbol of

�
OpBW.if /;OpBW.a/

�
is real,

and so r1; r2; r3 are real-valued as well. �

LEMMA A.7 (Conjugation of @t ). Let �� .U / be the flow of (A.6) with symbol
f .U I x; �/ in ��mK;K0;1 with m � 1=2, of the form (A.8) or (A.9). Then�

@t�
1.U /

��
�1.U /

��1
D iOpBW

�
@tf C 1

2
ff; @tf g

�
COpBW.r1 C r2/CR.U /

(A.26)

where r1 2 ��2m�3K;K0C1;2, r2 2 �3m�2K;K0C1;3 and R.U / 2 �R��
K;K0C1;2.

PROOF. The result follows by using the Lie expansion (A.4) and arguing as in
Lemma A.6. �

A.3 Lie expansions of vector fields up to quartic degree
In this subsection the variable U may denote both the couple of complex vari-

ables .u; xu/ or the real variables .�;  /.

LEMMA A.8 (Inverse of F��3.U / up to O.u4/). Consider a map � 7! F��3.U /,
� 2 �0; 1�, of the form

(A.27) F��3.U / D U C �
�
M1.U /�U �CM

.1/
2 .U /�U �

�C �2M
.2/
2 .U /�U �

whereM1.U / is in �M1
M2.C/ and the mapsM .1/
2 .U /;M

.2/
2 .U / are in �M2


M2.C/. Then there is a family of maps G��3.V / of the form

(A.28) G��3.V / D V � ��M1.V /�V �CM
.1/
2 .V /�V �

�C �2 MM .2/
2 .V /�V �

where MM .2/
2 .V / is in �M2 
M2.C/ such that

(A.29)
G��3 � F��3.U / D U CM�3.� IU/�U �;
F��3 �G��3.V / D V CM�3.� IU/�U �;

where M�3.� IU/ is a polynomial in � and finitely many monomials Mp.U /�U �
for maps Mp.U / 2 �Mp 
M2.C/, p � 3.
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PROOF. Set V D F��3.U / and substitute iteratively twice the expansion (A.27)
to express U as a function of V , up to terms of higher homogeneity (using the last
two remarks under Definition 2.7). �

We regard the map � 7! G��3.V / in (A.28) as the formal flow of a non-
autonomous vector field S.� IU/ up a remainder of degree of homogeneity 4; see
(A.30).

LEMMA A.9. Consider a map F��3.U / as in (A.27) and let G��3.V / be its approx-
imate inverse as in (A.28) up to quartic remainders. Then

(A.30) @�G��3.V / D S.� IG��3.V //CM�3.� IU/�U �; G0�3.V / D V;

where S.� IU/ is a vector field of the form

(A.31) S.� IU/ D S1.U /�U �C �S2.U /�U �

where S1.U / is a map in �M1 
 M2.C/ and S2.U / in �M2 
 M2.C/, and
M�3.� IU/ is a polynomial in � and finitely many monomialsMp.U /�U � for maps
Mp.U / 2 �Mp 
M2.C/, p � 3.

PROOF. It follows by explicit computation differentiating (A.28), using the ex-
pansions (A.27), (A.28), and the last two remarks under Definition 2.7. �

Given polynomials vector fields X.U / and Y.U / we define the nonlinear com-
mutator

(A.32) JX; Y K.U / WD dUY.U /�X.U /� � dUX.U /�Y.U /�:
Under the same notation of Lemmata A.8, A.9, we have the following result.

LEMMA A.10 (Lie expansion). Consider a vector field X of the form X.U / D
M.U /U for some map M.U / D M0 CM1.U /CM2.U / where M0 is in �M0 

M2.C/, M1.U / is in �M1 
M2.C/, and M2.U / in �M2 
M2.C/. Consider a
transformation F��3.U / as in (A.27) and let S.� IU/ be the vector field of the form
(A.31) such that (A.30) holds true. Then, if U solves @tU D X.U /, the function
V WD F1�3.U / solves
(A.33)

@tV D X.V /CJS;XKj�D0.V /C
1

2
JS; JS;XKKj�D0.V /C

1

2
J@�Sj�D0; XK.V /C� � �

up to terms of degree of homogeneity greater than or equal to 4.

PROOF. In order to find the quadratic and cubic components of the transformed
system, it is sufficient to write V WD F��3.U /, � 2 �0; 1�, and the first identity in
(A.29) as U D G��3.V / CM�3.� IU/�U �. Then, differentiating with @t the first
identity in (A.29) we obtain, up to a quartic term,

(A.34) X
�
G��3.V /

� D dG��3.V /�Vt � D .Id �M.� IV //�Vt �
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whereM.� IV / D �. LM1.V /C LM .1/
2 .V //C�2 LM2.V / for suitable maps LM1.V / in�M1 
M2.C/ and LM2.V /; LM .1/

2 .V / in �M2 
M2.C/; recall (A.28). Applying
in (A.34) the “pseudo-inverse"�

dG��3.V /
��1 WD IdCM.� IV /CM 2.� IV /;

and since we have @tV D @tU plus a quadratic term in U , we deduce that, up to a
quartic term, �

dG��3.V /
��1

X.G��3.V // D Vt :

The left-hand side of this formula can be expanded in Taylor at � D 0 up to degree
2, obtaining, using (A.30), the usual Lie formula

(A.35) X.V /C �JS;XKj�D0.V /C
�2

2

�
JS; JS;XKKj�D0.V /C J.@�S.�//j�D0; XK.V /

�
up to terms of degree 4. Evaluating (A.35) at � D 1 we get (A.33). �
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