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A.1 The grid-based dataset

We build a strongly balanced panel database covering the entire African continent based

on a grid of 2,653 cells at 1° resolution (each cell covers an area of around 110x110 km).2

The yearly database covers the time span 1990-2050, and climate-related variables are

computed on the basis of monthly statistics.

The climate variables. Raw historical climate data are monthly temperature (min-

imum and maximum Celsius degree) and precipitation (mm per day) taken from the

African Flood and Drought Monitor (AFDM) developed by Princeton University, ICI-

WaRM and UNESCOIHP at 0.25° resolution. The time span covered goes from 1970

to 2016, where the first two decades (1970-1989) are used as benchmark for computing

1Correspondence to: Department of Economics, Roma Tre University, Via Silvio D’Amico 77, 00145,
Rome, Italy. Mail: elena.paglialunga@uniroma3.it

2The rationale for the 1° spatial resolution is based on three points: i) geocoded disaggregated data
on gross per-capita income in the form of GCP (our main variable proxying the social vulnerability to
climate risk) are computed starting from the original G-Econ dataset v4.0, which is at the 1° spatial scale;
ii) robustness checks on different scales conducted by La Ferrara and Harari (2018) reveal that the 1°
scale provides the best model fit when the climate-conflict nexus for the whole African continent is under
investigation; iii) given the country-based SSPs projections, a finer scale deserves additional (possibly
arbitrary) assumptions for the disaggregation procedure.
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long-term climatic changes, while the econometric estimations are based on the period

1990-2016 (Sheffield et al., 2014).3

Climate projection data (near-surface air temperature and precipitation) are taken

from the World Climate Research Programme’s Coupled Model Intercomparison Project

phase 5 (CMIP5). We rely on the information from the model ESM2M developed by

the Geophysical Fluid Dynamics Laboratory of the National Oceanic and Atmospheric

Administration (NOAA-GFDL). This is an Earth System Model which combines an at-

mospheric and oceanic circulation model with representations of land, sea ice and iceberg

dynamics. It also incorporates interactive biogeochemistry, including the carbon cycle,

and biogeochemical components.4

We consider projected climate data from 2017 up to 2050 under different scenar-

ios about future GHG emissions, i.e., different Representative Concentration Pathways

(RCPs): 2.6 (mitigation scenario), 4.5 (stabilization scenario) and 8.5 (highest GHG

emissions scenario).5

Final climate variables are computed according to the following steps. First, historical

and projected monthly data on temperature (computed as the average between minimum

and maximum value) and precipitations have been associated to each 1° cell. Second, we

have harmonised the two data source to remove potential structural breaks corresponding

3AFDM reconstructs a multidecadal terrestrial water cycle based on a land surface hydrological model
merged with remote sensing and reanalysis of gridded observation dataset. Then, the real-time monitoring
system (2009–present) is driven by remotely sensed precipitation and atmospheric analysis data.

4Climate forcing includes GHG (CO2, CH4, N2O, CFC11, CFC12, HCFC22, CFC113), SD, Oz, LU,
SS, BC, MD, OC. The GFDL-ESM2M model applies the Distribution Based Scaling (DBS) approach to
improve usability of regional climate model projections for hydrological climate change impact studies,
resulting in bias adjusted climatic variables (Yang et al., 2010).

5Data for the three scenarios are available at different geographical resolution and time scale. RCP
2.6 is available at a resolution of 5°x5° with monthly data, RCP 8.5 at a resolution of 0.5°x0.5° and daily
data, while RCP 4.5 is available in both formats.
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to the years 2016-2017: the monthly values from 2017 to 2050 are obtained by calculating

the evolution of the three RCPs (with a monthly-based percentage change over year from

2016 to 2050) and applying it to the last historical absolute value available for each month

of 2016.6 Considering the harmonised monthly temperature and precipitation at the cell

level (ximt) we have computed three indicators.

First, for the period 1990-2050 we compute the changes in climatic conditions with

respect to a long-term trend measured as the annual mean of the difference between the

variable observed for each cell i in month m of year t and the average value for the same

month in all j years of the benchmark period 1970-1989 (N = 20):

dxit =
1

12

12∑
m=1

(
ximt|t>1989 −

1

N

N∑
j=1

ximj|(1970≤j<1990)

)
(1)

where dxit represents average temperature (in Celsius) and precipitations (in mm/day)

change with respect to the benchmark. We avoid potential biases from temporary peak

values by computing five-year moving averages of dxit.

Second, we compute the Standardized Precipitation Evapotranspiration Index (SPEI),

a synthetic measure of soil humidity accounting for relative excess or deficiency of water

availability that can affect the ability to meet the demands of human activities and the

environment (Hayes et al., 2011). SPEI jointly accounts for variations in precipitation and

temperature, and their impact on hydrological and soil humidity conditions (Parsons et al.,

2019) for different timescale. Timescales equal to or shorter than 6 months are appropriate

6In Figure A2a and A2b we represent the harmonised trends in temperature and precipitations as
monthly average across the 2,653 cells forming our grid for the time span 1970-2050.

3



for evaluating the short-term effects of droughts or water excess on the agricultural sector,

while timescales equal to or higher than 12 months allow to determine persistent stress

conditions (Pandey and Ramasastri, 2001).7 When SPEIit = 0 there are no significant

changes in weather conditions with respect to the normal expectation (Papaioannou,

2016). Hence, we account for non-linear patterns (U-shaped) by distinguishing between

positive (SPEIpit) and negative (SPEInit) indices that signal, respectively, excessive

wet and dry conditions.

The agricultural channel. We build a set of indicators interacting the SPEI in-

dices with the main crops growing season of each cell, proxying the indirect mechanisms

through which changes in climatic conditions impact food security and consequently so-

cial and political stability (Jones et al., 2017). This methodological approach is grounded

on previous research which suggests that an important channel linking climate variability

to conflicts operates through shocks to agricultural production and incomes (La Fer-

rara and Harari, 2018). This is particularly important in developing country, which are

strongly dependent on agriculture activities, strongly affected by climate variability and

with limited adaptive capacity. Since the agricultural activities follow a seasonal cycle,

the exposure to climate variability is heterogeneous within year: crops are more sensitive

to unfavourable conditions during the growing season, and climate anomalies recorded

during those months are more likely to determine lower yields and reduced agricultural

7We calculate monthly values of SPEI for 1, 3, 6, 12 and 36 months using the R package SPEI by
Vicente-Serrano et al. (2010). We obtain yearly data by computing the annual average of the monthly
values and replacing the missing values with their minimum ones. In Figure A3a and A3b we represent
the trends in SPEI12 and SPEI36 as monthly average across the 2,653 cells forming our grid for the time
span 1970-2050. In Figure A4 and A5 we compare average year values at the cell level for temperature
and precipitations in 2020 with values at 2050 under the three RCPs. The value for 2020 is computed on
the basis of RCP 4.5 here considered as the closest to historical values.
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production. Crop losses impact food security and, due to lower agricultural income and

higher food prices, indirectly affect the local socio-economic conditions (henceforth, for

the sake of brevity, we refer to this channel in term of indirect impacts). Increasing re-

sources scarcity can contribute to political instability or stimulate people to adopt adverse

livelihood strategy, creating further obstacles to peace and driving instability. The risk

is that heterogeneous access to food, agricultural supply and livelihood depletion could

foster grievance, resource competition and low opportunity cost to engage in violence.

We thus follow the approach of Von Uexkull et al. (2016) and compute our synthetic

cell/year measure as the share of growing-season months in which a drought or an excess

in water has been recorded.8 In doing so, we assume that the crops’ growing season re-

mains unchanged up to 2050, which implies that we exclude any form of adaption in our

models.9

The socio-economic variables. We compute three variables representative of the

socio-economic structure, that is acknowledged as a factor strongly influencing the vul-

nerability to changes in climatic conditions (Burke et al., 2015; Hsiang et al., 2011; Ide

et al., 2014). First, we build the gross cell product (GCPit) by harmonising at the 1°

geographical scale the data provided by Kummu et al. (2018).10 Second, we take popula-

8We take PRIO-GRID data on the starting and ending months of the growing season at the cell level
to identify the months in each cell main crop’s growth season (Gleditsch et al., 2002). Following the
classification defined in McKee et al. (1993), wet and drought conditions occur when SPEIimt is higher
than 1 or lower than -1, respectively. Combining this information, we compute two indicators measuring
the share of the growing season months in which the cell experiences adverse (wet/dry) climate conditions.

9We are aware this is a strong assumption that could be relaxed in the future research agenda by
using land-use projections on cultivars and crops changes.

10Kummu et al. (2018) provide 5 arc-min resolution (approximately 10 km) data for two main variables:
GCP per capita (PPP) and total GCP (PPP), both expressed in constant international 2011US$. Building
on this variable we compute GCP at 1° by summing all values whose coordinates fall into each cell. Data
for 2016 are interpolated.
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tion data from the History database of the Global Environment (HYDE3.2) provided by

Goldewijk et al. (2017). Data are available for the year 1990 and for the period 2000-2015

at the spatial resolution of 5 arc-min. We follow the same procedure pursued for GCP and

sum all population values in those areas belonging to the 1° cell and then interpolate the

intermediate missing values. Third, taking raw values for GCP and population at the 5

arc-min resolution we compute an intra-cell income distribution Gini index which should

be interpreted as representative of spatial income inequality rather than individual access

to economic resources.

In order to compute cell-specific information under the five SSPs up to 2050, we take

country projections on GDP (Crespo Cuaresma, 2017), population (Samir and Lutz, 2017)

and Gini index (Riahi et al., 2017) from the IIASA web site. To downscale country data at

the grid level we first compute the cell-specific share of national GDP and population for

the historical data 1990-2016. Then we apply the evolution trend of these shares during

the last decade to future country GDP and population (according to the different SSPs)

in order to project the cell-specific shares up to 2050.11 As a robustness check we compare

our SSPs gridded population data with those provided by Jones and O’Neill (2016), to the

best of our knowledge the only spatially-scaled information from SSPs. We collapse the

7.5 arc-min resolution data for population to our grid and compare both the average trend

for the whole sample (Figure A7) and the distribution across cells by 2050 for SSP3 and

SSP5 as the most distant trends (Figure A8), finding the two information sets as almost

11In Figure A6 we provide a general overview of the average projected values of our sample for con-
sistency with the country-based original SSPs data. For consistency reasons, we have rescaled the single
values of GCP and population for each year in order to obtain a country level value as the sum of
cell-based GCP and population compatible with that provided in the SSPs database.
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perfectly overlapping. The projections for the intra-cell Gini index are computed as the

evolution of the country Gini from SSPs applied to the cell-specific index starting from

2016, adjusted for the lower and upper bound values in order to maintain Giniit ∈ [0, 1].

Given that the linkage between socio-economic vulnerability and the probability of a

community to experience an intra-state battle is reinforced when the opportunity cost of

fighting is lower, following Chassang and i Miquel (2009) we model the role played by

income trend (rather than the level of income) as the GCP annual growth rate.

The control variables. Selected control variables at the cell level have been intro-

duced to account for cell-based socio-economic and geographical characteristics.

First, a key element that explains the onset and dynamics of armed conflicts is the dis-

crimination and societal cleavages across different groups living in the same community. It

is not the divergence in income distribution across individuals alone that transforms com-

petition over scarce resources into violence, but the existence of a more general economic,

political, or social division between culturally defined groups (Schleussner et al., 2016).

Hence, the risk that (climate-induced) resource and economic scarcity escalates into vi-

olence is stronger if the scarcity overlays with ethnic identities. Given that in African

countries ethnicity strongly shapes social identity and political preferences (Basedau and

Pierskalla, 2014; Von Uexkull et al., 2016) we also account for ethnic fragmentation. This

is a time-invariant variable that counts the number of distinct ethnic groups coexisting

within a single cell, collapsing at the grid level data from the Geo-referenced of ethnic

groups (GREG) dataset provided by Weidmann et al. (2010). In a robustness check we

replace GREG data with data from Geo-referencing Ethnic Power Relations (Geo-EPR),
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and results remain qualitatively unchanged (see Tables A6-A7).

Additional cell-level controls are related to location-specific geographical features and

the quality of living conditions which may either increase or mitigate the risk of violence.

In particular, cities in developing countries are crowded places where urban population is

distributed according to income capacity, with extensive slums where access to resources,

jobs, and public services is largely constrained (Buhaug and Urdal, 2013). Similarly,

places located at the national borders are more likely to experience political tensions and

violent events related to inter-state disputes or competition over transboundary resources

as water basins (De Stefano et al., 2017; O’Loughlin et al., 2012, 2014). Hence, we include

two dummy variables which assume value 1 (and 0 otherwise) if, respectively: i) within the

cell is located a populated places with more than 50,000 inhabitants; ii) the cell is located

at the national border. On the opposite, living conditions in desert areas are so difficult

that either people rarely live there, or tend to migrate in other areas, thus reducing

the risk of emerging conflicts (Bosetti et al., 2021). Similarly, high forest coverage is

associated to low anthropic activities, resulting in reduced risk of violence and disorders

(Corrales et al., 2019). Accordingly, we take data on land coverage from the History

Database of the Global Environment (HYDE), based on the original data from the Land

Cover Institute (LCI), and compute two dummy variables which assume value 1 (and 0

otherwise) if, respectively, more than 50% of the cell area is covered by desert or by forest.

In a robustness check, we replace the dummy variables with the continuous information

on the cell’s area covered by desert and forest, and results remain qualitatively unchanged

(see Tables A6-A7).
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Figure A1: Comparison of conflicts with ACLED and UCDP data in Africa (1997-2020)
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Figure A2: Trends in monthly temperature and precipitations in Africa (1970-2050)

(a) Temperature

(b) Precipitations

10



Figure A3: Trends in monthly SPEI for Africa (1970-2050)

(a) SPEI12

(b) SPEI36
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Figure A4: Monthly-averaged yearly temperature in 2020 and 2050 (C°)

(a) 2020 - RCP 4.5 (b) 2050 - RCP 2.6

(c) 2050 - RCP 4.5 (d) 2050 - RCP 8.5
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Figure A5: Monthly-averaged yearly precipitations in 2020 and 2050 (mm/day)

(a) 2020 - RCP 4.5 (b) 2050 - RCP 2.6

(c) 2050 - RCP 4.5 (d) 2050 - RCP 8.5
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Figure A6: Average projections in main yearly variables in Africa (2020-2050)

(a) Population (b) Gross Cell Product (GCP)

(c) Temperature change (d) Precipitation change
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Figure A7: Population trend in SSPs comparing with UCAR data

(a) Average population trends from our database

(b) Average population trends in UCAR data

15



Figure A8: Comparison in population distribution in 2050 with UCAR data

(a) SSP3 own data (b) SSP3 UCAR data

(c) SSP5 own data (d) SSP5 UCAR data
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A.2 Econometric results

Table A1: Covariates selection on data 1990-2016 (UCDP conflicts)
(Base) (1) (2) (3) (4) (5) (6) (7)

Count model
Population i,t-1 0.324∗∗∗ 0.326∗∗∗ 0.323∗∗∗ 0.324∗∗∗ 0.322∗∗∗ 0.319∗∗∗ 0.318∗∗∗ 0.314∗∗∗

(0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)
Change in GCPpc i,t-1 -2.571∗∗∗ -2.852∗∗∗ -2.864∗∗∗ -2.890∗∗∗ -2.931∗∗∗ -2.799∗∗∗ -2.825∗∗∗ -2.850∗∗∗

(0.44) (0.48) (0.49) (0.50) (0.49) (0.45) (0.47) (0.47)
Gini index i,t-1 0.394 0.456 0.468 0.481 0.436 0.427 0.435 0.360

(0.45) (0.45) (0.45) (0.45) (0.44) (0.44) (0.44) (0.42)
Ethnic fract i 0.140∗∗∗ 0.130∗∗∗ 0.132∗∗∗ 0.133∗∗∗ 0.129∗∗∗ 0.126∗∗∗ 0.125∗∗∗ 0.125∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Border cell (dummy) i 0.301∗∗∗ 0.281∗∗∗ 0.271∗∗∗ 0.261∗∗∗ 0.253∗∗ 0.293∗∗∗ 0.289∗∗∗ 0.286∗∗∗

(0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10)
Long-term temp ch i,t-1 0.218∗∗∗ 0.110∗ 0.033 0.076 0.260∗∗∗ 0.254∗∗∗ 0.284∗∗∗

(0.05) (0.07) (0.06) (0.06) (0.05) (0.05) (0.05)
Long-term prec ch i,t-1 0.054

(0.04)
SPEI6-flo i,t-1 0.026

(0.09)
SPEI6-dro i,t-1 -0.319∗∗∗

(0.10)
SPEI12-flo i,t-1 0.007

(0.08)
SPEI12-dro i,t-1 -0.485∗∗∗

(0.09)
SPEI36-flo i,t-1 0.225∗∗

(0.10)
SPEI36-dro i,t-1 -0.471∗∗∗

(0.07)
SPEI6-flo grw i,t-1 0.541∗∗∗

(0.17)
SPEI6-dro grw i,t-1 0.124∗

(0.07)
SPEI12-flo grw i,t-1 0.531∗∗∗

(0.15)
SPEI12-dro grw i,t-1 0.147∗∗

(0.06)
SPEI36-flo grw i,t-1 0.708∗∗∗

(0.21)
SPEI36-dro grw i,t-1 0.056

(0.07)
Const -5.959∗∗∗ -6.261∗∗∗ -6.366∗∗∗ -6.435∗∗∗ -6.546∗∗∗ -6.234∗∗∗ -6.197∗∗∗ -6.155∗∗∗

(0.87) (0.86) (0.86) (0.86) (0.85) (0.84) (0.84) (0.82)
Zero model
No conflicts it-1 -2.618∗∗∗ -2.618∗∗∗ -2.620∗∗∗ -2.620∗∗∗ -2.618∗∗∗ -2.616∗∗∗ -2.620∗∗∗ -2.618∗∗∗

(0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10)
Population i,t-1 -0.180∗∗∗ -0.178∗∗∗ -0.177∗∗∗ -0.174∗∗∗ -0.177∗∗∗ -0.180∗∗∗ -0.181∗∗∗ -0.183∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
City (dummy) i -0.152∗ -0.157∗ -0.157∗ -0.157∗ -0.158∗ -0.156∗ -0.154∗ -0.156∗

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
Desert (dummy) i 0.253∗∗ 0.279∗∗ 0.278∗∗ 0.281∗∗ 0.280∗∗ 0.262∗∗ 0.265∗∗ 0.257∗∗

(0.12) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12)
Forest (dummy) i 0.395∗∗∗ 0.396∗∗∗ 0.401∗∗∗ 0.403∗∗∗ 0.390∗∗∗ 0.380∗∗∗ 0.380∗∗∗ 0.373∗∗∗

(0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13) (0.13)
Const 4.060∗∗∗ 4.005∗∗∗ 3.998∗∗∗ 3.949∗∗∗ 3.989∗∗∗ 4.047∗∗∗ 4.053∗∗∗ 4.087∗∗∗

(0.52) (0.52) (0.52) (0.53) (0.52) (0.51) (0.51) (0.50)

Alpha 0.852∗∗∗ 0.850∗∗∗ 0.849∗∗∗ 0.847∗∗∗ 0.841∗∗∗ 0.840∗∗∗ 0.840∗∗∗ 0.836∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Observations 79590 79590 79590 79590 79590 79590 79590 79590
Log-likelihood -31494.001 -31444.642 -31434.788 -31414.545 -31400.866 -31429.302 -31427.770 -31419.724
Chi2 8165.713 7845.509 7767.994 9711.131 7897.974 7808.418 6922.901 7240.378
AIC 63108.002 63013.284 62995.576 62955.091 62927.732 62984.603 62981.540 62965.449
BIC 63665.080 63588.932 63580.509 63540.023 63512.665 63569.536 63566.472 63550.381
Conflict No observed 46475 46475 46475 46475 46475 46475 46475 46475
Conflict No predicted 43433 44498 44104 44163 44556 44459 44500 44654

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A2: Covariates selection on data 1990-2016 (ACLED conflicts)
(Base) (1) (2) (3) (4) (5) (6) (7)

Count model
Population i,t-1 0.474∗∗∗ 0.479∗∗∗ 0.474∗∗∗ 0.477∗∗∗ 0.473∗∗∗ 0.478∗∗∗ 0.477∗∗∗ 0.469∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Change in GCPpc i,t-1 -1.344∗∗∗ -1.794∗∗∗ -1.790∗∗∗ -1.793∗∗∗ -1.761∗∗∗ -1.733∗∗∗ -1.729∗∗∗ -1.756∗∗∗

(0.24) (0.23) (0.23) (0.24) (0.23) (0.23) (0.23) (0.23)
Gini index i,t-1 0.748∗∗∗ 0.841∗∗∗ 0.869∗∗∗ 0.852∗∗∗ 0.806∗∗∗ 0.802∗∗∗ 0.822∗∗∗ 0.750∗∗∗

(0.28) (0.29) (0.29) (0.29) (0.28) (0.28) (0.29) (0.28)
Ethnic fract i 0.158∗∗∗ 0.143∗∗∗ 0.143∗∗∗ 0.145∗∗∗ 0.143∗∗∗ 0.140∗∗∗ 0.139∗∗∗ 0.141∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Border cell (dummy) i 0.473∗∗∗ 0.456∗∗∗ 0.439∗∗∗ 0.439∗∗∗ 0.438∗∗∗ 0.462∗∗∗ 0.455∗∗∗ 0.442∗∗∗

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
Long-term temp ch i,t-1 0.232∗∗∗ 0.228∗∗∗ 0.197∗∗∗ 0.248∗∗∗ 0.320∗∗∗ 0.327∗∗∗ 0.362∗∗∗

(0.03) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03)
Long-term prec ch i,t-1 0.119∗∗∗

(0.02)
SPEI6-flo i,t-1 0.333∗∗∗

(0.07)
SPEI6-dro i,t-1 -0.268∗∗∗

(0.08)
SPEI12-flo i,t-1 0.296∗∗∗

(0.06)
SPEI12-dro i,t-1 -0.343∗∗∗

(0.08)
SPEI36-flo i,t-1 0.469∗∗∗

(0.07)
SPEI36-dro i,t-1 -0.285∗∗∗

(0.06)
SPEI6-flo grw i,t-1 0.788∗∗∗

(0.12)
SPEI6-dro grw i,t-1 0.120∗∗

(0.06)
SPEI12-flo grw i,t-1 0.812∗∗∗

(0.09)
SPEI12-dro grw i,t-1 0.126∗∗

(0.05)
SPEI36-flo grw i,t-1 0.953∗∗∗

(0.13)
SPEI36-dro grw i,t-1 0.014

(0.05)
Const -7.071∗∗∗ -7.423∗∗∗ -7.688∗∗∗ -7.743∗∗∗ -7.699∗∗∗ -7.572∗∗∗ -7.579∗∗∗ -7.410∗∗∗

(0.48) (0.49) (0.49) (0.49) (0.47) (0.47) (0.48) (0.45)
Zero model
No conflicts it-1 -2.094∗∗∗ -2.132∗∗∗ -2.135∗∗∗ -2.136∗∗∗ -2.133∗∗∗ -2.125∗∗∗ -2.134∗∗∗ -2.123∗∗∗

(0.09) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10)
Population i,t-1 -0.263∗∗∗ -0.259∗∗∗ -0.261∗∗∗ -0.258∗∗∗ -0.260∗∗∗ -0.258∗∗∗ -0.258∗∗∗ -0.263∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
City (dummy) i -0.414∗∗∗ -0.431∗∗∗ -0.434∗∗∗ -0.436∗∗∗ -0.438∗∗∗ -0.441∗∗∗ -0.441∗∗∗ -0.442∗∗∗

(0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)
Desert (dummy) i 0.408∗∗∗ 0.470∗∗∗ 0.485∗∗∗ 0.482∗∗∗ 0.493∗∗∗ 0.459∗∗∗ 0.473∗∗∗ 0.478∗∗∗

(0.11) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12)
Forest (dummy) i 0.454∗∗∗ 0.457∗∗∗ 0.454∗∗∗ 0.458∗∗∗ 0.449∗∗∗ 0.454∗∗∗ 0.454∗∗∗ 0.466∗∗∗

(0.12) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12) (0.12)
Const 4.323∗∗∗ 4.213∗∗∗ 4.221∗∗∗ 4.185∗∗∗ 4.206∗∗∗ 4.204∗∗∗ 4.195∗∗∗ 4.258∗∗∗

(0.36) (0.38) (0.38) (0.38) (0.38) (0.37) (0.38) (0.37)

Alpha 0.722∗∗∗ 0.719∗∗∗ 0.722∗∗∗ 0.720∗∗∗ 0.717∗∗∗ 0.714∗∗∗ 0.715∗∗∗ 0.709∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Observations 61019 61019 61019 61019 61019 61019 61019 61019
Log-likelihood -41308.969 -41141.711 -41098.941 -41084.330 -41068.141 -41106.205 -41096.899 -41072.174
Chi2 1568.011 1545.468 1604.330 1583.751 1616.546 1611.662 1664.399 1793.191
AIC 82737.939 82407.422 82323.883 82294.659 82262.283 82338.410 82319.798 82270.348
BIC 83279.075 82966.597 82892.076 82862.852 82830.476 82906.604 82887.991 82838.541
Conflict No observed 73737 73737 73737 73737 73737 73737 73737 73737
Conflict No predicted 71911 74588 73302 72893 73461 73759 73971 73990

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure A9: Model comparison on mean squared Pearson residuals (UCDP and ACLED)

(a) UCDP (1990-2020)

(b) ACLED (1997-2020)
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Figure A10: Conflicts by cell in 2050 (UCDP)

(a) SSP1 (b) SSP3

(c) SSP4 (d) SSP5
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Figure A11: Conflicts by cell in 2050 (ACLED)

(a) SSP1 (b) SSP3

(c) SSP4 (d) SSP5
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Table A3: Global Moran’s I of Pearson residuals

UCDP ACLED
2018 2019 2020 2018 2019 2020

Distance weight
W1 0.162 ∗∗∗ 0.199 ∗∗∗ 0.237 ∗∗∗ 0.175 ∗∗∗ 0.150 ∗∗∗ 0.176 ∗∗∗

(16.61) (20.56) (26.60) (17.90) (16.21) (22.61)
W2 0.116 ∗∗∗ 0.135 ∗∗∗ 0.170 ∗∗∗ 0.119 ∗∗∗ 0.105 ∗∗∗ 0.126 ∗∗∗

(17.78) (20.90) (28.58) (18.27) (16.99) (24.28)
W3 0.090 ∗∗∗ 0.103 ∗∗∗ 0.129 ∗∗∗ 0.092 ∗∗∗ 0.081 ∗∗∗ 0.096 ∗∗∗

(17.77) (20.54) (27.98) (18.21) (16.82) (23.77)
W4 0.081 ∗∗∗ 0.092 ∗∗∗ 0.116 ∗∗∗ 0.082 ∗∗∗ 0.073 ∗∗∗ 0.085 ∗∗∗

(18.16) (20.80) (28.41) (18.38) (17.28) (23.93)
W5 0.069 ∗∗∗ 0.075 ∗∗∗ 0.094 ∗∗∗ 0.070 ∗∗∗ 0.061 ∗∗∗ 0.069 ∗∗∗

(18.18) (19.88) (27.01) (18.45) (17.11) (22.85)
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Z-scores reported in parentheses. Moran’s I computed on

Pearson residuals from econometric estimation of model 7.
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Figure A12: Wd comparison on mean squared Pearson residuals (UCDP and ACLED)

(a) 1990-2020 UCDP

(b) 1997-2020 (ACLED)
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Figure A13: Herfindal concentration index of GCP per capita (Wd = 533 km)
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Table A4: Alternative Wd matrix with UCDP (model 7)
W1 W2 W3 W4 W5

Count model
Population i,t-1 0.323∗∗∗ 0.316∗∗∗ 0.315∗∗∗ 0.314∗∗∗ 0.312∗∗∗

(0.06) (0.05) (0.05) (0.06) (0.06)
WdPopulation it-1 -0.094∗ -0.138∗∗ -0.177∗∗∗ -0.201∗∗∗ -0.231∗∗∗

(0.05) (0.06) (0.05) (0.05) (0.05)
Change in GCPpc i,t-1 -5.510∗∗∗ -5.362∗∗∗ -5.031∗∗∗ -4.744∗∗∗ -4.407∗∗∗

(1.36) (1.23) (1.16) (1.13) (1.07)
WdChange in GCPpc it-1 3.299∗∗ 3.322∗∗ 3.117∗∗ 2.853∗∗ 2.643∗

(1.48) (1.38) (1.37) (1.37) (1.38)
Gini index i,t-1 0.303 0.298 0.319 0.259 0.207

(0.40) (0.38) (0.37) (0.38) (0.37)
WdGini index it-1 -2.100∗∗∗ -3.382∗∗∗ -4.759∗∗∗ -5.158∗∗∗ -5.915∗∗∗

(0.62) (0.71) (0.80) (0.89) (0.98)
Ethnic fract i 0.118∗∗∗ 0.112∗∗∗ 0.109∗∗∗ 0.109∗∗∗ 0.111∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04)
Border cell (dummy) i 0.279∗∗∗ 0.275∗∗∗ 0.273∗∗∗ 0.270∗∗∗ 0.266∗∗∗

(0.10) (0.10) (0.10) (0.09) (0.09)
Long-term temp ch i,t-1 0.054 0.039 0.001 -0.001 -0.023

(0.11) (0.11) (0.10) (0.10) (0.10)
WdLong-term temp ch it-1 0.296∗∗ 0.335∗∗∗ 0.393∗∗∗ 0.400∗∗∗ 0.426∗∗∗

(0.13) (0.13) (0.12) (0.12) (0.12)
SPEI36-flo grw i,t-1 0.584∗∗ 0.509∗∗ 0.570∗∗ 0.533∗∗ 0.515∗∗

(0.25) (0.23) (0.22) (0.22) (0.22)
WdSPEI36-flo grw it-1 -0.250 -0.348 -0.683∗ -0.679 -0.804∗

(0.37) (0.39) (0.40) (0.42) (0.42)
SPEI36-dro grw i,t-1 0.057 0.100 0.148 0.147 0.149

(0.12) (0.11) (0.11) (0.11) (0.10)
WdSPEI36-dro grw it-1 0.010 -0.067 -0.136 -0.118 -0.098

(0.15) (0.15) (0.15) (0.15) (0.15)
Const -4.046∗∗∗ -2.758∗∗∗ -1.508 -0.951 -0.052

(0.94) (1.00) (1.05) (1.10) (1.18)
Fixed Effects (country) Yes Yes Yes Yes Yes
Zero model
No conflicts it-1 -2.597∗∗∗ -2.587∗∗∗ -2.579∗∗∗ -2.581∗∗∗ -2.567∗∗∗

(0.10) (0.10) (0.10) (0.10) (0.10)
Population i,t-1 -0.197∗∗∗ -0.202∗∗∗ -0.203∗∗∗ -0.204∗∗∗ -0.204∗∗∗

(0.04) (0.03) (0.03) (0.03) (0.03)
City (dummy) i -0.137∗ -0.126 -0.120 -0.121 -0.120

(0.08) (0.08) (0.08) (0.08) (0.08)
Desert (dummy) i 0.194 0.208 0.215∗ 0.220∗ 0.224∗

(0.13) (0.13) (0.13) (0.13) (0.13)
Forested area (dummy) i 0.381∗∗∗ 0.399∗∗∗ 0.415∗∗∗ 0.426∗∗∗ 0.431∗∗∗

(0.13) (0.13) (0.13) (0.13) (0.13)
Const 4.272∗∗∗ 4.321∗∗∗ 4.316∗∗∗ 4.324∗∗∗ 4.311∗∗∗

(0.45) (0.44) (0.42) (0.43) (0.43)

Alpha 0.800∗∗∗ 0.789∗∗∗ 0.783∗∗∗ 0.783∗∗∗ 0.776∗∗∗

(0.04) (0.04) (0.04) (0.04) (0.04)
Observations 79590 79590 79590 79590 79590
Log-likelihood -31316.454 -31272.926 -31230.817 -31219.868 -31195.731
Chi2 7792.088 4905.768 8037.807 6765.945 8455.841
AIC 62770.908 62683.851 62599.634 62577.737 62529.461
BIC 63411.548 63324.492 63240.275 63218.377 63170.102

Clustered (id) robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table A5: Alternative Wd matrix with ACLED (model 7)
W1 W2 W3 W4 W5

Count model
Population i,t-1 0.457∗∗∗ 0.436∗∗∗ 0.437∗∗∗ 0.435∗∗∗ 0.436∗∗∗

(0.04) (0.03) (0.03) (0.03) (0.03)
WdPopulation it-1 -0.063 -0.061 -0.072 -0.086∗∗ -0.110∗∗

(0.04) (0.04) (0.04) (0.04) (0.04)
Change in GCPpc i,t-1 -1.054 -0.667 -0.501 -0.313 -0.348

(1.18) (1.08) (1.03) (0.98) (0.90)
WdChange in GCPpc it-1 -0.746 -1.299 -1.730 -2.108∗ -2.252∗

(1.31) (1.28) (1.25) (1.22) (1.18)
Gini index i,t-1 1.022∗∗∗ 1.085∗∗∗ 1.054∗∗∗ 1.006∗∗∗ 0.951∗∗∗

(0.29) (0.28) (0.28) (0.27) (0.27)
WdGini index it-1 -2.953∗∗∗ -4.332∗∗∗ -4.990∗∗∗ -5.544∗∗∗ -6.104∗∗∗

(0.47) (0.58) (0.70) (0.75) (0.84)
Ethnic fract i 0.141∗∗∗ 0.132∗∗∗ 0.131∗∗∗ 0.130∗∗∗ 0.134∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03)
Border cell (dummy) i 0.433∗∗∗ 0.430∗∗∗ 0.426∗∗∗ 0.425∗∗∗ 0.423∗∗∗

(0.08) (0.08) (0.08) (0.08) (0.08)
Long-term temp ch i,t-1 0.093 0.049 0.018 0.014 0.002

(0.09) (0.08) (0.08) (0.08) (0.07)
WdLong-term temp ch it-1 0.398∗∗∗ 0.491∗∗∗ 0.559∗∗∗ 0.579∗∗∗ 0.613∗∗∗

(0.09) (0.09) (0.09) (0.09) (0.09)
SPEI36-flo grw i,t-1 0.332∗ 0.213 0.226 0.195 0.151

(0.19) (0.17) (0.18) (0.17) (0.17)
WdSPEI36-flo grw it-1 1.395∗∗∗ 1.735∗∗∗ 1.801∗∗∗ 1.926∗∗∗ 2.118∗∗∗

(0.23) (0.24) (0.25) (0.25) (0.26)
SPEI36-dro grw i,t-1 0.039 0.055 0.086 0.083 0.085

(0.08) (0.08) (0.08) (0.08) (0.08)
WdSPEI36-dro grw it-1 0.036 0.025 -0.004 0.024 0.058

(0.10) (0.10) (0.11) (0.11) (0.11)
Const -5.368∗∗∗ -4.470∗∗∗ -3.945∗∗∗ -3.394∗∗∗ -2.715∗∗∗

(0.55) (0.64) (0.70) (0.72) (0.76)
Fixed Effects (country) Yes Yes Yes Yes Yes
Zero model
No conflicts it-1 -2.103∗∗∗ -2.092∗∗∗ -2.088∗∗∗ -2.086∗∗∗ -2.080∗∗∗

(0.10) (0.10) (0.10) (0.10) (0.10)
Population i,t-1 -0.266∗∗∗ -0.273∗∗∗ -0.272∗∗∗ -0.275∗∗∗ -0.276∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03)
City (dummy) i -0.426∗∗∗ -0.415∗∗∗ -0.418∗∗∗ -0.414∗∗∗ -0.416∗∗∗

(0.07) (0.07) (0.07) (0.07) (0.07)
Desert (dummy) i 0.411∗∗∗ 0.362∗∗∗ 0.376∗∗∗ 0.365∗∗∗ 0.378∗∗∗

(0.12) (0.12) (0.11) (0.12) (0.12)
Forested area (dummy) i 0.450∗∗∗ 0.418∗∗∗ 0.430∗∗∗ 0.432∗∗∗ 0.435∗∗∗

(0.12) (0.12) (0.12) (0.12) (0.12)
Const 4.284∗∗∗ 4.374∗∗∗ 4.348∗∗∗ 4.377∗∗∗ 4.377∗∗∗

(0.35) (0.35) (0.35) (0.35) (0.35)

Alpha 0.671∗∗∗ 0.664∗∗∗ 0.664∗∗∗ 0.661∗∗∗ 0.660∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03)
Observations 61019 61019 61019 61019 61019
Log-likelihood -40674.502 -40611.674 -40593.621 -40565.626 -40545.320
Chi2 2615.018 2396.800 2151.228 2049.417 2085.204
AIC 81487.003 81361.348 81325.242 81269.252 81228.641
BIC 82109.310 81983.655 81947.549 81891.559 81850.948

Clustered (id) robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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A.3 Robustness on econometric results

First, we run the following alternative specifications and robustness checks on our baseline

specification for both UCDP (Table A6) and ACLED data (Table A7):

� We include the lagged number of conflict events in the count model rather than in

the zero model (column 2);

� We employ the change in population rather than population in level (column 3);

� We replace GREG data on ethnic fractionalization with information from the Geo-

referencing Ethnic Power Relations (Geo-EPR) dataset (column 4);

� We add a proxy for institutions at the country level (column 5);

� We replace the forest and desert dummy variables with the continuous information

on the cell’s area (%) covered by desert and forest (columns 6 and 7);

� We add the distance from the capital city among the covariates in the Count model

(column 8).

In all cases results remain qualitatively unchanged, and our preferred specification

(column 1) display the lowest value for AIC and BIC. The only two exceptions are the

specifications reported in columns 5 and 8 (although the improvement in the AIC and BIC

value is marginal). With respect to the country level of institutional quality (column 5),

two additional reasons motivate our choice to not include this proxy in our model: i) given

the nature of our forecasting exercise, we would require information about institutions

also for future years (and possibly differentiated across SSPs), and we do not have such
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information; ii) since our models include country fixed effects, country-level time-invariant

characteristics like Colonial legacy are already accounted for. As for the distance from

the capital city, we decide not to include it in our model since it may be problematic

when it comes to the spatial models, as the value of this variable would be mechanically

correlated across neighbouring cells.

Second, given that the socio-economic and climate variables for the period 2017-2020

are derived from SSPs scenarios, we also test potential divergences associated to the choice

of the baseline scenario used. In Figures A14a-A14b we report the mean squared Pearson

residuals per year obtained by running model 7 (including the indirect effects of climate

variability through the agricultural channel mediated by the crops growing season) in

Tables A1 and A2 with different values for the variables projected under the five SSPs

for the validation period 2017-2020. Results from the five SSPs are quite similar, and we

consider the SSP2 as the baseline up to 2020 and than we differentiate across SSPs for

the forecasting exercise beyond 2020.

Third, robustness of statistical significance of coefficients in recursive windows for

the validation period 2017-2020 for model 7 is provided in Tables A8-A9 for UCDP and

ACLED, respectively (corresponding to a four-steps procedure of the recursive method

application).

Fourth, robustness to alternative fixed effects specification is provided by Figure A15

where the mean Pearson residuals per year are plotted using country or cell fixed effects.

Although residuals are lower in the case of cell fixed effects, the introduction of the term

yit−1 in the Zero model combined with country fixed effects almost completely correct for
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serial correlation, while avoiding potential biases deriving from an excess in number of

fixed effects into non-linear models (Fernández-Val and Weidner, 2016).
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Table A6: Baseline model selection 1990-2016 (UCDP conflicts)
(1) (2) (3) (4) (5) (6) (7) (8)

Count model
No conflicts it-1 0.264∗∗∗

(0.03)
Population i,t-1 0.324∗∗∗ 0.365∗∗∗ 0.352∗∗∗ 0.319∗∗∗ 0.324∗∗∗ 0.323∗∗∗ 0.391∗∗∗

(0.07) (0.04) (0.07) (0.07) (0.07) (0.07) (0.10)
Change in GCPpc i,t-1 -2.571∗∗∗ -3.007∗∗∗ -2.587∗∗∗ -2.547∗∗∗ -2.931∗∗∗ -2.568∗∗∗ -2.567∗∗∗ -2.679∗∗∗

(0.44) (0.51) (0.42) (0.43) (0.49) (0.44) (0.44) (0.42)
Gini index i,t-1 0.394 0.685∗∗∗ 0.652 0.390 0.396 0.393 0.387 0.308

(0.45) (0.26) (0.40) (0.44) (0.44) (0.45) (0.45) (0.51)
Ethnic fract i 0.140∗∗∗ 0.074∗∗∗ 0.231∗∗∗ 0.137∗∗∗ 0.140∗∗∗ 0.140∗∗∗ 0.095∗∗

(0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04)
Border cell (dummy) i 0.301∗∗∗ 0.181∗∗∗ 0.324∗∗∗ 0.340∗∗∗ 0.299∗∗∗ 0.304∗∗∗ 0.301∗∗∗ 0.192∗

(0.10) (0.07) (0.11) (0.11) (0.10) (0.10) (0.10) (0.10)
Change in population i, t-1 -7.528∗

(4.10)
ELF i, t 0.382∗∗∗

(0.12)
Governance c, t-1 3.303∗∗∗

(0.84)
Distance from capital city i 0.000∗∗∗

(0.00)
Const -5.959∗∗∗ -8.245∗∗∗ -1.724∗∗∗ -6.180∗∗∗ -6.737∗∗∗ -5.954∗∗∗ -5.945∗∗∗ -6.905∗∗∗

(0.87) (0.48) (0.41) (0.85) (0.88) (0.87) (0.87) (1.21)
Zero model
No conflicts it-1 -2.618∗∗∗ -2.800∗∗∗ -2.622∗∗∗ -2.618∗∗∗ -2.616∗∗∗ -2.616∗∗∗ -2.601∗∗∗

(0.10) (0.11) (0.10) (0.10) (0.10) (0.10) (0.10)
Population i,t-1 -0.180∗∗∗ -0.091 -0.170∗∗∗ -0.182∗∗∗ -0.180∗∗∗ -0.185∗∗∗ -0.175∗∗∗

(0.04) (0.06) (0.04) (0.04) (0.04) (0.04) (0.05)
City (dummy) i -0.152∗ -0.173 -0.618∗∗∗ -0.156∗ -0.150∗ -0.150∗ -0.150∗ -0.148∗

(0.08) (0.50) (0.08) (0.08) (0.08) (0.08) (0.08) (0.09)
Desert (dummy) i 0.253∗∗ 13.196 1.141∗∗∗ 0.265∗∗ 0.291∗∗ 0.240∗ 0.331∗∗∗

(0.12) (8.26) (0.11) (0.12) (0.12) (0.12) (0.12)
Forest (dummy) i 0.395∗∗∗ 12.820 0.651∗∗∗ 0.388∗∗∗ 0.395∗∗∗ 0.385∗∗∗ 0.355∗∗∗

(0.13) (8.13) (0.13) (0.13) (0.13) (0.13) (0.13)
Change in population i, t-1 -22.153∗∗∗

(3.40)
Forest area i 0.321∗∗∗

(0.11)
Desert area i 0.207∗

(0.11)
Const 4.060∗∗∗ -11.849 2.470∗∗∗ 3.939∗∗∗ 4.066∗∗∗ 4.073∗∗∗ 4.122∗∗∗ 3.962∗∗∗

(0.52) (8.42) (0.10) (0.51) (0.51) (0.52) (0.51) (0.62)

Alpha 0.852∗∗∗ 1.986∗∗∗ 0.920∗∗∗ 0.851∗∗∗ 0.848∗∗∗ 0.851∗∗∗ 0.851∗∗∗ 0.838∗∗∗

(0.04) (0.05) (0.05) (0.04) (0.04) (0.04) (0.04) (0.04)
Observations 79590 79590 79590 79590 79590 79590 79590 79590
Log-likelihood -31494.001 -33059.094 -32031.298 -31504.038 -31470.559 -31495.433 -31495.142 -31406.568
Chi2 8165.713 15829.150 10175.984 7299.763 7470.721 8150.725 8097.161 14168.000
AIC 63108.002 66238.188 64182.596 63128.077 63063.119 63110.867 63110.284 62935.135
BIC 63665.080 66795.266 64739.674 63685.155 63629.482 63667.945 63667.363 63501.499

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A7: Baseline model selection 1990-2016 (ACLED conflicts)
(1) (2) (3) (4) (5) (6) (7) (8)

Count model
No conflicts it-1 0.120∗∗∗

(0.02)
Population i,t-1 0.474∗∗∗ 0.430∗∗∗ 0.500∗∗∗ 0.467∗∗∗ 0.474∗∗∗ 0.474∗∗∗ 0.577∗∗∗

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
Change in GCPpc i,t-1 -1.344∗∗∗ -1.581∗∗∗ -1.275∗∗∗ -1.387∗∗∗ -1.797∗∗∗ -1.340∗∗∗ -1.344∗∗∗ -1.530∗∗∗

(0.24) (0.32) (0.22) (0.23) (0.24) (0.24) (0.24) (0.22)
Gini index i,t-1 0.748∗∗∗ 0.765∗∗∗ 1.481∗∗∗ 0.706∗∗ 0.762∗∗∗ 0.746∗∗∗ 0.743∗∗∗ 0.600∗∗

(0.28) (0.19) (0.33) (0.29) (0.28) (0.28) (0.28) (0.28)
Ethnic fract i 0.158∗∗∗ 0.078∗∗∗ 0.260∗∗∗ 0.159∗∗∗ 0.159∗∗∗ 0.158∗∗∗ 0.121∗∗∗

(0.03) (0.02) (0.04) (0.03) (0.03) (0.03) (0.03)
Border cell (dummy) i 0.473∗∗∗ 0.341∗∗∗ 0.403∗∗∗ 0.520∗∗∗ 0.470∗∗∗ 0.476∗∗∗ 0.473∗∗∗ 0.328∗∗∗

(0.08) (0.06) (0.09) (0.08) (0.08) (0.08) (0.08) (0.07)
Change in population i, t-1 -2.598

(2.46)
ELF i, t 0.404∗∗∗

(0.10)
Governance c, t-1 4.955∗∗∗

(0.74)
Distance from capital city i 0.000∗∗∗

(0.00)
Const -7.071∗∗∗ -7.148∗∗∗ -1.223∗∗∗ -7.231∗∗∗ -8.212∗∗∗ -7.071∗∗∗ -7.076∗∗∗ -8.494∗∗∗

(0.48) (0.43) (0.31) (0.49) (0.50) (0.48) (0.48) (0.49)
Zero model
No conflicts it-1 -2.094∗∗∗ -2.386∗∗∗ -2.098∗∗∗ -2.097∗∗∗ -2.096∗∗∗ -2.093∗∗∗ -2.100∗∗∗

(0.09) (0.11) (0.09) (0.10) (0.09) (0.09) (0.10)
Population i,t-1 -0.263∗∗∗ -0.417∗∗∗ -0.254∗∗∗ -0.269∗∗∗ -0.264∗∗∗ -0.266∗∗∗ -0.246∗∗∗

(0.03) (0.07) (0.03) (0.03) (0.03) (0.03) (0.03)
City (dummy) i -0.414∗∗∗ -5.756∗∗∗ -1.201∗∗∗ -0.424∗∗∗ -0.409∗∗∗ -0.413∗∗∗ -0.415∗∗∗ -0.419∗∗∗

(0.07) (1.78) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07)
Desert (dummy) i 0.408∗∗∗ 1.031∗∗∗ 1.685∗∗∗ 0.413∗∗∗ 0.450∗∗∗ 0.390∗∗∗ 0.514∗∗∗

(0.11) (0.34) (0.09) (0.11) (0.11) (0.11) (0.11)
Forest (dummy) i 0.454∗∗∗ 1.678∗∗∗ 0.747∗∗∗ 0.459∗∗∗ 0.424∗∗∗ 0.446∗∗∗ 0.298∗∗

(0.12) (0.30) (0.13) (0.12) (0.12) (0.12) (0.12)
Change in population i, t-1 -14.402∗∗∗

(4.58)
Forest area i 0.340∗∗∗

(0.10)
Desert area i 0.370∗∗∗

(0.10)
Const 4.323∗∗∗ 3.507∗∗∗ 1.634∗∗∗ 4.215∗∗∗ 4.380∗∗∗ 4.348∗∗∗ 4.370∗∗∗ 4.053∗∗∗

(0.36) (0.91) (0.11) (0.37) (0.36) (0.36) (0.35) (0.36)

Alpha 0.722∗∗∗ 1.199∗∗∗ 0.854∗∗∗ 0.730∗∗∗ 0.712∗∗∗ 0.722∗∗∗ 0.720∗∗∗ 0.707∗∗∗

(0.04) (0.06) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
Observations 61019 61019 61019 61019 61019 61019 61019 61019
Log-likelihood -41308.969 -42020.602 -42729.232 -41336.630 -41242.763 -41312.786 -41308.993 -41085.085
Chi2 1568.011 2049.889 1495.702 1616.227 1600.975 1569.610 1562.395 1659.894
AIC 82737.939 84161.204 85578.464 82793.260 82607.527 82745.572 82737.986 82292.169
BIC 83279.075 84702.340 86119.600 83334.397 83157.682 83286.709 83279.122 82842.324

Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

31



Table A8: Robustness with recursive forecast on model (7) Table A1 (2017-2020)

(1) (2) (3) (4)
2017 2018 2019 2020

Count model
Population i,t-1 0.313∗∗∗ 0.296∗∗∗ 0.296∗∗∗ 0.293∗∗∗

(0.07) (0.07) (0.06) (0.06)
Change in GCPpc i,t-1 -2.957∗∗∗ -3.353∗∗∗ -3.428∗∗∗ -3.460∗∗∗

(0.50) (0.61) (0.60) (0.58)
Gini index i,t-1 0.528 0.501 0.467 0.443

(0.43) (0.43) (0.40) (0.37)
Ethnic fract i 0.074∗ 0.092∗∗ 0.094∗∗∗ 0.094∗∗∗

(0.04) (0.04) (0.03) (0.03)
Border cell (dummy) i 0.240∗∗ 0.249∗∗∗ 0.249∗∗∗ 0.245∗∗∗

(0.10) (0.10) (0.09) (0.08)
Long-term temp ch i,t-1 0.585∗∗∗ 0.293∗∗∗ 0.236∗∗∗ 0.203∗∗∗

(0.12) (0.07) (0.04) (0.03)
SPEI36-flo grw i,t-1 0.839∗∗∗ 0.542∗∗∗ 0.526∗∗∗ 0.522∗∗∗

(0.20) (0.19) (0.18) (0.17)
SPEI36-dro grw i,t-1 0.080 0.091 0.112 0.118∗

(0.09) (0.08) (0.07) (0.07)
Const -6.323∗∗∗ -6.135∗∗∗ -6.065∗∗∗ -5.911∗∗∗

(0.84) (0.83) (0.80) (0.76)
Zero model
No conflicts it-1 -2.594∗∗∗ -2.806∗∗∗ -3.616∗∗∗ -3.330∗∗∗

(0.12) (0.14) (0.19) (0.13)
Population i,t-1 -0.174∗∗∗ -0.254∗∗∗ -0.264∗∗∗ -0.265∗∗∗

(0.04) (0.04) (0.04) (0.03)
City (dummy) i -0.184∗∗ -0.112 -0.105 -0.097

(0.09) (0.08) (0.08) (0.07)
Desert (dummy) i 0.392∗∗∗ 0.271∗∗ 0.243∗∗ 0.222∗∗

(0.13) (0.11) (0.11) (0.10)
Forest (dummy) i 0.369∗∗∗ 0.488∗∗∗ 0.505∗∗∗ 0.513∗∗∗

(0.14) (0.13) (0.13) (0.12)
Const 3.960∗∗∗ 4.696∗∗∗ 4.914∗∗∗ 5.041∗∗∗

(0.51) (0.49) (0.47) (0.44)

Alpha 0.816∗∗∗ 0.813∗∗∗ 0.647∗∗∗ 0.423∗∗∗

(0.04) (0.04) (0.04) (0.04)
Observations 68978 71631 74284 76937
Log-likelihood -25048.747 -27897.364 -30257.809 -32577.158
Chi2 7361.984 6483.437 7446.110 8729.612
AIC 50223.494 55920.728 60641.618 65280.317
BIC 50799.411 56499.022 61222.204 65863.114

Clustered (id) robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A9: Robustness with recursive forecast on model (7) Table A2 (2017-2020)

(1) (2) (3) (4)
2017 2018 2019 2020

Count model
Population i,t-1 0.454∗∗∗ 0.469∗∗∗ 0.473∗∗∗ 0.469∗∗∗

(0.03) (0.03) (0.03) (0.03)
Change in GCPpc i,t-1 -2.032∗∗∗ -2.156∗∗∗ -2.165∗∗∗ -2.161∗∗∗

(0.22) (0.24) (0.24) (0.24)
Gini index i,t-1 1.034∗∗∗ 1.021∗∗∗ 0.990∗∗∗ 0.970∗∗∗

(0.30) (0.29) (0.27) (0.26)
Ethnic fract i 0.109∗∗∗ 0.118∗∗∗ 0.122∗∗∗ 0.125∗∗∗

(0.03) (0.03) (0.03) (0.02)
Border cell (dummy) i 0.383∗∗∗ 0.391∗∗∗ 0.388∗∗∗ 0.386∗∗∗

(0.08) (0.08) (0.07) (0.06)
Long-term temp ch i,t-1 0.493∗∗∗ 0.336∗∗∗ 0.288∗∗∗ 0.256∗∗∗

(0.10) (0.06) (0.04) (0.03)
SPEI36-flo grw i,t-1 1.159∗∗∗ 1.003∗∗∗ 0.950∗∗∗ 0.907∗∗∗

(0.14) (0.12) (0.11) (0.11)
SPEI36-dro grw i,t-1 0.170∗∗ 0.179∗∗ 0.196∗∗∗ 0.206∗∗∗

(0.08) (0.07) (0.06) (0.06)
Const -7.340∗∗∗ -7.530∗∗∗ -7.539∗∗∗ -7.430∗∗∗

(0.50) (0.48) (0.45) (0.43)
Zero model
No conflicts it-1 -2.023∗∗∗ -2.225∗∗∗ -2.903∗∗∗ -2.915∗∗∗

(0.11) (0.13) (0.18) (0.16)
Population i,t-1 -0.299∗∗∗ -0.335∗∗∗ -0.339∗∗∗ -0.342∗∗∗

(0.03) (0.03) (0.03) (0.03)
City (dummy) i -0.407∗∗∗ -0.333∗∗∗ -0.308∗∗∗ -0.296∗∗∗

(0.08) (0.08) (0.07) (0.07)
Desert (dummy) i 0.589∗∗∗ 0.521∗∗∗ 0.500∗∗∗ 0.467∗∗∗

(0.12) (0.11) (0.11) (0.10)
Forest (dummy) i 0.448∗∗∗ 0.437∗∗∗ 0.424∗∗∗ 0.407∗∗∗

(0.13) (0.12) (0.12) (0.11)
Const 4.668∗∗∗ 4.967∗∗∗ 5.113∗∗∗ 5.270∗∗∗

(0.41) (0.40) (0.38) (0.36)

Alpha 0.739∗∗∗ 0.638∗∗∗ 0.471∗∗∗ 0.279∗∗∗

(0.04) (0.04) (0.04) (0.05)
Observations 50407 53060 55713 58366
Log-likelihood -28683.570 -31896.713 -34766.629 -37650.026
Chi2 1554.275 1842.469 2183.143 2592.825
AIC 57493.141 63919.426 69659.258 75426.052
BIC 58049.298 64478.814 70221.720 75991.445

Clustered (id) robust standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure A14: Model comparison on mean squared Pearson residuals (UCDP and ACLED)

(a) Baseline validation UCDP (2017-2020)

(b) Baseline validation ACLED (2017-2020)
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Figure A15: Pearson residuals with country (CE) and cell (FE) fixed effects

(a) Model (7) in Table A1 with UCDP

(b) Model (7) in Table A2 with ACLED
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