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Abstract 

This paper introduces an innovative simple method to manage 

data uncertainly based on fuzzy logic. The proposed approach 

perfectly integrates with the C-VIKOR algorithm used to 

technically ranking the candidate materials. This method aims 

at helping design teams to select optimal material(s) for the 

success of a product at the early stages of product development. 

When neither a material team nor a material expert is available 

within the company, the design team has to face autonomously 

with this task. A support system is thus desirable: it has to be 

easy to use, and not only to rank the candidate materials from a 

technical point of view, but also to show to the design team the 

confidence with which to handle this ranking. These conditions 

are seldom addressed by the models presented in literature, 

despite their importance. The few existing approaches use a 

complex probability logic that is tricky to manage by non-

expert users. An easy-to-use support system is needed because 

the smart use of materials is becoming a must-be for the leading 

industries that have understood how the materials can 

functionalize the product, rather than simply represent the 

product hardware. The successful applicability of the proposed 

method is reported through a case study, debating the material 

selection for the production of the valve seats component in a 

high-performance engine, showing the practical feasibility of 

the method itself. 

Keywords: material selection method, MADM, mechanical 

components, design methods, valve seats, surface mechanics, 

coating, high performance engine. 

 

INTRODUCTION 

In the context of a growing industrial competition, the issue of 

material selection has become increasingly crucial [1]. The 

markets are continuously supplied with new products, and the 

only way to keep up with competitors is either to reduce the 

cost of the existing product, or to develop new functionalities. 

It is crucial for this need to review the processes of product 

design and development, making them leaner and more 

efficient [2]. 

With such stressful industrial trend, no longer can an optimal 

selection of materials be neglected, even when dealing with 

lower-added-value products. However, this task is not easy to 

accomplish, and a lot of small-medium companies do not have 

the necessary know-how to manage the selection problem. The 

usual responses to this problematic situation are to rely 

completely either on the opinion of external consultants, or on 

the indications of expert system with material database [3,4]. 

Both these approaches are very expensive and, more 

significantly, they do not allow companies to grow their own 

experience in the material selection. In the last decade, several 

approaches have been developed to computationally support 

the design team to select optimal materials for a project [5-14]. 

These approaches are based on the use of Multi Attribute 

Decision Making (MADM) algorithms [15-22]. First of all, the 

design team should collect a limited number of possible 

alternatives for the design. Second, a set of selection attributes 

should be chosen, by which the selection alternatives can be 

relatively prioritized. Then the team has to collect data about 

the performance of each of the candidate materials relatively to 

each of the selection attributes (using available sources: on-line 

database, and handbooks, datasheet from Suppliers, 

experimental data, etc.). The MADM algorithm use all this 

information to calculate the ranking of the design alternatives. 

The choice of the correct selection attributes is itself not a 

menial task, because it demands the exact translation of the 

customer needs into the technical requirements, as suggested 

by methodologies like Axiomatic Design, which has been 

applied by authors in [23]. Also, is the attribution of an 

importance weight to each selection attribute [11-13] is crucial 

to the effectiveness of this approach. Indeed, not all the 
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selection attributes have the same importance to the 

performances of the project. For this reason, a correct 

weighting strategy has to be used. Several methods have been 

explored to help improve performances in order to be more and 

more competitive on the market: the authors have investigated 

applications of various models, such as mathematical 

simulation models like Kriging [24], or tools, like TRIZ [25], 

to achieve performance improvement of single products. More 

specifically, as far as material selection is concerned, a previous 

work of the authors has developed a model, called Integral 

Aided Material Selection (IAMS) [26], that integrates the 

House of Quality approach and one of the most structured and 

reliable MADM algorithm (i.e. the Comprehensive VIKOR 

algorithm or C-VIKOR [27,10]). The IAMS method is able to 

obtain a clear selection process from the translation of the 

customer needs into the technical requirements, to the ranking 

of the design alternatives. 

This paper considers an additional element concerned with the 

data availability, i.e. the higher or lower variability of data 

referred to each combination “selection alternative” versus 

“selection attribute”. 

In fact, the usual computational approach neglects the 

variability of the data presented by different sources, and use 

an average value for these. In the case of data unavailability, 

the punctual value of the selection attribute can proceed by 

identifying a realistic value through approximation with similar 

known materials. 

The concepts of data variability and reliability are therefore 

seldom managed, which therefore might be quite dangerous. 

Often, the design team may have selected the technically 

optimal alternative, but this alternative has a lot of data 

uncertainty. This project is inevitably not very robust. 

In this paper, we present an approach useful to resolve such 

lack of robustness of the traditional MADM algorithms in the 

material selection problems due to data uncertainly. 

The authors’ target has been to develop an approach that 

provides the design team a tool that supports their work as: 

 it is easy to use; 

 it can recommend the optimal material through a 

limited set of selection alternatives; 

 it can guide the design team in understanding the 

confidence with which to use the result of the selection 

algorithm. 

This guarantees the necessary innovative and creative action by 

each team member. 

The proposed method is based on a fuzzy probabilistic logic 

ready to be implemented by the team material selector using a 

very limited number of assumptions. The proposed model will 

be better explained and discussed through a case study about 

the choice of the optimal material for the production of the 

valve seats component in a high-performance engine. The 

paper is organized as follows. Section 2 describes the proposed 

method; Section 3 shows a practical case study used to 

demonstrate the usability of this selection model; Section 4 

discusses the results of the case study; Section 5 offers some 

closing remarks and highlights future research perspectives. 

 

MATERIALS AND METHODS 

As stated in Section 1, the aim of this method is to develop a 

guided approach to material selection; specifically, this paper 

presents an approach based on: 

 HOQ to identify the criteria and to assign them a 

proper weight [26], 

 C-VIKOR algorithm to identify the best criteria 

among selection of alternatives. Here we will adopt 

C-VIKOR developed by Jahan et al. [27,10]. 

 Fuzzy logic algorithm to manage data uncertainty. 
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Figure 1. Scheme of the logical path and of the tools suggested in the proposed algorithm. 

 

The flow chart of the proposed method is shown in Fig. 1 and 

is composed of the following activities: 

1. creating a list of Design Team’s Material VoCs and fill 

them in the room 1 of HOQ; 

2. systematically translate Design Team’s Material VoCs 

into Critical Selection Attributes (CTSs) and identify 
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the direction of improvement (fill the room 2 of HOQ); 

3. allocate a priority value for the needs of the project, in 

our case using a range between 1-5, with 1 being the 

least important; 

4. fill the room 3 (the relations matrix) using discrete 

factors: weak relationship to 1, 3 for average 

relationship, 9 for strong relationship; 

5. calculate of the relative importance of each attribute 

selection, by summing the products of the importance 

of each customer need for the value of relationship 

between the need and the attribute (room 4); 

6. extract weights of material selection attribute; 

7. create a short list of alternative materials; 

8. collect data about CTS for each material of the list; 

9. apply the C-VIKOR Algorithm to obtain technical 

ranking of the materials; 

10. apply Fuzzy logic to obtain reliability ranking of the 

materials; 

11. calculate a final ranking using an overall indicator. 

For more details of the House of Quality (HOQ) and the C-

VIKOR algorithm (i.e. IAMS model) please refer to [27]. This 

section focuses on the concept of data uncertainly management 

(i.e. steps 8,10 and 11). 

The datum used to compile the ij-cell of the selection matrix of 

C-VIKOR is usually the average value of the data found for the 

j-th selection attribute for the i-th selection alternative. 

Considering the stem 8, when the design team starts to compile 

the selection matrix (i.e. to search the value of the selection 

attributes for each selection alternatives), three different types 

of data variability can be observed: 

a) material data can be found in a single producer 

datasheet; in this case, data are often expressed as a 

minimum-maximum guaranteed values (single data 

source or experimental test [28-30]); 

b) material data can be extrapolated from a literature 

survey, or from a comparison between different 

producers of the same material (different data 

sources); 

c) material is well characterized, and there are 

probabilistic distributions for the single physical and 

mechanical characteristics of the produced material 

available. 

In all these cases, the design team has to face not a single value, 

but a “range” of values. The concept of range appears to be 

general enough to be used as a useful index to evaluate data 

uncertainty in the process of material selection.  

We define the range of the j-th selection attribute for the i-th 

selection alternative as: 

1-When (case a and b) the design team has a limited value 

for the same physical or mechanical characteristic (in 

many application it is reasonable to suppose ≤ 5 different 

values),  

𝑅𝑎𝑛𝑔𝑒𝑖𝑗 =  𝑀𝑎𝑥𝑖𝑗 − 𝑚𝑖𝑛𝑖𝑗    (1) 

Where Maxij and minij are respectively the maximum and 

the minimum value of the characteristic. 

2- When (case c), the probabilistic distribution of the 

characteristics is known. 

𝑅𝑎𝑛𝑔𝑒𝑖𝑗 = 6 𝑥 𝜎𝑖𝑗     (2) 

where 𝜎𝑖𝑗 is the standard deviation of the characteristic. 

Therefore, the concept of range appears to be general enough 

to be used as a useful index to evaluate data uncertainty in the 

material selection process. In fact, this parameter is strongly 

connected with data uncertainty. The wider the range, the 

bigger the data uncertainty, and the lower the confidence with 

which to use that datum. 

To simplify the calculations conducted by the proposed 

method, it is useful to couple this range with a simple non-

dimensional parameter that the authors name data robustness 
(DR). This parameter supports the design team in 

understanding the confidence with which to use the result of the 

selection algorithm in the proposed approach. To explain this 

concept, each selection alternative can be represented as a serial 

functional system, (see Fig. 2). The robustness of a selection 

alternative can be calculated as the product of data robustness 

and this selection alternative. 

 

Figure 2. Graphical representation of serial functional system of a generic selection alternative. 
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It is very important to note that it is not reasonable to consider 

the same weight for the data robustness of all the selection 

attributes in the computation of the alternative robustness. 

Indeed, two extreme cases can happen (for example for the i-th 

selection alternative): 

a. a low importance selection attribute has high datum 

uncertainty (low datum robustness); 

b. a high importance selection attribute has high datum 

uncertainty (low datum robustness). 

It is easy to figure out that condition b. is far more problematic 

than condition a. 

This is the reason why the proposed method considers different 

weight for the datum robustness of each selection attributes for 

the selection alternatives. 

The fuzzy logic by which the DR for the j-selection attribute 

relative to the i-th selection alternative is computed is shown in 

Fig. 3.  

With reference to the flow chart in Fig. 1, for each selection 

attribute a fuzzy logic linear curve is built. 

 

 

Figure 3. Fuzzy logic used to calculate datum robustness. 

 

The slope of each of these curves is a function of the importance 

weight Wj of the corresponding selection attribute. The more 

technically important is the selection attribute, the more rapidly 

the curve intersects the x-axis. This strategy is clearly 

conservative. The logic is reasonable, because at the same value 

of datum dispersion, the more important the selection attribute, 

the lower must be the confidence with which to manage this 

datum (lower datum robustness). 

The datum robustness is then computed as: 

𝐷𝑅𝑖𝑗 =  −
1

(1−𝑊𝑗)
𝑋𝑗̂ + 1    (3) 

with 0 ≤ 𝐷𝑅𝑖𝑗 ≤ 1. 

and where 

𝑋𝑗 = (1 − 𝑊𝑗) (
1

2
 𝑥 𝑅𝑎𝑛𝑔𝑒𝑖𝑗

𝑀𝑒𝑎𝑛𝑖𝑗
)   (4) 

The DRi (robustness of the i-th selection alternative) is finally 

computed as: 

𝐷𝑅𝑖 =  ∏ 𝐷𝑅𝑖𝑗
𝑚
𝑗=1     (5) 

Where m is the total number of the selection attributes. 

At this point of the method, the design team has two rankings 

for the set of selection alternatives: 

 a technical ranking: this ranking shows (when 

possible) if there is a material that better responds to 

the customer needs; 

 a data robustness ranking: this ranking signals to the 

design team the confidence with which each selection 

alternative in the technical ranking can be managed. 

The design team has thus been alerted that, to maximize the 

market share of the developed product, pure performance is not 

sufficient. The product has also to be reliable and robust in its 

production process. This way, the team can manage the 

material selection using these two rankings. 

Besides, a simple ranking can be obtained through the selection 

alternatives by the definition of the Complete Ranking Index 
(CRI). 

For the i-th selection alternative, it can be calculated as: 

𝐶𝑅𝐼𝑖 = (
𝑀𝑎𝑥(𝑄𝑖)−𝑄𝑖

𝑀𝑎𝑥(𝑄𝑖)
) 𝐷𝑅𝑖    (6) 

Where 𝑄𝑖  is the coefficient calculated through C-VIKOR 

algorithm and used to create the technical ranking of the 

materials, and 𝑀𝑎𝑥(𝑄𝑖) is the maximum among the 𝑄𝑖  

coefficients. The logic of the transformation is very intuitive: 

equation (6) normalizes the “distance” of each design 

alternative from the worst technical alternative (the alternative 

with the larger Qi as computed by the C- VIKOR). Then the 

distance is multiplied by Data Robustness (DRi). Considering 

this logical approach, the best material is the one that has the 

higher value of the 𝐶𝑅𝐼𝑖. 

 

CASE STUDY 

Valve seat for high performance engine:  

To validate the proposed method, a real case study is presented. 

The problem concerns the material selection for the production 

of the valve seats component in a high-performance engine (see 

Fig. 4). This component is critical to the engine performance 

for two reasons: 

 it must guarantee the tightness of the combustion 

chamber thanks to its contact with the valve; 

 through the valve seats the heat can be subtracted from 

the valve disk allowing to use the engine at a higher 

combustion temperature (maximizing the 

thermodynamic efficiency). 
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These two design aspects become even more critical when 

applied to engines with high specific power, the structure of 

which is usually made of aluminum castings, and where 

operating temperatures are far higher than standard motors. In 

the face of substantial savings in terms of the engine mass, such 

material is in fact absolutely not able to withstand the thermo-

mechanical stresses produced by the direct contact with the 

sealing cone (disk) of the valve. It is therefore essential to the 

realization of the valve seat with a different material than the 

one of the cylinder head. 

 

Figure 4. Typical valve seats of a high performance engine. 

 

Construction of the HOQ 

The customer needs (VOC) for this technical problem are: 

 the valve seat material needs to be able to conduct 

efficiently the heat transmitted by the valve; 

 the valve seat material needs to be able to follow the 

thermal deformations of the cylinder head; 

 the valve seat material needs to be able to follow the 

mechanical deformation of the cylinder head; 

 the valve seat material needs to be able to withstand 

repeated impacts; 

 the valve seat material needs to be abrasion resistant 

(good tribological behavior); 

 the valve seat material needs to be chemical 

compatible with the combustion gases; 

 the mechanical strength of the valve seat material; 

 the low weight of the valve seat material; 

 the valve seat material to be easy to machine; 

 the valve seat material to have contained material cost. 

 

All these requirements are the input to the application of the 

HOQ.  

 

Thanks to the HOQ, the VOC can be translated in a more 

technical language as: 

 high Thermal Conductivity (K); 

 thermal Expansion Coefficient (TEC) as close as 

possible to the thermal expansion coefficient of the 

cylinder head aluminum; 

 young Module (E) as close as possible to the thermal 

expansion coefficient of the cylinder head aluminum; 

 hardness (HV); 

 abrasion resistance; 

 hot corrosion resistance; 

 rupture strength (Rm); 

 density; 

 machinability; 

 cost. 

For each of these, the critical direction of improvement has 

been identified: Larger-The-Better (LTB), Smaller-The-Better 

(STB), attributes that require a target value (Target). It is 

important to notice that, in this case study, nearly 30% of the 

attributes is of Target type, that is a proof of the importance to 

mathematically include this class in the selection algorithm. 

Brainstorming among the members of the Project Team, 

followed by a sensitivity analysis on the Relative Weights, 

allowed to assign a weight to each VOC (Importance to the 

Project). 

Depending on the relationships between the identified VOCs 

and the selection attributes, and considering the weights 

attributed to the VOCs, it is possible to calculate the relative 

weights % (𝑊𝑗) of the different selection attributes, (House of 

Quality in Fig. 5). 
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Figure 5. House of Quality completed. 

 

Use of C-VIKOR algorithm 

The next step of the Integral Aided Material Selection (IAMS) 

model [26] is the identification of a set of materials that could 

be used as fillers for the reinforcement of the cold- sprayed Al 

7075 matrix, the list is shown below: 

 CuBe (Materion Alloy 165 temper TF00); 

 CuBe2; 

 Alloy 3 (Materion Alloy 3 temper TF00); 

 Alloy 310 (Materion Alloy 310 temper TF00); 

 C18150; 

 C18000; 

 SS 410 martensitic stainless steel; 

 50CrV4 (AISI 6150 steel oil quenched, 540°C 

tempering, D=50mm); 

 x38CrMoV51 (AISI Type H11). 

Following the proposed model, we proceeded to collect data 

about the performance of each of the candidate materials 

relatively to each of the selection attributes. To collect all the 

needed technical data, we have consulted numerous sources: 

on-line database [e.g. MatWeb], scientific papers [31-38] and 

handbooks (e.g. [39]), Producers and Suppliers on-line 

catalogues. The obtained selection matrix is shown in Tab. I 

and collects all the technical data about the different materials. 

This data has a maximum and a minimum value, due to the 

dispersion through the different data sources. The criteria on 

the abrasion resistance, hot corrosion resistance, machinability 

are qualitative and have been translated into numerical terms 

by a simple fuzzy logic. To use the C-VIKOR algorithm the 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 12 (2017) pp. 3117-3129 

© Research India Publications.  http://www.ripublication.com 

3124 

mean value of each datum is used. Then the Selection Matrix is 

normalized and using the weights of different attributes of 

selection provided by the HOQ (𝑊𝑗) the value of the parameter 

Aj, Si, Ri and Qi is calculated through C-VIKOR algorithm [7]. 

The results are shown in Tab. II. 

 

Fuzzy logic algorithm to manage data uncertainty. 

Through the mathematical expressions (3), (4) and (5) it is 

possible to quantitative compute this uncertainty and 

understand the confidence with which the materials selector 

can manage the technical ranking. In Tab. III the computation 

is shown of the 𝐷𝑅𝑖𝑗  parameters for each selection alternative 

relative to each selection attribute, and the 𝐷𝑅𝑖 parameters 

values and the data reliability ranking of each material 

alternative. 

 

Results 

Under the direct comparison of the value assumed by the 

parameter Qi for different alternatives of selection, it is possible 

to obtain the ranking of solution technical optimality (e.g. lower 

Qi value means better solution). This ranking is shown in Tab. 

IV. 

As mentioned above in the introduction chapter, to optimize the 

material selection process it is important to consider the data 

dispersion as an uncertainty indicator of selection robustness. 

To manage the balance between the need to maximize the 

technical effectiveness of the selection process, with the 

requirement to maximize the selection robustness, the 𝐶𝑅𝐼𝑖 

parameter is computed for each selection alternative. Tab. V 

shows the final ranking obtained. 

Through the comparison of the technical ranking (Tab. IV) and 

the total ranking (Tab. V) it is possible to note that the selection 

alternative with the best technical ranking not necessarily is the 

best option for the project if this alternative has a low reliability 

index. In this case, the team can select the CuBe2 with both for 

technical characteristics and the confidence about the results as 

the best fillers for the reinforcement of the 7075 matrix Cold 

Sprayed. Instead, the Alloy 310 and CuBe can be seen in the 

second order. It is interesting to observe that the Alloy 310 and 

CuBe invert their position in the ranking due to a higher 

uncertainty about the characteristic of CuBe than of Alloy 310. 

 

CONCLUSIONS 

The material selection during design phase is usually a critical 

step. An important part of this criticality is due to data 

uncertainly about the different materials that can be selected. 

This paper introduces a material selection model that is able to 

evaluate the best material alternative considering both material 

characteristics and data uncertainty. The approach considers 

the whole process of materials selection from the definition of 

the customer needs, to the final materials ranking and, can 

consider the different reliability level of the data connected 

with each Engineering Characteristic. The approach integrates 

QFD, C-VIKOR algorithm and Fuzzy logic to create a ranking 

of the selection alternatives using data provided with different 

confidence level, as in the case of different source of the data. 

As shown in the case study about the material selection for the 

production of the valve seats component in a high-performance 

engine, it is of primary importance to conjugate the technical 

effectiveness with the material characteristics robustness to 

optimize the materials selection and to guarantee project 

functionality and reliability. In fact, the best material is the one 

that can combine both technical effectiveness and material 

characteristics robustness. This way only can the functionality 

and the reliability of the project be guaranteed. Such 

information can help the design team to better and easier 

identify the best design solution among a complex list of 

different materials and reduce the iteration in the design phase. 

 

Table I: Completed Selection Matrix. 

 

K 

[W/mK] 

TEC 

[10-6/K] 

E 

[GPa] 

Hardness 

[HV] 

Abrasion 

Resistance 

[null] 

Hot 

corrosion 

resistance 

[null] 

Rupture 

strength 

[MPa] 

Density 

[g/cm3] 

Machinability 

[null] 

Cost 

[€/kg] 

 

Optimization 

type 
LTB Target Target Target LTB LTB LTB STB LTB LTB 

Best Value  22 80 270 5 5 5  5  

Materials min MAX min MAX min MAX min MAX min MAX min MAX min MAX min MAX min MAX min MAX 

1. CuBe 105 118 16.7 17 130 132 318 382 4 4 2 3 1030 1310 8.26 8.41 4 4 20.8 25.2 



International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 12 (2017) pp. 3117-3129 

© Research India Publications.  http://www.ripublication.com 

3125 

2. CuBe2 105 130 16.7 17 131 134 353 413 4 5 2 3 1140 1380 8.25 8.36 5 5 23.5 25.9 

3. Alloy 3 240 240 17.6 17.6 138 138 195 250 2 3 3 3 690 900 8.83 8.83 3 4 21.9 24.1 

4. Alloy 3102 235 235 17.6 17.6 135 135 234 260 2 3 3 3 720 820 8.8 8.8 3 4 22.5 23.6 

5. C18150 280 324 17 17 117 120 130 155 1 2 2 2 380 520 8.89 8.9 4 5 7.6 7.84 

6. C18000 185 225 16.2 17.5 114 130 185 195 2 2 2 3 585 605 8.75 8.84 4 4 8.73 10 

7. SS 410 24.9 24.9 9.9 9.9 200 200 339 410 4 5 5 5 985 1310 7.74 7.8 1 2 1 13 

8. 50CrV4 46.6 46.6 12.2 12.2 205 205 309 350 4 5 3 4 1020 1145 7.83 7.85 2 3 0.7 0.8 

9. 

x38CrMoV51 
18 21 11 11.8 207 215 551 632 5 5 3 4 1835 2100 7.8 7.8 2 3 4.24 5 

 

 

Table II. Selection matrix with the value of the parameters Aj, Si, Ri and Qi. 

 K TEC 

[10-

6/°C] 

E 

[GPa] 

Hardness 

[HV] 

Abrasion 

Resistance 

[null] 

Hot 

corrosion 

resistance 

[null] 

Rupture 

strength 

[MPa] 

Density 

[kg/m3] 

Machinability 

[null] 

Cost 

[€/kg] 

   

Best Value 302 22 80 270 5 5 1967.5 7.77 5 0.75    

Aj 282.5 12.1 131 449 3.5 2.5 1517.5 1.125 3.5 23.95    

Wj 0.142 0.118 0.061 0.174 0.103 0.095 0.134 0.047 0.103 0.024    

Optimization 

type 

LTB Target Target Target LTB LTB LTB STB LTB STB Si Ri Qi 

Material              

1. CuBe 0.070 0.041 0.020 0.028 0.026 0.060 0.055 0.019 0.026 0.014 0.357 0.070 0.310 

2. CuBe2 0.068 0.041 0.020 0.039 0.014 0.060 0.050 0.018 0.000 0.015 0.324 0.068 0.000 

3. Alloy 3 0.028 0.036 0.022 0.017 0.052 0.052 0.072 0.029 0.036 0.014 0.359 0.072 0.399 

4. Alloy 3102 0.030 0.036 0.021 0.009 0.052 0.052 0.073 0.028 0.036 0.014 0.352 0.073 0.372 

5. C18150 0.000 0.040 0.015 0.043 0.065 0.066 0.085 0.030 0.014 0.006 0.364 0.085 0.815 

6. C18000 0.041 0.041 0.017 0.028 0.059 0.060 0.080 0.028 0.026 0.007 0.387 0.080 0.852 

7. SS 410 0.089 0.075 0.036 0.036 0.014 0.000 0.056 0.000 0.065 0.000 0.371 0.089 0.991 

8. 50CrV4 0.085 0.066 0.037 0.022 0.014 0.043 0.059 0.003 0.052 0.000 0.380 0.085 0.935 

9. 

x38CrMoV51 

0.090 0.069 0.038 0.089 0.000 0.043 0.000 0.001 0.052 0.004 0.386 0.090 1.140 
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Table III. Computation of the DRij parameters for each selection alternative relative to each selection attribute. 

 K TEC 

[10-6/°C] 

E 

[GPa] 

Hardness 

[HV] 

Abrasion 

Resistance 

[null] 

Hot 

corrosion 

resistance 

[null] 

Rupture 

strength 

[MPa] 

Density 

[kg/m3] 

Machinability 

[null] 

Cost 

[€/kg] 

  

   

Optimization 

type 

LTB Target Target Target LTB LTB LTB STB LTB LTB   

Materials 𝑿𝒋̂ 𝑫𝑹𝒊𝒋 𝑿𝒋̂ 𝑫𝑹𝒊𝒋 𝑿𝒋̂ 𝑫𝑹𝒊𝒋 𝑿𝒋̂ 𝑫𝑹𝒊𝒋 𝑿𝒋̂ 𝑫𝑹𝒊𝒋 𝑿𝒋̂ 𝑫𝑹𝒊𝒋 𝑿𝒋̂ 𝑫𝑹𝒊𝒋 𝑿𝒋̂ 𝑫𝑹𝒊𝒋 𝑿𝒋̂ 𝑫𝑹𝒊𝒋 𝑿𝒋̂ 𝑫𝑹𝒊𝒋 𝐃𝐑𝐢 

1.  

CuBe 

0.05 0.94 0.01 0.99 0.01 0.99 0.08 0.91 0.00 1.00 0.18 0.80 0.10 0.88 0.01 0.99 0.00 1.00 0.09 0.90 0.530 

2. 

CuBe2 

0.09 0.89 0.01 0.99 0.01 0.99 0.06 0.92 0.10 0.89 0.18 0.80 0.08 0.90 0.01 0.99 0.00 1.00 0.05 0.95 0.491 

3. 

Alloy 3 

0.00 1.00 0.00 1.00 0.00 1.00 0.10 0.88 0.18 0.80 0.00 1.00 0.11 0.87 0.00 1.00 0.13 0.86 0.05 0.95 0.497 

4. 

Alloy 3102 

0.00 1.00 0.00 1.00 0.00 1.00 0.04 0.95 0.18 0.80 0.00 1.00 0.06 0.94 0.00 1.00 0.13 0.86 0.02 0.98 0.593 

5. 

C18150 

0.06 0.93 0.00 1.00 0.01 0.99 0.07 0.91 0.30 0.67 0.00 1.00 0.13 0.84 0.00 0,99 0.10 0.89 0.02 0.98 0.411 

6. 

C18000 

0.08 0.90 0.03 0.96 0.06 0.93 0.02 0.97 0.00 1.00 0.18 0.80 0.01 0.98 0.00 1.00 0.00 1.00 0.07 0.93 0.576 

7. 

SS 410 

0.00 1.00 0.00 1.00 0.00 1.00 0.08 0.91 0.10 0.89 0.00 1.00 0.12 0.86 0.00 1.00 0.30 0.67 0.13 0.87 0.399 

8. 

50CrV4 

0.00 1.00 0.00 1.00 0.00 1.00 0.05 0.94 0.10 0.89 0.13 0.86 0.05 0.94 0.00 1.00 0.18 0.80 0.07 0.93 0.502 

9. 

x38CrMoV51 

0.07 0.92 0.03 0.96 0.02 0.98 0.06 0.93 0.00 1.00 0.13 0.86 0.06 0.93 0.00 1.00 0.18 0.80 0.08 0.92 0.478 

 

Table IV. Ranking of solution technical optimality. 

Place Ranking based on Qi  Qi 

   LTB 

1st CuBe2  0.00 

2nd CuBe  (Materion Alloy 165 temper TF00)  0.310 

3th Alloy 310 (Materion Alloy 310 temper TF00)  0.372 

4th Alloy 3 (Materion Alloy 3 temper TF00)  0.399 

5th C18150  0.815 

6th C18000  0.852 

7th 50CrV4 (AISI 6150 steel oil quenched, 540°C tempering, 

D=50mm) 
 0.935 

8th SS 410 martensitic stainless steel  0.991 

9th x38CrMoV51 (AISI Type H11)  1.140 
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Table V. Ranking of solution technical optimality with uncertainty evaluation. 

Place Ranking 𝑪𝑹𝑰𝒊 

  STB 

1st CuBe2 0.491 

2th Alloy 310 (Materion Alloy 310 temper TF00) 0.399 

3nd CuBe (Materion Alloy 165 temper TF00) 0.386 

4th Alloy 3 (Materion Alloy 3 temper TF00) 0.323 

5th C18150 0.146 

6th C18000 0.117 

7th 50CrV4 (AISI 6150 steel oil quenched, 540°C 

tempering, D=50mm) 
0.090 

8th SS 410 martensitic stainless steel 0.052 

9th x38CrMoV51 (AISI Type H11) 0.000 
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