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Harmonic embeddings of the Stretched
Sierpinski Gasket

Ugo Bessi

Abstract. P. Alonso-Ruiz, U. Freiberg and J. Kigami have defined a large
family of resistance forms on the Stretched Sierpinski Gasket G. In the
present paper we introduce a system of coordinates on G (technically, an
embedding of G into R2) such that

• these forms are defined on C1(R2,R) and
• all affine functions are harmonic for them.

We do this adapting a standard method from the Harmonic Sierpinski
Gasket: we start finding a sequence Gl of pre-fractals such that all affine
functions are harmonic on Gl. After showing that this property is inher-
ited by the stretched harmonic gasket G, we use the formula for the
Laplacian of a composition to prove that, for a natural measure μ on G,
C2(R2,R) ⊂ D(Δ) and Teplyaev’s formula for the Laplacian of C2 func-
tions holds. Lastly, we use the expression for Δu to show that the form
we have found is closable in L2(G, μ).

Mathematics Subject Classification. 31C25, 28A80.

Introduction

In [1], P. Alonso-Ruiz, U. Freiberg and J. Kigami extend a result of [2] and
define a family of resistance forms on the Stretched Sierpinski Gasket; we
briefly sketch the construction of this relative of the Sierpinski Gasket.

One considers the vertices of an equilateral triangle in R2;

A =
(

0
0

)
, B =

( √
3

2
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)
, C =
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3

2− 1
2

)
(1)
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Figure 1. The first pre-fractal of the Stretched Gasket

and the three contractions, depending on a parameter α ∈ (0, 1
2 ):

ψ1

(
x
y

)
= α

(
x
y

)
, ψ2

(
x
y

)
= α

[(
x
y

)
− B

]
+ B,

ψ2

(
x
y

)
= α

[(
x
y

)
− C

]
+ C.

Denoting by PQ the segment joining P,Q ∈ R2, the Stretched Sierpinski
Gasket is the unique compact set G ⊂ R2 such that

G =
3⋃

i=1

ψi(G) ∪ [ψ1(B)ψ2(A) ∪ ψ1(C)ψ3(A) ∪ ψ2(C)ψ3(B)]. (2)

The segments in Fig. 1 above are the first stage of the construction of G or,
technically speaking, the first pre-fractal G1 of formula (4) below; in the figure
the maps ψi are called Fi because this is the notation we’ll adopt when the
maps are affine, but not necessarily homotheties.

Many fractals G are induced by Iterated Function Systems: roughly
speaking, there are invertible contractions F1, . . . , Fp : R2 → R2 such that
a “homogeneous” version of (2) holds:

G =
p⋃

i=1

Fi(G).

For this kind of sets, the construction of a resistance form is a staple of fractal
theory: we refer the reader to [10,15] for a purely analytical construction; [4]
has a different approach, which uses the dynamics on G (as we shall see in
Sect. 1 below, this dynamics exists if the maps Fi are invertible) and the fact
that the “carré de champs” is closely related to a Gibbs measure.

This method cannot be applied directly to the stretched gasket because
the maps of [2,3] are not invertible: to build a form on the stretched gasket
one has to stretch the approach of [10]. In the present paper we re-prove
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the result of [1] using the dynamical approach of [4]; a side result will be a
harmonic embedding of G in R2, by which we mean that all affine functions
are harmonic on the image of G. The name comes from the analogous property
of the harmonic Sierpinski gasket (see [9] for a thorough study of this set).

We briefly explain our construction. A naive idea would be to replace the
homotheties ψi with affine maps Fi such that all pre-fractals are harmonic: by
this we mean that all affine functions are harmonic on them. This does not
work for two reasons:
1) it doesn’t yield a natural way to insert infinitely many parameters, as in [1].
2) The “cable” part of the Dirichlet form does not converge (a fact which will
be evident in Sect. 5). The term “cable” comes from [1] and we shall define it
precisely in formula (6) below.

Thus, we follow a different path: we consider a sequence {(F i
1, F

i
2, F

i
3)}i≥1

of triples of affine maps. The maps of each triple are tied by a very strong
symmetry property and the first elements of the triples have the following
form, strongly reminiscent of the harmonic gasket: for εi ∈ (0, 1),

F i
1

(
x
y

)
= εi

(
3
5 0
0 1

5

)
. (3)

Now we define the l-th pre-fractal. We set Fi1...is
= F 1

i1
◦ · · · ◦ F s

is
with

the convention that Fi1...is
is the identity when s = 0; we define

G0 = G̃0 = AB ∪ BC ∪ AC.

For l ≥ 0 we set

Gl = G̃l ∪ Cl (4)

where

G̃l : =
⋃

i1...il∈{1,2,3}
Fi1...il

(G0). (5)

As we shall see, G̃l is a union of disjoint triangles; the number εl in (3) is
the relative size of Fi1...il

(G0) with respect to Fi1...il−1(G0) into which it is
contained; this fact somehow recalls the construction of the Cantor set of
positive measure [18]. The set Cl of (4) is the set of the cables connecting the
triangles: namely, we set

Ωs = {F s
1 (B)F s

2 (A), F s
1 (C)F s

3 (A), F s
2 (C)F s

3 (B)} (6)

and

Cl =
l⋃

s=1

⋃
i1...is−1∈{1,2,3}

Fi1...is−1(Ω
s).

With the convention we have adopted, when s = 1 Fi1...is−1(Ω
s) = Ω1 is the

set of the first generation cables which connect together the first generation
triangles F 1

j (G0); it is the situation depicted in Fig. 1. When s = 2 we get
the cables connecting the second generation triangles Fi1i2(G0) and so on. The
stretched gasket is the Haussdorff limit of the sets Gl as l → +∞.
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We define a Dirichlet form on Gl. For the sequence {εi}i≥1 of (3) we set

R =
{

εi

(
3
5
,
1
5

)}
i≥1

, σR =
{

εi+1

(
3
5
,
1
5

)}
i≥1

. (7)

If P,Q ∈ R2, we parametrise the segment PQ in the standard way:

γPQ : [0, 1] → R2, γPQ(t) = (1 − t)P + tQ. (8)

For l ≥ 1, we set

ER,l : C1(R2,R) × C1(R2,R) → R

ER,l(∇u,∇v) = E1
R,l(∇u,∇v) + E2

R,l(∇u,∇v). (9)

We define the two bilinear forms on the right hand side of (9) in a similar way
to [1]; with the same notation as above we set

E1
R,l(∇u,∇v) =

a(
3
5

)l · ∏l
i=1 ε2i

∑
i1...il∈{1,2,3}

∑
j∈{AB,BC,AC}

∫ 1

0

d
dt

u ◦ Fi1...il
◦ γj(t) · d

dt
v ◦ Fi1...il

◦ γj(t)dt (10)

where a > 0 is a suitable number. When l = 1, the integrals above are on the
three small triangles of Fig. 1; when l ≥ 2 we are integrating on the pre-fractal
G̃l defined by (5).

Integrating on the cables and their images gives us E2
l ; in other words,

for a suitable b > 0, for λ̃R,l, ε̃l
R,s as in formula (5.1) below and Ωs as in (6),

we set

E2
R,l(∇u,∇v)

=
l∑

s=1

∑
i1...is∈{1,2,3}

∑
j∈Ωs

b

λ̃R,s−1 · ε̃l
R,s(1 − εs)

·
∫ 1

0

d
dt

u ◦ Fi1...is−1 ◦ γj(t)

· d
dt

v ◦ Fi1...is−1 ◦ γj(t)dt. (11)

We shall see in Sect. 6 below that the form ER,l of (9) converges to a
bilinear form

ER : C1(R2,R) × C1(R2,R) → R.

The major problem here is not convergence, which follows in a standard
way from dynamical considerations: it is to show that ER has the properties
of a resistance form (a definition is in [1], the theory is in [10,11]). We shall
look at this from another perspective, that of Dirichlet forms; the relationship
between resistance and Dirichlet forms is in section 8 of [11]. In this setting,
the problem becomes proving that ER extends to a local, regular Dirichlet
form in L2(G,μ) for some reasonable measure μ. The part that requires more
work is closability and it is here that we need harmonicity: namely, our choice
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of the triples {(F i
1, F

i
2, F

i
3)} implies that affine functions are harmonic for all

forms ER,l. The limit form ER will inherit this property, i. e.

ER(∇u,∇v) = 0 (12)

whenever u : R2 → R is affine and the test function v ∈ C1(R2,R) satisfies
v(A) = v(B) = v(C) = 0. As we shall see, (12) allows us to show that C2

functions admit a Laplacian which is given by Teplyaev’s formula [19], i. e.
formula (7.1) below. The proof follows [6]: essentially, we see u(x, y) as the
composition of u with the two harmonic functions x and y, and then use
the standard method to find the Laplacian of a composition. Once we have
Teplyaev’s formula, integration by parts shows easily that the map : u →
ER(u, u) is lower semicontinuous on L2(G,μ); by [14], this is tantamount to
the fact that E is closable on this space.

We briefly outline the difference between the approach of [1] and ours. In
[1], the fractal is defined by the homotheties ψi we defined after (1); the authors
look for resistance forms on the pre-fractals which increase to a resistance form
defined on a certain subspace of continuous functions on the fractal. In this
approach, the harmonic immersion comes last, since existence of harmonic
functions for resistance forms is a standard fact [11].

On the other side, we are looking for triples of affine maps (F i
1, F

i
2, F

i
3)

such that
(1) the form ER has the simple domain C1(R2,R).
(2) Affine functions are harmonic on the pre-fractals and, taking limits, on the
fractal. As a consequence,
(3) for a natural measure μ on G, the Laplacian has a simple domain,
C2(R2,R), and a simple expression.

As for the convergence of the forms on the pre-fractals, this will follow
from standard results of Dynamical Systems which imply convergence to the
Gibbs measure.

At the end, we shall have proven the following theorem.

Theorem 1. Let the numbers {εi}i≥1 ⊂ (0, 1) in the sequence R of (7) satisfy∏
i≥1

εi > 0.

Then, R determines a sequence of triples of affine maps {(F i
1, F

i
2, F

i
3)}i≥1 such

that the following points hold.
(1) Let ER,l be the form on the pre-fractal Gl defined by (9) and let ER be the
form on G defined by (6.10) below. Then, for all u, v ∈ C1(R2,R), we have
that

ER,l(∇u,∇v) → ER(∇u,∇v) as l → +∞.

(2) Affine functions are harmonic for ER, i. e. formula (12) holds.
(3) For the finite Borel measure μ on G of formula (6.14) below, C2(R2,R) is
contained in the domain of the Laplacian.
(4) The form ER of point 1) above extends to a regular, local Dirichlet form in
L2(G,μ).
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(5) Defining E2
{Ωj},s as in (3.2) and ε̃∞

R,s as after formula (6.3) we have that

ER(∇u,∇v) =
1

ε21 · 3
5

3∑
i=1

EσR(∇u ◦ F 1
i ,∇v ◦ F 1

i ) +
1

ε̃∞
R,1

E2
{Ωj},1(∇u,∇v).

The paper is organised as follows. In Sect. 1 below, we recall from [4]
the dynamical definition of Kusuoka’s measure and bilinear form. In Sect. 2,
we write down the maps F i

1 and define F i
2, F i

3 by symmetry; in Sect. 3 we
define energy and harmonicity on the pre-fractal Gl; in Sect. 4 we choose the
coefficients of F i

1 (which determine those of F i
2 and F i

2 by symmetry) so that
the set G1 of (4) is harmonic. In Sect. 5 we show that the sets Gl are harmonic
for all l ≥ 1. In Sect. 6 we take limits as l → +∞ and build the form ER and
the measure μ; in Sect. 7, we end the proof of theorem 1, proving closability.

1. A dynamical approach to Kusuoka’s measure and bilinear
form

Fractal sets. We begin considering a fractal G̃ which satisfies hypotheses (F1),
(F2) and (F3) below; this is the case when the maps {F l

j}p
j=1 do not depend

on the iteration l; the case when they depend on the iteration is treated at the
end of this section.
(F1) There are p invertible affine maps

F1, . . . , Fp : Rd → Rd

satisfying

η : = sup
i∈(1,...,p)

Lip(Fi) < 1. (1.1)

By theorem 1.1.7 of [10], there is a unique non empty compact set G̃ ⊂ Rd

such that

G̃ =
p⋃

i=1

Fi(G̃). (1.2)

If (F1) holds, then the dynamics of F on G̃ can be coded. Indeed, we
define Σ as the space of sequences

Σ = {1, . . . , p}N = {{xi}i≥1 : xi ∈ (1, . . . , p), ∀i ≥ 1}
with the product topology. This is a metric space; for instance, if γ ∈ (0, 1),
we can define the metric

dγ({xi}i≥1, {yi}i≥1) = γk−1

where

k = inf{i ≥ 1 : xi �= yi},

with the convention that the inf of the empty set is +∞ and γ+∞ = 0.
We define the shift σ as

σ : Σ → Σ, σ : {x1, x2, x2, . . . } → {x2, x3, x4, . . . }.
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If x1, . . . , xl ∈ (1, . . . , p), we define the cylinder

[x1 . . . xl] = {{yi}i≥1 ∈ Σ : yi = xi for i ∈ (1, . . . , l)}.

We also set

Fx1...xl
= Fx1 ◦ · · · ◦ Fxl

(1.3)

and

[x1 . . . xl]G̃ = Fx1 ◦ Fx2 ◦ · · · ◦ Fxl
(G̃). (1.4)

If x = (x1x2 . . . ) and i ∈ (1, . . . , p) we set (ix) = (ix1x2 . . . ). Now (1.4) implies
that

Fi([x1 . . . xl]G̃) = [ix1 . . . xl]G̃. (1.5)

Since the maps Fi are continuous and G̃ is compact, the sets [x1 . . . xl]G̃ are
compact. By (1.2) we have that Fi(G̃) ⊂ G̃ for i ∈ (1, . . . , p); by (1.4) this
implies that, for all {xi}i≥1 ∈ Σ,

[x1 . . . xl−1xl]G̃ ⊂ [x1 . . . xl−1]G̃ ⊂ G̃.

From (1.1), (1.3) and (1.4) we get that

diam([x1 . . . xl]G̃) ≤ ηl · diam(G̃). (1.6)

Let {xi}i≥1 ⊂ Σ; by the last two formulas and the finite intersection property
we have that ⋂

l≥1

[x1 . . . xl]G̃

is a single point, which we call Φ({xi}i≥1); formula (1.6) implies in a standard
way that the map Φ: Σ → G̃ is continuous. It is not hard to prove, using
(1.2), that Φ is surjective. We shall call d̃ the distance on G̃ induced by the
Euclidean distance on Rd and, from now on, in our choice of the metric on Σ
we take γ ∈ (η, 1); this implies by the definition of dγ on Σ and (1.6) that Φ
is 1-Lipschitz.

In [4] we needed some control on the lack of injectivity of Φ; since we
are going to apply this theory to the limit set G̃ of the sequence (5), which
is totally disconnected, injectivity comes for free and we can introduce some
simplifications vis-à-vis [4].
(F2) We ask that, for i �= j, Fi(G̃) ∩ Fj(G̃) is empty.

It is easy to see that (F2) implies that G̃ is totally disconnected and the
map Φ is injective.
(F3) Since by (F2) the sets Fi(G̃) are disjoint and compact and since (1.2)
holds, we can find disjoint open sets O1, . . . ,Op ⊂ Rd such that

G̃ ∩ Oi = Fi(G̃) for i ∈ (1, . . . , p).

We ask that Oi ⊂ F−1
i (Oi) (or, equivalently, that Fi(Oi) ⊂ Oi, since the maps

Fi are diffeos).
We define a map F :

⋃p
i=1 Oi → Rd by

F (x) = F−1
i (x) if x ∈ Oi.
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This implies the second equality below; the first one comes since we supposed
that Oi ⊂ F−1

i (Oi) for all i ∈ (1, . . . , p).

F ◦ Fi(x)=x ∀x∈Oi ⊂ F−1
i (Oi) and Fi ◦ F (x)=x ∀x ∈ Oi. (1.7)

We call ai the unique fixed point of Fi; note that, by (1.2), ai ∈ G.
Note that, if x = (x1x2 . . . ), then by the definitions of Φ and σ

Φ(x) =
⋂
l≥1

[x1 . . . xl]G̃, Φ ◦ σ(x) =
⋂
l≥2

[x2 . . . xl]G̃.

This implies the first and last equalities below. Now recall that, if x =
(x1x2 . . . ), then Φ(x) ∈ Fx1(G̃) by (F2); thus, Φ(x) ∈ Ox1 and (1.4) and
(1.7) imply the middle equality.

F ◦ Φ(x) = F

⎛
⎝⋂

l≥1

[x1 . . . xl]G̃

⎞
⎠ =

⋂
l≥2

[x2 . . . xl]G̃ = Φ ◦ σ(x).

As a consequence, the two equalities below hold for all x ∈ Σ.{
Φ ◦ σ(x) = F ◦ Φ(x)
Φ(i, x) = Fi(Φ(x)) ∀i ∈ (1, . . . , p). (1.8)

In other words, up to a change of coordinates, shifting the coding one place to
the left is the same as applying F . Iterating the first one of (1.8) we get that,
for all l ≥ 1 and all x ∈ Σ,

Φ ◦ σl(x) = F l ◦ Φ(x).

A particular case (save for the fact that (F2) is not satisfied, but the
more general hypotheses of [4] are) is the harmonic Sierpinski gasket on R2;
we refer the reader to [9] for an introduction to the properties of this set. We
set

T1 =
(

3
5 , 0
0, 1

5

)
, T2 =

(
3
10 ,

√
3

10√
3

10 , 1
2

)
, T3 =

(
3
10 , −

√
3

10

−
√

3
10 , 1

2

)
,

A =
(

0
0

)
, B =

(
1
1√
3

)
, C =

(
1
− 1√

3

)

and

F1(x) = T1(x), F2(x) = B + T2 (x − B) , F3(x) = C + T3 (x − C) .

Referring to Fig. 2 below, F1 brings the triangle ABC into Abc; F2 brings
ABC into Bac and F3 brings ABC into Cba. We take three disjoint open sets
O1, O2, O3 which contain, respectively, the triangle Abc minus b, c, Bca minus
c, a and Cba minus a, b.

We define the map F as

F (x) = F−1
i (x) if x ∈ Oi

and on {a, b, c} we extend it arbitrarily, say F (a) = A, F (b) = B and F (c) = C.
We have stated these hypotheses essentially with theorem 1.1. below in

mind; before coming to it, we need some notation on matrix-valued measures.
This is because, recently, several authors [8,13,17] realised that Kusuoka’s
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Figure 2. The first two pre-fractals of the Harmonic Gasket

measure κ [12] is an object well-known in Dynamical Systems, namely a Gibbs
measure; we shall follow the approach of [4] and [5] in which the carré de
champs is expressed through a matrix-valued Gibbs measure τ .
The space of matrices and the measures valued in it. We define M̃ as the space
of all matrices from R2 to itself; we call M the subspace of symmetric matrices.
The space M̃ is a Hilbert space under the Hilbert-Schmidt inner product

(A,B)HS : = tr(AtB)

where tB denotes the transpose of B. The norm is the standard one:

||A||2HS : = (A,A)HS .

We say that A ∈ M is positive (or semi-positive) definite if (Av, v) > 0
(or (Av, v) ≥ 0) for all v ∈ R2 \ {0}.

For positive or semipositive symmetric matrices we shall use the standard
notation, i. e. A > 0 and A ≥ 0 respectively. If A,B ∈ M , we shall say that
B ≥ A if B − A ≥ 0.

Let G ⊂ R2 be compact; we define M(G, M̃) as the space of the Borel
measures on G valued in M̃ . We define the integral of A ∈ C(G, M̃) against
μ ∈ M(G, M̃); in order to do this, we recall from [18] that the total variation of
μ is a finite scalar measure ||μ|| on the Borel sets of G. The polar decomposition
of μ is given by

μ = Mx||μ||
where ||μ|| is the total variation measure of μ and M : G → M̃ is a Borel field
of matrices which satisfies

||Mx||HS = 1 for ||μ|| -a. e. x ∈ G. (1.9)

If A : G → M̃ is Borel and ||A||HS ∈ L1(G, ||μ||), then by (1.9) and Cauchy–
Schwarz we have that
(Ax,Mx)HS ∈ L1(G, ||μ||). Consequently, we can define the scalar∫

G

(Ax,dμ(x))HS : =
∫

G

(Ax,Mx)HSd||μ||(x).
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The duality coupling between C(G, M̃) and M(G, M̃) is given by

〈·, ·〉 : C(G, M̃) × M(G, M̃) → R

〈A,μ〉 : =
∫

G

(Ax,dμ(x))HS . (1.10)

If Q ∈ C(G, M̃) and μ ∈ M(G, M̃)), we define the scalar measure (Q,μ)HS

by ∫
G

f(x)d(Q,μ)HS(x) : =
∫

G

(fQ,dμ)HS (1.11)

for all f ∈ C(G,R). In other words, (Q,μ)HS = (Qx,Mx)HS · ||μ|| for the
decomposition (1.9).

If v, w : G → Rd are Borel functions such that ||v|| · ||w|| ∈ L1(G, ||μ||)
then, again by (1.9) and Cauchy–Schwarz, (vx,Mxwx) ∈ L1(G, ||μ||), which
implies that the third integral below converges. The second equality below is
the definition of the middle integral, the first one comes from the fact that
(v,Mw) = (v ⊗ w,M)HS .∫

G

(vx ⊗ wx,dμ(x))HS =
∫

G

(vx,dμ(x) · w(x)) =
∫

G

(vx,Mxwx)d||μ||(x).

(1.12)

Now we concentrate on symmetric matrices, i. e. on the space M defined
above; the reason is that Riemannian tensors are symmetric and we want to
define a Riemannian structure on G, natural for the dynamics F of (1.7).

We define M(G,M) as the linear space of the Borel measures on G valued
in M . Since M ⊂ M̃ we have that

M(G,M) ⊂ M(G, M̃). (1.13)

By Lusin’s theorem, μ ∈ M(G, M̃) belongs to M(G,M) if and only if, for all
α, β ∈ C(G,R2) and the duality coupling (1.10) we have that

〈α ⊗ β, μ〉 = 〈β ⊗ α, μ〉. (1.14)

We say that μ ∈ M(G,M) is semipositive definite if μ(E) is semipositive-
definite for all Borel sets E ⊂ S. Using again Lusin’s theorem we see as in [4]
that μ ∈ M(G,M) is semipositive definite if and only if

〈A,μ〉 ≥ 0 (1.15)

for all A ∈ C(G,M) such that Ax ≥ 0 for all x ∈ G.
We denote by M+(G,M) the set of all semipositive definite measures of

M(G,M); by the characterisations (1.14)–(1.15), M+(G,M) is a convex set
of M(G, M̃), closed for the weak∗ topology.

Let now Q ∈ C(G,M) be such that Qx is positive-definite for all x ∈ G;
since G is compact there is ε > 0 such that

εId ≤ Qx ≤ 1
ε
Id ∀x ∈ G. (1.16)
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For such a matrix Q we define PQ(G,M) as the set of all μ ∈ M+(G,M) such
that ∫

G

(Qx,dμ(x))HS = 1.

As shown in [4], if Q satisfies (1.16) there is D1(ε) > 0 such that, for all
μ ∈ M+(G,M),

1
D1(ε)

(Q,μ)HS ≤ ||μ|| ≤ D1(ε)(Q,μ)HS . (1.17)

As a consequence, the two measures ||μ|| and (Q,μ)HS are mutually abso-
lutely continuous and their mutual Radon–Nikodym derivatives are bounded.
Integrating (1.17) over G we get that, if μ ∈ PQ(G,M), then

||μ||(G) ≤ D1(ε).

By its definition and formulas (1.14)–(1.15), PQ(G,M) is a convex subset of
M(G, M̃), closed for the weak∗ topology; by the formula above, it is compact.

We introduce a last bit of notation. Let the set G̃ be as in (1.2); we fix a
compact set G0 and we define iteratively the pre-fractal Gl as

Gl =
p⋃

i=1

Fi(Gl−1) for l ≥ 1.

By [10], Gl converges to the fractal G̃ in the Haussdorff distance for sets.
In particular, we can fix R > 0 such that B(0, R) contains all the

pre-fractals Gl; since the maps Fi are contractions, possibly enlarging R
we can require that Fi(B̄(0, R)) ⊂ B̄(0, R) for all i ∈ (1, . . . , p). Let Q ∈
C(B̄(0, R),M) which satisfies (1.16) on B̄(0, R); we define PQ(B̄(0, R),M) as
the set of the Borel measures on B̄(0, R) which are valued in M , are positive-
definite in the sense above and satisfy∫

B(0,R)

(Qx,dμ(x))HS = 1.

The Ruelle operator. Let {Fi}p
i=1 be the affine maps defining the fractal and

let V ∈ C0,α(B̄(0, R),R for some α ∈ (0, 1]. We define the Ruelle operator

L : C(B̄(0, R),M) → C(B̄(0, R),M)

by

(LA)(x) : =
p∑

i=1

eV ◦Fi(x) · t(DFi) · AFi(x) · (DFi). (1.18)

Since Fi is affine, its derivative is constant and we haven’t marked the point
where we calculate it.

It is easy to see that L is continuous; its adjoint

L∗ : M(B̄(0, R),M) → M(B̄(0, R),M)

is defined by

〈LA,μ〉 = 〈A,L∗μ〉
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for all A ∈ C(G̃, M̃) and μ ∈ M(G̃, M̃); the duality coupling is that of (1.10).
In Dynamical Systems theory, the standard procedure to find Gibbs mea-

sures is to apply the Perron-Frobenius theorem to L and a suitable cone con-
tained in C(G̃,M); in [4,5] it is shown that this is possible if the following
nondegeneracy hypothesis holds.
(ND) We suppose that there is γ > 0 such that for all c, e ∈ Rd we can find
i ∈ (1, . . . , p) such that

|((DFi)c, e)| ≥ γ||c|| · ||e||
where the inner product on the left is that of Rd.

In other words we assume that, given any c ∈ Rd \ {0}, the vectors
{(DFi)c}1≤i≤p generate Rd.

It is immediate that L preserves the cone of semi-positive definite matri-
ces. Actually, it is easy to see that L sends this cone in a cone strictly contained
in it: namely, (ND) implies that, if A is a field of semi-positive definite matri-
ces, then LA is a field of positive-definite matrices. Now it is easy to apply [4,5]
the Perron-Frobenius theorem as in [16,20] to show the following theorem; we
state the version of C(B(0, R),M) instead of that on C(G̃,M).

Theorem 1.1. Let us suppose that (F1)-(F3) and (ND) hold; let V ∈
C0,α(B̄(0, R),R) with α ∈ (0, 1]. Then, we have the following.
(1) The operator L of (1.18) has a simple, positive eigenvalue λ > 0 with a
positive-definite eigenvector. In other words, there is Q ∈ C(B̄(0, R),M) such
that Q(x) is positive-definite for all x ∈ B̄(0, R) and

LQ = λQ.

Moreover, if Q̃ ∈ C(B̄(0, R),M) satisfies LQ̃ = λQ̃, then Q̃ = δQ for some
δ ∈ R.
(2) The number λ is an eigenvalue also for L∗. More precisely, let us fix a
positive eigenvector Q as in point 1) and let P(B̄(0, R),M) be the set we
defined after (1.17). Then, the map 1

λL∗ brings P(B̄(0, R),M) into itself and
there is a unique τ ∈ PQ(B̄(0, R),M) such that

L∗τ = λτ.

The measure τ is supported on G̃.
(3) Let us define the scalar measure κ : = (Q, τ)HS, where the notation is that
of (1.11). Then, κ is a probability measure on G̃ ergodic for the expansive map
F defined in (F3). Moreover, κ is non-atomic; κ and τ are mutually absolutely
continuous, with bounded Radon–Nikodym derivatives dκ

d||τ || and dτ
dκ .

(4) By (1.13), for f, g ∈ C(Rd,Rd) we can define

E1(f, g) : =
∫

G̃

((f(x) ⊗ g(x),dτ(x))HS =
∫

G̃

(f(x),dτ · g(x)) (1.19)

where the integrals are as in (1.12). If V ≡ 0, then E1 is self-similar; in other
words, for the maps Fi of (1.1) and all f, g ∈ C1(Rd,Rd) we have that

E1(f, g) =
1
λ

d∑
i=1

E1((DFi)f, (DFi)g). (1.20)
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(5) Let τ̃ be any element of PQ(B̄(0, R),M) and let τ be the eigenvector of
point 2); then, (

1
λ

L∗
)l

τ̃ → τ for l → +∞

in the weak∗ topology of M(G,M).
(6) The measure τ has the Gibbs property; in other words, with the notation
of (1.3) and (1.4), there is a positive constant D1 > 0 such that, for all l ≥ 1
and all x = {xi}i≥0 ∈ Σ,

eVl(Φ(x))

D1λl
(DFx1...xl

) · τ(G̃) · t(DFx1...xl
) ≤ τ([x1 . . . xl]G̃)

≤ D1e
Vl(Φ(x))

λl
(DFx1...xl

) · τ(G̃) · t(DFx1...xl
)

where

Vl(Φ(x)) : = V (Φ(x)) + V (Φ ◦ σ(x)) + · · · + V (Φ ◦ σl−1(x))

and Fx1...xl
is as in (1.3).

If V ≡ 0, then D1 = 1 and the inequalities above are equalities; in the case of
the harmonic Sierpinski gasket, τ(G) = Id.

Another fact, also shown in [4], is that there is a parallel Ruelle operator
on the coding space; namely, for the space Σ we defined after (1.2) we can set

LΣ : C(Σ,R) → C(Σ,R)

(LΣA)(x) =
p∑

i=1

eV ◦Φ(ix) · t(DFi) · A(ix) · (DFi). (1.21)

Note that V ◦Φ ∈ C0,α(Σ,R); indeed, we saw above that that the coding map
Φ is Lipschitz and we are supposing that V ∈ C0,α(G,R).

For LΣ there is an analogue of theorem 1.1, and the relationship between
the eigenvalues and eigenvectors of L on C(G,M) and LΣ on C(Σ,M) is the
natural one: for instance [4], the Perron-Frobenius eigenvalue of LΣ coincides
with that of L. Moreover, if we multiply the eigenvector QΣ of LΣ by a suit-
able constant we get that QΣ = Q ◦ Φ. Lastly, the eigenvector τΣ of L∗

Σ and
Kusuoka’s measure κΣ on Σ satisfy

τ = Φ�τΣ, κ = Φ�κΣ

where Φ� denotes the push-forward of measures by Φ.
In the following, we shall need a variation of this construction. Namely,

let

{F i
1, . . . , F

i
p}i≥1

be a sequence of p-uples of affine contractions of Rd; we suppose that they are
all η-Lipschitz for some common η ∈ (0, 1) and that there is a compact set
Ĝ0 ⊂ Rd with the following two properties:
(1) F i

j (Ĝ0) ⊂ Ĝ0 for all i ≥ 1 and j ∈ (1, . . . , p), and
(2) For all i ≥ 1, F i

j (Ĝ0) ∩ F i
l (Ĝ0) = ∅ if j �= l.
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We define

Fi1...il
: = F 1

i1 ◦ F 2
i2 ◦ · · · ◦ F l

il
, (1.22)

and

[i1 . . . il]Ĝ0
: = Fi1...il

(Ĝ0).

Let i = (i1, i2, . . . ) ∈ Σ; point 1) above implies that

[i1 . . . il]Ĝ0
⊂ [i1 . . . il−1]Ĝ0

and thus the finite intersection property holds. Together with the fact that
the diameter of [i1 . . . il]Ĝ0

tends to zero, we get that there is a unique point
Φ(i) ∈ R2 such that

{Φ(i)} =
⋂
i≥1

[i1 . . . il]Ĝ0
. (1.23)

It is easy to see that Φ(i) does not depend on the choice of the set Ĝ0, provided
this set satisfies points 1) and 2) above.

We skip the easy proof that 2) implies that Φ is a homeomorphism of Σ
onto its image. Thus, if we set

G̃ = Φ(Σ) (1.24)

we get that G̃ is totally disconnected.
The Ruelle operator behaves well in this situation if we suppose, as we

shall do in the rest of the paper, that V ≡ 0 and that the p-uples (F i
1, . . . , F

i
p)

are homotheties of the first one, (F 1
1 , . . . , F 1

p ). More precisely, we suppose that

DF i
j = εiDF 1

i for all i ≥ 1, j ∈ (1, . . . , p)

and we call Li the Ruelle operator on C(Σ,M) defined as in (1.21), but for
the maps {F i

j}j∈(1,...,p). Now (1.21) immediately implies that, if for instance
ε1 = 1, Li = ε2i L1; thus, the eigenvalue λi of Li satisfies λi = ε2i λ1. As a
consequence, all the operators 1

λi
Li on C(Σ,R) coincide with 1

λ1
L1. As we

recalled after theorem 1.1, 1
λ1

L1 induces a measure-valued Gibbs measure τΣ

on Σ, together with a scalar Kusuoka measure κΣ. We call ΦR the conjugation
of (1.23) associated to the sequence R = {εi}i≥1 (we are abusing the notation
of (7)) and we define two measures on G̃:

τR : = (ΦR)�τΣ, κR : = (ΦR)�κΣ. (1.25)

It follows easily by the definition of push-forward that these two measures are
supported on the set G̃ of (1.24).

We define

Fi1...il
:= F 1

i1 ◦ F 2
i2 ◦ · · · ◦ F l

il
,

We can see as in (1.8) that ΦσR ◦ σ = F̃ ◦ ΦR. Since κΣ is σ-invariant (i. e.
σ�κΣ = κΣ), formula (1.25) implies that

F̃�κR = κσR.
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We define the energy as in (1.19), i. e.

E1
R(∇u,∇v) =

∫
G̃

(∇u,dτR · ∇v).

Let now G0 ⊂ Rd be a compact set, let Gl be defined by

Gl =
p⋃

i1...il∈{1,...,p}
Fi1...il

(G0)

and let B(0, R) be a ball which contains all the sets Gl. Let us set

L̃G̃,l : C(B̄(0, R),M) → C(B̄(0, R),M)

(L̃G̃,lA)(x) =
p∑

i=1

t(DF l
i ) · AF l

i (x)(DF l
i ). (1.26)

We can restrict this operator to C(G̃,M); since ΦR(ix) = F 1
i ◦ ΦσR(x), there

is a relationship between the Ruelle operators on Σ and G̃:

L1(A ◦ ΦR) = (LG̃,1
A) ◦ ΦσR.

Since τΣ is an eigenvector for L∗
1, the last formula implies that

(ΦR)�τΣ =
1
λ1

(LG̃,1)
∗(ΦσR)�τΣ.

We define

E1
R(f, g) =

∫
G

(f,dτR · g).

The last two formulas imply that, if u, v ∈ C1(Rd,M), then

E1
R(∇u,∇v) =

1
λ1

p∑
i=1

EσR(∇(u ◦ F 1
i ),∇(v ◦ F 1

i )). (1.27)

Let τ̃0 ∈ PQ(Σ,M); since the operators 1
λi

Li coincide, theorem 1.1 implies
that (

1
λ1

L∗
1

)
· · · · ·

(
1
λl

L∗
l

)
τ̃0 → τΣ.

Let τ0 ∈ PQ(B̄(0, R),M) be supported on G0; we set

τl =
(

1
λ1

L∗
G̃,1

)
· · · · ·

(
1
λl

L∗
G̃,l

)
τ0. (1.28)

It is easy to see, using the definition of LG̃,l, that τl ∈ PQ(B(0, R),M) and
that τl is supported on the set Gl defined before (1.26). Moreover, each oper-
ator 1

λl
LG̃,l is a contraction of the cone C of positive-definite matrices in the

hyperbolic metric, its Lipschitz constant is bounded away from 1 and all sets
1
λl

LG̃,l(C) are contained in the same bounded subcone of C. Using these facts
it is easy to prove that, with the notation we used above,

τl → τR
for the measure τR defined above.
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In particular, defining ER(∇u,∇v) as above, and setting

E1
R,l(∇u,∇v) =

∫
B̄(0,R)

(∇u,dτl · ∇v)

we get that, for all u, v ∈ C1(R2,R) we have that

E1
R,l(∇u,∇v) → ER(∇u,∇v). (1.29)

2. The affine maps

We could prove theorem 1 verifying that the maps F i
1 of (3) (together with

F i
2 and F i

3 defined by symmetry) generate harmonic pre-fractals. We follow a
different road, considering maps F i

1 more general than the ones of (3). In the
next two sections we shall see that, if we want the pre-fractals to be harmonic,
then the maps F i

1 must have the form (3).
Definition by symmetry. Let α, β ∈ (0, 1); using the column notation for vec-
tors we set

T1

(
x
y

)
=

(
αx
βy

)

F1

(
x
y

)
= T1

(
x
y

)
. (2.1)

The function F1 is an affine (actually, linear) contraction which fixes point A
of (1). Now we define by symmetry the other two maps F2 and F3, which fix
B and C respectively.

We denote by Rθ the rotation of angle θ in the anticlockwise direction,
i. e.

Rθ =
(

cos θ, − sin θ
sin θ, cos θ

)
. (2.2)

We set

T2

(
x
y

)
= R−2π

3
· T1 · R 2π

3

(
x
y

)
,

F2

(
x
y

)
= T2

[(
x
y

)
− B

]
+ B, (2.3)

T3

(
x
y

)
= R 2π

3
· T1 · R− 2π

3

(
x
y

)
,

F3

(
x
y

)
= T3

[(
x
y

)
− C

]
+ C. (2.4)

Disconnection. Let now R = {(αi, βi)}i≥1 and let F i
1, F i

2, F i
3 be the maps of

(2.1), (2.3) and (2.4) respectively for the parameters (αi, βi). We want to find
conditions on the parameters such that conditions 1) and 2) before formula
(1.22) hold. As we saw there, this implies that the sequence {F i

1, F
i
2, F

i
3}i≥1

determines a set G̃ by (1.24); since for all i F i
1 fixes A, F i

2 fixes B and F i
3

fixes C, it is easy to see that A,B,C ∈ G̃ and that Fi1...il
(j) ∈ G̃ for all
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j ∈ {A,B,C} and i1, . . . , il ∈ {1, 2, 3}. Moreover, G̃ is totally disconnected
since, by (1.24), it is homeomorphic to the totally disconnected set Σ.

Let us denote by Ĝ0 the compact set bounded by the triangle G0 of (4)
(the solid triangle, if you want). If αi ≥ βi and αi, βi ∈ (0, 1) then the map
F i

1 brings Ĝ0 into itself; since the maps F i
2 and F i

3 share the same property by
symmetry, point 1) follows. Note that, by (2.1), F i

1(Ĝ0) ⊂ max(αi, βi)Ĝ0 and
a similar inclusion holds for F i

2(Ĝ0); thus, F i
1(Ĝ0) ∩ F̂ i

2(Ĝ0) = ∅ if

[B + max(αi, βi)(Ĝ0 − B)] ∩ max(αi, βi)Ĝ0 = ∅.

Since Ĝ0 is an equilateral triangle with side 1, this is implied by αi, βi ∈ (
0, 1

2

)
.

Summing up, points 1) and 2) are implied by the two conditions below.

αi ≥ βi, αi, βi ∈
(

0,
1
2

)
for all i ≥ 0. (2.5)

It will be possible to relax the second condition above for the particular choice
of (αi, βi) we shall make in Sect. 4 below.

Explicit formula for F i
2. We begin with an explicit expression for T i

2. The first
equality below is the formula before (2.3), the second one follows from (2.2)
with θ = 2π

3 .

T i
2 = R− 2π

3
· T i

1 · R 2π
3

=

(
− 1

2 ,
√

3
2

−√
3

2 , − 1
2

)(
αi, 0
0, βi

)(
− 1

2 , −√
3

2√
3

2 , − 1
2

)

=

(
αi+3βi

4 ,
√

3
4 (αi − βi)√

3
4 (αi − βi), 3αi+βi

4

)
.

The first equality below follows from (2.3) and (1), the third one comes from
the formula above and again (1).

F i
2(A) = T i

2(−B) + B = (Id − T i
2)(B)

=

(
4−(3βi+αi)

4 ,
√

3
4 (βi − αi)√

3
4 (βi − αi),

4−(βi+3αi)
4

)( √
3

2
1
2

)
=

( √
3

4 (2 − βi − αi)
1
4 (2 + βi − 3αi)

)
. (2.6)

By (2.1) and (1) we get that

F i
1(B) =

(
αi

√
3

2
βi

2

)
. (2.7)

Explicit parametrisation of the edges. In both formulas below, (8) implies the
first equality, (1) the second one.

γBA(t) = (1 − t)B = (1 − t)
( √

3
2

1
2

)
. (2.8)

γBC(t) = (1 − t)B + tC =
( √

3
2

1
2 − t

)
. (2.9)
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We write down explicitly γF i
1(B)F i

2(A); the first equality below comes from (8),
the second one from (2.6) and (2.7).

γF i
1(B)F i

2(A)(t) = (1 − t)F i
1(B) + tF i

2(A)

= (1 − t)

(
αi

√
3

2
βi

2

)
+ t

( √
3

4 (2 − βi − αi)
1
4 (2 + βi − 3αi)

)

=

(
αi

√
3

2 + t
√

3
4 (2 − βi − 3αi)

βi

2 + t
4 (2 − βi − 3αi)

)
. (2.10)

3. Definition of the energy on the l-th pre-fractal

Before defining harmonicity on the l-th pre-fractal we must define the Dirichlet
form, which we do using the affine maps of the last section; since at this point
the only condition on the parameters (αi, βi) is (2.5), we are going to get a
form more general than that of (9), (10) and (11). In this section we write down
the form without explaining one of its features, i. e. its connection with the
dynamics induced by the maps F i

j ; this connection will be studied in Sect. 5.
Let us consider a sequence {(αi, βi)}i≥1 ⊂ (0,+∞)2. For each couple

(αi, βi) we define the maps F i
1, F i

2 and F i
3 as in the last section; we require

that, if Ĝ0 is the solid triangle ABC, then points 1) and 2) at the end of Sect. 1
hold; as we saw above, this is true if (2.5) holds. Now we can define the maps
Fi1...il

as in (1.22) and the set G̃ as in (1.24).
As in (7), we set R = {(αi, βi)}i≥1 and σR = {(αi+1, βi+1)}i≥1. For

(αi, βi) as above, we set

εi = αi · 5
3
, λi =

3
5
ε2i , λ̃R,l =

l∏
i=1

λi, ε̃l
R,s =

l∏
i=s

εi. (3.1)

Let Ωs be as in (6) and let the pre-fractals Gl be defined as after (4); for
γj defined as in (8) and b > 0 to be determined later we define an energy on
cables by

E2
{Ωj},s(∇u,∇v) =

b

1 − ε(Ωs)

∑
j∈Ωs

∫ 1

0

d
dt

u ◦ γj(t) · d
dt

v ◦ γj(t)dt (3.2)

where ε(Ωs) = εs.
For a number a > 0 to be determined later we define

Ê1
R,l(∇u,∇v) =

a

λ̃R,l

∑
i1...il∈{1,2,3}

∑
j∈{AB,BC,AC}

∫ 1

0

d
dt

u ◦ Fi1...il
◦ γj(t)

· d
dt

v ◦ Fi1...il
◦ γj(t)dt (3.3)
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and

Ê2
R,l(∇u,∇v) =

l∑
s=1

1
λ̃R,s−1

· 1
ε̃l
R,s

·
∑

i1,...,is−1∈{1,2,3}
E2

{Ωj},s(∇(u ◦ Fi1,...,is−1),

∇(v ◦ Fi1,...,is−1)) (3.4)

where Fi1,...,is−1 is defined as in (1.22) and with the convention that, when
s = 1, Fi1,...,is−1 is the identity and λ̃R,0 = 1. Clearly, in this way way we
have the first equality below, while the second one comes from (3.2) since
σ{Ωj} = {Ωj+1} and ε((σ{Ω})s) = εs+1.

Ê2
σR,l(∇u, ∇v) =

l∑
s=1

1

λ̃σR,s−1

· 1

ε̃l
σR,s

·
∑

i1,...,is−1∈{1,2,3}
E2

σ{Ωj},s(∇(u ◦ Fi1,...,is−1),

∇(v ◦ Fi1,...,is−1)) =
l∑

s=1

1

λ̃σR,s−1

· 1

ε̃l
σR,s

·
∑

i1,...,is−1∈{1,2,3}
E2

{Ωj},s+1(∇(u ◦ Fi1,...,is−1), ∇(v ◦ Fi1,...,is−1)).

Lastly, we set

ER,l(∇u,∇v) = Ê1
R,l(∇u,∇v) + Ê2

R,l(u, v). (3.5)

Just a word to justify the choice of the indices: when we are on the first
pre-fractal and l = 1, by (3.3) Ê1

R,1 contains the integrals on the three small
triangles of Fig. 1, while Ê2

R,1 contains the integrals on the first generation
cables which connect them, i. e. the elements of Ω1. Loosely speaking, (3.3) is
the energy on the l-th pre-fractal G̃l of the disconnected gasket G̃ of (1.24),
while (3.4) is the energy of all cables up to generation l, that is on all the
cables tying together the triangles of G̃l.

The following lemma shows that the forms ER,l are related by an iteration.

Lemma 3.1. Let the form ER,l be defined by (3.5) and let λi, ε̃l
r,s be as in (3.1).

Then, we have that

ER,l+1(∇u,∇v) =
1
λ1

3∑
i=1

EσR,l(∇(u ◦ F 1
i ),∇(v ◦ F 1

i ))

+
1

ε̃l+1
R,1

E2
{Ωj},1(∇u,∇v). (3.6)

Proof. We skip the proof of the following formula, which follows easily from
(3.3) and is related to (1.27).

Ẽ1
R,l+1(∇u,∇v) =

1
λ1

3∑
i=1

Ẽ1
σR,l(∇(u ◦ F 1

i ),∇(v ◦ F 1
i )).

We show the recurrence for Ê2
R,l. The first equality below comes from

(3.4); the second one comes from the formula after (3.4) and the fact that,
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by (3.1), λ1 · λ̃σR,s = λ̃R,s+1 and ε̃l
σR,s = ε̃l+1

R,s+1. The third equality comes
changing the indices while the last one is (3.4).

1

λ1

3∑
i=1

Ê2
σR,l(∇(u ◦ F 1

i ), ∇(v ◦ F 1
i )) =

1

λ1

3∑
i=1

l∑
s=1

1

λ̃σR,s−1

· 1

ε̃l
σR,s

·
∑

i1...is−1∈{1,2,3}
E2

σ{Ωj},s(∇(u ◦ F 1
i ◦ F 2

i1
◦ · · · ◦ F s

is−1
),

∇(v ◦ F 1
i ◦ F 2

i1
◦ · · · ◦ F s

is−1
))

=

l∑
s=1

1

λ̃R,s

· 1

ε̃l+1
R,s+1

·
∑

i,i1...is−1∈{1,2,3}
E2

{Ωj},s+1(∇(u ◦ F 1
i ◦ F 2

i1
◦ · · · ◦ F s

is−1
),

∇(v ◦ F 1
i ◦ F 2

i1
◦ · · · ◦ F s

is−1
))

=

l+1∑
s=2

1

λ̃R,s−1

· 1

ε̃l+1
R,s

·
∑

i1...is−1∈{1,2,3}
E2

{Ωj},s(∇(u ◦ F 1
i1

◦ · · · ◦ F s−1
is−1

),

∇(v ◦ F 1
i1

◦ · · · ◦ F s−1
is−1

))

= Ê2
R,l+1(∇u, ∇v) − 1

ε̃l+1
R,1

E2
{Ωj},1(∇u, ∇v).

�

Now that we have an energy, we can we define harmonicity.

Definition. Let Gl be defined as in (4) and let ER,l be as in (3.5). We say
that ER,l is harmonic on Gl if for all u ∈ C2(R2,R) there is a bounded Borel
function g : Gl → R such that, for all v ∈ C1(R2,R) with v(A) = v(B) =
v(C) = 0 we have

ER,l(∇u,∇v) = −
∫

Gl

g(x)v(x)dH1(x) (3.7)

where H1 denotes the one-dimensional Haussdorff measure on Gl.
We say that u ∈ C1(R2,R) is harmonic on Gl if, for every test function

v as above, we have

ER,l(∇u,∇v) = 0 (3.8)

Remarks. By (3.5), ER,l is a sum of integrals on the edges of the graph Gl;
formula (3.7) says that, if we integrate by parts on the edges of Gl, the only
boundary terms which survive are those in A, B, C and they too disappear
if v vanishes on them. In a sense, we are stipulating that the curvature terms
of the Laplace-Beltami operator, which concentrate on the vertices since the
edges are straight lines, are zero.

The name “harmonic” for the pre-fractals satisfying (3.7) comes from the
analogous property of the pre-fractals of the harmonic Sierpinski gasket, the
first of which is depicted in Fig. 2 above.

We must resist the temptation to call the function g of (3.7) the “Lapla-
cian” of u; in fact, our “Laplacian” is a different function because the measure
with which we endow Gl in (6.14) below, though absolutely continuous with
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respect to H1, does not coincide with H1: the “Laplacian” will be the function
g multiplied by some density. Naturally, this has no effect when u is harmonic,
i. e. when g ≡ 0.

Keeping in mind the last remark, the integration by parts formula on Gl

will eventually imply an integration by parts formula on the full fractal G, as
in [19].

Lemma 3.2. Let us suppose that the form ER,l of (3.5) is harmonic on Gl, and
let u : R2 → R be affine. Then, u is harmonic on Gl, i. e. formula (3.8) holds.
Conversely, if all affine functions are harmonic, then (3.7) holds.

Proof. We skip the proof of the converse, since it is the same argument we use
in Sect. 7 below to prove the integration by parts formula.

The argument for the direct part is very simple: if we integrate by parts
in (3.5) to get the Laplacian, by (3.7) we find no terms which concentrate on
the vertices of Gl; as for the edges, no terms concentrate on them because the
functions u ◦ Fi1...il

◦ γs are affine and thus their second derivative vanishes.
Now to the rigorous proof.

Let G̃ be the disconnected gasket of (1.24) and let G̃l be the l-th pre-
fractal of G̃, i. e.

G̃l =
⋃

i1...il∈{1,2,3}
Fi1...il

(G0)

where G0 is the triangle of (4) and Fi1...il
is defined as in (1.22).

Let us look at the affine function u in the integrals of (3.5). The form
ER,l is a sum of two terms: the first one is Ê1

R,l and it contains by (3.3) the
integrals on the edges of G̃l; using the notation of (8) and (1.22), u appears in
them as

u ◦ Fi1...il
◦ γj : [0, 1] → R

with

i1, . . . , il ∈ {1, 2, 3}, j ∈ {AB,BC,AC}.

The second term is (3.4) and it contains the integrals on the “cables”; with
the usual convention that Fi1...i0 = id, u appears in them as

u ◦ Fi1...ir
◦ γz : [0, 1] → R

with

i1 . . . ir ∈ {1, 2, 3}, 1 ≤ r ≤ l − 1, z ∈ Ωr+1.

In both cases, these functions of t ∈ [0, 1] are affine, since they are compositions
of affine functions. In particular,

d2

dt2
u ◦ Fi1...il

◦ γs ≡ d2

dt2
u ◦ Fi1...ir

◦ γz ≡ 0.

Thus, if we integrate by parts in (3.5), the only terms which survive are the
boundary ones, which are calculated at the vertices of Gl: if we show that the
sum of the boundary terms at all vertices is zero, the lemma follows.
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Let S be a vertex of Gl, i. e. S = Fi1...il
(P ), with P ∈ {A,B,C}. Inspec-

tion of Fig. 1 shows the following: if S �∈ {A,B,C}, then at S lands exactly
one cable, Fi1...ir−1 ◦ γz(h) with h ∈ {0, 1}, z ∈ Ωr and 1 ≤ r ≤ l. Moreover,
at S land two edges of the pre-fractal G̃l, namely the two segments Fi1...il

◦ γs

such that Fi1...il
◦ γs(c) = S for some c ∈ {0, 1} and s ∈ {AB,BC,AC}. By

formulas (3.3), (3.4) and (3.5) this implies that the sum of the boundary terms
at S is given by

− v(S) ·
⎡
⎣ a

λ̃R,l

∑
(s,c)

d
dt

u ◦ Fi1...il
◦ γs(c)(−1)c +

b

λ̃R,r−1ε̃l
R,r(1 − εr)

d
dt

u ◦ Fi1...ir−1 ◦ γz(h)(−1)h

]
(3.9)

where the sum is on the two edges of G̃l we mentioned above. Formula (3.7)
tells us that all the terms in square parentheses vanish, save possibly those at
A, B, C. These too, however, are zero. Indeed, by Fig. 1 no cable arrives at A,
B or C; thus, for S ∈ {A,B,C} we have a similar formula to (3.9) but without
the cables: for instance, in A,

− v(A) · 1
λ̃R,l

∑
s

d
dt

u ◦ F 1
1 ◦ · · · ◦ F l

1 ◦ γs(0). (3.10)

The sum is on the two elements s ∈ {AB,AC} which satisfy F 1
1 ◦ · · · ◦ F l

1 ◦
γs(0) = A. Now the expression above is zero because we are stipulating that
the test function v satisfies v(A) = 0. �

4. Harmonicity on G1

Let Gl be the set defined in (4). In particular,

G1 =
3⋃

i=1

Fi(G0) ∪ Ω1 (4.1)

where Ω1 is as (6) and G0 is as in (4); the graph G1 is homeomorphic to that
of Fig. 1.

We are going to find conditions on the maps F 1
1 , F 1

2 , F 1
3 such that ER,1

satisfies (3.7) on G1. In other words, if we integrate by parts on the edges of G1,
we want the boundary terms to cancel out, save those in A, B, C. Inspection
of (4.1) (or of Fig. 1, since G1 has the same topology) shows that there are six
vertices of G1 different from A, B, C:

F 1
1 (B), F 1

1 (C), F 1
2 (A), F 1

2 (C), F 1
3 (A), F 1

3 (B).

By symmetry, it suffices to impose that the sum of the boundary terms at
F 1

1 (B) vanishes. We list the edges that land at this point; with the notation
of (8) and looking again at Fig. 1, they are

F 1
1 ◦ γBA, F 1

1 ◦ γBC , γF 1
1 (B)F 1

2 (A).
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Note that, by (8), the three curves above are in F 1
1 (B) at t = 0; as a conse-

quence, we have that, in (3.9), (−1)c = (−1)h = 1; moreover, l = r = 1.
Let ε1 be as in (3.1). On the graph G1 there is the form ER,1 of (3.5);

we integrate by parts in this formula. The only contributions to the boundary
term at F1(B) are those of the three edges above; we apply the chain rule to
(3.9) and recall that λ̃R,0 = 1; we get that (3.9) vanishes at S = B for all
u, v ∈ C1(R2,R) if and only if

a

λ1

[
d
dt

F 1
1 ◦ γBA(0) +

d
dt

F 1
1 ◦ γBC(0)

]
+

b

ε1(1 − ε1)
d
dt

γF 1
1 (B)F 1

2 (A)(0) = 0.

(4.2)

Since

DF 1
1 = T1 =

(
α1, 0
0, β1

)
,

the chain rule and (2.1), (2.8), (2.9), (2.10) imply that (4.2) is equivalent to
the equality below.

0 =
a

λ1

(
α1, 0
0 β1

)[(
−

√
3

2− 1
2

)
+

(
0
−1

)]
+

b

ε1(1 − ε1)

(
(2 − β1 − 3α1) ·

√
3

4
(2 − β1 − 3α1) · 1

4

)
.

The last equation is equivalent to the system{
b

ε1(1−ε1)
(2 − β1 − 3α1) = 2α1a

λ1
b

ε1(1−ε1)
(2 − β1 − 3α1) = 6β1a

λ1
.

Note that, by the second formula of (2.5), 2 − β1 − 3α1 > 0; thus, for al a > 0
there is b > 0 which satisfies the formula above if and only if

α1 = 3β1. (4.3)

This brings us to the following lemma.

Lemma 4.1. Let

(αi, βi) = εi

(
3
5
,
1
5

)
, εi ∈ (0, 1) (4.4)

and let the maps F i
1, F i

2, F i
3 be defined as in section 2 for (αi, βi) as above.

Then, the following holds.
1) Conditions 1) and 2) before (1.22) hold for the solid triangle Ĝ0, which we
defined after (2.4).
2) If b = a, then the pre-fractal G1 is harmonic.
3) For all i ≥ 1 the triple of maps (F i

1, F
i
2, F

i
3) defined in Sect. 2 satisfies

hypothesis (ND) of Sect. 1.

Proof. Point 2) has been proven at the beginning of this section: by the system
before (4.3) we get that

b =
3
5

· ε21a

λ1
= a

where the last equality comes if we take λ1 as in (3.1).
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As for point 1), we call F1, F2, F3 the maps of (2.1), (2.3) and (2.4) for
(α, β) =

(
3
5 , 1

5

)
, i. e. for εi = 1; these maps are well-studied, since they yield the

harmonic gasket of Fig. 2. We continue to call Ĝ0 the solid triangle ABC and
we recall from [9] that F1(Ĝ0), F2(Ĝ0) and F3(Ĝ0) intersect only at the three
points a, b, c of Fig. 2. Thus, conditions 1) and 2) before (1.22) follow if we show
the following: when εi ∈ (0, 1), F i

1(Ĝ0) is contained in F1(Ĝ0)\{b, c}, F i
2(Ĝ0)

is contained in F2(Ĝ0) \ {a, c} and F i
3(Ĝ0) is contained in F3(Ĝ0) \ {a, b}. By

symmetry, it suffices to verify the assertion for F i
1, but this follows easily from

(2.1).
Point 3) follows from the three points below.

• As shown in [4], (ND) holds for the harmonic Sierpinski gasket, where α = 3
5

and β = 1
5 .

• Let ε > 0; it is immediate that (ND) holds for the derivatives DF1, DF2,
DF3 if and only if it holds for εDF 1

1 , εDF 1
2 , εDF 1

3 .
• By formula (4.4),

1
εi

DF i
1 =

(
3
5 , 0
0, 1

5

)
,

i. e. the derivative of the map F i
1 (and consequently that of F i

2 and F i
3) is a

multiple of the derivative of the corresponding map for the harmonic gasket.
�

5. The l-th pre-fractal is harmonic

In lemma 5.1 below we are going to show that, if all couples (αi, βi) satisfy
(4.4), then Gl is harmonic; before proving it, we need to fix some notation. We
suppose that (αi, βi) are defined as in (4.4); as in (7) we set R =

{
εi

(
3
5 , 1

5

)}
i≥1

and σR =
{
εi+1

(
3
5 , 1

5

)}
i≥1

. We re-write (3.1) under this condition.

λi =
3
5
ε2i , λ̃R,l =

l∏
i=1

λi, ε̃l
R,s =

l∏
i=s

εi. (5.1)

We explain the choice of the constants λi in (5.1); since λi is the eigenvalue
of a Ruelle operator, we must expand a little on this topic.

We define a matrix-valued measure τ0 supported on the set G0 of (4)
in the following way: let E ∈ C(B̄(0, R),M) be an arbitrary, continuous field
of symmetric matrices, let Pv denote the orthogonal projection on the vector
v ∈ R2; for a > 0 to be determined presently we set∫

B̄(0,R)

(E,dτ0)HS

= a
∑

j∈{AB,BC,AC}

∫ 1

0

(Eγj(t), Pγ̇j(t))HS ||γ̇j(t)||2dt.

Now note that the eigenvector Q of theorem 1.1 is positive-definite (by lemma
4.1 this is the identity, as for the harmonic gasket); thus, if in the formula
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above we set E = Q, each of the three integrals in the sum on the right is
positive. In particular, we can find a > 0 such that τ0 ∈ PQ(B̄(0, R),M) (a
space we defined before (1.18)) and this will be our choice.

Note that, with the definition above, if u, v ∈ C1(R2,R), then the chain
rule and second equality of (1.12) imply that∫

B̄(0,R)

(∇u,dτ0 · ∇v)

= a
∑

j∈{AB,BC,AC}

∫ 1

0

d
dt

u ◦ γj(t) · d
dt

v ◦ γj(t)dt.

For the maps F i
1, F i

2, F i
3 determined by the constants (αi, βi) of (4.4) we

define the Ruelle operators Li on the coding space as after (1.24).

Li : C(Σ,M) → C(Σ,M)

Li(A) =
3∑

j=1

t(DF i
j ) · A(jx) · (DF i

j ).

The operator LΣ : C(Σ,M) → C(Σ,M) is defined as above, but with εi = 1;
it is the Ruelle operator on the Harmonic Sierpinski Gasket (or better, on its
coding) and it is well-known [4,9] that its eigenvalue λ is equal to 3

5 . By the
arguments before (1.25), this implies that, for all i ≥ 1,

1
λi

Li =
1
λ

LΣ and λi = ε2i λ =
3
5
ε2i , (5.2)

which explains the first equality of (5.1). Analogously, we define L̃G̃,l as in
(1.26) and τl as in (1.28). The definition of the adjoint and a comparison with
(3.3) shows that

Ê1
R,l(∇u,∇v) =

∫
B̄(0,R)

(∇u, dτl · ∇v). (5.3)

Lemma 5.1. Let the coefficients (αi, βi) satisfy (4.4) for a sequence {εi}i≥1 ⊂
(0, 1); let a > 0 be as at the beginning of this section; let λi be the eigenvalue
of Li as in (5.2). Let b = a as in Lemma 4.1, and let λ̃R,l, ε̃l

R,s be as in (5.1).
Then, for all l ≥ 1, the form ER,l of (3.5) is harmonic, i. e. it satisfies (3.7).

Proof. The proof is by induction, with lemma 4.1 catering for G1.
Let us suppose that Gl is harmonic; we prove that Gl+1 is harmonic.
We re-write the recurrence (3.6), using (3.2).

ER,l+1(∇u,∇v) =
1
λ1

3∑
j=1

EσR,l(∇u ◦ F 1
j ,∇v ◦ F 1

j ) + (5.4a)

b

ε̃l+1
R,1(1 − ε1)

·
∑
j∈Ω1

∫ 1

0

d
dt

u ◦ γj(t) · d
dt

u ◦ γj(t)dt. (5.4b)
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First of all, by the induction hypothesis, the boundary terms of EσR,l(∇u◦
F 1

i ,∇v◦F 1
i ) are all zero, save the ones at A, B, C; by (5.4a) they contribute to

the boundary terms of ER,l+1(∇u,∇v) at the following nine vertices of Gl+1:

F 1
i (A), F 1

i (B), F 1
i (C), i ∈ {1, 2, 3}.

We integrate by parts in (5.4b); by (6), the boundary terms concentrate on a
subset of the set above, i. e. on the following six vertices:

F 1
1 (B), F 1

1 (C), F 1
2 (A), F 1

2 (C), F 1
3 (A), F 1

3 (B). (5.5)

Let us show that the boundary terms vanish at the nine vertices above.
The three points A = F 1

1 (A), B = F 1
2 (B), C = F 1

3 (C) are dispatched easily:
the boundary terms at these points vanish by (3.10) because we are stipulating
that v(A) = v(B) = v(C) = 0.

We show that the boundary terms vanish at the remaining six points,
those of (5.5). By symmetry, it suffices to show that they vanish at F 1

1 (B).
We integrate by parts in the left hand side of (5.4a); by (3.5), or directly

by (3.9), we see that the boundary term of ER,l+1(∇u,∇v) at F 1
1 (B) is, up to

the sign,

v(F 1
1 (B)) ·

[ a

λ̃R,l+1

d
dt

u ◦ F 1
1 ◦ F 2

2 ◦ · · · ◦ F l+1
2 ◦ γBA(0)

+
a

λ̃R,l+1

d
dt

u ◦ F 1
1 ◦ F 2

2 ◦ · · · ◦ F l+1
2 ◦ γBC(0)

+

(
a

ε̃l+1
R,1(1 − ε1)

)
d
dt

u ◦ γF 1
1 (B)F 1

2 (A)(0)
]
.

Just a word of explanation: the first two summands come from integration
by parts in (3.3), namely from the two edges of G̃l+1 which contain F 1

1 (B);
since F j

2 (B) = B for all j, these edges are F 1
1 ◦ F 2

2 ◦ · · · ◦ F l+1
2 ◦ γBA and

F 1
1 ◦ F 2

2 ◦ · · · ◦ F l+1
2 ◦ γBC . The last summand comes from (5.4b), namely from

the element of Ω1 which contains F 1
1 (B).

We have to show that the expression above is zero for all v, u ∈
C1(R2,R); by the chain rule this is tantamount to the following vector equal-
ity.

a

λ̃R,l+1

d
dt

F 1
1 ◦ F 2

2 ◦ · · · ◦ F l+1
2 ◦ γBA(0)

+
a

λ̃R,l+1

d
dt

F 1
1 ◦ F 2

2 ◦ · · · ◦ F l+1
2 ◦ γBC(0)

+

(
a

ε̃l+1
R,1(1 − ε1)

)
d
dt

γF 1
1 (B)F 1

2 (A)(0) = 0. (5.6)

Formula (4.2) tells us that

a

λ1

d
dt

F 1
1 ◦ γBA(0) +

a

λ1

d
dt

F 1
1 ◦ γBC(0) +

(
a

ε1(1 − ε1)

)
d
dt

γF 1
1 (B)F 1

2 (A)(0) = 0.
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Let us compare the last two formulas: if we multiply the second one by ε1
ε̃l+1
R,1

we get that (5.7) holds if

1

λ̃R,l+1

d

dt
F 1

1 ◦ F 2
2 ◦ · · · ◦ F l+1

2 ◦ γBA(0) +
1

λ̃R,l+1

d

dt
F 1

1 ◦ F 2
2 ◦ · · · ◦ F l+1

2 ◦ γBC(0)

=
ε1

ε̃l+1
R,1

·
[

1

λ1

d

dt
F 1

1 ◦ γBA(0) +
1

λ1

d

dt
F 1

1 ◦ γBC(0)

]
,

where we have simplified the constant a > 0. By the chain rule and recalling
that DF 1

1 is invertible, the last formula holds if

1
λ̃R,l+1

D(F 2
2 ◦ · · · ◦ F l+1

2 )[γ̇BA(0) + γ̇BC(0)] =
1
λ1

· ε1

ε̃l+1
R,1

[γ̇BA(0) + γ̇BC(0)].

(5.7)

Formulas (1) and (8) (or, if you prefer, direct inspection of Fig. 1) show that,
for some δ > 0,

γ̇BA(0) + γ̇BC(0) = w

with

w = −δ

( 1
2√

3
2

)
.

We re-write (5.8) with this notation, getting the equivalent formula

1
λ̃R,l+1

· DF 2
2 · · · · · DF l+1

2 w =
1
λ1

· ε1

ε̃l+1
R,1

· w. (5.8)

An easy calculation using (4.4) and the formula for T i
2 = DF i

2 before (2.6)
shows that

DF i
2w = εi · 3

5
· w.

This implies the second equality below; as for the first one, it comes from (5.2),
which implies that λi = 3

5ε2i , and the definition of ε̃l+1
R,1 in (5.1).

ε̃l+1
R,1

λ̃R,l+1

· DF 2
2 · · · · · DF l+1

2 w

=
1∏l+1

i=1 εi

· 1(
3
5

)l+1
DF 2

2 · · · · · DF l+1
2 w =

1
3
5ε1

w. (5.9)

Since

ε1
λ1

w =
1

3
5ε1

w

by (5.2), formula (5.9) follows. �
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6. The limit form and the natural measure

Let Ê1
R,l(∇u,∇v) be as in (3.3) for a sequence (αi, βi) which satisfies (4.4); the

numbers λi and a are as in the last section. We recall formula (1.29): for all
u, v ∈ C1(R2,R),

Ê1
R,l(∇u,∇v) → E1

R(∇u,∇v) as l → +∞ (6.1)

where

E1
R(∇u,∇v) =

∫
B̄(0,R)

(∇u,dτR · ∇v).

Let τΣ and κΣ be as at the end of Sect. 1; by point 3) of theorem 1.1
these two measures are mutually absolutely continuous with bounded Radon–
Nikodym derivatives; since Φ is bijective, the push-forwards τ and κ share the
same property and are supported on G. In particular, we can write τ = Txκ
where T : G → M is a bounded Borel function. With this notation, we get

E1
R(∇u,∇v) =

∫
G

(Tx∇u(x),∇v(x))dκ(x). (6.2)

Let now E2
R,l be as in (3.4): it is the part of the energy carried by the

cables up to generation l. We want to show that E2
R,l too converges.

Lemma 6.1. Let (αi, βi) be as in (4.4), let λ̃R,r, ε̃
l
R,s be as in (5.1) and let Ωs

be as in (6); let b > 0 be as in Lemma 4.1. We suppose that∏
i≥1

εi > 0. (6.3)

In particular, for some δ > 0 independent of s we have the first inequality
below; the equality is the definition of ε̃∞

R,s and the second inequality comes
from the fact that εi < 1 for all i.

δ ≤ ε̃∞
R,s =

+∞∏
i=s

εi < 1 for all s ≥ 1. (6.4)

For u, v ∈ C1(R2,R) we consider the sum

E2
R(∇u,∇v)

=
∑
s≥1

∑
j∈Ωs

∑
i1...is−1∈{1,2,3}

a

λ̃R,s−1ε̃∞
R,s(1 − εs)

·
∫ 1

0

d
dt

u ◦ Fi1...is−1 ◦ γj(t)

· d
dt

v ◦ Fi1...is−1 ◦ γj(t)dt. (6.5)

We continue in the convention that, when s = 0, Fi1...is
is the identity and

λ̃R,0 = 1. We assert that the sum on the right converges absolutely for all
u, v ∈ C1(R2,R). In particular, E2

R is defined on C1(R2,R).
Moreover, for all u, v ∈ C1(R2,R) and the form E2

R,l of (3.4) we have
that

E2
R,l(∇u,∇v) → E2

R(∇u,∇v) as l → +∞. (6.6)
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Proof. The second inequality below follows from the fact that, by (5.1), the
product on the right contains more factors εi ∈ (0, 1) than the product on the
left.

0 <
1

ε̃l
R,s

≤ 1
ε̃∞
R,1

∀l, s ≥ 1.

In particular, for fixed s the sequence { 1
ε̃l
R,s

}l≥1 is bounded, increasing in l and

converging to (ε̃∞
R,s)

−1 as l → +∞; these numbers are uniformly bounded in s

by (6.4). Thus, each coefficient of the sum (3.4) converges to the corresponding
coefficient of (6.4); by dominated convergence for series, (6.5) follows if we show
that

∑
s≥1

∑
j∈Ωs

∑
i1...is−1∈{1,2,3}

1
λ̃R,s−1(1 − εs)

·
∣∣∣∣
∫ 1

0

d
dt

u ◦ Fi1...is−1 ◦ γj(t)

· d
dt

v ◦ Fi1...is−1 ◦ γj(t)dt

∣∣∣∣ < +∞.

Now recall that u and v have bounded derivatives in a ball B(0, R) which
contains all the sets Gl. Using this fact and the chain rule we get that the
formula above is implied by

∑
s≥1

∑
j∈Ωs

∑
i1...is∈{1,2,3}

1
λ̃R,s−1(1 − εs)

·
∫ 1

0

∣∣∣∣ d
dt

Fi1...is−1 ◦ γj(t)
∣∣∣∣
2

dt < +∞.

(6.7)

Before showing (6.7) we recall from [4] that τ(G̃) and Q are positive-definite
matrices (actually, multiples of the identity). Now the Gibbs formula, i. e.
point 6) of theorem 1.1, implies that, for some C1 > 0 independent of i1 . . . is
and s,

1
λ̃R,s−1

||DFi1...is−1 ||2HS ≤ C1κ([i1 . . . is−1]G̃) (6.8)

where the notation is that of (1.22). Moreover, from (6) and the definition of
the triple F s

1 , F s
2 , F s

3 we easily get that, for some C4 > 0 independent of s,

∣∣∣∣ d
dt

γj(t)
∣∣∣∣ ≤ C4(1 − εs) if j ∈ Ωs. (6.9)

We show (6.7): the first inequality below comes from the properties of
the Hilbert-Schmidt norm, (6.9) and the fact that Ωs has three elements; the
second inequality comes from (6.8); the last equality comes from the fact that
κ is probability and the sets [i1 . . . is−1]G̃ are disjoint, a fact we saw in Sect. 1.
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The last inequality follows from (6.3), taking logarithms.

∑
s≥1

∑
j∈Ωs

∑
i1...is−1∈{1,2,3}

1
λ̃R,s−1(1 − εs)

·
∫ 1

0

∣∣∣∣ d
dt

Fi1...is−1 ◦ γj(t)
∣∣∣∣
2

dt

≤ C3

∑
s≥1

∑
i1...is−1∈{1,2,3}

1
λ̃R,s−1(1 − εs)

||DFi1...is−1 ||2HS(1 − εs)2

≤ C3C1

∑
s≥1

∑
i1...is−1∈{1,2,3}

κ([i1 . . . is−1]G)(1 − εs)=C3C1

∑
s≥1

(1 − εs)<+∞.

�

For E1
R as in (6.2) and E2

R as in (6.5) we define

ER : C1(R2,R) × C1(R2,R) → R

ER(∇u,∇v) = E1
R(∇u,∇v) + E2

R(∇u,∇v). (6.10)

Now (6.1) and (6.6) imply that, for all u, v ∈ C1(R2,R),

ER,l(∇u,∇v) → ER(∇u,∇v). (6.11)

We end this section re-writing the form ER of (6.10) in a way more similar to
(6.2).

We begin with (6.5), which we write as our first equality below; the
second equality comes from the chain rule; for the third one we define Pv

as the orthogonal projection on the space generated by v. The fourth one
comes from the definition of the push-forward of a measure; we have set P̃x =
PDFi1...is−1 γ̇j(t) if x = Fi1...is−1 ◦γj(t). The last equality is the definition of the
measure m.

E2
R(∇u, ∇v)

=
∑
s≥1

∑
j∈Ωs

∑
i1...is−1∈{1,2,3}

a

λ̃R,s−1ε̃∞
R,s(1 − εs)

·
∫ 1

0

d

dt
u ◦ Fi1...is−1γj(t)

· d

dt
v ◦ Fi1...is−1γj(t)dt

=
∑
s≥1

∑
j∈Ωs

∑
i1...is−1∈{1,2,3}

a

λ̃R,s−1ε̃∞
R,s(1 − εs)

·
∫ 1

0

(∇u|Fi1...is−1◦γj(t), DFi1...is−1 · γ̇j(t)) · (∇v|Fi1...is−1◦γj(t), DFi1...is−1 · γ̇j(t))dt

=
∑
s≥1

∑
j∈Ωs

∑
i1...is−1∈{1,2,3}

a

λ̃R,s−1ε̃∞
R,s(1 − εs)

·
∫ 1

0

||PDFi1...is−1 γ̇j(t)∇u|Fi1...is−1◦γj(t)|| · ||PDFi1...is−1 γ̇j(t)∇v|Fi1...is−1◦γj(t)||

·||DFi1...is−1 γ̇j(t)||2dt

=
∑
s≥1

∑
j∈Ωs

∑
i1...is−1∈{1,2,3}

a

λ̃R,s−1ε̃∞
R,s(1 − εs)

·



NoDEA Harmonic embeddings of the Stretched Sierpinski Gasket Page 31 of 34 80

∫
Fi1...is−1◦γj([0,1])

||P̃x∇u(x)|| · ||P̃x∇u(x)||d(Fi1...is−1 ◦ γj)�[||DFi1...is−1 γ̇j(t)||2dt]

=

∫
G

||P̃x∇u(x)|| · ||P̃x∇u(x)||dm(x). (6.12)

An argument akin to that of Lemma 6.1 implies that m is a finite measure.
The last formula, together with (6.2) and (6.10) implies that

ER(∇u,∇v) =
∫

G

(Tx∇u(x),∇v(x))dκ(x)

+
∫

G

(P̃x∇u(x),∇v(x))dm(x). (6.13)

Now note that the union of the vertices of all the pre-fractals Gl is a
subset of G̃; being countable, it is null for Kusuoka’s measure κ, which is non-
atomic by [4]. On the other side, the set of vertices contains the ends of the
cables, i. e. of the segments Fi1...is−1 ◦ γj([0, 1]), with j ∈ Ωs; by (6.12), it is a
null set also for m. In other words, the intersection of the support of κ (which
is the set G̃ of (1.24)) and that of the support of m (which is the union of the
“cables” Fi1...ir

◦ γj([0, 1])) in null for the measure μ defined by

μ = κ + m. (6.14)

Thus, if we define the following matrix field

T̃x =
{

Tx if x ∈ G̃

P̃x if x ∈ G \ G̃

then we can re-write formula (6.13) as

ER(∇u,∇v) =
∫

G

(T̃x∇u(x),∇v(x))dμ(x). (6.15)

We saw above that Tx is bounded, while P̃x is bounded by definition; at
the end, the Borel field of matrices T̃x is bounded.

7. The form is Dirichlet

Lemma 7.1. Let u : R2 → R be affine and let ER be as in (6.10) or, more
explicitly, as in (6.15). Then, u is harmonic for E, i. e. formula (12) holds.

Proof. Let v ∈ C1(R2,R) be such that v(A) = v(B) = v(C) = 0; lemmas 3.2
and 5.1 imply that, for all l ≥ 1,

ER,l(∇u,∇v) = 0.

Now (12) follows from (6.11). �

Proof of theorem 1. Point 1) is formula (6.11).
Point 2) is lemma 7.1.
We only sketch from [6] the proof of point 3) for the measure μ of (6.14):

it is based on the standard calculation of the Laplacian of a composition. A
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side result will be Teplyaev’s formula for the Laplacian, namely that, for all
φ ∈ C2(R2,R) we have

Δφ(x) = tr(T̃xD2φ(x)) for μ -a. e. x ∈ G. (7.1)

Let φ ∈ C2(R2,R) and let the test function v ∈ C1(R2,R) satisfy v(A) =
v(B) = v(C) = 0. The first equality below is (6.15), the second one follows from
a dumb application of the chain rule; the third equality needs no explanation
and the fourth one comes from the Leibnitz formula for C1 functions; the
fifth one comes from the fact that the coordinate functions are affine and
thus harmonic; as for the last equality, a simple computation shows that the
integrands coincide: the expression in the round parentheses is the matrix
whose two columns are ∇∂1φ and ∇∂2φ.

ER(∇φ,∇v) =
∫

G

(T̃x · ∇φ,∇v)dμ(x)

=
∫

G

(T̃x · ∂1φ · ∇(x1) + T̃x · ∂2φ · ∇(x2),∇v)dμ(x)

=
∫

G

(T̃x · ∇(x1), ∂1φ · ∇v)dμ(x) +
∫

G

(T̃x · ∇(x2), ∂2φ · ∇v)dμ(x)

=
∫

G

(T̃x · ∇(x1),∇(∂1φ · v))dμ(x) +
∫

G

(T̃x · ∇(x2),∇(∂2φ · v))dμ(x)

−
∫

G

(T̃x · ∇(x1), v · ∇∂1φ)dμ(x) −
∫

G

(T̃x · ∇(x2), v · ∇∂2φ)dμ(x)

= −
∫

G

(T̃x · ∇(x1),∇∂1φ) · vdμ(x) −
∫

G

(T̃x · ∇(x2),∇∂2φ) · vdμ(x)

= −
∫

G

tr[T̃x · (∇∂1(x),∇∂2φ)] · vdμ(x).

Now (7.1) follows from the last formula.
We show point 4), i. e. that ER extends to a local, regular Dirichlet form.

It is local because it is the extension of local forms [7]; regularity follows easily
from the fact that E is defined on C1(R2,R) which is dense in L2(G,μ) and
C(G,R). We show closability.

Actually, we prove the equivalent fact [14] that the quadratic form : u →
E(∇u,∇u) is lower semicontinuous in L2(G,μ): if un, u ∈ C1(R2,R) and un →
u in L2(G,μ), then

ER(∇u,∇u) ≤ lim inf
n→+∞ ER(∇un,∇un).

We sketch the proof of [6]. It follows easily from (6.15) that

ER(∇u,∇u) = sup ER(∇u, φ∇v)

where the supremum is over all couples φ, v ∈ C2(R2,R) such that
• φ(A) = φ(B) = φ(C) = 0 and
• ER(φ∇v, φ∇v) ≤ ER(∇u,∇u).
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Thus, the thesis follows if we prove that the function from C1(R2,R) to
R

: u → ER(∇u, φ∇v)

is continuous for the L2(G,μ) topology for all couples (φ, v) as above. We
show this: the first equality below follows from (6.15); the second one from the
Leibnitz formula for C1 functions and (6.15) again; the third one follows from
the integration by parts formula.

ER(∇u, φ∇v) = ER(φ∇u,∇v)
= ER(∇(φu),∇v) − ER(u∇φ,∇v)

= −
∫

G

Δv · φ · udμ − ER(u∇φ,∇v).

Since v ∈ C2(R2,R) and T̃x is bounded, (7.1) implies that Δv is bounded too;
since φ is bounded and μ is a finite measure, we get that the function

: u →
∫

G

Δv · φ · udμ

is continuous from L2(G,μ) to R. The fact that

: u → E(u∇φ,∇v)

is continuous follows from (6.15) and the fact that T̃x, ∇φ and ∇v are bounded
on the compact set G.

As for point 5), it follows taking limits in the recurrence (3.6) and recalling
(5.1) and (6.11). �
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