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Abstract. A hidden semi-Markov model is proposed for segmenting toroidal time series according to a
finite number of latent regimes, associated with torodidal densities. Data are segmented by integrating
multiple sources of information: circular correlation, temporal auto-correlation, the time spent under
a specific regime and the chances of regime switching. The proposal is motivated by a case study of
wave and wind directions in the Adriatic sea.

Keywords. Hidden semi-Markov model; Toroidal data; Model-based classification; wave; wind.

1 Introduction

Bivariate sequences of angles are often referred to as toroidal time series, because the pair of two angles
can be represented as a point on a torus. Examples include time series of wind and wave directions
[5], time series of wind mean directions and directions of the maximum gust observed each day [2] and
time series of turning angles in studies of animal movement [7]. The analysis of toroidal time series
is complicated by the difficulties in modeling the dependence between angular measurements over time
[6]. An additional complication is given by the multimodality of the marginal distribution of the data,
because environmental toroidal data are observed under time-varying heterogeneous conditions.

This paper introduces a toroidal hidden semi-Markov model (HSMM) that simultaneously accounts
for dependence across circular measurements, temporal autocorrelation, multimodality and latent time-
varying heterogeneity. Under this model, the distribution of toroidal data is approximated by a mixture
of toroidal densities, whose parameters depend on the evolution of a latent semi-Markov process. While
the toroidal density accommodates dependence between two circular variables, a mixture of toroidal
densities allows for multimodality and, finally, a latent semi- Markov process accounts for temporal
correlation and, simultaneously, for timevarying heterogeneity.

Our proposal extends previous approaches that are based on toroidal hidden Markov models [1, 4].
Under a toroidal hidden Markov model, the data are approximated by a mixture of toroidal densities,
whose parameters depend on the evolution of a latent, first-order Markov chain with a finite number
of states. The sojourn times of each state of a Markov chain are distributed according to a geometric
distribution. Hence the most likely dwell time for every state of a hidden Markov model with underlying
first-order Markov chain is 1. Our proposal relaxes this restrictive assumption by replacing the latent
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Markov chain with a latent semi-Markov model, allowing for not necessarily geometrically distributed
sojourn times that are modelled by state-specific parametric hazard functions.

2 A toroidal hidden semi-Markov model

Let y = (yt , t = 1, . . .T ) be a bivariate time series, where yt = (yt1,yt2) is a vector of two circular ob-
servations. In addition, let u = (ut , t = 1, . . .T ) be a sequence of latent multinomial random variables
ut = (ut1 . . .utK) with one trial and K classes (or states), whose binary components represent class mem-
bership at time t. Our proposal is a hierarchical model where the joint distribution of the time series is
obtained by

f (y) = ∑
u

f (y | u)p(u).

The joint distribution p(u) of the latent process is described by extending the notion of a Markov chain.

If u is a Markov chain, then p(u) is fully known up to a vector of K initial probabilities πk = P(u1k =
1),k = 1, . . . ,K,∑k πk = 1, and a K ×K matrix of transition probabilities




π11 π12 . . . π1K

π21 π22 . . . π2K

. . . . . . . . . . . .
πK1 πK2 . . . πKK




where πkk′ = P(utk′ = 1|ut−1,k = 1),k,k′ = 1, . . . ,K,∑k′ πkk′ = 1. Formally,

p(u) =
K

∏
k=1

πu1k
k

T

∏
t=2

K

∏
k=1

K

∏
k′=1

πut−1,kutk′
kk′ . (1)

An alternative parametrization of the transition probabilities matrix is given by



π11 π12 . . . π1K

π21 π22 . . . π2K

. . . . . . . . . . . .
πK1 πK2 . . . πKK


=




1− p1 p1ω12 . . . p1ω1K

p2ω21 1− p2 . . . p2ω2K

. . . . . . . . . . . .
pKωK1 pKωK2 . . . 1− pK




where pk =∑k′ ̸=k πkk′ is the probability of a transition from k to a different state and ωkk′ is the conditional
probability of a transition to state k′ ̸= k, given a transition from state k. Under this setting, if the process
is in state k, the time Tk up to a transition to a different state is geometric

P(Tk = t) = pk(1− pk)
t−1. (2)

More generally, let Sk(t) = P(Tk > t) = exp
(
−∫ t

0 h(τ)dτ
)

be the survival funciton of Tk, where h(t) is
the associated hazard function. Then

pk(t) = P(Tk ≤ t +1 | Tk > t)≈ 1− exp(−h(t +0.5)),

is the conditional probability of a transition at time t+1, given that the process remained in state k during
a period of length t. Then

P(Tk = t) = pk(t)
t−1

∏
τ=1

(1− pk(τ)). (3)
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When the hazard hk(t) is time-constant, then (3) reduces to (2). Alternatively, (3) can be aproximated by

P(Tk = t) = pk(m)(1− pk(m))t−m
m−1

∏
τ=1

(1− pk(τ)) = P(Tk = m)(1− pk(m))t−m. (4)

Parametric hazard functions can be borrowed from the survival analysis literature and some of them
are conveniently associated to a link function g that trasforms pk(t) in a linear function of time, say

g(pk(t)) = β0k +β1kt.

For example, under a Gompertz hazard function, h(t) = αeβt , the complementary log-log transformation
maps pk(t) to a linear function of time, namely

log(− log(1− pk(t))) = logαk +βkt.

Under this setting, the state of the process at time t can be described by a K×m matrix Ut = (utki,k =
1 . . .K, i = 1 . . .m) where utki = 1 if and only if the process is in state k since time t − i. This suggests to
augment the transition probabilites matrix by a (m×K)× (m×K) blocks matrix with m×m blocks

Γ= (Γks,k,s = 1 . . .K) ,

where the diagonal blocks are given by

Γkk(αk) =




0 1− pk(1) 0 . . . 0
0 0 1− pk(2) . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1− pk(m−1)
0 0 0 . . . 1− pk(m)




and the off-diagonal blocks are given by

Γks(α,ω
T
h ) =




ωks pk(1) 0 0 . . . 0
ωks pk(2) 0 0 . . . 0

. . . . . . . . . . . . . . .
ωks pk(m−1) 0 0 . . . 0

ωks pk(m) 0 0 . . . 0



.

Such augmentation allows to approximate the joint distribution of the semi-Markov process (with the
desidered degree of accuracy) by

p(u) =
K

∏
k=1

πu0k
k

T

∏
t=1

K

∏
h=1

K

∏
k=1

m

∏
i=1

m

∏
j=1

γut−1,hiutk j
hik j , (5)

where γhik j is the (i, j)-th entry of the (h,k)th block of matrix Γ.

Our proposal is completed by a conditional independence assumption on the observation process.
Precisely,

f (y | u) =
T

∏
t=0

K

∏
k=1

m

∏
i=1

f (yt ;θk)
utki , (6)

where θ1, . . .θK is a sequence of unknown parameters. Parametric toroidal densities can be borrowed by
the proposals available in the directional statistics literature. A convenient specification is for example the
bivariate wrapped Cauchy distribution [3]. It is unimodal, pointwise symmetric and has a closed-form
expression for the conditional distribution. A single dependence parameter controls the relationship
between the two component circular variables, ranging from independence to perfect correlation. The
remaining four parameters respectively indicate the two marginal means and concentrations.
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3 Maximum likelihood estimation

An EM algorithm can be exploited to maximize the likelihood function of the prposed model. It is based
on the following complete-data log-likelihood function

logLcomp =
K

∑
k=1

u0k logπk +
T

∑
t=1

K

∑
h=1

K

∑
k=1

m

∑
i=1

m

∑
j=1

ut−1,hiutk j logγhik j

+
T

∑
t=1

K

∑
k=1

m

∑
i=1

utki log f (yt ;θk). (7)

The algorithm is iterated by alternating an expectation (E) and a maximization (M) step. Given the
parameter estimates, obtained at the end of the s-th iteration, the (s+ 1)-th iteration is initialized by
the E-step, which evaluates the expected value of the complete data log-likelihood (7) with respect to
the conditional distribution of the missing values utki given the observed data. The E step reduces to
the computation of the univariate posterior probabilities of each latent state at time t, π̂tki = P(utki = 1 |
y)i = 1 . . .m,k = 1 . . .K, t = 1 . . .T , and the computation of the bivariate posterior probabilities of each
pair of states in two adjacent times, say π̂t−1,t,hik j = P(ut−1,hi = 1,utk j = 1 | y) i, j = 1 . . .m,h,k =
1 . . .K, t = 2 . . .T . The task of computing these posterior probabilities is generally referred to as the
HMM-smoothing numerical issue and it is typically solved by specifying the posterior probabilities in
terms of suitably normalized functions, which can be computed recursively, avoiding unpractical sum-
mations over the state space of latent Markov chain and numerical under- and over-flows.

The M-step of the algorithm updates the parameter estimates, by maximizing the expected value of
the complete data log-likelihood (7), obtained from the previous E step. This expected value is the sum
of functions that depend on independent sets of parameters and can therefore be maximized separately.
Specifically, the expected log-likelihood function

Q =
K

∑
k=1

π̂0k logπk +
T

∑
t=1

K

∑
h=1

K

∑
k=1

m

∑
i=1

m

∑
j=1

π̂t−1,hi,tk j logγhik j

+
T

∑
t=1

K

∑
k=1

m

∑
i=1

π̂tki log f (yt ;θk). (8)

Function
T

∑
t=1

K

∑
h=1

K

∑
k=1

m

∑
i=1

m

∑
j=1

π̂t−1,hi,tk j logγhik j

can be split as the sum of two components:

Q1 =
T

∑
t=1

K

∑
h=1

∑
h̸=k

m

∑
i=1

m

∑
j=1

π̂t−1,hi,tk j logωhk (9)

and

Q2 =
T

∑
t=1

K

∑
k=1

∑
h̸=k

m

∑
i=1

m

∑
j=1

π̂t−1,ki,th j log pk(i)

+
T

∑
t=1

K

∑
k=1

m

∑
i=1

m

∑
j=1

π̂t−1,ki,tk j log(1− pk(i)) (10)
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Figure 1: Top: data clustered within state 1 (left) and state 2 (right); grey levels are proportional to class
membership probabilities). Middle: state-specific toroidal densities, with estimated toroidal regression
lines. Bottom: state-specific hazards (left) and densities (right) of the dwell time
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Function Q1 is maximized by the estimated transition probabilities

ω̂hk =
∑T

t=1 ∑m
i=1 ∑m

j=1 π̂t−1,hi,tk j

∑k ̸=h ∑T
t=1 ∑m

i=1 ∑m
j=1 π̂t−1,hi,tk j

.

Function Q2 can be instead maximized by fitting a binomial regression model with weights and an ap-
propriate link function.

4 Results

Figure 1 shows the results obtained on a time series of T = 1326 semi-hourly wind and wave directions,
taken in wintertime by the buoy of Ancona, which is located in the Adriatic Sea at about 30 km from the
coast. A 2-state hidden semi-Markov model with Gompertz dwell times has been used to segment the
data. The model successfully segments the observations according to two clusters, and offers a clear-cut
indication of the distribution of the data under each regime. Under state 1, wind and wave directions
are essentially independent. Under state 2, winds appear well syncronized with waves. Interestingly,
while the first state is driven by a constant hazard function, associated with an exponential dwell time
distribution, the second state is driven by an exponential hazard, associates with a bell-shaped dwell time
distribution.

In summary, the proposed model describes the plasticity of the wind-wave interaction in the Adriatic
Sea, indicating that the joint distribution of wind and wave data changes under different environmental
regimes. Regime switching changes not only the modal directions and concentrations around these
modes but also, and more interestingly, the correlation structure of the data. As a result, the model
indicates that the wind direction is an accurate predictor of the wave direction only under a specific, and
persistent, regime (State 2). In summary, wind directions should not be used to predict wave directions,
without accounting for the latent, environmental heterogeneity of the data under study.
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