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On a front evolution problem for the multidimensional
East model

Yannick Couzinié* Fabio Martinelli†

Abstract

We consider a natural front evolution problem for the East process on Zd, d ≥ 2, a well
studied kinetically constrained model for which the facilitation mechanism is oriented
along the coordinate directions, as the equilibrium density q of the facilitating vertices
vanishes. Starting with a unique unconstrained vertex at the origin, let S(t) consist of
those vertices which became unconstrained within time t and, for an arbitrary positive
direction x, let vmax(x), vmin(x) be the maximal/minimal velocities at which S(t) grows
in that direction. If x is independent of q, we prove that vmax(x) = vmin(x)

(1+o(1)) =

γ
(1+o(1))
d as q → 0, where γd is the spectral gap of the process on Zd. We also analyse

the case in which x depends on q and some of its coordinates vanish as q → 0. In
particular, for d = 2 we prove that if x approaches one of the two coordinate directions
fast enough, then vmax(x) = vmin(x)

(1+o(1)) = γ
(1+o(1))
1 = γ

d(1+o(1))
d , i.e. the growth of

S(t) close to the coordinate directions is much slower than the growth in the bulk and
it is dictated by the one dimensional process. As a result the region S(t) becomes
extremely elongated inside Zd

+. We also establish mixing time cutoff for the chain in
finite boxes with minimal boundary conditions. A key ingredient of our analysis is the
renormalisation technique of [12] to estimate the spectral gap of the East process. A
main novelty here is the extension of this technique to get the main asymptotic as
q → 0 of a suitable principal Dirichlet eigenvalue of the process.
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1 Introduction

The East1 process on Zd (see [1], [15] and references therein for d = 1, and [12,
11, 19] for d ≥ 2), is a keynote example of the class of facilitated interacting particle
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East model front evolution

systems or kinetically constrained models (KCM) which play an important role in several
qualitative and quantitative approaches to describe the complex behaviour of glassy
dynamics (see e.g. [17] and references therein). It is the interacting particle system with
state space Ω = {0, 1}Zd (a continuous time Markov chain on {0, 1}Λ if restricted to a
finite Λ ⊂ Zd) which is informally described as follows. Each vertex x ∈ Zd, with rate
one and independently across Zd, is resampled from {0, 1} according to the Bernoulli(p)-
measure, p = 1 − q, iff the current state carries at least one vacancy (i.e. a state “0”)
among the neighbours of x of the form y = x− e, e ∈ B, where B = (e(1), . . . , e(d)) is the
canonical basis of Zd. The product Bernoulli(p) measure on Ω is a reversible measure
for this process and the parameter q is the equilibrium density of the vacancies, i.e. of
the facilitating vertices. In the physical applications q ' e−β, where β is the inverse
temperature.

Thanks to the oriented character of its kinetic constraint (i.e. the requirement that
has to be fulfilled in order to permit the update of a vertex), the East process is one
of the few KCM for which a rigorous analysis of the actual evolution of the process
with some arbitrary initial distribution has been accessible for any value of q ∈ (0, 1)

[6, 9, 10, 12, 11, 14, 20, 19]. In this paper, building in particular on [12, 11], we
make some progress in the analysis of a natural front evolution problem in Zd+ = {x =

(x1, . . . , xd) ∈ Zd : xi ≥ 0} for q � 1 (i.e. low temperature) and d ≥ 2. We refer the
reader to Section 2 for a precise formulation of the problem and of the main results.

1.1 Notation

• Let Rd+ = {x = (x1, . . . , xd) ∈ Rd : xi ≥ 0} and for any x ∈ Rd+ let bxc ∈ Zd+ be such
that bxci = bxic ∀i. Unit vectors of Rd+ will be written in bold. Given x, y ∈ Zd+ we will
write x ≺ y iff xi ≤ yi ∀i, x ≺ V, V ⊂ Zd+, if x ≺ y ∀y ∈ V , and ‖x− y‖1 :=

∑
i |xi − yi|

for their `1-distance. We shall also write x = 0 to denote the origin of Zd+.

• For any Λ ⊂ Zd+ we define its oriented boundary ∂↓Λ as ∂↓Λ , {x ∈ Zd+ \ Λ : x+ e ∈
Λ for some e ∈ B}. Notice that vertices of Zd \ Zd+ are not part of the oriented
boundary.

• ΩΛ will denote for the product space {0, 1}Λ endowed with the product topology. If
Λ = Zd+ we simply write Ω. We will write ωx ∈ {0, 1} for the state at x ∈ Λ of the
configuration ω ∈ ΩΛ and we will refer to the vertices of Λ where ω ∈ ΩΛ is equal
to one (zero) as the particles (vacancies) of ω. If V ⊂ Λ we will write ω �V for the
restriction of ω ∈ ΩΛ to V . In particular we will write ω �V = 1 if ω(x) = 1 ∀ x ∈ V .

• For any Λ ⊂ Zd+, a configuration σ ∈ Ω∂↓Λ will be referred to as a boundary condition
for Λ. If σ contains no particles it will be referred to as maximal boundary condition.
Finally, for any given boundary condition σ ∈ Ω∂↓Λ and ω ∈ ΩΛ, we will write σ · ω ∈
Ω∂↓Λ∪Λ for the configuration equal to σ on ∂↓Λ and to ω on Λ.

• Given Λ ⊂ Zd+ we will write µΛ for the product Bernoulli(p) measure on ΩΛ and
µΛ(f),VarΛ(f) for the average and variance of f : ΩΛ 7→ R w.r.t. µΛ. As for ΩΛ, if
Λ = Zd+ we omit the subscript Λ from the notation.

1.2 The d-dimensional East process

Given Λ ⊂ Zd+, σ ∈ Ω∂↓Λ and ω ∈ ΩΛ, define the constraint cΛ,σx (ω) at x ∈ Λ as

cΛ,σx (ω) =

{
1 if either x = 0 or ∃ e ∈ B : x− e ∈ ∂↓Λ ∪ Λ and (σ · ω)(x− e) = 0,

0 otherwise.

Remark 1.1. Notice that the origin is unconstrained.
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East model front evolution

The infinitesimal generator LσΛ of the East process in Λ with vacancy density parame-
ter q ∈ (0, 1) and boundary configuration σ has the form

LσΛf(ω) =
∑
x∈Λ

cΛ,σx (ω)
[
ωxq + (1− ωx)p

]
·
[
f(ωx)− f(ω)

]
=
∑
x∈Λ

cΛ,σx (ω)
[
µx(f)− f

]
(ω), (1.1)

where ωx is the configuration in ΩΛ obtained from ω by flipping its value at x. We
refer the reader to [8]. As the local constraint cΛ,σx (·) does not depend on the state
of the process at x, µΛ is a reversible measure. Actually, thanks to the orientation
of the constraints a stronger property of local stationarity holds [11, Proposition 3.1]
together with local exponential ergodicity (see [11, Theorem 4.1] and [19, Theorem
2.2]). When the initial law of the process is ν we will write PΛ,σ

ν (·),EΛ,σ
ν (·) for the

law and the associated expectation of the process. When ν is the Dirac mass at one
configuration ω we will simply write PΛ,σ

ω (·) and EΛ,σ
ω (·). The superscript Λ will be

dropped from the notation if Λ = Zd+. Similarly for the superscript σ if ∂↓Λ = ∅. Finally,
DσΛ(f), f : ΩΛ 7→ R denotes the Dirichlet form of the process (i.e. the quadratic form of
−LσΛ). By construction, DσΛ(f) =

∑
x∈Λ µΛ

(
cΛ,σx Varx(f)

)
.

Remark 1.2. For d ≥ 2 and any integer d′ ∈ [1, d− 1] the projection of the East process
on Zd+ onto Zd

′

+ = {x ∈ Zd+ : xj = 0 ∀j > d′} coincides with the East process on Zd
′

+ .
Similarly, for any finite V ⊂ Zd+ and any box Λ ⊃ V the projection of the East process on
Zd+ onto V coincides with the same projection of the East chain on Λ.

1.3 Structure of the paper

• In Section 2 we formulate the front evolution problem on the positive quadrant of
Zd and state our main result as q → 0 on smallest/largest front velocity in a given
direction (cf. Theorem 1). In turn, Theorem 1 implies the main result on the local
equilibrium behind the front (cf. Theorem 2) together with the mixing time cutoff
for the East chain on a box with sides along the coordinate axes (cf. Theorem 3).

• In Section 3 we develop the two main technical tools needed for the proof of the
main results, namely a sharp lower bound on a suitable Dirichlet eigenvalue of the
Markov generator (cf. section 3.1) and a bottleneck result (cf. Section 3.2).

• Section 4 is devoted to the proof of the three main theorems, while Section 5
contains the proof of Proposition 3.6, the key technical result from Section 3.

• Finally the Appendix contains the proof of a couple lemmas.

2 The front evolution problem and main result

Let ω∗ ∈ Ω be the configuration identically to one and write τx, x ∈ Rd+, for the hitting
time of the set {ω : ωbxc = 0}. Sometimes we will refer to τx as the infection time
of x. More generally, for any A ⊂ Zd+ we will write τA for the hitting time of the set
{ω : ω �A 6= 1}. Given a unit vector x ∈ Rd+, it is known [11, Theorem 5.1] that for any
q ∈ (0, 1)

Eω∗(τnx) = Θ(n), as n→ +∞, (2.1)

and that the mixing time of the East chain in {0, . . . , n− 1}d is Θ(n). It is then natural to
define

1

vmax(x)
= lim inf

n→∞

Eω∗
(
τnx
)

n
,

1

vmin(x)
= lim sup

n→∞

Eω∗
(
τnx
)

n
,

and denote them as the maximal and minimal front velocity in the direction of x respec-
tively. Using (2.1) 0 < vmin(x) ≤ vmax(x) < +∞ for all x.
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Figure 1: A simulation of the random set S(t) for q = 0.04 suggesting the existence of a
limit shape. The grey region corresponds to vertices that have been updated at least
once before time t, while the black dots denote the actual infected sites at time t.

Remark 2.1. Using the strong Markov property and subadditivity, it is not difficult to
see that v̂(x)−1 := limn→∞maxω Eω(τnx)/n exists. Clearly vmin(x) ≥ v̂(x).

In analogy with the classic shape theorem for e.g. first passage percolation (see e.g.
[5]) we conjecture that vmax(x) = vmin(x) := v(x) and in that case v(x) represents the
front velocity in the direction x. Similarly, for any t > 0 we could define the random set
(see Fig. 1)

S(t) = {x ∈ Rd+ : τx ≤ t},

and conjecture that there exists a compact subset Ŝ ⊂ Rd+ such that

∀ ε > 0 lim
t→∞

Pω∗
(
(1− ε)tŜ ⊆ S(t) ⊆ (1 + ε)tŜ

)
= 1.

Remark 2.2. Using coupling arguments, it has been proved for d = 1 [6] that ∀q ∈ (0, 1)

the position ξt of the rightmost vacancy for the process started from ω∗ obeys a law of
large numbers limt→∞ ξt/t = v a.s. and that the law of the East process to the left of ξt
converges exponentially fast to a limiting law. A precise CLT for ξt was later proved in
[16] together with a cutoff result for the mixing time in a finite interval. In particular,
for d = 1 both conjectures are known to be true. For d ≥ 2, Remark 1.2 together with
the law of large numbers in d = 1 imply that vmax(e) = vmin(e) = v ∀e ∈ B. For all other
directions both conjectures are still widely open.

In this paper, for any d ≥ 2 we provide a contribution towards the understanding of
the front evolution problem as the vacancies equilibrium density q → 0. Specifically, our
main result concerns the small q behaviour of vmax(x), vmin(x) as a function of x ∈ Rd+.
We will distinguish between the case in which the direction x is fixed independent of
q and all its coordinates are positive, and the case in which x = x(q) and mini xi → 0

as q → 0. In the first case we will say that x points towards the bulk of Rd+, while in
the second case x points to the boundary of Rd+. In the sequel θq := | log2 q| will be the
relevant parameter.

Theorem 1. Fix d ≥ 2.
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(A) Let x ∈ Rd+ be a unit vector with mini xi > 0. Then

lim
q→0
− 2

θ2
q

log2(vmax(x)) = lim
q→0
− 2

θ2
q

log2(vmin(x)) =
1

d
.

(B) Let 0 < β < 1, κ ≥ 1 and let {x(q)}q∈(0,1) be a family of unit vectors in Rd+ such that
maxi,j xi(q)/xj(q) ≤ κ2βθq . Then

lim sup
q→0

− 2

θ2
q

log2(vmin(x(q))) < 1.

(C) Assume d = 2 and let α > 0. Let {x(q)}q∈(0,1) be a family of unit vectors in R2
+ such

that maxi,j xi(q)/xj(q) ≥ 2αθ
2
q . Then

lim inf
q→0

− 2

θ2
q

log2(vmax(x(q))) ≥ (1 + 4α) ∧ 2

2
.

Moreover, if α > 1/4 then

lim
q→0
− 2

θ2
q

log2(vmax(x(q))) = lim
q→0
− 2

θ2
q

log2(vmin(x(q))) = 1.

The same results apply to v̂(x) defined in Remark 2.1.

Remark 2.3. Part (C) is presented here only for d = 2 for simplicity. Remark 1.2 and
the same proof ideas give similar, although more involved, results also for d ≥ 3.

By combining (A) above together with Remark 1.2 we immediately get

Corollary 1. Fix d ≥ 2 and let x ∈ Rd+ be a unit vector such that mini xi = 0. Then

lim
q→0
− 2

θ2
q

log2(vmax(x)) = lim
q→0
− 2

θ2
q

log2(vmin(x)) =
1

d(x)
,

where d(x) := #{i ∈ [d] : xi > 0}2.

Remark 2.4. In order to better understand Theorem 1, let us recall a key feature of
the East process on the full lattice Zd, d ≥ 1. It is a reversible process with a positive
spectral gap γd satisfying (see [1, 8] for d = 1 and [12] for d ≥ 2):

lim
q→0
− 2

θ2
q

log2(γd) = 1/d.

Notice that γd+1 = γ
(1+o(1))d/(d+1)
d . Then the three statements of the theorem can be

interpreted respectively as follows:

(A) if the direction x points towards the bulk of Rd+, then vmax(x) = vmin(x)1+o(1) =

γ
1+o(1)
d ;

(B) if x = x(q) points to the boundary of Rd+ slowly enough as q → 0, then vmin(x) is
much larger than the velocity v(e), e ∈ B, in any coordinate direction;

(C) for d = 2 if x = x(q) points to the boundary of R2
+ fast enough, then vmax(x) is much

smaller than the minimal velocity associated to any direction pointing to the bulk of
R2

+ and, if sufficiently fast then vmax(x) = vmin(x)1+o(1) = v(e)1+o(1), e ∈ B.

2Here [n] := {1, 2, . . . , n} for any positive integer n
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Remark 2.5. Theorem 1 has been largely motivated by [12, Theorem 3]. There the
authors considered Λ = {0, . . . , L}d,N 3 L ≤ 2θq/d, and, using capacity methods com-
bined with a sophisticated combinatorial analysis, analysed the asymptotic behaviour
as q → 0 of the mean hitting time Eω∗(τx) for two special vertices: xΛ = (L, . . . , L)

and x′Λ = (L, 0, . . . , 0). One of the main outcomes was that for L = 2θq/d and as q → 0

Eω∗(τx′Λ) = Eω∗(τxΛ
)d(1+o(1)). In other words, for q small enough and at the length scale

2θq/d, there is a big time scale separation between the two mean hitting times. The
restriction L ≤ 2θq/d was dictated by the need of having at equilibrium a constant number
of vacancies in the box Λ and it was basically unavoidable.

Extending the analysis of the mean hitting time Eω∗(τx) to vertices x of the form
x = nx, where x is any direction of Rd+ and n ∈ N is arbitrary, using capacity methods as
in [12] seems prohibitive. Therefore, in order to prove Theorem 1 we must to appeal to
large deviations combined with a fine analysis of certain principal Dirichlet eigenvalues
of the process using the renormalization group ideas developed in [12]. The latter
technique is illustrated in Section 3.1.

The second result analyses the law at time t � 0 of the East process with initial
condition ω∗. It proves that for q small enough the region of Zd+ where the East process
at time t has relaxed to the reversible measure µ is extremely elongated in the bulk of
Zd+ (see Fig. 1).

Theorem 2. Fix d ≥ 2, 0 ≤ δ < 1 and ε > 0. Let

Λ(δ, ε, t) = {x ∈ Zd+ : min
i,j

xi/xj ≥ δ and ‖x‖1 ≤ 2−
θ2q
2d (1+ε) × t}, t > 0,

and let νδ,εt be the marginal on ΩΛ(δ,ε,t) of the law of the East process at time t with initial
condition ω∗. Then,

lim sup
ε→0

lim sup
q→0

lim sup
t→∞

‖νδ,εt − µΛ(δ,ε,t)‖TV = 0 if δ > 0, (2.2)

lim inf
ε→0

lim inf
q→0

lim inf
t→∞

‖νδ,εt − µΛ(δ,ε,t)‖TV = 1 if δ = 0. (2.3)

Remark 2.6. A slightly more refined formulation of Theorem 2 avoiding the lim sup on
ε, q would have been possible. However, we opted for the present version for simplicity.

Finally we analyse the mixing time (see e.g. [18]) of the East chain on the sequence of
boxes Λn = {0, . . . , n}d, d ≥ 2. For q small enough and any n large enough we prove total
variation cutoff – i.e. a sharp transition in mixing (see [3, 13] and references therein) –
around the time

Tn = n/v, (2.4)

where v is the front velocity along any coordinate direction e ∈ B (see Remark 2.2).
More precisely, let dn(t) = maxω∈ΩΛn

‖Ptω(·)− µΛn‖TV , where Ptω(·) denotes the law at
time t of the East process on Λn with initial condition ω.

Theorem 3. There exists q0 ∈ (0, 1) such that for any 0 < q ≤ q0

lim
α→∞

lim inf
n→+∞

dn(Tn − α
√
n) = 1 (2.5)

lim sup
n→+∞

dn(Tn + n2/3) = 0 (2.6)

Remark 2.7. Above we didn’t try to optimise the cutoff window size. Using [16, Theorem
2] Tn is the mixing time of the standard one dimensional East chain on the interval
{0, . . . , n}. Hence, in a very precise sense, the one dimensional evolution along the
coordinate axes dominates the mixing process of the multidimensional East chain in Λn.
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Theorem 3 may look a bit surprising given that we don’t know the existence of the
front velocity in any direction x. However, here we exploit the geometry of the boxes
Λn together with the chosen boundary conditions for the East chain (only the origin is
unconstrained), and the fact that for small q the front velocity along the coordinate axes
is much smaller than the minimal velocity in any other direction pointing towards the
bulk of Λn (cf. part A of Theorem 1). A cutoff result with e.g. a different choice of the
geometry of Λn or of the boundary conditions (e.g. any vertex on the coordinate axes is
unconstrained) would require proving at least the existence of the front velocity.

3 Two key tools

In this section we describe the two main tools that we use in order to get upper and
lower bounds on vmax(x), vmin(x).

3.1 Lower bounds on a Dirichlet eigenvalue

In the sequel we adopt the following convention for the process on Λ ⊂ Zd+ with
boundary condition σ. If either σ is absent because ∂↓Λ = ∅ or σ ≡ 1, then the superscript

σ is dropped from the notation. Given integers (L1, . . . , Ld) the set Λ =
∏d
i=1{0, . . . , Li}

will be called the box with side lengths (L1, . . . , Ld). We will write xΛ for the vertex
(L1, . . . , Ld). Notice that ∂↓Λ = ∅. Given a box Λ with side lengths (L1, . . . , Ld) the set
x+Λ will be called the box with side lengths L1, . . . , Ld and origin at x. Unless otherwise
specified a box will always have its origin at x = 0.

Recall now that the origin is always unconstrained. Given a box Λ possibly depending
on q, it is well known (see e.g. [2, Section 6]) that the hitting time τxΛ satisfies

Pµ(τxΛ
> t) ≤ e−λ

D(Λ)t, (3.1)

where

λD(Λ) = inf{DΛ(f)/µΛ(f2) : f : ΩΛ 7→ R, f �{ω:ωxΛ
=0}= 0} (3.2)

is the smallest eigenvalue for the Dirichlet problem

−LΛf = λf, f �{ω: ωxΛ
=0}= 0.

A lower bound on λD(Λ) is obtained via the spectral gap γ(Λ) > 0 of the East chain in Λ.
Using VarΛ(f) ≥ qµΛ(f2) for all f such that f �{ω:ωxΛ

=0}= 0, we get immediately

λD(Λ) ≥ q γ(Λ). (3.3)

Using Lemma A.2 it follows that γ(Λ) = γ
(1+o(1))
d=1 as soon as maxi Li ≥ 2θq because of the

slow relaxation process mode along the edges of Λ on the coordinate axes.
If maxi,j(Li ∨ 1)/(Lj ∨ 1) = O(1) as q → 0, (3.3) is a very pessimistic bound when

d ≥ 2 because λD(Λ) should be mostly influenced by the d-dimensional bulk dynamics
rather than by the one dimensional dynamics along the edges of Λ. In this case it is
natural to conjecture that, to the leading order as q → 0, λD(Λ) is lower bounded by γd.
In order to prove the conjecture the following provides a better bound than (3.3).

For any V ⊂ Zd+ let γ(V ) be the spectral gap of the East chain in V with boundary
conditions identically equal to 1 on ∂↓V .

Claim 3.1.

λD(Λ) ≥ max{λD(V ) : V ⊆ Λ, V ⊃ {0, xΛ}}
≥ qmax{γ(V ) : V ⊆ Λ, V ⊃ {0, xΛ}} > 0. (3.4)
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Proof of the claim. Clearly max{γ(V ) : V ⊆ Λ, V ⊃ {0, xΛ}} ≥ γ(Λ) > 0. Now fix
Λ ⊇ V 3 {0, xΛ} together with f such that f �{ω:ωxΛ

=0}= 0, and observe that monotonicity
in the constraints implies that

DΛ(f) ≥
∑

ω∈ΩΛ\V

µΛ\V (ω)DV (f(ω ·)).

Since V 3 xΛ, for any ω ∈ ΩΛ\V the function ΩV 3 ω′ 7→ f(ω · ω′) vanishes if ω′xΛ
= 0.

Therefore, (3.2) implies that for any ω ∈ ΩΛ\V

DV (f(ω ·)) ≥ λD(V )µV (f2(ω ·).

By averaging over ω both sides of the above inequality w.r.t. µΛ\V (ω) we conclude that
DΛ(f) ≥ λD(V )µΛ(f2) and the first inequality of the claim follows. The second inequality
follows from the general inequality (3.3).

In order to bound from below the r.h.s. of (3.4) according to whether maxi,j(Li ∨
1)/(Lj ∨1) = O(1) as q → 0 or not, it is convenient to introduce the following geometrical
definition.

Definition 3.2. Fix d ≥ 2, β ≥ 0, and κ ≥ 1. For any given q ∈ (0, 1) let S(β, κ; θq) be the
collection of d-tuple of integers (L1, . . . , Ld) such that maxi,j(Li ∨ 1)/(Lj ∨ 1) ≤ κ2βθq . We
say that a box Λ with side lengths (L1, . . . , Ld) is (β, κ; θq)-outstretched if (L1, . . . , Ld) ∈
S(β, κ; θq), i.e. the maximum aspect ratio between its sides does not exceed κ2βθq . Notice
that S(β, κ; θq) ⊆ S(β′, κ; θq) if β ≤ β′.
Remark 3.3. Although the class of (β, κ; θq)-outstretched boxes contains very regular
boxes, e.g. cubes, our focus will be on the most extreme cases where the aspect ratio
between the box’s sides is close to κ2βθq .

In the sequel, the parameters β, κ will always be chosen independent of q. Moreover,
whenever the value of q is understood we will simply write (β, κ)-outstretched instead of
(β, κ; θq)-outstretched.

Definition 3.4. Given β ≥ 0 we say that λ > 0 satisfies condition H(β) and write
λ ∼ H(β) if for any κ ≥ 1, ε > 0 there exists q(β, κ, ε) > 0 such that ∀q ≤ q(β, κ, ε) the
following occurs: ∀ (β, κ; θq)-outstretched box Λ ∃ V ⊂ Λ with V ⊃ {0, xΛ} such that

γ(V ) ≥ 2−(1+ε)λ
θ2q
2 . We then let φ(β; d) = min{λ > 0 : λ ∼ H(β)}.

Remark 3.5. For d = 1 any box ΛL = {0, 1, . . . , L}, is (β, κ)-outstretched for all β ≥

0, κ ≥ 1. Therefore, φ(β; 1) = 1 because infL γ(ΛL) = 2−
θ2q
2 (1+o(1)) [8].

Thus, if λ ∼ H(β) then Claim 3.1 implies that for all ε > 0 the Dirichlet eigenvalue

λD(Λ) is greater than 2−(1+ε)λ
θ2q
2 for all (β, κ; θq)-outstretched box Λ and for all q small

enough depending only on β, κ, ε. In particular,

λD(Λ) ≥ 2−(1+ε)φ(β;d)
θ2q
2 . (3.5)

A major problem is then to bound the constant φ(β; d) for d ≥ 2. Lemma A.2 implies that
φ(β, d) ≤ 1. The next result, which in a sense represents the technical core of the paper
and whose proof is deferred to Section 5, goes beyond this bound.

Proposition 3.6. For d ≥ 2 the coefficient φ(β; d) satisfies:

(i) φ(0; d) = 1/d;

(ii) φ(β; d) < 1 ∀β ∈ (0, 1);

(iii) φ(β; d) = 1 ∀β ≥ 1.
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In particular, for any d ≥ 2 and any (β, κ)-outstretched box Λ with β < 1 the Dirichlet
eigenvalue λD(Λ)� γd=1 as q → 0.

A first consequence for the hitting times τx, x ∈ Zd+, is provided by the next result.

Lemma 3.7. Fix ε > 0, β ≥ 0, κ ≥ 1. Then there exists q(ε, β, κ) such that for any
q ≤ q(ε, β, κ) and any Λ = Λq a (β, κ; θq)-outstretched box of side lengths (L1, . . . , Ld)

satisfying 2θ
3/2
q /2 ≤ mini Li ≤ 2θ

3/2
q , the following holds:

sup
x∈Zd+

sup
ω∈{ω:ωx=0}

Eω(τx+xΛ
) ≤ 2(1+ε)φ(β;d)

θ2q
2 .

Proof. Fix x ∈ Zd+, ε > 0 and let T (ε) = 2(1+ε)φ(β;d)
θ2q
2 , T ∗ = 22θ2

q . Then

Eω(τx+xΛ) =

∫ T (ε)

0

dtPω(τx+xΛ > t) +

∫ T∗

T (ε)

dtPω(τx+xΛ > t) +

∫ +∞

T∗
dtPω(τx+xΛ > t)

≤ T (ε) + T ∗Pω(τx+xΛ
> T (ε)) +

∫ +∞

T∗
dtPω(τx+xΛ

> t). (3.6)

We will now prove that the supremum over ω ∈ {ω : ωx = 0} of the second and third term
in the r.h.s. of (3.6) tend to zero as q → 0. We first need the following general bound
whose proof will be provided shortly.

Lemma 3.8. There exist positive constants c, c′ independent of q such that the following
holds. Fix ` ∈ N and for x ∈ Zd+ write Vx,` = {x1 − `, . . . , x1} × · · · × {xd − `, . . . , xd} ∩Zd+.
Then for any box Λ with side lengths (L1, . . . , Ld) and any t > 0 it holds that

sup
ω: ωx=0

Pω(τx+xΛ
> t) ≤ c′t`de−cq` + 2θq(`+maxi Li)

d−t`−d miny∈Vx,` λ
D(Λy), (3.7)

where Λy = {y1, . . . , x1 + L1} × · · · × {yd, . . . , xd + Ld}.
Remark 3.9. The length scale ` in the lemma is a free parameter that in the applications
we will suitably choose depending on x, t,Λ.

Consider now the second term in the r.h.s. of (3.6). In this case we apply Lemma 3.8
with t = T (ε) and ` = b 1

2 mini Lic to bound from above Pω(τx+xΛ
> T (ε)) The assumption

mini Li = Θ
(
2θ

3/2
q
)

and the choice of ` imply that the first term in the r.h.s. of (3.7) after
multiplication by T ∗ is o(1) as q → 0. Moreover, the fact that Λ is (β, κ)-outstretched
implies that Λ + y is (β, κ+ 1)-outstretched for any y ∈ Vx,`. In particular, for all q small
enough depending only on ε, β, κ, and for any y ∈ Vx,`

λD(Λy) ≥ 2−(1+ε/2)φ(β;d)
θ2q
2 . (3.8)

Hence, as q → 0

T ∗ × (the second term in the r.h.s. of (3.7)) ≤ 22θ2
q+θq2

O(θ
3/2
q )

e−2εφ(β;d)
θ2q
4 = o(1).

We finally consider the third term in the r.h.s. of (3.6). In this case, for any t > T ∗

we apply (3.8) with ` = `t = t1/4d. Observe that for some y ∈ Vx,` the box Λy could
be extremely outstretched in some direction preventing us from using Proposition 3.6.
Hence we are forced to use the spectral gap bound (2.2)

min
y∈Vx,`

λD(Λy) ≥ 2−(1+ε)
θ2q
2
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to get that for any t ≥ T ∗

Pω(τx+xΛ > t) ≤ c′t`dt e−cqt
1/4d

+ eO(θq)t
1/4−t3/42−

θ2q
2

(1+ε)

≤ c′t5/4e−cqt
1/4d

+ e−t
3/42−

θ2q
2

(1+ε)/2.

It now suffices to observe that∫ +∞

T∗
dt
[
c′t5/4e−cqt

1/4d

+ e−t
3/42−

θ2q
2

(1+ε)/2
]

= o(1) as q → 0.

Proof of Lemma 3.8. Given ` ∈ N and x ∈ Zd+ let G(t, `), t > 0, be the event that there
exists z ∈ Vx,` such that

Tt(z) =

∫ t

0

ds 1{cz(ω(s))=1} > t/`d.

In other words z is unconstrained for a fraction `−d of the time t. When such a vertex
exists we will write ξ ∈ Vx,` for the smallest one in the lexicographical order. In [11,
Corollary 4.2] it has been proved that there exist constants c, c′ > 0 such that

sup
ω∈{ω:ωx=0}

Pω(G(t, `)c) ≤ c′t`de−cq`. (3.9)

Remark 3.10. If t is so large that Vx,`t coincides with the box of side lengths (x1, . . . , xd),
then the event G(t, `t)

c = ∅ because the origin is always unconstrained.

Thus, for any ω such that ωx = 0,

Pω(τx+Λ > t) ≤ c′t`de−cq` + Pω(τx+xΛ
> T (ε); G(x, `)).

Recall that Λy = {y1, . . . , x1 + L1} × · · · × {yd, . . . , xd + Ld} and let Fy,t be the σ-algebra
generated by the variables {ωz(s) : z ∈ ∂↓Λy, s ≤ t}. Notice that {cy(ω(s))}s≤t is
measurable w.r.t. Fy,t so that

Pω(τx+xΛ > t; G(x, `)) =
∑
y∈Vx,`

Pω(τx+xΛ > t; ξ = y)

= Eω(1{ξ=y}Pω(τx+xΛ
> t | Fy,t)).

The orientation of the East process implies that, conditionally on Fy,t, the event {τx+xΛ
>

t} coincides with the same event for the time-inhomogeneous East chain in ΩΛy with
deterministic, time-dependent boundary conditions on ∂↓Λy. We denote the law of the
latter chain with initial state ω �Λy by P̂ω(·). Thus,

Pω(τx+xΛ > t | Fy,t) = P̂ω(τx+xΛ > t)

≤ µ(ω �Λy )−1
∑
η∈ΩΛy

µ(η)P̂η(τx+xΛ
> t)

≤ 2θq|Λy|
∑
η∈ΩΛy

µ(η)P̂η(τx+xΛ
> t). (3.10)

Let now t0 ≡ 0 < t1 < t2 < · · · < tn < tn+1 ≡ t be the times at which the boundary
conditions on ∂↓Λy change and let σ(i) denote the boundary condition during the time
interval (ti−1, ti). Let also L̂(i) be the generator of the East chain on ΩΛy with boundary
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conditions σ(i) and let A(i) = 1AcL̂(i)1Ac be the generator L̂(i) with Dirichlet boundary
condition on A = {η ∈ ΩΛy : ηx+xΛ

= 0}. Then,∑
η∈ΩΛy

µΛy (η)P̂η(τx+xΛ
> t) = 〈1, et1A

(1)

× e(t2−t1)A(2)

× · · · × e(tn+1−tn)A(n+1)

1〉,

where 1(η) = 1 ∀η ∈ ΩΛy and 〈·, ·〉 denotes the scalar product in `2(ΩΛy , µΛy ). Let λi ≥ 0

be the smallest eigenvalue of −A(i). Clearly,

〈1, et1A
(1)

× e(t2−t1)A(2)

× · · · × e(tn+1−tn)A(n+1)

1〉 ≤ e−
∑n+1
i=1 (ti−ti−1)λi . (3.11)

If during the time interval (ti, ti+1) the constraint cy at the vertex y is zero then we
simply use λi ≥ 0. If instead cy = 1 we use monotonicity of λi in the boundary conditions

σ(i) to write λi ≥ λD(Λy). Thus, recalling that
∫ t

0
ds 1{cy=1} ≥ t`−d, we get

〈1, et1A
(1)

× e(t2−t1)A(2)

× · · · × e(tn+1−tn)A(n+1)

1〉

≤ e−λ
D(Λy)

∫ t
0
ds 1{cy=1} = e−t`

−dλD(Λy).

In conclusion,

Pω(τx+xΛ
> t; G(x, `)) ≤ 2θq|Λy|−t`

−dλD(Λy) ≤ 2θq(`+maxi Li)
d−t`−dλD(Λy)

and the statement of the lemma follows.

3.2 A bottleneck on scale 2
θq
d

Definition 3.11 (Legal updates and legal path). Consider Λ ⊆ Zd+ together with a
boundary condition σ for Λ if Λ 6= Zd+. Given ω ∈ ΩΛ and x ∈ Λ we say that the update
ω → ωx is σ-legal iff cΛ,σx (ω) = 1. A sequence (ω(1), . . . , ω(n)) of configurations in ΩΛ

such that ω(i+1) is obtained from ω(i) by means of a (non-trivial) σ-legal update will be
referred to as a σ-legal path in ΩΛ joining ω(1) to ω(n). When Λ = Zd+ and σ is missing
we will simply write legal update and legal path.

Before discussing the core of this section, we point out the following monotonicity
property of legal updates. Take two sets Λ ⊂ Λ′ ⊂ Zd+ together with two boundary
conditions σ, σ′ on ∂↓Λ and ∂↓Λ

′ respectively such that σx = 0 ∀x ∈ ∂↓Λ ∩ Λ′ and
σx ≤ σ′x ∀x ∈ ∂↓Λ ∩ ∂↓Λ′. Then any σ′-legal update inside Λ is also a σ-legal update.

Definition 3.12 (Bottleneck). Let ΛL = {0, . . . , L}d, and for x ∈ Zd+ \ ΛL let Vx,L =

(ΛL + x− xΛL) ∩Zd+. We say that A ⊂ ΩVx,L is an (x, L)-bottleneck if any legal path in Ω

joining Ex,L ≡ {ω ∈ Ω : ω �Vx,L= 1} with {ω : ωx = 0} hits {ω : ω �Vx,L∈ A}.
Proposition 3.13. In the setting of Definition 3.12 for any ε > 0 there exists q(ε) > 0

such that for q ≤ q(ε) the following holds. For any L ≤ 2θq/d and x ∈ Zd+ \ΛL there exists

a (x, L)-bottleneck A with µ(A) ≤ 2−(nθq−d(n2))(1−ε) where n := blog2(L)c.

Proof. Fix ε > 0, L ≤ 2θq/d and x ∈ Zd+ \ ΛL, and w.l.o.g. suppose that Vx,L ⊂ Zd+. The
case when this assumption fails follows immediately from the monotonicity property
of legal updates described above. Fix a legal path Γ = (ω(1), . . . , ω(k)) in Ω such that

ω(1) ∈ Ex,L and ω
(k)
x = 0. Finally, write ω

(j)
V for the restriction to Vx,L of ω(j) and let

1 ≤ j1 < j2 < · · · < jm ≤ k be those indices such that the legal update connecting
ω(ji) to ω(ji+1) occurs inside Vx,L. Let σmax denotes the maximal boundary condition

for Vx,L. Using the monotonicity of legal updates, the sequence Γ̂ = (ω
(j1)
V , . . . , ω

(jm)
V )

is a σmax-legal path in ΩVx,L connecting the configuration in ΩVx,L with no vacancies

to {ω ∈ ΩVx,L : ωx = 0}. The results of [12, Section 4] imply that Γ̂ must hit a fixed
subset A of ΩVx,L (called ∂A∗ there) whose equilibrium probability satisfies the required
bound.
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Corollary 3.14. In the same setting

max
ω∈Ex,L

Pω(τx < t) ≤ O(t)× 2−(nθq−d(n2))(1−ε).

Notice that for L = 2θq/d the r.h.s. above becomes equal to O(t)× 2−
θ2q
2d (1−ε).

Proof. We only give a quick sketch because the proof of similar statements has already
appeared elsewhere (see e.g. [10]). Fix L ≤ 2θq/d and x ∈ Zd+\ΛL. Using Proposition 3.13
there exists A ⊂ ΩVx,L such that

max
ω∈Ex,L

Pω(τx < t) ≤ max
ω∈Ex,L

Pω(τA ≤ t).

For a given ω ∈ ΩV cx,L write δω ⊗ µVx,L for the product measure on Ω whose marginals on

ΩV cx,L ⊗ΩVx,L are the Dirac mass at ω and µVx,L respectively. Using L ≤ 2θq/d we get that

µVx,L(ω �Vx,L= 1)−1 = O(1) as q → 0. Hence,

max
ω∈Ex,L

Pω(τA ≤ t) ≤ O(1)× max
ω∈ΩV c

x,L

Pδω⊗µVx,L (τA ≤ t)

≤ O(t Ld) max
ω∈ΩV c

x,L

sup
s≤t

Pδω⊗µVx,L (ω(s) �Vx,L∈ A).

It is easy to check (see [11, Section 3]) that µVx,L is stationary for the marginal on ΩVx,L
of the East process with initial distribution δω ⊗ µVx,L . Hence, the r.h.s. above is equal to

O(tLd)µ(A) ≤ O(t)2−(nθq−d(n2))(1−2ε) for q small enough depending on ε.

4 Proof of Theorems 1, 2, and 3

4.1 Proof of Theorem 1: (A)

In the sequel x ∈ Rd+ will denote a unit vector independent of q with mini xi > 0.

4.1.1 Lower bound on vmin(x)

Let ` = b2θ
3/2
q c and let x(n) = bn`xc, n ∈ N. We begin by proving that

lim sup
n→∞

Eω∗(τx(n))

n
≤ 2

θ2q
2d (1+o(1)) as q → 0. (4.1)

Clearly
τx(n+1) ≤ inf{s ≥ τx(n) : ωx(n+1)(s) = 0},

so that, using the strong Markov property,

Eω∗(τx(n+1)) ≤ Eω∗(τx(n)) + max
ω∈{ω:ω

x(n)=0}
Eω(τx(n+1)).

Let Li = x
(n+1)
i − (x

(n)
i + 1), i ∈ [d]. Clearly the box with sides length (L1, . . . , Ld) is

(0, κ)-outstretched with κ = maxi,j xi/xj + 1 and Lemma 3.7 implies that, uniformly in n,
for any ε > 0

max
ω∈{ω:ω

x(n)=0}
Eω(τx(n+1)) ≤ 2

θ2q
2d (1+ε), (4.2)

for any q sufficiently small depending on ε. Equation (4.1) now follows immediately.
In order to complete the proof of (A) we write

Eω∗(τnx) ≤ Eω∗(τx(bn/`c)) + max
ω∈{ω:ω

x(bn/`c)=0}
Eω(τnx).
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By using the arguments entering into the proof of Lemma 3.7 it is easy to see that
supn maxω∈{ω:ω

x(bn/`c)=0}Eω(τnx) < +∞. Therefore

lim sup
n→∞

Eω∗(τnx)

n
≤ `−12

θ2q
2d (1+o(1)) = 2

θ2q
2d (1+o(1)),

because of the choice of `. In conclusion we have proved that vmin(x) ≥ 2−
θ2q
2d (1+o(1)) as

q → 0.

4.1.2 Upper bound on vmax(x)

For any y ∈ Zd+ and n ≤ ‖y‖1 let Hy,n = {z : z ≺ y, ‖y − z‖1 ≤ n}. Fix now y ∈ Zd+ with
‖y‖1 ≥ `q = b2θq/dc and observe that if the starting configuration of the East process on
Zd+ is ω∗, then τ∂↓Hy,`q < τy a.s. Hence, for all λ > 0 the strong Markov property gives

Eω∗(e
−λτy ) = Eω∗

(
e
−λτ∂↓Hy,`qEωτ∂↓Hy,`q

(e−λτy )
)

≤W (λ)
∑

z∈∂↓Hy,`q

Eω∗(e
−λτz ), (4.3)

where W (λ) := supz: ‖z‖≥` maxω∈{ω:ω�Hz,`q=1}Eω(e−λτz ). Using |∂↓Wy,`q | ≤ O(`d−1) we

can iterate (4.3) to get that

Eω∗(e
−λτy ) ≤

(
O(`d−1)W (λ)

)b‖y‖1/`c
.

Claim 4.1. For any ε > 0 sufficiently small let T (ε) = 2
θ2q
2d (1−ε) and choose λ = λ(ε, q) =

εθ2
qT (ε)−1. Then W (λ(ε, q)) ≤ e−Ω(εθ2

q) as q → 0.

Proof of the claim. Using Corollary 3.14, for any z with ‖z‖1 ≥ `q and any q small enough
depending on ε, we get

max
ω∈{ω:ω�Hz,`q=1}

Eω(e−λτz ) ≤ e−λT (ε) + max
ω∈{ω:ω�Hz,`q=1}

Pω(τz ≤ T (ε))

≤ e−εθ
2
q +O(T (ε))2−

θ2q
2d (1−ε/2) = e−Ω(εθ2

q).

Using e−λEω∗ (τy) ≤ Eω∗(e−λτy ) and choosing λ as in the claim, we finally obtain

Eω∗(τy) ≥ Ω
(
2
θ2q
2d (1−ε))b2−θq/d‖y‖1c. (4.4)

In particular, (4.4) implies that vmax(x) ≤ 2−
θ2q
2d (1−o(1)) as q → 0.

Remark 4.2. Exactly the same proof applies to get the following result. For any ε > 0

there exists q(ε) > 0 and c(ε) > 0 such that the following holds for q ≤ q(ε). For any
y ∈ Zd+ and n ≤ ‖y‖1

max
ω:ω�H(y,n)=1

Pω(τy ≤ nT (ε)) ≤ e−cεθ
2
qbn2−

θq
d c.
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4.2 Proof of Theorem 1: (B)

The proof is identical to that of Section 4.1 with the following modification. The box Λ

with side lengths Li = x
(n+1)
i − (x

(n)
i + 1), i ∈ [d], is now (β, κ+ 1)-outstretched because

of the assumption on the direction x = x(q). Using again Lemma 3.7 we get the analogue
of (4.2):

max
ω∈{ω:ω

x(n)=0}
Eω(τx(n+1)) ≤ 2φ(β;d)

θ2q
2 (1+ε). (4.5)

The rest of the argument remains unchanged and the conclusion is that

lim sup
n→∞

Eω∗(τnx)

n
≤ `−12φ(β;d)

θ2q
2 (1+ε),

i.e.

lim sup
q→0

− 1

θ2
q

log2(vmin(x)) ≤ φ(β; d)

2
<

1

2

because φ(β; d) < 1 if β ∈ [0, 1).

4.3 Proof of Theorem 1: (C)

Fix a q-dependent unit vector x ∈ R2
+ such that 0 < x2 ≤ x12−θ

2
qα with α > 0. In

order to track how a vacancy can propagate from the origin to the vertex bnxc ∈ Z2
+ we

introduce the following construction.
Let 0 < ε � 1 and let L = L(ε, α, q) = b2θ

2
qα(1−ε/2)c. W.l.o.g. we assume that q is so

small that L� 2θq .

h(y) y

Figure 2: Example for a set Uy (the gray region). The red vertices denote ∂↓Uy.

Definition 4.3. For y = (y1, y2) ∈ Z2
+ such that 1 ≤ y2 ≤ 2−θ

2
qα y1 let By,L ⊂ Z2 be the

box of side lengths (L,L) and upper-right corner at y and let (see Figure 2)

Uy =
(
By,L \ ∪Li=b1/qc+1{y − ie

(1)}
)
∩Z2

+.

Let also h(y) := y − (b1/qc+ 1)e(1) and note that h(y) ∈ ∂↓Uy.
If the starting configuration of the East process on Z2

+ is ω∗, then τ∂↓Uy < τUy < τy.
This observation justifies the following definition. In the sequel {ωt}t≥0 denotes the East
process in Z2

+ with ω0 = ω∗.

Definition 4.4 (Infection sequence for y). Let ξ(0) = y and define recursively ξ(i) as the
unique vertex z ∈ ∂↓Uξ(i−1) such that ωτ∂↓Uξ(i−1)

(z) = 0. We also let ν := inf{i ∈ N : 0 ∈

Uξ(i)} and call the random sequence ξ(y) = {ξ(i)}i∈[ν] the infection sequence for y. The
collection of all possible infection sequences is denoted by S(y). Given v = {v(i)}i ∈ S(y)

we say that v(i) is good if v(i+1) = h(v(i)) and bad otherwise.

Remark 4.5. By construction any possible infection sequence v is such that ‖v(i) −
v(i+1)‖1 ≥ b1/qc.
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Lemma 4.6. For any q small enough, any infection sequence in S(y) contains at most y2

bad points and at least by1
q
2c good points.

Proof. Given an infection sequence v let ng be the number of its good points and observe

that if v(i) is bad then v(i+1)
2 < v

(i)
2 and v(i)

1 − v
(i+1)
1 ≤ L. Hence, (n− ng) ≤ y2 and

(n− ng)L+ ng/q ≥ y1 − L,

i.e. ng ≥ q(y1 −L(1 + y2)). In particular, if 1 ≤ y2 ≤ 2−θ
2
qαy1 then ng ≥ by1q/2c for q small

enough.

For any y ∈ Zd+ let ny = by1
q
2c and for any given v ∈ S(y) let (w(1), w(2), . . . , w(ny)) be

the collection of the first ny good points of v ordered from the last one to the first one.
By construction, for all k, w(k−1) ≺ h(w(k)). Using Definition 4.4, the event {ξ(y) = v}
implies the event

Gv := ∩k{τU
w(k)

= τh(w(k)); τh(w(k)) ≥ τw(k−1)},

and τy ≥
∑
k(τw(k) − τh(w(k))). Therefore, for all λ > 0 the definition of the event Gv

together with a repeated use of the strong Markov property implies that

e−λEω∗ (τy) ≤ Eω∗(e−λτy ) ≤
∑

v∈S(y)

Eω∗(1Gve
−λ

∑ny
k=1(τ

w(k)−τh(w(k))
)
)

≤ |S(y)|max
v
Eω∗

(
1Gv

ny∏
k=1

e
−λ(τ

w(k)−τh(w(k))
))

≤ |S(y)|F (λ)ny , (4.6)

where |S(y)| denotes the cardinality of S(y) and

F (λ) := max
z∈Z2

+:h(z)∈Z2
+

max
ω: ω(h(z))=0, ω�Uz=1

Eω
(
e−λτz

)
. (4.7)

The next two lemmas provide the necessary bounds on |S(y)| and F (λ).

Lemma 4.7. For any y ∈ Z2
+ with 1 ≤ y2 < y12−αθ

2
q as q → 0, we have

|S(y)| ≤
(
y1/y2

)O(y2)
. (4.8)

Proof. Recall that a good point of an infection sequence specifies uniquely the next point
of the sequence. Hence, we can reconstruct the full infection sequence by specifying
which points are bad together with their relative position w.r.t. the previous point. Using
Remark 4.5 together with ny = by1

q
2c, it also follows that the length n of any infection

sequence satisfies n ∈ [ny, q(y1 + y2)]. Thus for q small enough

|S(y)| ≤
dq(y1+y2)e∑
n=ny

y2∑
m=0

(
n

m

)
(2L)

m ≤
dq(y1+y2)e∑
n=ny

(
n

y2

)
(y2 + 1)(2L)y2

≤ eO(θ2
q)y2 ×O(q)y1 ×

(
dq(y1 + y2)e

y2

)
≤
(
y1/y2

)O(y2)
.

Lemma 4.8. Fix 0 < ε � 1 and let Tα = Tα(ε, q) = 2
θ2q
4 ((1+4α)∧2)(1−2ε). Then for any q

sufficiently small and any λ > 0

F (λ) ≤ e−λTα + 2−Ω(ε)θ2
q .

EJP 27 (2022), paper 143.
Page 15/30

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP870
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


East model front evolution

Proof. Fix z ∈ Z2
+ such that h(z) ∈ Z2

+ together with ω such that ω(h(z)) = 0 and
ω �Uz= 1. Let also A := {h(z) + e(1) − e(2), h(z) + 2e(1) − e(2), . . . , z − e(2)}. Then,

Eω(e−λτz ) ≤ e−λTα + Pω(τz < Tα)

≤ e−λTα + Pω({τz < Tα} ∩ {τA > Tα}) + Pω(τA ≤ Tα)

≤ e−λTα + Pω({τz < Tα} ∩ {τA > Tα}) +
∑
a∈A

Pω(τa ≤ Tα).

Let FTα be the σ-algebra generated by the variables ωz(s), s ∈ [0, Tα] where z ∈ {a ∈
Z2

+ : a ≺ h(z)} ∪ {a ∈ Z2
+ : a ≺ b for some b ∈ A}. Clearly {τA > Tα} ∈ FTα . Moreover,

conditionally on FTα and on the event {τA > Tα}, the East process on A+ e(2) coincides
up to time Tα with the one-dimensional East chain on A + e(2) with a boundary value
at {ωh(w)(s)}s≤T which is measurable w.r.t. FTα . We can then apply Corollary 3.14 with
d = 1 and n = bθqc to obtain:

Pω({τz < Tα} ∩ {τA > Tα}) ≤ O(Tα)2−
θ2q
2 (1−ε)

= O
(
2−

θ2q
4 ((2−(1+4α)∧2)(1−2ε)+2ε)

)
≤ 2−Ω(ε)θ2

q . (4.9)

Let nA = mina∈A minz′≺a, z′ /∈Uz ‖a− z′‖1, and observe that ∃ ε(α) > 0 such that ∀ ε ≤ ε(α)

and all q small enough depending on ε, Tα ≤ nA 2
θ2q
4 (1−ε). We can then use Remark 4.2 to

get that ∑
a∈A

max
ω: ω�Uz=1

Pω(τa ≤ Tα) ≤ e−Ω(εθ2
qbnA2−

θq
2 c) ≤ 2−Ω(ε)θ2

q ,

because nA ≥ L− 2θq � 2θq/2.

We can now conclude the proof. By combining the two lemmas above and choosing
λ = λα(q) = T−1

α εθ2
q , we get from (4.6) that

e−λEω∗ (τy) ≤ |S(y)|F (λ)ny ≤
(
y1/y2

)O(y2)
e−Ω(ε)θ2

qny ,

where we recall that ny := by1
q
2c. If y = bnxc with x such that 0 < x2 ≤ x12−θ

2
qα, the

above inequality implies

Eω∗(τbnxc) ≥ Ω(q Tα)× n as n→∞.

In particular vmax(x) ≤ 2−
θ2q
4 ((1+4α)∧2)(1−o(1)).

4.4 Proof of Theorem 2

We begin with the case δ = 0.

Recall Remark 1.2 and that vmin(e(i)) = vmax(e(i)) = 2−
θ2q
2 (1+o(1)) ∀ i ∈ [d]. Take

0 < ε � 1 and let xt = b2−
θ2q
2d (1+ε) tc e(1), t � 0. By construction xt ∈ Λ(δ = 0, ε, t). Let

also
At = {ω : ∃ y ∈ {xt − b22θqce(1), . . . , xt} such that ωy(t) = 0},

and use
‖νδ,εt − µΛ(δ,ε,t)‖TV ≥ |µ(At)− νδ,εt (At)|.

For any t large enough µ(At) = 1−e−Ω(2θq ), while Remark 4.2 gives lim supt→∞ νδ,εt (At) =

0. Hence,
lim inf
q→0

lim inf
t→∞

‖νδ,εt − µΛ(δ,ε,t)‖TV = 1.
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We now consider the case 0 < δ < 1.
Fix 0 < ε � 1 and observe (see [11, Lemma 5.5]) that equilibrium in the region

Λ(δ, ε, t) is achieved very rapidly, within a time O(log(|Λ(δ, ε, t)|)4d), if the initial config-
uration has a vacancy in every interval of Λ(δ, ε, t) parallel to a coordinate direction
and containing O((log(|Λ(δ, ε, t)|)2) vertices. Hence, if the above condition is satisfied
by the East process at time t/2 then at time t the measure νδ,εt will be very close
to µΛ(δ,ε,t) in the total variation distance. The second observation (cf. [11, Lemma
5.3]) is the following. Recall that τx is the first time a vacancy appears at x. Then
the above requirement for the East process at time t/2 will be fulfilled with w.h.p. if
τx ≤ t/2−O((log(|Λ(δ, ε, t)|)2) ∀x ∈ Λ(δ, ε, t).

A more precise formulation of the above two steps is as follows. For any t large
enough depending on q, δ, ε

‖µΛ(δ,ε,t) − νδ,εt ‖TV ≤ ε+
∑

x∈Λ(δ,ε,t)

Pω∗(τx > t/3). (4.10)

We decided to skip the proof of (4.10) as it follows very closely the proofs of Lemma 5.3.
and 5.5 of [11]. The proof of the theorem then boils down to proving that the second
term in the r.h.s. of (4.10) vanishes as t → ∞. For future needs we actually prove a
slightly stronger result.

Lemma 4.9. For any δ, ε in (0, 1) there exists q(δ, ε) > 0 such that for any q ≤ q(δ, ε) and
all t large enough

sup
y∈Zd+

∑
x∈Λ(δ,ε,t)+y

sup
ω: cy(ω)=1

Pω
(
τx > t/3) ≤ e−Ω

(
2−(1+ε/2)

θ2q
2d log2(t)

)
. (4.11)

Proof of the lemma. Fix y ∈ Zd+ together with ω such that cy(ω) = 1. In the sequel all
estimates will be uniform in y, ω. Fix x ∈ Λ(δ, ε, t) + y and let x = (x − y)/|x − y| be
the associated unit vector in Rd+. Clearly the components of x satisfy mini,j xi/xj ≥ δ.

Let `q = 2θ
3/2
q , let nx = b|x − y|/`qc, and define the sequence of vertices {x(n)}nx+1

n=0 by
x(n) = bn`qxc if 0 ≤ n ≤ nx and x(nx+1) = x. By construction |x(n+1) − x(n)| ≤ `q + 1, and
∃κ(δ) ≥ 1, q(δ) < 1 such that ∀ q ≤ q(δ)

max
0≤n≤nx

max
i,j

(x(n+1) − x(n))i
(x(n+1) − x(n))j

≤ κ(δ).

For the East process with initial condition ω recursively define

τ (0) = inf{s ≥ 0, ωx(0)(s) = 0}, τ (n) = inf{s ≥ τ (n−1) : ωx(n)(s) = 0},

and set ∆n = τ (n) − τ (n−1). Finally, let M = log(t)5d × 2
θ2q
2d (1+ε/2). Using τx ≤

∑nx+1
n=1 ∆n

we write

Pω
(
τx ≥ t/3

)
≤ Pω

( nx+1∑
n=1

∆n1{∆n≤M} ≥ t/3
)

+

nx+1∑
n=1

sup
ω:ω

x(n−1)=0
Pω
(
∆n ≥M

)
. (4.12)

In order to bound from above the second term in (4.12) we apply Lemma 3.8 to x = x(n−1),
Λ the box with sides Li = x

(n)
i − x(n−1)

i , t = M , and ` = `t = log2(t) to get

sup
ω:ω

x(n−1)=0
Pω
(
∆n ≥M

)
≤ c′M`dt e

−cq`t + 2θq(`t+`q+1)d−M`−dt 2−
θ2q
2

(1+ε)

.
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Using M`−dt = Ω(log(t)3d) as t→ +∞, for any t large enough depending on q the second
term in the r.h.s. of (4.12) satisfies

nx+1∑
n=1

sup
ω:ω

x(n−1)=0
Pω
(
∆n ≥M

)
≤ e−Ω(q log2(t)). (4.13)

We now tackle the first term in the r.h.s. of (4.12) via the exponential Chebyshev inequal-

ity with λ = 2−
θ2q
2d (1+ε/2) log2(t)/t. Using the strong Markov property and λM ≤ 1 for any

large enough t we obtain

Pω
( nx+1∑
n=1

∆n1{∆n≤M} ≥ t/3
)
≤ e−λt/3 × Eω

( nx+1∏
n=1

eλ∆n1{∆n≤M}
)

≤ e−λt/3 ×
(

sup
n

sup
ω:ω

x(n−1)=0

Eω
(
eλ∆n1{∆n≤M}

))nx+1

≤ e−λt/3 ×
(

1 + eλ sup
n

sup
ω:ω

x(n−1)=0
Eω
(
∆n

))nx+1

,

where we used ea ≤ 1 + ea, ∀ 0 ≤ a ≤ 1 in the last inequality. We can finally appeal to
Lemma 3.7 to get that for all q small enough depending on δ, ε

1 + eλ sup
n

sup
ω:ω

x(n−1)=0
Eω
(
∆n

)
≤ 1 + eλ 2(1+ε/2)

θ2q
2d ≤ ee log2(t)/t.

In conclusion,

Pω
( nx+1∑
n=1

∆n1{∆n≤M} ≥ t/3
)
≤ e−λt/3+e(nx+1) log2(t)/t ≤ e−λt/6, (4.14)

where we used (nx + 1) ≤ |x− y|+ 1 ≤ t 2−
θ2q
2d (1+ε) + 1 to obtain the last inequality for q

small enough depending on ε. The claim of the lemma now follows from (4.12), (4.13)
and (4.14).

4.5 Proof of Theorem 3

Using Remark 1.2 d(t) ≥ d̄(t), where d̄(t) is defined as d(t) but for the one dimensional
East chain on {0, . . . , n}. Hence (2.5) follows directly from the cutoff result for the latter
chain (see [16, Theorem 2]). We now turn to the proof of (2.6).

Let wn = n2/3 and let T̂n = Tn + wn/2. As in the proof of Theorem 2 (see (4.10)
and the explanation immediately before) the following can be proved by following very
closely the proof of Lemma 5.3 and Lemma 5.5 of [11].

Lemma 4.10. For any q ∈ (0, 1)

lim sup
n→∞

d(Tn + wn) ≤ lim sup
n→∞

max
ω∈ΩΛn

Pω(∃x ∈ Λn : τx ≥ T̂n). (4.15)

We will now prove that for q small enough

lim sup
n→∞

max
ω∈ΩΛn

∑
x∈Λn

Pω(τx ≥ T̂n) = 0. (4.16)

We will give the full details for d = 2 and only sketch the additional steps needed for
d ≥ 3. In the sequel ε will be a small positive constant, q will be assumed to be sufficiently
small depending on ε, and c(q) will denote a positive constant depending on q whose
value may change from line to line.
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The intuition behind (4.16) is as follows. Fix x ∈ Λn and w.l.o.g. suppose that
x1 = max(x1, x2). Then the infection time τx should be dominated by the sum of the
infection time of the vertex x′ = (x1−x2, 0) plus the infection time of x starting from ωτx′ .
Using [16, Theorem 2] the first time is, with great accuracy, (x1 − x2)/v, while part (A)
of Theorem 1 suggests that w.h.p. the second time is O

(
x2/vmin(ê)

)
where ê = ( 1√

2
, 1√

2
).

Hence, we expect τx to satisfy w.h.p.

τx . (x1 − x2)/v + x2/vmin(ê) . n/v ∀x ∈ Λn,

because vmin(ê) � v for q small enough. In other words, the time needed to infect all
vertices of Λn should be dominated by the time needed to infect at least once all vertices
of the form x = (j, 0) or x = (0, j), j ∈ {0, . . . , n}. In turn, using the one dimensional
cutoff result, the latter time is smaller than T̂n w.h.p.

We will now detail the intuition above. We cover Λn with two regions:

Λ(1)
n = {x ∈ Λn : max

i
xi ≤ log(n)4},

Λ(2)
n = {x ∈ Λn : max

i
xi ≥ log(n)4},

and we will prove that

lim sup
n→∞

max
ω∈ΩΛn

∑
x∈Λ

(i)
n

Pω(τx ≥ T̂n) = 0, ∀ i ∈ [2]. (4.17)

(i = 1) W.l.o.g. fix x ∈ Λ
(1)
n with x2 ≤ x1 and write x̂ for the vertex (x1, 0). Using the

strong Markov property we get

max
ω
Pω(τx ≥ T̂n) ≤ max

ω
Pω(τx̂ ≥ T̂n − wn/4) + max

ω:ωx̂=0
Pω(τx > wn/4).

Using once again [16, Theorem 2]

lim sup
n→∞

∑
x∈Λ

(1)
n

max
ω
Pω(τx̂ ≥ T̂n − wn/4) = 0.

Notice that ‖x− x̂‖1 = 2x2 ≤ log(n)4 � w
3/8
n . Hence, the term maxω:ωx̂=0Pω(τx >

wn/4) can be bounded from above by applying Lemma 3.8 with Λ = {0} × {x2}, the

vertex x equal to x̂, t = wn/4 and e.g. ` = w
1/4
n . Using (3.7) for any n large enough

we get

max
ω:ωx̂=0

Pω(τx > wn/4) ≤ e−c(q)w
1/4
n ,

so that
lim sup
n→∞

∑
x∈Λ

(1)
n

max
ω:ωx̂=0

Pω(τx > wn/4) = 0.

(i = 2) Fix x ∈ Λ
(2)
n with e.g. x2 ≤ x1 and x1 ≥ log(n)4. We can assume further that

x2/x1 ≤ 1/2 since otherwise maxω Pω(τx ≥ T̂n) could be bounded from above using
Lemma 4.9 to get maxω P(τx ≥ T̂n) ≤ e−c(q) log(n)2

. If x2 = 0 we can simply apply

[16, Theorem 2] to get maxω P(τx ≥ T̂n) ≤ e−c(q)n
1/3

for some constant c(q) > 0.
Otherwise, let φ(x) = x1 − x2 and set now x̂ = (φ(x) − 1, 0). By construction, the
direction of the vector x − (x̂ + e(1)) is the ( 1√

2
, 1√

2
)-direction. Let also ϕn(x) =

max
(φ(x)

v + φ(x)2/3

4 , wn/5
)
. As in the previous step we write

max
ω
Pω
(
τx ≥ T̂n

)
≤ max

ω
Pω
(
τx̂ ≥ ϕn(x)

)
+ max
ω:ωx̂=0

Pω
(
τx > T̂n − ϕn(x)

)
. (4.18)
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Using [16, Theorem 2]) applied to the interval {0, . . . , φ(x)} we get that the first

term in the r.h.s. of (4.18) is bounded from above by e−c(q)w
1/3
n for large n, so that

lim sup
n→∞

∑
x∈Λ

(3)
n

max
ω
Pω
(
τx̂ ≥ ϕn(x)

)
= 0.

For the second term in the r.h.s. of (4.18) we crucially observe that

T̂n − ϕn(x) ≥

{
wn
4 + x2

v if φ(x)
v + φ(x)2/3

4 ≥ wn/5,

Tn + 3
10wn otherwise.

In both cases, using v ≤ 2−
θ2q
2 (1−ε), we get that T̂n − ϕn(x) � 2

θ2q
4 (1+ε)‖x − x̂‖1.

Hence, we can apply Lemma 4.9 with y = x̂+ e(1), δ = 1
3 , and t = 3

(
T̂n − ϕn(x)

)
to

get that

max
ω:ωx̂=0

Pω
(
τx > T̂n − ϕn(x)

)
≤ e−Ω

(
2−(1+ε/2)

θ2q
4 log2(T̂n−ϕn(x)

)
≤ e−c(q) log(wn)2

.

In conclusion
lim sup
n→∞

∑
x∈Λ

(2)
n

max
ω:ωx̂=0

Pω
(
τx > T̂n − ϕn(x)

)
= 0.

We will now briefly discuss the proof of (4.16) when d ≥ 3. The proof of (4.17) for
i = 1 does not change. The proof for i = 2 needs instead a few changes.

Fix x ∈ Λ
(2)
n and w.l.o.g. assume that 1 ≤ xd ≤ xd−1 ≤ · · · ≤ x1. For k ∈ [d− 1] define

recursively

x̂(0) = x, x̂(k) = x̂(k−1) − x̂(k−1)
d−k+1

d−k+1∑
j=1

e(j),

so that x̂(k)
j = xj − xd−k+1 if j < d − k + 1 and x̂

(k)
j = 0 otherwise. Notice that the

direction vector w(k) corresponding to each x(k−1) − x(k) when the latter is non-zero has
the form w(k) =

∑d−k+1
j=1 e(j). Hence, using Remark 1.2 and part (A) of Theorem 1, the

corresponding minimal velocity vmin(w(k)) satisfies vmin(w(k)) ≥ 2−
θ2q
4 (1+o(1)) � v. Let

also

ϕ(k−1)
n (x) =

max
(
2
θ2q
4 (1+ε)‖x(k−1) − x(k)‖1, wn5d

)
if k ≤ d− 1,

max
(x(d−1)

1

v +
(x

(d−1)
1 )2/3

4 , wn5d

)
if k = d.

Using v � 2−
θ2q
4 (1+o(1)) for q small enough, it is easy to check that

d∑
k=1

ϕ(k−1)
n (x) ≤ 9

20
wn +

x1

v
≤ T̂n.

Hence, by setting recursively σd = 0 and σk−1 = inf{t > σk, ωx(k−1)(t) = 0}, we get

max
ω
Pω
(
τx ≥ T̂n

)
≤ max

ω
Pω
(
∃k : σk−1 − σk ≥ ϕ(k−1)

n (x)
)

≤
∑
k

max
ω:ω

x(k)=0
Pω
(
σk−1 − σk ≥ ϕ(k−1)

n (x)
)
.

As in the d = 2 case, we apply Lemma 4.9 to each term in the above sum with k < d− 1

and [16, Theorem 2]) to the term k = d− 1 to conclude that the r.h.s. above is smaller
than e−c(q) log(n)2

.
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5 Proof of Proposition 3.6

5.1 Proof of (i)

We proceed in two steps: we first prove that φ(0; d) ≥ 1/d using a bottleneck argument
and then, inspired by [12], that φ(0; d) ≤ 1/d.

The lower bound Let Λ be the equilateral box of side length b2θq/dc and let Λ ⊃ V ⊃
{0, xΛ} be such that γ(V ) > 0.

Claim 5.1. For any ε > 0 there exists q(ε) > 0 such that for any q ≤ q(ε)

γ(V ) ≤ 2−(1−ε)
θ2q
2d .

Proof. Let A∗ ⊂ ΩΛ be the event defined in [12, Definition 4.3] and let AV = {ω ∈ ΩV :

1V c · ω ∈ A∗}, where 1V c denotes the configuration in ΩV c identically equal to one. As
observed in [12, Remark 4.4] 1V /∈ AV while the configuration with exactly one vacancy
at xΛ belongs to AV . Therefore, Var

(
1AV

)
≥ (1 − q)2|V |−1q = Θ(q) because |V | ≤ 1/q.

Next we bound the Dirichlet form of 1AV . Let ∂AV consists of those elements of AV
which are connected to AcV via a legal update for the East chain on V . Then

DV (1AV ) ≤ |Λ|µV (∂AV ) ≤ |Λ|µV c(1V c)−1µΛ(∂A∗) ≤ 2−(1−o(1))
θ2q
2d ,

where we used [12, Section 4.3]. The claim now follows from the variational characteri-
zation of the spectral gap γ(V ).

Since the box Λ is (0, 1; θq)-outstretched, the claim implies that if λ ∼ H(0) then
λ ≥ 1/d. Hence φ(0; d) ≥ 1/d.

The upper bound The proof that φ(0; d) ≤ 1/d requires a bootstrap procedure like the
one introduced in [12]. The base case is Lemma A.2 which gives that λ = 1 ∼ H(0). We
then prove the recursive step, namely that λ ∼ H(0) implies F (λ) ∼ H(0), where

F (λ) = ((2d− 1)λ− 1)/(d2λ− 1) < λ ∀λ ∈ [1/d, 1]. (5.1)

Since the mapping F has an attractive fixed point in 1/d, the sought claim follows by
iteration.

Proof of the recursive step We find it easier to work with equilateral boxes, i.e.
(0, 1; θq)-outstretched boxes. For this purpose we first introduce a new condition, equiv-
alent to H(0), which only requires a check on the spectral gap of suitable subsets of
equilateral boxes.

Definition 5.2. We say that λ ∼ H′(0) if ∀ ε > 0 there exists q(ε) > 0 such that ∀ q ≤ q(ε)

and for any equilateral box Λ there exists Λ ⊃ V ⊃ {0, xΛ} such that γ(V ) ≥ 2−λ(1+ε)
θ2q
2 .

Lemma 5.3. λ ∼ H′(0) iff λ ∼ H(0).

The proof of the lemma is postponed to the appendix. Next, motivated by [12,
Definition 5.2], we construct three useful auxiliary Markov chains. The first one, dubbed
the *East chain, is a natural generalisation of the East chain when the single site state
space is a general finite set and not just the set {0, 1}. The other two chains, dubbed
the Knight Chain and *Knight Chain respectively, require a somewhat more involved
geometric setting.
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Definition 5.4 (The *East chain). Let q∗ ∈ (0, 1) and let {Ω∗x, µ∗x}x∈Zd+ be a family of finite

probability spaces. For each x ∈ Zd+ let G∗x ⊂ Ω∗x be an event such that µ∗x(G∗x) = q∗. In
the sequel we will refer to G∗x as the facilitating event at x. Let V ⊂ Zd+ be a finite subset
that contains the origin. Then the ∗East chain on Ω∗V := ⊗x∈V Ω∗x is the continuous time
Markov chain, reversible w.r.t. µ∗V = ⊗x∈V µ∗x, evolving as follows. With rate one and
independently across V the chain attempts to update its current state ωx at any given
vertex x ∈ V by proposing a new state ωnew

x sampled from µ∗x. The attempt is successful,
i.e. the proposal is accepted iff the constraint c∗x(ω) = 1 where

c∗x(ω) =

{
1 if x = 0 or ∃ e ∈ B such that x− e ∈ V and ωx−e ∈ G∗x−e,
0 else.

Remark 5.5. If for all x the probability space {Ω∗x, µ∗x} and the facilitating event Gx
coincide with the two points space {{0, 1},Bernoulli(p)} and with the event ωx = 0

respectively, then the *East chain coincides with the standard East chain discussed so
far. However, as we will see in the proof of Proposition 5.10, in a natural renormalisation
procedure in which Zd+ is partitioned into equal disjoint blocks indexed by x ∈ Zd+ and
the 0/1 variables associated to the vertices of each “block” are treated together as a
single block-variable, the natural choice for the pair

(
Ω∗x, µ

∗
x

)
is the probability state

space
(
{0, 1}Bx ,⊗i∈Bxµi

)
. In this case the natural candidate for the facilitating event Gx

is the event that inside the block Bx there is at least one vacancy.

As in [12, Proposition 3.4] it is possible to prove that the spectral gap γ∗(V ) of the
∗East chain in V coincides with the spectral gap γ(V ; q∗) of the standard East chain with
vacancy density q∗.

The construction of the Knight chain and *Knight chain requires first the construction
of the Knight graph (see Fig. 3).
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• •
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ΛK

xΛK

(B)

Φ

(C)

Φ(xΛK )

Φ(ΛK)

Figure 3: (A) A piece of the Knight graph (the black dots and the Knight edges) for d = 2.
The gray triangle corresponds to the enlargement Ex of x. (B) The graph of the largest
Knight equilateral box ΛK of side length 4 inside an equilateral box of side length 13. (C)
Under the natural isomorphism Φ the graph ΛK becomes an equilateral box.

Definition 5.6 (The Knight graph). Given two vertices x, y ∈ Zd we say that they form
a Knight edge if there exists j ∈ [d] such that yi = xi − 1 for all i 6= j and yj = xj − 2

or vice versa. We then consider the unique graph G = (W,E),W ⊂ Zd, constructed as
follows. The vertex set W contains the origin and those x ∈ Zd which are connected to
the origin via a path of Knight edges. The edge set E consists of all the Knight edges of

EJP 27 (2022), paper 143.
Page 22/30

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP870
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


East model front evolution

W ×W . It is easy to see that G is isomorphic to Zd via the natural isomorphism Φ which
is unique if we set Φ(0) = 0.

The graph G will inherit the notation used so far for Zd via the isomorphism Φ. We
write W+ = Φ−1(Zd+) and we say that ΛK ⊂ W+ is a Knight equilateral box containing
the origin if Φ(ΛK) is an equilateral box in Zd+ containing the origin. In the latter
case we write xΛK ∈ ΛK for the vertex Φ−1(xΦ(ΛK)). Notice that ∃ c > 0 such that for
any equilateral box Λ ⊂ Zd+ containing the origin there exists a Knight equilateral box
Λ ⊃ ΛK 3 0 such that ‖xΛ − xΛK‖1 ≤ c.

Recall that ‖z − z′‖1 = d + 1 ∀z, z′ ∈ W connected by a Knight edge and ∀x ∈ W
let Ex = {y ∈ W c : y � x, ‖x − y‖1 ≤ d} be the enlargement of x (see Figure 3). The
enlargement of a subset V K of the Knight graph W is the set EV K = ∪x∈V KEx.

We are now ready to define the Knight and *Knight chains. As in Definition 5.4 we
assume that we are given q∗ ∈ (0, 1), a family {Ω∗x, µ∗x}x∈Zd+ of finite probability spaces

and a facilitating event G∗x ⊂ Ω∗x for each x ∈ Zd+.

Definition 5.7 (The Knight chain ). Given an equilateral box Λ ⊂ Zd+ with origin at 0 and
V ⊂ Λ containing the origin, let V K := Φ−1(V ). Then the Knight chain on Ω∗V K is the
image under Φ−1 of the ∗East chain on Ω∗V .

Definition 5.8 (The *Knight chain). Given an equilateral box Λ ⊂ Zd+ with origin at 0

and V ⊂ Λ containing the origin the *Knight chain on Ω∗EV K∩Λ is the continuous time
Markov chain evolving as follows. At any legal update at z ∈ V K of the Knight chain on
Ω∗V K the whole configuration in Ez ∩ Λ is resampled from µ∗Ez∩Λ.

It is immediate to verify that the *Knight chain is reversible w.r.t. µ∗EV K∩Λ with a
positive spectral gap γ∗K(EV K ∩ Λ). In the appendix will prove the following result:

Lemma 5.9. γ∗K(EV K ∩ Λ) = γ(V ; q∗).

We can finally state the main result of this section.

Proposition 5.10. Fix λ ∈ (1/d, 1] and let F (·) be the mapping in (5.1). Then λ ∼ H′(0)

implies that F (λ) ∼ H′(0).

Proof. Let λ ∈ (1/d, 1] with λ ∼ H′(0) and let Λ ⊂ Zd+ be an equilateral box with side
length L. Using a suitable λ-dependent *Knight chain, we will now construct a set V ⊂ Λ

such that γ(V ) ≥ 2−F (λ)
θ2q∗
2 (1+ε).

Let ` = b2mθqc, where m = (dλ− 1)/(d2λ− 1) and observe that ` ≤ 2θq/d. If L ≤ ` we
can use Lemma A.2 to get that

γ(Λ) ≥ 2−(m−m2/2)θ2
q(1+o(1)) ≥ 2−F (λ)

θ2q
2 (1+o(1)).

In this case we simply choose V = Λ. If instead L > ` we proceed as follows.

Let B0 be the equilateral box with side length `, let ΛB := {0, . . . , bL/`c}d and for
j ∈ Zd+ let Bj = B0 + j`. Thus ∪j∈ΛBBj ⊂ Λ and minx∈BjΛB

‖x − xΛ‖1 ≤ O(`). We

say that Bj is good if it contains at least one vacancy and observe that the density

q∗ = 1− (1− q)`
d

of good boxes satisfies (we use the Bonferroni inequality for the lower
bound)

q`d/2 ≤ q∗ ≤ q`d ≤ 1 ⇒ θq∗ ∈ [θq(1− dm), θq(1− dm) + 1].

In the sequel we will use the Knight chain and the *Knight chain with Ω∗j = {0, 1}Bj , µ∗j =

⊗x∈Bj
µx, and facilitating events G∗j = {Bj is good}.

Let ΛKB ⊂ ΛB be the largest Knight equilateral box containing the origin and for
V K ⊂ ΛKB consider the *Knight chain on ΩEV K∩ΛB . Using λ ∼ H′(0) we can choose
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•

•
•

Γ

Λ

Bj

xΛ

(bL/`c, . . . , bL/`c)

Figure 4: The setting in the proof of Proposition 5.10 with ` = 3 and L = 30. The
3 × 3 boxes Bj are those with j ∈ ΛB, the coloured (red/green) ones are those with
j ∈ ΛKB , the green ones are those with j ∈ V K , and the dashed ones are those with

j ∈ (EV K ∩ ΛB) \ V K . The set V with γ(V ) ≥ 2−F (λ)
θ2q
2 (1+o(1)) is the union of the green

and dashed boxes together with the path Γ.

V K ⊂ ΛKB such that V K ⊃ {0, jΛKB } and ∀ε > 0 and q small enough depending on ε

γ∗K(EV K ∩ ΛB) = γ(Φ(V K); q∗) ≥ 2−λ
θ2q∗
2 (1+ε/2), (5.2)

where in the equality we used Lemma 5.9. We then take V = V1 ∪ Γ ⊂ Λ, where
V1 = ∪j∈EV K∩ΛBBj and Γ = (x(0), x(1), . . . , x(N)) is any path in Λ satisfying: (i) x(0) ∈
V1, x

(N) = xΛ, (ii) x(i−1) ≺ x(i) ∀i ∈ [N ], and (iii) N = O(`). By construction such a path
always exists.

Claim 5.11. For any ε > 0 there exists q(ε) > 0 such that for all q ≤ q(ε)

γ(V ) ≥ 2−
1
2 (λθ2

q∗+(2m−m2)θ2
q)(1+ε) = 2−F (λ)

θ2q
2 (1+ε).

Clearly the claim proves the proposition.

Proof of the claim. Fix ε > 0 and choose q small enough depending on ε. Let V2 = Γ\x(0)

and use Lemma A.1 to get that γ(V ) ≥ 2−(θq+2) min
(
γ(V1), γσ(V2)

)
where σ ∈ Ω∂↓V2

consists of a unique vacancy at x(0). Lemma A.3 together with (5.2) and the fact that

γ(B0) ≥ 2−(2m−m2)
θ2q
2 (1+ε) give that γ(V1) ≥ 2−

1
2 (λθ2

q∗+(2m−m2)θ2
q)(1+ε). Moreover, using

Lemma A.2 we have that γσ(V2) ≥ 2−(2m−m2)
θ2q
2 (1+ε). The claim then follows from the

observation that

(λθ2
q∗ + (2m−m2)θ2

q) = F (λ)θ2
q(1 + o(1)) as q → 0.

The recursive step λ ∼ H(0)⇒ F (λ) ∼ H(0) now follows immediately from Lemma
5.10 and Lemma 5.3.
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5.2 Proof of (ii)

The proof consists of two different steps. We first prove that φ(β; 2) < 1 for all β < 1

implies that the same holds for any d ≥ 3 and then we deal with the two dimensional
case.

5.2.1 The induction step

Fix d ≥ 3 and β < 1 and assume φ(β; d′) < 1 for any 2 ≤ d′ ≤ d− 1. We are going to prove
that φ(β; d) < 1 as well. Fix κ ≥ 1 together with a (β, κ)-outstretched box Λ with side
lengths (L1, . . . , Ld) and set (see Fig. 5)

Λ1 = {x ∈ Λ : x1 ≤ bL1/2c, xd = 0},
Λ2 = {x ∈ Λ : x1 > bL1/2c, xi = Li, 2 ≤ i ≤ d− 1}.

By construction, the origin of the box Λ2 is at xΛ1
+ e1 and xΛ2

= xΛ. Moreover, both

0

xΛ

Λ1

Λ2

Figure 5: The boxes Λ1,Λ2. The two black dots denote xΛ1
and the origin of Λ2 at xΛ1

+e1

respectively.

Λ1 and Λ2 are (β, κ)-outstretched boxes in Zd−1
+ and Z2

+ respectively. The induction
hypothesis implies that for all ε > 0 and all q small enough depending on ε, β, κ there
exist Vi ⊂ Λi, i = 1, 2, such that

• V1 ⊃ {0, xΛ1
} and V2 ⊃ {xΛ1

+ e1, xΛ};

• γ(V1) ≥ 2−(1+ε)φ(β;d−1)
θ2q
2 and γσ(V2) ≥ 2−(1+ε)φ(β;2)

θ2q
2 , where σ ∈ Ω∂↓V2

has a
unique vacancy at xΛ1

.

Lemma A.1 then implies that γ(V ) ≥ 2−(1+2ε)(φ(β;d−1)∨φ(β;2))
θ2q
2 , i.e. φ(β; d) ≤ φ(β; d− 1)∨

φ(β; 2)) < 1.

5.2.2 The base case d = 2

We will prove that ∀β ∈ (0, 1)

φ(β; 2) ≤ 1

2
(1− β)2 + 2β − β2, (5.3)

which, in particular, implies that φ(β; 2) < 1 ∀β < 1. The main idea here is to partition a
(β, κ)-outstretched box Λ into suitably chosen mesoscopic boxes in such a way that the
coarse-grained version of Λ becomes a (0, 2)-outstretched box on which the control of
the Dirichlet eigenvalue gap is assured by part (i) of the proposition.

Fix 0 < β < 1, κ ≥ 1 together with a (β, κ)-outstretched box Λ with side lengths
(L1, L2), and assume w.l.o.g. that L1 = mini Li. We set ` = d(L2 + 1)/2(L1 + 1)e ≤
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(κ/2)2βθq , and w.l.o.g. we assume that (L2 + 1)/` ∈ N. We then partition Λ into vertical
one dimensional boxes Bj = B + xj, B = {0} × {0, . . . , ` − 1}, xj = (j1, j2`) where
j ∈ Q = {0, . . . , L1 − 1} × {0, . . . , (L2 + 1)/` − 1}. We also write Ω∗j , µ

∗
j for ΩBj

and µBj

respectively.

0

xQ = xQ̃

•

Q

Q̃

(A) (B)

Φ

0

x
Φ
(
Q̃
)

Φ
(
Q̃
)

•

Figure 6: (A). The box Q and the region Q̃ with its graph structure. Each vertex j ∈ Q
represents the box Bj. (B). Under the natural isomorphism Φ the graph Q̃ becomes the
standard square graph of Z2.

Let Q̃ be the subset of Q lying between the two 45◦-lines, one through the origin and
the other through the point xQ and declare that j, j′ ∈ Q̃ form an edge if either j2 = j′2 + 1

and j1 ∈ {j′1, j′1 + 1} or vice versa (see Figure 6). The corresponding graph over the
vertex set Q̃ is isomorphic via the natural graph isomorphism Φ to the box Φ(Q̃) ⊂ Z2

+

with origin at x = 0 and side lengths L1 − 1, (L2 + 1)/`−L1. In particular, we write j′ ≺ j

iff Φ(j′) ≺ Φ(j).
On any subset V of Q̃ we consider the image of the *East chain on Φ(V ) (or rather

a slightly altered version of it as we see below) with parameters Ω∗j , µ
∗
j and facilitating

event Gj = {ωBj
6= 1}. Thus q∗ = 1 − (1 − q)` and θq∗ = (1 − β)θq + Θ(1). As the box

Φ(Q̃) is (0, 2)-outstretched, part (i) of Proposition 3.6 implies the existence of W ⊂ Φ(Q̃),
containing the origin and xΦ(Q̃) such that, for any ε > 0 and any q sufficiently small
depending on ε,

γ(W ; q∗) ≥ 2−(1+ε/2)
θ2
q∗
4 . (5.4)

Recall the definition of enlargements Ex from above Definition 5.8. We define
EΦ−1(W ) := ∪j∈Φ−1(W )Ej ∩ Q and V = ∪j∈EΦ−1(W )Bj ⊂ Λ and observe that V con-
tains the origin and the vertex xΛ.

Claim 5.12. For any ε > 0 and any q sufficiently small depending on ε

γ(V ) ≥ γ(W ; q∗)× 2−(β−β2/2)θ2
q(1+ε).

Proof of the claim. On V we define an auxiliary dynamics to the *East chain. Consider
for that a partition of EΦ−1(W ) into disjoint connected subsets Uj for j ∈ Φ−1(W ) such
that j ∈ Uj ⊂ Ej and ∪j∈Φ−1(W )Uj = EΦ−1(W ). In the sequel we write BUj

:= ∪j′∈Uj
Bj′

and analogously for BEj
. Let c∗j (ω) = 1 iff either j = 0 or there exists a neighbor j′ ≺ j

such that there exists at least a vacancy in Bj′ . For such constraints we define the
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auxiliary dynamics that updates BUj
with a configuration sampled from µBUj

if c∗j (ω) = 1

and otherwise do nothing. The spectral gap of this chain is, as the one for the enlarged
East chain, given by γ(W, q∗), since the j that participate in the dynamics are only the
ones in Φ−1(W ) (see the appendix for the proof in the case of enlarged-*Knight chains).
The Poincaré inequality reads

VarV (f) ≤ γ(W ; q∗)−1
∑

j∈Φ−1(W )

µV
(
c∗j VarBUj

(f)
)
, ∀ f, (5.5)

We now bound a generic term µV
(
c∗j (ω) VarBUj

(f)
)
. Using Lemma A.3, Lemma A.2, and

` ≤ O(κ)2βθq , for any ε > 0 and any q small enough depending on ε we get

µV
(
c∗j (ω) VarBUj

(f)
)
≤ 2(β−β2/2)θ2

q(1+ε/2)
∑

z∈BE
j′

j′=j or j′≺j, j′ neighbor of j

µV
(
cVz Varz(f)

)
. (5.6)

By combining (5.5) and (5.6) and using that |Ej| = O(`) we conclude for q small enough
that

VarV (f) ≤ γ(W ; q∗)−1 × 2(2β−β2)
θ2q
2 (1+ε)DV (f) ∀ f,

and the claim follows from the variational characterization of γ(V ).

The claim together with (5.4) finally implies that γ(V ) ≥ 2−((1−β)2/2+2β−β2)
θ2q
2 (1+ε),

∀ q ≤ q(ε), i.e. (5.3).

5.3 Proof of (iii)

We already know (cf. Lemma A.2) that φ(β; d) ≤ 1 ∀β. Fix now β ≥ 1 and consider

the (β, 1)-outstretched one dimensional box Λ = ∪b2
βθq c

k=0 {k e1}. The only subset V ⊂ Λ

containing the origin and xΛ and such that γ(V ) > 0 is V = Λ. But γ(Λ) = 2−
θ2q
2 (1+o(1))

(see again Lemma A.2) so that φ(β; d) ≥ 1.

A Appendix

We first state three results which have been used quite often in the previous sections
and then we prove Lemmas 5.3 and 5.9.

Lemma A.1. Consider two finite sets V1, V2 ⊂ Zd+ such that V1 3 0 and ∃ z ∈ V1 such that
z + e ∈ V2 for some e ∈ B and the East chain on V2 with boundary condition σ having a
unique vacancy at z is ergodic. Then γ(V1 ∪ V2) ≥ q

4 min
(
γ(V1), γσ(V2)

)
.

Proof. Let V = V1 ∪ V2 and consider the 2-block chain on ΩV , reversible w.r.t. µV ,:

(i) with rate one ω �V1 is resampled from µV1 ;

(ii) with rate one ω �V2
is resampled from µV2

iff ωz = 0.

The block chain has Dirichlet form

Dblock
V (f) = µV

(
VarV1

(f) + 1{ωz=0}VarV2
(f)
)

and spectral gap γblock
V (f) = 1−

√
1− q ≥ q/2 (see [8, Proposition 4.4]). Therefore, the

Poincaré inequality for the block chain reads

VarV (f) ≤ 2/q µV
(

VarV1
(f) + 1{ωz=0}VarV2

(f)
)
∀ f. (1.1)
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The definition of γ(V1) and γσ(V2) implies that

VarV1
(f) ≤ γ(V1)−1

∑
x∈V1

µV1

(
cV1,1
x Varx(f)

)
, (1.2)

1{ωz=0}VarV2
(f) ≤ γσ(V2)−1

∑
x∈V2

1{ωz=0}µV2

(
c
V2,ω�∂↓V2
x Varx(f)

)
. (1.3)

It is now sufficient to insert the r.h.s. of (1.2), (1.3) into the r.h.s. of (1.1) and use the fact

that both cV1,1
x , x ∈ V1, and 1{ωz=0}c

V2,ω�∂↓V2
x , x ∈ V2, are dominated by the constraint cV,1x

to conclude that

VarV (f) ≤ 4/q ×max
(
γ(V1)−1, γσ(V2)−1

)
D1
V (f) ∀ f,

where the additional factor of 2 appears if V1 ∩ V2 6= ∅.

Lemma A.2 ([12, Lemma 3.1 and eq. (2.9)]). Consider the box Λ with side lengths
(L1, . . . , Ld) and let n ∈ N be such that maxi Li ∈ (2n−1, 2n]. Then, as q → 0

γ(Λ) =

2−(nθq−(n2))(1+o(1)) if n ≤ θq

2−
θ2q
2 (1+o(1)) otherwise.

Lemma A.3 ([12, Lemma 3.6]). Let Λx = Λ+x where Λ is a box of Zd+ and x an arbitrary
vertex. Let V ⊂ Λx be such that x ≺ V and let A = {∃z ∈ Λx, z ≺ V : ωz = 0}. Then,

µΛx

(
1A VarV (f)

)
≤ γ(Λ)−1DΛx(f).

Proof of Lemma 5.3 Clearly, λ ∼ H(0)⇒ λ ∼ H′(0). Suppose now that λ ∼ H′(0), fix
κ ≥ 1, ε > 0 and let Λ be a (0, κ, θq)-outstretched box with side lengths (L1, . . . , Ld). Let
N = minj Lj and for any i ∈ [d] choose a partition of the discrete interval {0, 1, . . . , Li}
into N+1 discrete intervals, B(i)

0 , . . . , B
(i)
N , ordered from left to right, each one containing

at least one vertex and at most κ + 1 vertices. For j ∈ ΛB := {0, . . . , N}d write Bj =∏d
i=1B

(i)
ji

so that ∪j∈ΛbBj = Λ. Furthermore, let Ω∗j := ΩBj
, µ∗j := µBj

and choose as
facilitating event Gj the event that the smallest vertex in Bj in the ≺-ordering (for
example the lowest-left corner if d = 2) has a vacancy. Clearly µ∗j (Gj) = q ∀ j ∈ ΛB, i.e.
q∗ = q. Recall now Definition 5.4. Using λ ∼ H′(0) there exists V ∗ ⊂ ΛB containing the
origin and xΛB such that

γ∗(V ∗) = γ(V ∗; q∗) = γ(V ∗) ≥ 2−λ(1+ε/2)
θ2q
2 .

Hence, if we set V = ∪j∈V ∗Bj and write Var∗ for the variance w.r.t. µ∗ we get

VarV (f) = Var∗V ∗(f) ≤ 2λ(1+ε/2)
θ2q
2

∑
j∈V ∗

µV (c∗j VarBj
(f)).

Using Lemma A.3, A.2 and the fact that each box Bj contains at most κd vertices, we get

that the r.h.s. above is not larger than 2λ(1+ε/2)
θ2q
2 2O(κd)θq DΛ(f) so that

VarV (f) ≤ 2λ(1+ε/2)
θ2q
2 2O(κd)θqDV (f) ≤ 2λ(1+ε)

θ2q
2 DV (f).

Hence, for any q small enough depending on (ε, κ), γ(V ) ≥ 2−λ(1+ε)
θ2q
2 implying that

λ ∼ H(0).
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Proof of Lemma 5.9 Recall Definition 5.8 and consider a partition {Qx}x∈V K of (EV K\
V K) ∩ Λ such that Qx ⊂ Ex ∀x. The important point here is that the sets {Qx}x∈V K
are mutually disjoint, a feature not necessarily shared by the sets {Ex \ {x}}x∈V K
(see Fig. 4). Instead of the *Knight chain on Ω∗EV K∩Λ consider now the (very closely
related) chain which at any legal update of the Knight chain at x ∈ V K resamples the
whole configuration in x ∪ Qx. This chain can be viewed as a new Knight chain on
Ω∗V K with new parameters Ω̃∗x = ⊗z∈x∪QxΩ∗z, µ̃

∗
x = ⊗z∈x∪Qxµ∗z, x ∈ V K , and the same

facilitating events as the original Knight chain. Of course ⊗x∈V K (Ω̃∗x, µ̃
∗
x) = (Ω∗V K , µ

∗
V K ).

Hence, the spectral gap of the new chain, as discussed after Definition 5.4, coincides
with γ(V ; q∗) and ∀ f

Var∗VK (f) ≤ γ(V ; q∗)−1
∑
x∈V K

µ∗V K
(
Kx Var∗x∪Qx(f)

)
≤ γ(V ; q∗)−1

∑
x∈V K

µ∗V K
(
Kx Var∗Ex(f)

)
.

where Kx is the Knight constraint at x. Above we used the fact that Kx does not depend
on {ωz}z∈x∪Qx and that µ∗Ex

(
Var∗x∪Qx(f)

)
≤ Var∗Ex(f). The sum in the r.h.s. above is the

Dirichlet form of the *Knight chain and we conclude that its spectral gap is at least
γ(V ; q∗). The reverse inequality follows immediately by projection onto the variables
ηx = 1− 1{ωx∈G∗x}, x ∈ V

K , where G∗x is the facilitating event.
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