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Abstract 

The economical sustainability and the integrity of oil field equipment depend on the choice of the best material for the working conditions. In 
oil wells, many environmental corrosion phenomena take place and affect the structural integrity of metallic parts and equipment. In order to 
investigate material properties in presence of corrosive environments and applied stresses, many laboratories have arisen and many 
experimental techniques have been developed and setup in order to collect data about the behaviour of corrosion resistant alloys. Available data 
are traditionally gathered into text files which are difficult to analyze and process since a widespread commercial software does not exist for 
automated data processing and reporting. Each laboratory has to develop their own tools in order to perform the data post processing for stress 
corrosion experiments. In this paper, the Axiomatic Design method has been employed in order to develop a custom software for data post 
processing of the stress corrosion tests. The application of the Axiomatic Design has a key role in defining the software architecture, avoiding 
useless solutions and improving code optimization from the earliest phases. 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the organizing committee of 9th International Conference on Axiomatic Design. 
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1. Introduction 

The stress corrosion cracking mechanism is a critical issue 
in modern oil and gas industry since it affects a huge part of 
the amount of equipment in oil wells. This is a kind of 
corrosion which takes place especially into aqueous 
environments where the presence of some raw chemicals and 
mechanical stresses can create harmful working conditions. 
Typical chemicals in oil fields, which are able to make the 
environment more aggressive, are hydrogen sulphide, carbon 
dioxide (or a mixture of both) and chlorides. These agents 
typically make the pH lower, producing the aggression of the 
outer surfaces of metallic parts, moreover originating 
secondary effects like the hydrogen embrittlement [1]. 

The hydrogen embrittlement consists in the permeation of 
atomic or molecular hydrogen through the metallic surfaces, 
making the material brittle due to the increasing pressure of 
the stored up gas within the lattice [2-5]. This effect, in 
addition to high stresses due to normal operations, may lead to 

a sudden and expensive failure in well equipment. However, 
even if the presence of both stresses and aggressive agents is 
the main cause of the stress corrosion cracking phenomenon, 
there are many other parameters which can affect the behavior 
of a given steel or corrosion resistant alloy. Some of these 
physical parameters are the hardness distribution, the 
microstructures, the material chemistry, the heat treatments, 
the site temperature and pressure. This large amount of 
influential parameters makes difficult to forecast the cracking 
phenomenon development and its feed rate [6]. 

The economy and safety of oil fields require an accurate 
definition of safe working boundaries for several alloys 
through experimental campaigns using industry standard 
evaluation techniques. 

Common test methods are based on the application of a 
constant load to the test specimen while it is sunk into a 
corrosive brine, bubbled with hydrogen sulphide or other 
gasses. These kinds of test record the time to failure of several 
stressed specimens within the maximum duration of the test, 
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(that is 720 hours) in order to locate the threshold value for 
stresses, below which failures do not occur. The stress 
corrosion tests need a tool to manage and process data. The 
fulfillment of this need requires a custom software which the 
authors are going to develop through the Axiomatic Design 
Theory.  

Nomenclature 

d           diameter of the specimen gauge section [mm] 
          measured force array [N] 
          gauge length of the i-th element of the measured 

 elongation array [mm] 
           gauge elongation array [mm] 

l0           initial gauge length [mm]
           measured strain array 

        strain values whose the shift from the linear field is 
 within 0,2% 

          i-th element of the measured strain array
         yield strain 

     maximum strain 
         ultimate strain 

          measured stress array [N/mm2] 
         yield stress [N/mm2] 

    maximum stress [N/mm2] 
    ultimate stress [N/mm2] 

2. The slow strain rate test technique 

As previously stated, the common test methods may 
require a maximum time of almost one month (720 hours) and 
need a certain amount of specimens, grouped in samples 
which are loaded at different percentages of the yield strength 
in order to find the threshold value for the material safe 
employment. 

Such cycle time may be considered long, especially for 
those cases where a choice among some alternatives shall be 
made and insufficient resources are available for 
comprehensively testing different available specimens, loads 
and alloys. The slow strain rate technique satisfies this need 
since it allows to screen a group of available materials in 
order to identify the one which matches better with the service 
conditions in a shorter time than the traditional constant load 
methods. According to [7, 8] one of the main causes of the 
slow strain rate test success in past years is the relative 
simplicity and fast execution in order to quickly construct a 
ranking among the most performing alloys. In slow strain rate 
tests the object is producing stress corrosion cracks that are 
metallographically indistinguishable from those obtained 
through constant load or sustained load methods. The severity 
of this kind of test is increased in respect with constant load 
methods due to the effect of the constant strain rate. 
Commonly used values for the strain rate are from 

 to  therefore, since the crack 
propagation velocity usually wavers between  and 

, failures in laboratory test specimens of usual 
dimensions occur in a much shorter time [9],typically less 
than 300 hours.  

The slow strain rate tester is composed by an autoclave 
which stores the specimen and the corrosive solution, and a 
mechanism able to apply a variable deformation with a 
constant strain rate. The constant strain rate is achieved 
through a geared servo-motor which is connected to a linear 
actuator in order to control the dynamic load applied to the 
specimen.  

The loading of the specimen happens since its ends are 
respectively linked to the fixed autoclave at one side and to 
the linear actuator at the other [10]. A general scheme of this 
device is shown in Figure 1. In addition to the proposed 
layout in Figure 1, one or more Linear Variable Displacement 
Transducers (LVDTs) may be present in order to collect data 
about the gauge elongation during the test. 

Fig. 1. Slow Strain Rate Tester scheme. 

An acquisition system and a computer sample collect data 
which are saved as columns in a text file and separated by a 
mark. In this form data are pretty difficult to analyze and 
understand since they have not been represented or processed 
yet. Some laboratories may decide to develop their own tools 
for processing data and executing computations in order to 
better understand the behavior of tested materials. The 
TM0198 [11], by the National Association of Corrosion 
Engineers (NACE), points out what are the characteristic 
indexes which allow to compare different materials for a 
specific environment to select the most compatible. In this 



252   Andrea Girgenti et al.  /  Procedia CIRP   34  ( 2015 )  250 – 255 

paper the Axiomatic Design Theory is used as a reference 
framework for the development of software able to calculate 
the requested parameters and to make easier the job of 
technicians which have to manage and use the test data.

3. Development of the custom data post-processing 
software for the slow strain rate test. 

3.1. Definition of the software features 

The development of a custom software first requires the 
definition of what this software must do: the main functional 
requirements (FRs) of the system. In a first phase of the 
project, the approach for defining the main features of the 
software for data post processing was achieved through some 
classical instruments which emphasized creativity and idea 
generation to be filtered later. All the ideas which are drawn 
out through the brainstorming or the six thinking hat method 
[12] have been evaluated and filtered by the authors according 
the available time to develop the software and the list of 
requested indexes to be deduced from data. This list of 
indexes allows to select those characteristics which are more 
interesting from the point of view of the analysis of data from 
stress corrosion tests and are identified by the normative 
framework [10, 11]. According with these filtering criteria, 
and the technical regulations, the authors have used the 
Axiomatic Design Theory in order to develop a modular, 
reliable and affordable tool for the slow strain rate test post 
processing. In this paper the main focus is on the design stage 
where the structure of the software arises from the FRs it must 
satisfy. 

3.2. Design matrices 

The definition of the main features enables generation of 
the design matrices for the data post processing software. The 
design matrices give an overview of the software features 
from the overall requirements and solutions to the details of 
requested parameters in order to run the algorithms. 

At this phase of development, the Axiomatic Design theory 
[13, 14, 15] enters strongly in the definition of functional 
requirements (FRs), that are what the software has to do and 
the design parameters (DPs) which represent how it reaches 
these requirements. Both FRs and DPs at lower levels are 
defined through the decomposition of the higher couples of 
FR/DP following the zigzag process. The implementation of 
the Axiomatic Design theory from the beginning of the 
project enables description of the best design for the data post 
processing software, avoiding less suitable solution while 
satisfying the user’s needs. The proposed approach deals with 
a single FR issue where the top functional requirement is 
FR0: “post-process the data from slow strain rate test” and its 
corresponding top design parameter is DP0: “a custom 
software for data post-processing”. The authors call this top 
layer level zero and go deeper within the zigzag method. 

At the first level, the program for analyzing and processing 
data from the slow strain rate test has to provide three main 
functions, which are FR1: “make readable the sampled signals 
for stresses and strains from the test”, FR2: “compute the 

NACE indexes” and FR3: “generate reports”. At this phase 
the solutions which satisfy each functional requirement are 
DP1: “a subsystem for data importing and reading the 
signals”, DP2: “a subsystem for executing integer math 
calculations” and DP3: “a subsystem for writing and printing 
the final report”. The design matrix at this level of 
decomposition is provided in Table 1. 

Table 1. Design Matrix for the first level of the decomposition. 
 DP1 DP2 DP3 

FR1 X   

FR2 X X  

FR3 X X X 

At this level of decomposition the matrix results in a 
decoupled design, i.e. these three functional requirements 
work as a series. This result is plausible since the calculations 
have to be executed after the importing of data, while the final 
report must be printed last, because it depends on the presence 
of the imported data and the calculated indexes. This is 
reflected in the design matrix structure since it is triangular 
and shows the relationships among the i-th FRs and other DPs 
further the i-th one. Taking into account the dependencies 
among the FRs, each couple of main FR/DP can be dealt like 
a single block, developing its own tree of lower FRs and DPs. 

Each functional requirement can be further decomposed 
down the single algorithm, whilst the corresponding design 
parameter becomes the input data for the algorithm execution. 
Taking into account only the FR1 and the corresponding DP1, 
they can be further decomposed as shown below: 

• FR1.1: Select the text file to be imported 

• FR1.2: Load data as arrays 

• FR1.3: Represent the stress and strain signals 

The corresponding DPs are: 

• DP1.1: The  dialog box returns the name of the text file 

• DP1.2: A criterion to identify single arrays 

• DP1.3: A graph 

In Table 2 the mapping of the FR1 and its corresponding 
DP1 is shown through the second level of the decomposition. 
The shown matrix in Table 2 is triangular, resulting in an 
decoupled design. This means that all the functional 
requirements are mutually influenced since, in order to be 
accomplished, they need the outputs from the previous FR. 

Table 2. Second level of decomposition for FR1/DP1 
 DP1.1 DP1.2 DP1.3 

FR1.1 X   

FR1.2 X X  

FR1.3 X X X 

The FR1.2 and FR1.3 with their corresponding DPs can be 
further decomposed through the zigzag mapping in order to 
obtain single algorithms for lower FRs and input data for the 
corresponding DPs: 

• FR1.2.1:Load the text file content  
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• FR1.2.2: Recognize the arrays 

• FR1.3.1: Compute the strain array , whose the i-th 
element is calculated as: 

     (1) 

• FR1.3.2: Compute the stress array , whose the i-th 
element is calculated as: 

     (2) 

The corresponding DPs which correspond to input data are: 

• DP1.2.1: The selected text file 

• DP1.2.2: The column separation value (comma) that 
identify single arrays of data 

• DP1.3.1: The elongation array  in millimetres 

• DP1.3.2: The force array  in Newton 

The design matrix for the third level of decomposition for 
FR1 and DP1 can be seen in Table 3. The moiety which deals 
with the decomposition of FR1.2 is triangular, while the 
FR1.3.1 and FR1.3.2 are linked to both their corresponding 
DPs and the two DP1.2.1 and DP1.2.2. 

Table 3. Design Matrix for the third layer for the decomposition of 
FR1/DP1. 
 DP1.2.1 DP1.2.2 DP1.3.1 DP1.3.2 

FR1.2.1 X    

FR1.2.2 X X   

FR1.3.1 X X X  

FR1.3.2 X X  X 

Considering the FR1.2.1 and FR1.2.2, the corresponding 
2x2 sub-matrix is triangular, therefore FR1.2.1 and FR1.2.2 
work like a series. Considering the two FR1.3.1 and FR1.3.2, 
the corresponding 2x4 sub-matrix is clearly rectangular with 
some redundancy since these functions firstly need the 
fulfilment of the FR.1.2. Once FR1.2 is achieved the two 
FR1.3.1 and FR1.3.2 can be achieved independently. 

The FR2 (Compute the NACE indexes) is achieved once 
the content of the text file is loaded, so the outputs from the 
FR1 (the stress and strain arrays) are needed for achieving the 
FR2. The mapping of both the FR2 and its corresponding DP2 
can be further developed as follow: 

• FR2.1: Calculate  and 

• FR2.2: Calculate  and 

• FR2.3: Calculate  and 

While the corresponding DPs are: 

• DP2.1: A subsystem to calculate  and 

• DP2.2: A subsystem to calculate  and 

• DP2.3: A subsystem to calculate  and 

The design matrix, which is shown in Table 4, is diagonal 
for this level of decomposition. 

Table 4. Design Matrix for the second level of the decomposition for 
FR2/DP2. 

 DP2.1 DP2.2 DP2.3 

FR2.1 X   

FR2.2  X  

FR2.3   X 

Each one of these subsystems to compute the yield stress 
and strain rather than the maximum ones or the ultimate ones 
can be executed apart. These three modules are pretty similar 
and work in the same manner, executing almost the same 
routines. The decomposition of these modules is thus the 
same and this is the reason why just one of them is dealt in the 
following passages. The module for calculating the yield 
stress and strain is going to be taken into account. The FR2.1 
can be further decomposed until single algorithms are 
reached. Often the definition of an algorithm leads to another 
functional requirement which provide the input data for the 
first one: 

• FR2.1.1: Write the value for . In order to be 
accomplished, this functional requirement needs the 
variable “index” as input. “index” is the row in the strain 
array which contains the yield strain. In symbols the 
algorithm can be written as: 

    (3) 

• FR2.1.2: Compute index. This functional requirement is 
achieved through the algorithm which counts the number 
of the written rows in the array which contains strain 
values whose the shift from the linear field is within 0,2%. 
In symbols this algorithm can be expressed as: 

    (4) 

• FR2.1.3: Write an array of strain values in the elastic field. 
This array is composed by all the data whose the 
difference between all the measured strain and the 
calculated linear equation of the elastic field is at most 
equal to 0,2%”. This functional requirement is achieved 
through three inputs parameters which are the array for 
measured strain values , the linear equation for 
approximating the elastic field and the array which 
contains strain values, calculated through this equation 
over the entire stress range . 

• FR2.1.4: Calculate the linear equation which approximates 
the elastic field. This functional requirement is achieved 
choosing two points with coordinates ( ; ) and ( ; ) 
which belong to the elastic field and calculating both the 
slope and the intercept of the line which best fits the 
elastic portion of the stress-strain curve. 

The physical parameters which satisfy these functional 
requirements are stated below: 

• DP2.1.1: The variable “index”, that is the row number for 
the element of the strain array that is the yield value. 

• DP2.1.2: The array which contains the values for strain 
whose the difference with all the values calculated through 
the equation for the linear field is at most equal to 0,2%.  
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• DP2.1.3: The coordinates of two points which belong to 
the elastic field. 

• DP2.1.4:The imported strain array . 

The triangular design matrix for this third level of 
decomposition of the FR2.1/DP2.1 couple is shown in Table 
5. Also in this case the single FRs need the output data from 
the previous ones in order to be achieved. 

Table 5. Design matrix for the third level of decomposition for the FR2.1/DP2.1 
couple. 

 DP2.1.1 DP2.1.2 DP2.1.3A DP2.1.4 

FR2.1.1 X X X X 

FR2.1.2  X X X 

FR2.1.3   X X 

FR2.1.4    X 

The third main functional requirement FR3 is “Write 
down the final report” and it can be further decomposed in 
FR3.1 and FR3.2 which are: 

• FR3.1: Display report 

• FR3.2: Print the report 

The FR3.1 is achieved through the layout of final report (a 
GUI, an HTML page or an Excel worksheet) which shows the 
obtained results, while FR3.2 is achieved through the print 
button (an ActiveX Control for instance), thus the two 
functional requirements can be reached apart the DPs are: 

• DP3.1: The report layout 

• DP3.2: The print button 

The design matrix is diagonal for this level of 
decomposition and it is shown in Table 6. 

Table 6. Design Matrix for the first level of decomposition for FR3/DP3 
 DP3.1 DP3.2 

FR3.1 X  

FR3.2  X 

3.3. Software structure  

The Axiomatic Design theory has a key role also in 
representing the software architecture through some tools like 
the modules and the flow chart [13], compatibly with the most 
common modeling strategies like the Object-Oriented 
techniques [16]. The flow chart is a useful and simple tool for 
linking the modules in order to achieve the highest FR 
providing the software implementation scheme. This graphic 
representation is based on modules that are the rows of the 
design matrix which yields a specific FR when they are 
provided with (or multiplied by) its related DPs. Each module 
is connected with its corresponding FR, thus, referring for 
example to the previous design matrices, the module M1 
provides the FR1 through the DP1 while the module M2 
provides FR2 through DP1 and DP2 and so on, according to 
the design matrix. The drawing of the chart follows the flow 
of data which are swapped among several block like inputs or 

outputs, hence the operations are executed from the innermost 
module to the outermost in order to operate the software.  

This representation of the software architecture through the 
net of modules is useful also for performing a diagnosis of 
software failures and making easier the debugging. The 
software for the data post processing of slow strain rate tests 
should satisfy the first axiom that requires the fulfillment of 
each FR by just one DP which is not shared with other 
functions. The first axiom is satisfied at all the levels of the 
design hierarchy and there are no full or coupled matrix. 

The software architecture is shown by the flow chart in 
Figure 2.  

Fig. 2. Flow diagram of the overall software architecture. 

According with the absence of coupled design matrices, no 
loop or needed feedback among blocks are present. In this 
case the modules often work as a sequence with their outputs 
which began inputs for other modules, according with the 
presence of triangular matrices and the corresponding 
decoupled design. This scheme is pretty linear and simple to 
carry out through the routines of the programming language, 
making their review easier and faster. In the flow chart, 
modules are represented as blocks, linked with the others 
through connectors to reproduce the data flow from their 
acquisition to the final report. The nature of the relations 
among several modules in different layers of the architecture 
is made clearer through a mark placed on the connectors, 
according with the scheme in [9, 10]. The mark which 
identifies the relation between a series of two or more 
modules is marked with a circled “C”, meaning that the input 
data for the subsequent module is the output of the previous 
one. When two or more modules have the same input they are 
reciprocally independent and an “S” mark is placed on the 
connector between them. In this second case the group of 
independent modules works as a parallel. In the flow chart the 
module M0 links the FR0 to the DP0 and, according with the 
decomposition, it can be split in lower level modules M1, M2 
and M3. The modules M1, M2 and M3 work as a series since 
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the output from M1 is required by the M2 in order to be 
executed. The same happens between M2 and M3. Within this 
three macro modules are nested other lower layer modules 
which may have the same data as input (parallel) or may work 
as a series. For example the flow chart shows that the modules 
M1.1, M1.2 and M1.3 work as a series, while the M2.1, M2.2 
and the M2.3 work as a parallel. 

4. Conclusion 

A custom software for data post-analysis has been 
developed through the usage of the Axiomatic Design Theory. 
The experimental data are obtained from stress corrosion tests 
through the slow strain rate technique. The software executes 
three functions according with the NACE specifications and 
the user's needs, providing a reliable tool for data importing, 
processing and results reporting. 

The Axiomatic Design enters strongly in the definition of 
the software architecture allowing to clarify the relationship 
among different modules and identify the flow of data in 
terms of inputs and outputs which feed the sequence of 
functions. A flow chart of modules is a very useful tool for 
software programming since it allows to set clearly the 
software features, optimizing the code from the first line, 
avoiding the trial and error approach and making a more 
efficient consumption of resources to be allocated for the 
software development. The net of modules is highly 
connected with the design of the software since it take into 
account the relations among FRs and DPs, making easier even 
the software debugging and revision. 

The design matrices, which describe the software 
architecture in terms of functional requirements and 
corresponding design parameters for reaching them, result in 
decoupled or uncoupled design. This satisfies the first axiom 
until the single algorithms or parameters. The application of 
the method allows to develop a lean and agile tool for data 
post processing improving its efficiency and efficacy. 
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