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Abstract
A nonhomogeneous hidden semi-Markov model is proposed to segment bivariate time series of wind and 
wave directions according to a finite number of latent regimes and, simultaneously, estimate the influence 
of time-varying covariates on the process’ survival under each regime. The model is a mixture of toroidal 
densities, whose parameters depend on the evolution of a semi-Markov chain, which is in turn modulated 
by time-varying covariates. It includes nonhomogeneous hidden Markov models and hidden semi-Markov 
models as special cases. Parameter estimates are obtained using an Expectation-Maximization algorithm 
that relies on an efficient augmentation of the latent process. Fitted on a time series of wind and wave 
directions recorded in the Adriatic Sea, the model offers a clear-cut description of sea state dynamics in 
terms of latent regimes and captures the influence of time-varying weather conditions on the duration of 
such regimes.
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1 Introduction
Pairs of circular observations are often referred to as toroidal data because they can be represented 
as points on a torus, the cartesian product of two circles. Toroidal data arise in numerous contexts. 
Examples include earthquake data consisting of the pre-earthquake direction of steepest descent 
and the direction of lateral ground movement (Rivest, 1997), peak systolic blood pressure times, 
converted to angles, during two separate time periods (Fisher & Lee, 1983), protein backbone con
formational angles (Lennox et al., 2009), phase angles of circadian-related genes in two tissues 
(Liu et al., 2006), and orthologous genes shared by circular prokaryotic genomes (Shieh et al., 
2011).

The statistical analysis of toroidal data is inherently different from the traditional analysis of 
bivariate continuous data, due to the wraparound nature of their domain and the difficulties in 
modelling the dependence between two angular measurements (circular correlation). Luckily, 
the spread of toroidal data across multiple disciplines has pushed the literature towards the defin
ition of several distributions on the torus (see the reviews by Ley & Verdebout, 2017—Sections 
2.4–2.5—and by Pewsey & García-Portugués, 2021—Section 3.2) and a whole library of toroidal 
distributions is nowadays available. As a result, when the data are in the form of a sequence of 
independent and identically distributed observations, they can be efficiently analyzed by fitting 
one of these distributions.

In most case studies, however, toroidal data are heterogeneous and dependent across space and/ 
or time, motivating models where toroidal densities are just a building block among other model 
components. An important example arises in marine studies, where buoys routinely record time 
series of wind and wave directions to gain general knowledge about the evolution of sea conditions 
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and, more specifically, to address issues of coastal erosion, maritime transport and the drift of 
floating objects or oil spills (Monbet et al., 2007). In this context, the specification of a statistical 
model is quite intricate, because these data are not only heterogeneous with a distribution that dy
namically varies across different latent sea regimes, but the duration of these regimes (dwell times) 
may vary according to time-varying weather conditions (e.g. wind speed), introducing complex 
auto-correlation structures.

In this paper, we model a time series of wind and wave directions by a novel nonhomogeneous 
hidden semi-Markov model (HSMM) that accounts for circular correlation and heterogeneity, 
simultaneously allowing for flexible dwell times. Under this model, the distribution of the data 
is approximated by a mixture of toroidal densities, whose parameters depend on the evolution 
of a latent, nonhomogeneous semi-Markov chain. While the toroidal density accommodates cir
cular correlation, the mixture controls for heterogeneity and, finally, the semi-Markov chain al
lows flexible dwell times whose distribution is modulated by time-varying covariates and it is 
therefore nonhomogeneous.

The general idea of modelling environmental time series by finite mixtures that are driven by a 
nonhomogeneous latent chain is not new and dates back at least to the seminal work by Hughes 
et al. (1999), who modelled precipitation occurrences by a nonhomogeneous hidden Markov 
model (HMM). In that work, occurrences are modelled by a mixture of multivariate distributions: 
the parameters of these distributions depend on the evolution of a latent Markov chain and the 
transition probabilities of the chain depend on the evolution of time-varying weather conditions, 
thereby making the model nonhomogeneous. Under this setting, the states of the chain can be in
terpreted as weather states, and the model is capable of capturing the influence of time-varying 
weather conditions on state transitions. After two decades, nonhomogeneous HMMs are still rou
tinely employed in environmental studies that require segmenting time series according to latent 
regimes and time-varying covariates are available (Ailliot et al., 2015; Jiang et al., 2023; 
Maruotti et al., 2017).

The dynamics of mixture models that are driven by nonhomogeneous latent chains are conveni
ently described by the state-specific dwell time hazard. This hazard is the discrete counterpart of 
the hazard function, traditionally exploited to characterize the distribution of absolutely continu
ous, positive random variables. Given the current state of the chain, the hazard indicates the (time- 
varying) conditional probability of switching state given the current dwell time, where the current 
dwell time is defined as the current amount of time since the last transition. The dynamics of a non
homogeneous HMM, for example, is described by a hazard that is exogenously updated at each 
time by the current covariate information, regardless of the dwell time. This is a consequence of 
the memoryless property of the latent Markov chain in an HMM, and it is both a strength and 
a weakness of the model. On one side, it is conceptually appealing to assume that state switches 
should depend only on current conditions. On the other side, when these conditions do not 
change, the hazard is time-constant and dwell times are constrained to be geometrically distrib
uted. This potential limitation of HMMs has opened the way to alternative approaches where 
the latent Markov chain is replaced by a semi-Markov chain, leading to the class of HSMMs. 
Under a semi-Markov chain, the hazard is endogenously updated by the current dwell time. 
This dissolves the geometric constraint on the dwell time distribution, by relaxing the Markov 
property to a setting where the evolution of the chain depends on its history since the last transi
tion. Due to their flexibility, HSMMs have gained popularity in environmental research and they 
have been successfully implemented in studies of regime shifts in ocean density variability 
(Economou & Menary, 2019), GPS tracking data of animal movements (Pohle et al., 2022), multi
variate pollutant concentrations (Merlo et al., 2022), and migratory bird count data (Nicol et al., 
2023).

Dwell time hazards highlight the key difference between nonhomogeneous HMMs and 
HSMMs. In the first case, hazards vary exogenously with time according to time-varying covariate 
information. In the second case, hazards vary endogenously with time according to dwell times 
that are, at each time, updated by the chain itself. Our proposal relies on dwell time hazards 
that depend on both the dwell time and exogenous covariate information, allowing time-varying 
covariates to modulate the dwell time distribution in a novel way.

From one side, our proposal can be therefore viewed as an extension of current HSMMs to a 
setting that includes time-varying covariates. The literature on HSMMs typically relies on dwell 
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time mass probability functions that are known up to unknown parameters to be estimated, which 
are time-constant. As a result, these models are typically restricted to having time-constant cova
riates, which influence the dwell-time distribution at baseline. By working with hazards, we over
come this limitation.

On the other side, our model includes nonhomogeneous HMMs and HSMMs as special cases, 
which can then be viewed as complementary and reconciled under the same umbrella. Besides 
being of theoretical interest, integrating different models within a unified framework facilitates 
the development of a single Expectation-Maximization (EM) algorithm for estimating both non
homogeneous HMMs and HSMMs.

The rest of the paper is organized as follows. The marine data that motivated this work are de
scribed in Section 2, while the model and the estimation procedures are respectively described in 
Sections 3, 4, and 5. Theg proposal is first tested on simulated data (Section 6) and then exploited 
to segment the marine data that motivated this study (Section 7). Section 8 finally summarizes rele
vant discussion points. The whole code to reproduce both the simulation experiments and the re
sults on the real data is publicly available in a GitHub repository accessible at https://github.com/ 
minmar94/HSMM_covariates.

2 Wind and wave direction
Time series of wind and wave directions are routinely collected by environmental agencies to iden
tify sea regimes, that is, typical distributions that these data take under specific environmental con
ditions. Detecting environmental regimes and estimating their duration is crucial across several 
problems of marine research. Recent applications include studies of the drift of floating objects 
and oil spills (Gu et al., 2024), the design of marine structures (Fang et al., 2022), and the analysis 
of coastal erosion (Flor-Blanco et al., 2021), and extreme wave events at the coast (Kalisch et al., 
2024).

The data that motivated this work are in the form of a time series of T = 1,326 semi-hourly wave 
and wind directions, recorded between 15th February and 16th March 2010 by the Ancona buoy, 
located in the Adriatic Sea at about 30 km from the coast (Figure 1a). This buoy is a floating device 
anchored to the seabed and it collects weather and oceanographic information. Precisely, the data 
are gathered in the form of angles that indicate the average direction from which the wave travels 
and the wind blows, during a period of 30 min. Along with wind and wave directions, the buoy 
also records wind speed (m/s) at the same time resolution. Figure 1b and 1c shows the two mar
ginal distributions of wind and wave directions, in the form of rose diagrams. The data joint dis
tribution is instead shown by Figure 2 in the form of two scatterplots, one with dots displayed on 
the original toroidal manifold (Figure 2b), and the other one with dots projected on the plane that 
is obtained by unwrapping the torus (Figure 2a). Dots are filled with colours according to the 
classes of wind speed.

Some features of the data can be straightforwardly interpreted by recalling the meteorology of 
the sea that surrounds the Ancona buoy. In wintertime, waves in the Adriatic Sea are typically gen
erated by the southeastern Sirocco wind and the northern Bora wind. These conditions can be as
sociated with the two modes of the rose diagram in Figure 1b. Sirocco arises from a warm, dry, 
tropical air mass that is pulled northward by low-pressure cells moving eastward across the 
Mediterranean Sea. By contrast, Bora episodes occur when a polar high-pressure area sits over 
the snow-covered mountains of the interior plateau behind the coastal mountain range and a 
calm low-pressure area lies further south over the warmer Adriatic. Remarkably, wind and 
wave directions are not always synchronized, as shown by the data scatterplot (Figure 2a). In 
the open sea, waves can travel freely, without being obstructed by physical obstacles, such as 
coastlines. As a result, the wind energy is fully transferred to the sea surface and wind and 
wave directions are highly correlated. In a semi-enclosed basin like the Adriatic Sea, instead, 
wave direction is modulated by the orography of the area and, as a result, wind and wave direc
tions are not necessarily highly correlated. Orographic effects are often held responsible for the 
inaccuracy of numerical wave models in the Adriatic Sea (Bertotti & Cavaleri, 2009), motivating 
statistical methods that segment these data into a small number of latent classes, conditionally on 
which the distribution of the data takes a shape that is easier to interpret than the shape taken 
by the marginal distribution. Figure 2a, where observations are coloured according to 
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contemporaneous wind speeds, not only offers first-hand evidence of the presence of at least two 
clusters. It also shows that wind speed is not uniformly distributed across the plot, first-hand evi
dence of the influence of wind speed on the observed data.

By modelling these data by a mixture of toroidal densities with parameters driven by a nonho
mogeneous semi-Markov chain, we aim to identify meaningful environmental regimes, simultan
eously accomplishing two further goals. First, we estimate the distribution of the dwell time spent 
by the observed process in each regime. Regimes are therefore not only classified according to dif
ferent shapes of the data distribution, as it is typically done in model-based segmentation, but also 
according to the distribution of the associated dwell times. Second, we estimate the influence of 
environmental time-varying covariates (e.g. wind speed) on the dynamics of the process.

3 A toroidal hidden semi-Markov model
Let y = (yt, t = 1, . . . T) be a bivariate time series, where yt = (yt1, yt2) is a vector of two circular 
observations −π < yt1, yt2 ≤ π. Further, let u = (ut, t = 1, . . . T) be a sequence of latent multi
nomial random variables ut = (ut1 . . . utK) with one trial and K classes (or regimes), whose binary 
components represent class membership at time t. Multinomial processes in discrete time are often 
simply referred to as chains, and we follow this terminology. Our proposal is a hierarchical model 
where the joint distribution of the time series is obtained by integrating a parametric conditional 

(a) (b) (c)

Figure 1. (a) The Adriatic sea and the location of the Ancona buoy (Latitude 43◦37′29.16′′ N; Longitude 13◦30′23.46′′ E); 
(b) observed wave directions and (c) wind directions.

(a) (b)

Figure 2. (a) Joint distribution of wave and wind directions, projected to a plane obtained by unwrapping a torus; 
(b) the same data displayed in their original manifold. Dots are coloured according to contemporaneous wind speed 
(m/s).
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distribution f (y ∣ u; θ) of the observed data given the latent classes (the observation process) with 
respect to a parametric distribution p(u; η) of the latent chain, namely

f (y; θ, η) =
􏽘

u
f (y ∣ u; θ)p(u; η). (1) 

3.1 The observation process
We assume that the toroidal observations are conditionally independent given the latent classes. 
Under this setting, the observation process is driven by a family of K toroidal densities 
fk(y) = f (y; θk), which represent the conditional distribution of the data under each regime and 
are known up to an array θ = (θ1, . . . , θK) of parameters, namely

f (y ∣ u; θ) =
􏽙T

t=1

􏽙K

k=1

f (yt; θk)utk . (2) 

As mentioned in Section 1, the literature offers a variety of toroidal densities that can be integrated 
in our model. The choice of a suitable parametric family should be a compromise between flexi
bility, ease of interpretation and numerical tractability. We rely on the particularly attractive bi
variate wrapped Cauchy density (Kato & Pewsey, 2015) that optimally satisfies these three 
requirements. This density depends on a vector of five parameters, θ = (μ1, μ2, κ1, κ2, ρ), namely 
two means, −π ≤ μ1, μ2 ≤ π, two concentrations 0 ≤ κ1, κ2 < 1 and a correlation parameter −1 < 
ρ < 1 and it can be written in terms of six coefficients c, c0 . . . c4 that only depend on the three 
parameters κ1, κ2, ρ (Kato & Pewsey, 2015), namely

f (y; θ)

=
c

c0 −c1 cos(y1 − μ1) − c2 cos(y2 − μ2) − c3 cos(y1 − μ1)cos(y2 − μ2) −c4 sin(y1 − μ1)sin(y2 − μ2)
.

(3) 

The density shares several properties with the bivariate normal density: it is unimodal and point
wise symmetric with respect to (μ1, μ2); κ1 (κ2) controls the dispersion of the marginal distribution 
of y1 (y2), which tends to a point mass at μ1 (μ2) when κ1 (κ2) approaches 1 and to a uniform dis
tribution on the circle when κ1 (κ2) approaches 0; positive (negative) values of ρ correspond to 
positive (negative) correlation between the two angles, with the density for −ρ being the reflection 
of the density associated with ρ and with ρ = 0 corresponding to independence.

It furthermore depends on a normalizing constant that is available in closed form (a property not 
necessarily shared by other toroidal densities) and it is also closed under marginalization and con
ditioning (the two marginal and conditional densities are univariate wrapped Cauchy). This prop
erty not only facilitates the evaluation of regression lines of one circular variable over the other 
one, but it also makes simulation straightforward. A random toroidal observation can be obtained 
by drawing the first coordinate from the marginal distribution and then using this value for sam
pling the second coordinate from the univariate conditional distribution given the first coordinate. 
Since both the marginal and the conditional distributions are univariate wrapped Cauchy, the 
whole task can be undertaken by calls to a single simulation wrapper of this distribution such 
as the function rwrappedcauchy in the R package circular (Lund et al., 2017). Figure 3
shows the shape taken by this density under specific parameter values and the related regression 
functions.

3.2 Latent chains
By the chain rule, the joint distribution of the latent chain u = (ut, t = 1, . . . T) can be written as

p(u) = p(u1)
􏽙T

t=2

p(ut ∣ ut−1, . . . , u1), 
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where p(u1) is the initial distribution of the chain and p(ut ∣ ut−1, . . . , u1) is the univariate condi
tional distribution of the chain at time t, given the past. The chain can be modelled in several ways, 
depending on specific assumptions on these conditional distributions. We focus below on two 
models, namely a nonhomogeneous Markov chain and a homogeneous semi-Markov chain be
cause our proposal can be viewed as a combination of these two specifications.

Under a Markov hypothesis, the state of the process at time t is assumed conditionally independ
ent of the past given the state at time t − 1, namely

p(ut ∣ ut−1, . . . , u1) = p(ut ∣ ut−1), t = 2, . . . , T (4) 

and the process is referred to as a Markov chain. If the conditional distribution p(ut ∣ ut−1) is time- 
constant, then the Markov chain is referred to as homogeneous. A homogeneous Markov chain 
moves from state ut−1 to state ut according to K × K time-constant transition probabilities 
γkh = p(uth = 1 ∣ ut−1,k = 1). Such probabilities can be conveniently reparametrized in terms of 
the (discrete) hazard of a state switch for a chain that is in state k at time t − 1, say 
qk =

􏽐
h≠k γkh, and the conditional probability ωkh = γkh/qk of switching to a specific state h, given 

a switch, 
􏽐

h≠k ωkh = 1, namely

γkh = 1 − qk h = k
qkωkh h ≠ k.

􏼚

Under this reparametrization, the event ‘leaving a state’ is kept separated by the conditional event 
of reaching a specific state given the occurrence of a transition, similar to what is often done in 

(a) (b)

(c) (d)

Figure 3. Contour plots of bivariate Wrapped Cauchy densities, centred at μ1 = μ2 = 0 and obtained by varying the 
concentrations κ1, κ2 and the correlation parameter ρ. Contours are projected on the plane obtained by unwrapping a 
torus. Curves (in bold) indicate the circular regression functions E(Y2 ∣ y1). (a) κ1 = κ2 = 0.3, ρ = −0.4, (b) κ1 = κ2 = 0.3, 
ρ = 0.4, (c) κ1 = 0.01, κ2 = 0.2, ρ = −0.4, and (d) κ1 = 0.01, κ2 = 0.2, ρ = 0.4.
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survival analysis when ‘all-cause mortality’ is separated by the cause of death. Under this setting, 
each conditional distribution is a multinomial distribution

p(ut ∣ ut−1) =
􏽙K

k=1

􏽙K

h=1

γutkh
kh , (5) 

where utkh = ut−1,kuth indicates the transition event (utkh = 1 if the chain switches from state k to 
state h, and 0 otherwise). The joint distribution of the chain takes therefore the form

p(u) = p(u1)
􏽙T

t=2

􏽙K

k=1

􏽙K

h=1

γutkh
kh . (6) 

The homogeneity assumption can be relaxed by introducing a (T − 1) × Q design matrix X, where 
each row xT

t , t = 2 . . . T, is associated to the transition from t − 1 to t. Specifically, a nonhomoge
neous Markov chain is obtained by allowing transition probabilities to depend on the row profiles 
xT

t , say

(Markov chain) γtkh = γkh(xT
t ) = 1 − qk(xT

t ) h = k
qk(xT

t )ωkh h ≠ k.

􏼚

(7) 

Here, the relationship between the hazards and the covariates can be specified in terms of Q regres
sion coefficients by a generalized linear model with link function g, say

g(qk(xT
t )) = xT

t βk.

When the design matrix reduces to a column of 1’s, then g(qtk) = βk and a homogeneous Markov 
chain is obtained as a particular case. Otherwise, the chain is driven by hazards that are exogen
ously updated at each time t by the current profile xT

t .
Under a semi-Markov hypothesis, instead, the state of the chain at time t depends on the history 

of the process since the last transition, summarized by the dwell time dt, that is the amount of time 
the chain has been dwelling in the same state by time t. Precisely, a semi-Markov chain moves from 
state ut−1 to state ut according to time-varying transition probabilities

γtkh = γkh(dt) = 1 − qk(dt) h = k
qk(dt)ωkh h ≠ k.

􏼚

(8) 

Under this setting, the chain is driven by hazards that at every time t are endogenously updated by 
the current dwell time dt. As a result, the Markov property does not hold and the chain’s univariate 
conditional distributions depend on the process’s history since the last transition. Precisely, let t1 

and t2 be the times of two consecutive transitions and let k and h be the states of the chain at times 
t1 and t2: for each time t1 < t ≤ t2,

p(ut ∣ ut−1, . . . , u1) = p(ut ∣ ut−1, . . . , ut1 ) = 1 − qk(t − t1) t ≠ t2

qk(t2)ωkh t = t2,

􏼚

(9) 

where t − t1 = dt is the current dwell time at time t. As above, a generalized linear model can be 
exploited to specify the relationship between the hazard and the dwell time, say

g(qk(dt)) = β0k + β1kdt β1k ≥ 0, k = 1, . . . , K.

When β1k = 0, then g(qtk) = β0k, and the semi-Markov chain reduces to a homogeneous Markov 
chain since in this case knowledge of the current state k suffices to predict the next move of the 
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chain. Otherwise, if β1k > 0, such knowledge must be augmented with the information on the cur
rent dwell time.

Since qk(d) is a probability, any link function that maps the unit interval into the real line is ad
missible. Typical choices for g are the logit, the probit and the complementary log–log transform
ation. The complementary log–log is a natural choice for modelling discrete dwell times because it 
can be viewed as the discrete counterpart of an exponential hazard in continuous time. Specifically, 
if λk(t) = exp(β0k + β1kt) is the hazard function of a positive, continuous random variable Tk that 
indicates the time up to a transition from state k, then the survival function of Tk is given by

Sk(t) = P(Tk > t) = exp − ∫t0 λk(τ)dτ
􏼐 􏼑

.

As a result, the discrete hazard is given by

qk(d) = 1 −
S(d + 1)

S(d)
= 1 − exp − ∫d+1

d λk(t)dt
􏼐 􏼑

≈ 1 − exp(−exp(β0k + β1k(d + 0.5))), 

and therefore

log (−log (1 − (qk(dt)))) = β0k + β1k(dt + 0.5) β1k ≥ 0, k = 1, . . . , K.

Figure 4 displays the role played by β1k on the shape of the dwell time hazard and the associated 
dwell time distribution

pk(d) =
qk(1) d = 1
qk(d)

􏽑d−1
δ=1 (1 − qk(δ)) d > 1.

􏼚

When β1k = 0, the hazard is constant and the dwell time distribution is geometric. As a result, the 
most probable dwell time is d = 1. Increasing values of β1k are associated with hazards that in
crease faster and more compressed dwell time distributions with lower right tails.

Two remarks are in order here. First, similarly to a nonhomogeneous Markov chain, a 
semi-Markov chain is defined by time-varying transition probabilities and it is hence intrinsically 
nonhomogeneous. However, while in a Markov chain these probabilities are exogenously updated 
by current covariate information, in a semi-Markov chain they are endogenously updated by the 
current dwell time. Second, similarly to the case of a homogeneous Markov chain, the joint 

Figure 4. Baseline dwell time hazard curves on the complementary log–log scale (left) for β0 = −3 and four values of 
β1 (0=continuous, 0.1= dashed, 0.3=dotted, 0.5=dot-dashed) and the corresponding hazard curves (middle) and 
probability mass functions (right). Although dwell times are discrete, both hazards and distributions are displayed as 
continuous, for better visualization.
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distributions of both a nonhomogeneous Markov chain and a semi-Markov chain take the prod
uct form

p(u) = p(u1)
􏽙T

t=2

􏽙K

k=1

􏽙K

h=1

γutkh
tkh , (10) 

where the transition probabilities γtkh are given by (7) and (8), respectively. However, in the case of 
a Markov chain, (10) is the result of the Markov hypothesis and represents the product 
p(u1)

􏽑T
t=2 p(ut ∣ ut−1). Differently, in the case of a semi-Markov chain, (10) results from the rep

arametrization of the transition probabilities in terms of hazards, and it represents the product 
p(u1)

􏽑T
t=2 p(ut ∣ u1, . . . , ut−1). This representation of the joint distribution of a semi-Markov 

chain by means of transition probabilities that are augmented with dwell time information has 
long been known in probability (Anselone, 1960), but it has only recently been brought to the at
tention of the statistical community by Langrock and Zucchini (2011).

Our proposal combines the two specifications above in a single model. Specifically, we assume 
that the chain moves from state ut−1 to state ut according to transition probabilities

(semi − Markov chain) γtkh = γkh(dt, xT
t ) = 1 − qk(dt, xT

t ) h = k
qk(dt, xT

t )ωkh h ≠ k,

􏼚

(11) 

where the hazard is specified in terms of the generalized linear model

g(qk(dt, xT
t )) = β0k + β1k(dt + 0.5) + xT

t βk β1k ≥ 0, k = 1, . . . , K. (12) 

These state-specific regression coefficients regulate the dynamics of the chain conditionally on the 
current state. If β1k = 0, the state k is Markovian, that is, the next move of the chain can be pre
dicted based on the current covariate information and the model reduces to a memory-less process 
(Ren & Barnett, 2023). Otherwise, the state is semi-Markovian, and predictions depend also on 
the current dwell time. By choosing a complementary log–log link function g, model (12) can 
be seen as the discrete-time counterpart of a continuous-time proportional hazards model 
λk(t; xt) = exp(β0k + β1kt + xT

t βk)) (see, for instance, Kalbfleisch & Prentice, 1980, page 37; and 
Tutz & Schmid, 2016, Section 3.3).

All the above specifications restrict the conditional transition probabilities ωkh to be time- 
constant. When time-varying covariates are available, however, this limitation can be overcome 
by an additional generalized linear model where time-varying conditional transition probabilities 
are linked to the covariates by a link function g′ and an array of regression coefficients αkh, say

g′(ωtkh) = zT
t αkh, 

where zT
t is the tth row of a (T − 1) × Q′ design matrix Z, not necessarily equal to the design matrix 

X that modulates the hazards. The particular case of time-constant conditional probabilities is ob
tained when zT

t = 1, and, as a result, g′(ωtkh) = αkh. A natural choice of the link function g′ is the 
multinomial logit, say

log
ωkh

ωkh⋆

􏼒 􏼓

= zT
t αkh 

where h⋆ ≠ k is a reference state. Under this setting, the Markov chain model (7) can be extended 
to the specification

(extended Markov chain) γtkh = γkh(xT
t , zT

t ) = 1 − qk(xT
t ) h = k

qk(xT
t )ωkh(zT

t ) h ≠ k,

􏼚

(13) 
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while the semi-Markov chain model (11) can be extended to the specification

(extended semi − Markov chain) γtkh = γkh(dt, xT
t , zT

t ) = 1 − qk(dt, xT
t ) h = k

qk(dt, xT
t )ωkh(zT

t ) h ≠ k.

􏼚

(14) 

In summary, models (7), (13), (11) and (14) represent four different ways to integrate time-varying 
covariates in the latent process distribution. Specifically, when combined with the observation 
process (2), the Markov chain (7) leads to an HMM with covariate-specific hazards and homoge
neous transition probabilities, while the extended Markov chain (13) relaxes this homogeneity 
constrain, leading to an extended HMM where both the hazards and the conditional transitional 
probabilities depend on covariates. When instead the observation process (11) is combined with 
the semi-Markov chain model (2), we obtain an HSMM with covariate-specific hazards and 
homogeneous transition probabilities, while the extended semi-Markov (14) extends this specifi
cation to an extended HSMM where both the hazards and the conditional transitional probabil
ities depend on covariates.

4 Data augmentation and maximum likelihood estimation
All the models described above are particular cases of model (14), which depends on the vector θ of 
the parameters of the state-specific toroidal distributions and on a parameter vector η = (π, β, α), 
where π = (π1, . . . πK) is the vector of the initial probabilities of the chain, β is the vector of the 
state-specific regression coefficients of the hazards and, finally, α is the vector of the state-specific 
regression coefficients of the conditional transition probabilities. The likelihood function is ob
tained by integrating (2) with (10), namely

L(θ, η) =
􏽘

u

􏽙T

t=1

􏽙K

k=1

f (yt; θk)utk p(u1; π)
􏽙T

t=2

􏽙K

k=1

􏽙K

h=1

γtkh(α, β)utkh . (15) 

The maximization of (15) is complicated by the summation over all the possible paths of the latent 
semi-Markov chain. This is a typical difficulty in the literature of hierarchical models and it is often 
overcome by an EM algorithm that alternates the maximization of a weighted complete-data 
log-likelihood function (M step) with weights updates (E step). The complete-data log-likelihood 
function is defined by appropriately augmenting the missing information by pseudo-observations. 
The efficiency of the EM algorithm depends on the augmentation design because only an appro
priate definition of the pseudo-observations facilitates the execution of both the E step and the M 
step of the algorithm.

Under (14), the missing information at each time t is not only the state of the chain, but also the 
current dwell time, and it is conveniently described by an array of multinomial 
pseudo-observations ut = (utkd, k = 1, . . . , K, d = 1, . . . T − 1), where utkd = 1 if at time t the 
chain is in state k and the current dwell time is d, and 0 otherwise. Here, the dwell time runs up 
to T − 1, which is the maximum possible dwell time in a time series of length T, by assuming a state 
switch at time t = 1. Under this setting, the complete-data log-likelihood function is given by

log Lc(θ, η) =
􏽘K

k=1

u1k1 log πk +
􏽘T

t=2

􏽘K

k=1

􏽘K

h=1

􏽘1,...,T−1

d,d′=1

ut−1,kduthd′ log γkh(d, xT
t , zT

t ; α, β)

+
􏽘T

t=1

􏽘K

k=1

􏽘T−1

d=1

utkd log f (yt; θk).

(16) 

It is worth remarking that most of the products ut−1,kduthd′ , indicating the transition event from t − 
1 to t, are equal to zero. As an example, if the chain is in state k at time t − 1 and the current dwell 
time is d, then only K events are allowed: one of the possible K − 1 transitions to state h ≠ k, which 
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reset the current dwell time at d′ = 1; or no transition, thus updating the current dwell time to 
d′ = d + 1. As a result, if ut−1,kd = 1, then utkd′ = 1 for h = k and d′ = 1 or for h ≠ k and 
d′ = d + 1, and 0 otherwise. Though alleviated by such sparsity, the dimension of the 
pseudo-observations arrays depends on the size of the time series, and potential issues of storage 
memory may arise. A possible solution relies on truncating these arrays at a value m < T − 1 
(Langrock et al., 2015), leading to the approximated complete-data log-likelihood function

log L(m)
c (θ, η) =

􏽘K

k=1

u1k1 log πk +
􏽘T

t=2

􏽘K

k=1

􏽘K

h=1

􏽘1,...,m

d,d′=1

ut−1,kduthd′ log γkh(d, xT
t , zT

t ; α, β)

+
􏽘T

t=1

􏽘K

k=1

􏽘m

d=1

utkd log f (yt; θk).

(17) 

This method does not constrain the maximum dwell time to be m but, for d > m, the transition 
probabilities of the semi-Markov chain are approximated by those of a nonhomogeneous 
Markov chain, namely

γtkh = γkh(d, xT
t , zT

t ) = γkh(d, xT
t , zT

t ) d ≤ m
γkh(m, xT

t , zT
t ) d > m.

􏼚

(18) 

Note that, setting m = 1 reduces equation (17) to the complete-data log-likelihood of a hidden 
Markov model. Suitable tuning of m therefore allows to use (17) to estimate all the models in 
Section 3. Specifically, the proposed EM algorithm iteratively relies on the approximated 
complete-data log-likelihood (17). Given the parameter estimates, say θ̂ and η̂, obtained at 
the end of the sth EM iteration, the (s + 1)th iteration is initialized by the E-step, which evaluates 
the expected value of the complete-data log-likelihood (17) with respect to the conditional dis
tribution of the pseudo-observations utkd and their pairwise products ut−1,kduthd′ given the 
observed data. The E step boils down to the computation of the univariate posterior 
probabilities π̂tkd = P(utkd = 1 ∣ y, x, z, θ̂, η̂), and the bivariate posterior probabilities 
π̂tkhdd′ = P(ut−1,kd = 1, uthd′ = 1 ∣ y, x, z, θ̂, η̂). The task of computing these posterior probabil
ities is generally referred to as the smoothing numerical issue and it is typically solved by speci
fying the posterior probabilities in terms of suitably normalized functions, which can be 
computed recursively, avoiding unpractical summations over the state space of latent 
semi-Markov chain and numerical under- and over-flows. Due to the product form (10) of 
the joint distribution of a semi-Markov chain, the smoothing problem can be efficiently solved 
by recycling the popular forward–backward algorithms that are exploited in the HMMs context 
(see Cappé et al., 2005 for an excellent review).

The M-step of the algorithm updates the parameter estimates, by maximizing the expected value 
of the complete-data log-likelihood (17), obtained from the previous E step. This expected value is 
the sum of functions that depend on independent sets of parameters and can therefore be maxi
mized separately, namely

Q(θ, π, α, β) =
􏽘K

k=1

π̂1k log πk +
􏽘T

t=2

􏽘K

k=1

􏽘K

h=1

􏽘m

d,d′=1

π̂tkhdd′ log γkh(d, xT
t , zT

t ; α, β)

􏽼����������������������������������������􏽻􏽺����������������������������������������􏽽
Q(π,α,β)

+
􏽘T

t=1

􏽘K

k=1

π̂tk log f (yt; θk)

􏽼�������������􏽻􏽺�������������􏽽
Q(θ)

,

(19) 
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where Q(π, α, β) = Q(π) + Q(α) + Q(β), and

Q(π) =
􏽘K

k=1

π̂1k log πk,

Q(α) =
􏽘T

t=2

􏽘K

k=1

􏽘

h≠k

􏽘m

d,d′=1

π̂tkhdd′ log ωkh(zT
t ; α),

Q(β) =
􏽘T

t=2

􏽘K

k=1

􏽘

h≠k

􏽘m

d,d′=1

π̂tkhdd′ log qk(d, xT
t ; β) +

􏽘T

t=2

􏽘K

k=1

􏽘m

d,d′=1

π̂tkkdd′ log (1 − qk(d, xT
t ; β)).

Function Q(π) is a weighted multinomial log-likelihood and it is maximized by π̂k = π̂1k. Functions 
Q(α) and Q(β) are instead a weighted multinomial and a weighted binomial likelihood, respect
ively. Upon choosing an appropriate link function, as suggested in Section 3, they can be therefore 
maximized by fitting a weighted multinomial regression and a weighted binomial regression mod
el, respectively. Finally, maximization of the function Q(θ) can be undertaken by an unconstrained 
maximization algorithm, after a suitable re-parametrization of the involved parameters. In the 
case of the bivariate-wrapped Cauchy, we maximize Q(θ) over the parameter vector 
(θ1, θ2, θ3, θ4, θ5) where θ1 = tan (μ1), θ2 = tan (μ2), θ3 = (tanh(κ1) + 1)/2, θ4 = (tanh(κ2) + 1)/2 
and, finally, θ5 = tanh(ρ), exploiting a quasi-Newton procedure as provided by the function 
optim in R.

5 Computational details, uncertainty quantification, and model selection
In this section, we describe the computational challenges posed by the implementation of the EM 
algorithm (see Section 4) and discuss the adopted inferential strategies for uncertainty quantifica
tion and model selection.

Likelihood maximization of the proposed models is not trivial as it is well known that the EM 
algorithm may converge to local maxima or singularities at the edge of the parameter space, where 
the log-likelihood is unbounded. As a result, several strategies have been proposed to select a local 
maximizer and detect a spurious maximizer (Maruotti & Punzo, 2021). We pursue a short-run 
strategy, by running the EM algorithm from multiple random initializations and stopping it with
out waiting for full convergence. Then, we select the best output across these short runs, i.e. the 
one maximizing the log-likelihood, and use this solution to initialize longer runs to reach conver
gence. Eventually, we stop the optimization when the increase of two successive log-likelihoods 
falls below 10−4, as this stopping criterion produced stable parameter estimates in preliminary 
experiments.

While Q(α) can be maximized by running any generalized linear model estimation routine 
that allows for case weights, such as the glm function in R, the same approach is not 
fully desirable for maximizing Q(β), because of the constrain β1k ≥ 0. The constrained opti
mization of Q(β) can be however transformed in an unconstrained optimization problem, by 
maximizing with respect to the unconstrained working parameters η

1k
, where β1k = exp(η1k), 

k = 1, . . . ,K.
The EM algorithm has been implemented by using a single value of m for geometrically approxi

mating the tail of the dwell time distribution of every state after d > m. In principle, the algorithm 
could be extended to allow state-specific thresholds, say mk, that could shorten execution times. 
However, this extension is practical only when an ’optimal’ list of thresholds is known a priori. 
When this is not the case, searching for the optimal threshold set, whose size increases with the 
number of latent states, requires running the whole algorithm several times, therefore dissipating 
the computational advantage of working with a single threshold.

The dimension of the array γtkh(d, xT
t , zT

t ) increases with m and K and may lead to potential stor
age issues. However, such issues were not encountered in our scenarios as m ≤ 75 and K ≤ 5. 
Nevertheless, other applications may require larger values for both, which can be handled by ex
ploiting the sparsity of the array and using packages like Matrix, that support working with 
sparse objects.
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Uncertainty quantification for the model parameters is based on a parametric bootstrap ap
proach. Precisely, we re-fitted the model to B = 1,000 bootstrap samples, which were simulated 
from the MLEs, hence obtaining {η}Bb=1 and {θ}Bb=1 sets of estimates, exploited to compute equal- 
tail confidence intervals. Within the proposed framework, this inferential approach proves con
venient for two main reasons: first, simulation from the described HSMM (and its particular cases) 
is straightforward; second, it overcomes the computation of the observed information matrix, a 
nontrivial task. Methods to obtain the observed information matrix have only been proposed in 
the literature for the HMMs (Bartolucci & Farcomeni, 2015). They rely on the computation of 
the derivatives of each element of the forward recursion algorithm—used to obtain univariate 
and bivariate posterior probabilities—but suffer from numerical instability and require suitable 
normalizations, especially with large sample sizes (as it is our case). Eventually, to the best of 
the authors’ knowledge, these methods have not yet been extended and tested to the HSMM 
framework. As an aside, we note that symmetric confidence intervals are not guaranteed to be 
within the admissible parameter space when an estimate is close to the space boundary. In an 
HSMM setting, this issue typically arises for the (conditional) transition probabilities, which 
may often be estimated to be close to either 0 or 1, making symmetric confidence intervals unre
liable (Section 3.6.1 in Zucchini et al., 2016). Equal-tail, bootstrap-based confidence intervals do 
not suffer from this drawback.

Finally, model selection reduces to find the optimal number K of components, according to a 
suitable criterion. Like any other mixture model, our proposal can be either exploited for density 
estimation to get a good approximation of the data distribution or for clustering, where the goal is 
to find the best data segmentation (Fruhwirth-Schnatter et al., 2018). In our case study, segmen
tation is as important as density estimation and, therefore, we rely on the minimization of the in
tegrated complete likelihood (ICL; Biernacki et al., 2000), where the goodness of fit is penalized by 
classification entropy.

6 Simulation study
We run a simulation experiment to assess the ability of an HSMM with covariate-specific hazards 
and homogeneous transition probabilities to recover the population parameter values under dif
ferent scenarios, as well as to assign each observation a probability of coming from one of the la
tent regimes, and eventually classify it. The simulation was performed under K ∈ {2, 3, 4} regimes 
and included a time-varying covariate, drawn from N(0, 9). Table 1 and Figure 5 respectively dis
play the population values of the parameters chosen for simulating three scenarios, and the con
tour plots of the resulting component densities. These scenarios—though not exhaustive—aim to 
mimic possible real data situations where mixture components may (or may not) overlap and show 
positive (or negative) correlations, while also accounting for different effects of a time-varying co
variate on the dwell-time distribution and not necessarily uniform transition probabilities.

For each K, we simulated N = 250 samples with increasing size T ∈ {1,000, 2,000, 3,000} to 
evaluate the consistency of the estimates. For each simulated sample, we know the maximum dwell 
time mobs and such knowledge provides us with the opportunity to perform a sensitivity analysis of 
the geometric approximation of the dwell time distribution. Accordingly, parameter estimation 
was repeated by maximizing the log-likelihood (17) with m = ⌈mobs × δ⌉, with δ ∈ {0.5, 1, 1.5}. 
The performance of the proposed estimation algorithm was finally assessed in terms of 
(i) Adjusted Rand Index (ARI) for the classification of the latent regimes and (ii) Root Mean 
Squared Error (RMSE) for the estimation of the parameters of both the latent part of the model, 
η, and the observed part of the model, θ. Specifically, the RMSE associated with the circular means 
was computed by using the angular deviation (Mardia & Jupp, 2000) of the estimates. The results 
are summarized by Figure 6. The ability to recover the true value of the parameters for the density 
and the latent process is instead shown in Tables A2, A1, and A3 of the Appendix.

In this study, the median Adjusted Rand Index (ARI) was always above 0.8 (Figure 6), reassur
ing about the capability of the algorithm to perform a satisfactory data segmentation, even when 
the sample size is small and the maximum dwell time m is misspecified. In particular, the rightmost 
panel of the figure shows that most ARI values are above 0.8 also when the model dimension is 
large and the algorithm is challenged by a huge number of parameters. Under this setting, however, 
we obtained a few cases of incorrect data segmentation, associated with a sub-optimal local 
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maximum of the log-likelihood. The chances of suboptimal solutions may increase with model 
complexity.

The RMSE values shown by Tables A2, A1, and A3 always decrease with sample size, indicat
ing the consistency of the estimates obtained by the proposed algorithm. When the 
log-likelihood is misspecified by a value of m that is smaller than the true maximum dwell 
time, the RMSE is always larger, as expected. This difference is attenuated when instead m is 
overestimated, suggesting the somehow obvious strategy of choosing the largest m allowed by 
the available storage memory.

Table 1. Simulation: parameter values chosen for each scenario

observation process latent process

dwell time transition probabilities

no. states state k μ1k μ2k κ1k κ2k ρk β0k β1k β2k ωk1 ωk2 ωk3 ωk4

2 1 0.5 0.5 0.2 0.3 0.6 −8 0.35 −0.5 0 1 – –

2 2 2 0.2 0.8 0.1 −3 0.075 0.5 1 0 – –

3 1 0.5 0.5 0.2 0.3 0.6 −8 0.4 −0.5 0 0.50 0.50 –

2 2 2 0.2 0.8 0.1 −5 0.15 0.2 0.90 0 0.10 –

3 2 −2 0.5 0.5 −0.6 −3 0.05 0.7 0.45 0.55 0 –

4 1 0.5 0.5 0.2 0.3 0.6 −8 0.4 −0.5 0 0.25 0.25 0.50

2 2 2 0.2 0.8 0.1 −6 0.3 0.2 0.70 0 0.20 0.10

3 −2 −2 0.7 0.9 −0.3 −4 0.05 0.7 0.15 0.25 0 0.60

4 2 −2 0.5 0.5 −0.6 −2 0.15 −0.1 0.30 0.20 0.50 0

(a) (b) (c)

Figure 5. The three scenarios considered for the simulation study. (a) K = 2, (b) K = 3, and (c) K = 4.

(a) (b) (c)

Figure 6. Simulation study: classification performances in terms of Adjusted Rand Index in each considered 
scenario. (a) K = 2, (b) K = 3, and (c) K = 4.
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7 Segmenting marine conditions
It is intuitive that wind speed plays a role in the evolution of sea states across several regimes. 
However, a model that formalizes this role is far from being obvious and Section 3 describes 
four alternative ways of including wind speed as a driver of the process dynamics: an HMM 
and an HSMM with covariate-specific hazards and homogeneous transition probabilities and, 
respectively, an extended HMM and an extended HSMM with covariate-specific transition prob
abilities. Table 2 summarizes the results obtained by estimating these models across two to five 
states, reporting the BIC, the (negative) classification entropy and the ICL, obtained by summing 
BIC and negative entropy. Results are obtained by truncating the complete-data log-likelihood 
(17) at m = 75. In our application, the time resolution is 30 min and, therefore, setting m = 75 
means geometrically approximating the dwell time distribution tail after 1.5 days. After several 
attempts, we noticed that in this application larger values of m yielded practically indistinguish
able results.

As anticipated, we use ICL for model selection. Alternatively, the commonly used BIC might 
have been an option. In this case study, BIC tends to favour an extended HMM as the model 
that most parsimoniously offers the best fit. However, a good fit is often not necessarily associated 
with a good segmentation. As the number of the states increases, under an extended HMM, mono
tonically decreasing BIC values are counterbalanced by monotonically increasing entropy values, 
indicating that improvements in density estimation are obtained at the price of less separated latent 
classes. In this application, the accuracy of data segmentation, measured by the negative classifi
cation entropy, is as important as density estimation. As a result, we rely on ICL values, where BIC 
is further penalized by entropy. Under this criterion, the best candidate is a hidden semi-Markov 
model with four states. In terms of BIC, this model is better than an extended HMM with four 
states, but it is worse than an extended HMM with five states and an HSMM with five states. 
However, these two competitors perform worse in terms of entropy values and, as a result, the 
minimum ICL value is reached by an HSMM with four states, which seems to indicate a good com
promise between goodness of fit, parsimony and latent class separation.

Therefore, Table 3 displays the estimates under an HSMM model with four states, along with 
bootstrap ET 95% confidence intervals, computed by simulating B = 1,000 samples, and here 
used to test whether estimates are significantly different from zero. The table displays three results 
that support the proposed model. First, the dependence parameter ρ is always significantly differ
ent from zero, supporting the choice of a toroidal distribution that accounts for circular correl
ation within latent regimes. The choice of using two univariate, conditionally independent 
circular densities, as it is often done, would have been a dispensable model restriction in this 
case study. Second, the regression coefficient β1 of the dwell time is significant under three regimes 
(states 1, 2, and 4). This motivates the choice of a latent process where states are nonnecessarily 
Markovian. Third, the regression coefficient β2 of wind speed is always significant, motivating 
wind speed as a relevant covariate in this study and indicating that a homogeneous version of 
our model would have been an unnecessary shortcoming.

The rest of the table can be interpreted with the help of Figures 7 and 8, which summarize the 
inferential output. Specifically, Figure 7a and c displays the data segmentation obtained in the var
iables space and, respectively, in the temporal domain, by associating each observation with the 
latent class k with the highest estimated posterior probability π̂tk. Figure 7b shows instead the 
four estimated toroidal densities in the unwrapped, Cartesian-like, toroidal space. Figure 7d 
shows the (conveniently smoothed) conditional distributions of the time-varying covariate 
(wind speed) within each regime, obtained by associating each observation with the most probable 
latent class. The regime-specific dwell-time hazards and distributions displayed by Figure 8 were 
obtained by setting wind speed at the three quartiles of these conditional distributions. The vertical 
line at m = 75 recalls that dwell time distributions are approximated by a geometric tail for times 
larger than 75.

Overall, the four estimated components appear well-separated and identify four distinct sea re
gimes or states. Three regimes (states 2, 3, and 4) are associated with positively correlated direc
tions, clustered around three modal directions in the northwest, the northeast and the southeast 
quadrant. Specifically, while states 2 and 3 occur during episodes of northern Bora winds, state 
4 is the result of Sirocco episodes. Both Bora and Sirocco are usually strong winds that drive 
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the direction of waves. Other winds in the Adriatic Sea blow at typically moderate speed and they 
are not able to change the direction of the southeasterly waves that travel towards the northwest 
along the major axis of the Adriatic basin. This regime is captured by the first component of the 
model, which clusters westerly winds blowing from the Italian coast that encounter waves that 
travel from southeast to northwest.

The temporal segmentation obtained in Figure 7c reflects the transition graph of the latent 
semi-Markov chain, as estimated by the conditional transition probabilities of Table 3. These es
timates indicate that when the process is in state 2, it tends to switch to state 1. Indeed, under state 
2, southeastern waves are generated by Sirocco episodes and keep such direction along the major 
basin of the Adriatic Sea as wind speed decreases (state 1). State 3 instead behaves as an intermedi
ate state that is predicted to switch to states 2 and 4 (but rarely to state 1). State 3 features north
eastern waves generated by a Bora episode that can change direction according to a rotation of 
wind toward the northwestern sector (state 4) or the southeastern sector (state 2). In general, 
by looking at the maximum value of the estimated conditional transition probabilities, the model 
seems to suggest 1 → 4 → 3 → 2 → 1 as the most likely trajectory, associated with an anticyclonic 
atmospheric pattern.

The distinct advantage of an HSMM, compared to a more restrictive HMM, is that the temporal 
segmentation of the observed process (Figure 7c) can be interpreted not only in terms of transitions 
between latent regimes (as it is normally done with an HMM), but also in terms of duration of each 
regime. Figure 8a–d displays the four estimated, state-specific hazard functions, computed at three 
reference values of wind speed, namely the first quartile, the median and third quartile of the con
ditional distribution of the covariate given the most probable state, as estimated by the model. 
Such conditional computation avoids evaluations at covariate values that rarely occur under the 
state of interest. Figures 8e–8h display the resulting dwell time distributions, approximated by a 
geometric tail at dwell points greater than m = 75. The shape of the dwell time distributions under 
each state is driven by the coefficient β1k, whose state-specific estimate is displayed by Table 3. As 
described in Section 3.2, large values of this parameter indicate departures from a geometric shape 

Table 2. Model dimension and goodness of fit for a varying number of latent states

Model No. states No. params. BIC Entropy ICL

HMM 2 15 6,809.24 5,804.37 12,613.60

3 26 6,056.05 3,874.66 9,930.71

4 39 5,211.12 2,911.08 8,122.20

5 54 4,934.61 2,334.55 7,269.16

Extended HMM 2 15 6,809.24 5,804.37 12,613.60

3 29 6,019.02 3,869.57 9,888.59

4 47 5,239.01 2,909.94 8,148.95

5 69 4,872.46 2,335.00 7,207.47

HSMM 2 17 6,815.76 1,827.39 8,643.15

3 29 6,056.23 1,716.90 7,773.13

4 43 5,217.06 1,594.15 6,811.21

5 59 5,052.75 1,870.05 6,922.79

Extended HSMM 2 17 6,815.76 1,827.39 8,643.15

3 32 6,714.48 854.77 7,569.25

4 51 6,060.42 900.76 6,961.18

5 74 6,214.51 1,214.95 7,429.46

Note. HMM: a hidden Markov model with covariate-specific hazards and homogeneous transition probabilities. 
Extended HMM: an HMM with covariate-specific hazards and covariate-specific transition probabilities. HSMM: a 
hidden semi-Markov model with covariate-specific hazards and homogeneous transition probabilities. Extended 
HSMM: a hidden semi-Markov model with covariate-specific hazards and covariate-specific transition probabilities. The 
number in bold highlights the best model overall. ICL: integrated complete likelihood.

16                                                                                                                                  Lagona and Mingione
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlae049/7821074 by U
niversita degli Studi R

om
a Tre user on 14 O

ctober 2024



T
ab

le
 3

. 
P

ar
am

et
er

s’
 e

st
im

at
es

 (b
oo

ts
tr

ap
 9

5%
 c

on
fid

en
ce

 in
te

rv
al

s)
 o

f 
th

e 
pr

op
os

ed
 4

-s
ta

te
 H

S
M

M

St
at

e

Pa
ra

m
.

1
2

3
4

W
in

d 
ci

rc
ul

ar
 m

ea
n

μ 1
2.

01
3 

(1
.9

21
, 2

.1
10

)
2.

41
4 

(2
.3

67
, 2

.4
64

)
0.

81
9 

(0
.7

52
, 0

.8
92

)
2.

19
6 

(2
.1

63
, 2

.2
30

)

W
av

e 
ci

rc
ul

ar
 m

ea
n

μ 2
1.

98
5 

(1
.9

62
, 2

.0
11

)
2.

12
9 

(2
.0

93
, 2

.1
75

)
0.

80
4 

(0
.7

45
, 0

.8
54

)
2.

55
4 

(2
.4

91
, 2

.6
12

)

W
in

d 
ci

rc
ul

ar
 c

on
ce

nt
ra

ti
on

κ 1
0.

53
2 

(0
.4

71
, 0

.5
93

)
0.

69
9 

(0
.6

65
, 0

.7
41

)
0.

68
8 

(0
.6

17
, 0

.7
47

)
0.

76
3 

(0
.7

34
, 0

.7
92

)

W
av

e 
ci

rc
ul

ar
 c

on
ce

nt
ra

ti
on

κ 2
0.

86
1 

(0
.8

33
, 0

.8
82

)
0.

75
4 

(0
.7

23
, 0

.7
85

)
0.

76
9 

(0
.7

26
, 0

.8
09

)
0.

64
3 

(0
.6

09
, 0

.6
8)

W
in

d-
w

av
e 

ci
rc

ul
ar

 c
or

re
la

ti
on

ρ
−

0.
37

8 
(−

0.
46

8,
 −

0.
28

7)
0.

22
1 

(0
.1

48
, 0

.2
97

)
0.

28
7 

(0
.1

75
, 0

.3
89

)
0.

22
5 

(0
.1

55
, 0

.2
92

)

In
te

rc
ep

t
β 0

−
4.

57
7 

(−
6.

82
6,

 −
2.

59
4)

−
2.

90
9 

(−
4.

89
8,

 −
0.

77
)

0.
76

8 
(−

1.
61

2,
 4

.5
)

−
0.

38
5 

(−
2.

78
3,

 2
.3

95
)

T
im

e
β 1

0.
02

5 
(0

.0
01

, 0
.1

08
)

0.
10

2 
(0

.0
47

, 0
.1

91
)

0.
01

2 
(−

0.
02

8,
 0

.1
18

)
0.

04
3 

(0
.0

06
, 0

.0
95

)

W
in

d 
sp

ee
d

β 2
0.

31
3 

(0
.0

47
, 0

.7
49

)
−

0.
66

 (
−

1.
43

5,
 −

0.
23

)
−

1.
02

6 
(−

2.
66

, −
0.

4)
−

1.
21

4 
(−

2.
28

, −
0.

60
6)

D
es

ti
na

ti
on

 s
ta

te

O
ri

gi
n 

st
at

e
Pa

ra
m

1
2

3
4

1
ω

1k
0

0.
20

5 
(0

.0
00

, 0
.4

50
)

0.
21

2 
(0

.0
00

, 0
.4

56
)

0.
58

3 
(0

.3
44

, 0
.8

10
)

2
ω

2k
0.

87
7 

(0
.6

42
, 1

.0
00

)
0

0.
10

8 
(0

.0
00

, 0
.3

55
)

0.
01

5 
(0

.0
00

, 0
.1

16
)

3
ω

3k
0.

00
9 

(0
.0

00
, 0

.1
31

)
0.

75
9 

(0
.4

08
, 1

.0
00

)
0

0.
23

2 
(0

.0
00

, 0
.5

50
)

4
ω

4k
0.

28
7 

(0
.0

00
, 0

.6
03

)
0.

27
0 

(0
.0

00
, 0

.5
69

)
0.

44
3 

(0
.1

22
, 0

.7
93

)
0

J R Stat Soc Series C: Applied Statistics                                                                                                    17
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlae049/7821074 by U
niversita degli Studi R

om
a Tre user on 14 O

ctober 2024



in the dwell time distribution. Accordingly, the estimates under the intermediate regimes 1 and 3 
(respectively β̂1 = 0.025, 0.012) are associated with dwell time distributions that are essentially 
geometric. Conversely, the estimates under states 2 and 4 (respectively β̂1 = 0.102, 0.043) reflect 
a significant departure from the geometric shape. According to these findings, the states associated 
with Bora and Sirocco episodes (2 and 4) tend to have longer durations than the states associated 
with intermediate regimes (1 and 3). More interestingly, wind speed is not always positively asso
ciated with regime duration. Under state 1, for example, β̂2 = 0.313, indicating that the hazard of a 
transition to another regime increases with wind speed. The conditional distribution of wind speed 
under this regime (Figure 7d) shows that this state is associated with moderate winds. An increase 
in wind speed expectedly indicates that a transition to another regime is approaching. All the other 
states (2, 3 and 4) are instead associated with stronger winds (Figure 7d) and an increase in wind 
speed tends to postpone the transition to another regime. Accordingly, the regression coefficients 
of wind speed under these states are negative. That association between wind speed and the dur
ation of a specific sea regime may take different signs is well known in marine research 
(Holthuijsen, 2007), but difficult to measure without estimating a nonhomogeneous HSMM.

8 Discussion
Hierarchical models offer a useful strategy to interpret complex environmental phenomena, by 
allocating different data features to separate levels of a hierarchy, where several models can be 
efficiently integrated. Our proposal is a hierarchical model for toroidal time series that parsimo
niously combines directional statistics and survival analysis tools. While directional statistics is ex
ploited at the observation level of the hierarchy using toroidal densities, survival analysis is 
employed at the latent level of the hierarchy using hazard regression. The framework that makes 
such integration identifiable (and estimable) is provided by a class of hidden semi-Markov models 

(a) (b)

(c) (d)

Figure 7. Top left: classification of the observed data (a); top right: estimated densities of the four mixture 
components with related circular regression lines (b); bottom left: estimated path of the hidden semi-Markov chain 
(c); the conditional distribution of wind speed within each latent regime (d).
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where the hazard of a transition is modelled separately from the conditional probability of reach
ing a specific state, given a transition. By working with the hazard function, we directly test 
whether a time-varying covariate is responsible for a regime shift, given the time spent in that re
gime. In other words, we are capable of identifying the conditions under which the chances of a 
regime shift are time-constant or time-varying.

In the considered case study, the model is capable of offering a clear-cut description of wind- 
wave interactions in terms of intuitively appealing environmental regimes. It provides a classifica
tion that reflects the orography of the study area, a feature often neglected by numerical models. It 
offers valid data segmentation by relaxing the restrictions that affect other models. It finally cap
tures the influence of environmental conditions (wind speed) on the duration of specific regimes.

Tough tailored to issues that arise in marine studies, it can be easily extended to a wide range of 
real-world cases, where the interest is not only on the segmentation of the data according to time- 
varying latent classes, but also on the influence of covariates on sojourn times within each latent 
class.

The model is fully parametric and therefore exposed to misspecification issues. Non-parametric 
extensions can in principle be developed either at the observation level of the model hierarchy or at 
the latent level.

At the observation level, an option could be replacing the proposed mixture of toroidal densities 
with a nonparametric density. Methods of nonparametric estimation of toroidal densities are 
available (Di Marzio et al., 2011) and can in principle be integrated into an HSMM framework. 

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 8. (a)–(d) State-specific hazards (in the complementary log-log scale) under three different scenarios 
obtained by fixing the covariate to its conditional first quartile (dashed), median (solid) and third quartile (dotted). 
(e)–(h) Corresponding dwell-time distribution in the three considered scenarios, where the points for d > 75 show 
the Geometric approximation. Although dwell times are discrete, both the hazards and the distributions are 
displayed as continuous for better visualization.
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This approach could be pursued when the interest is on the accurate estimation of the marginal 
data density and appropriate resources for the additional computational burden are available. 
However, when the interest is on segmenting the data by means of physically meaningful param
eters, such as in our case study, a fully parametric strategy seems preferable and easier to perform 
than a nonparametric approach.

At the latent level, a nonparametric approach can be pursued by assuming a nonparametric 
dwell time distribution and separately estimating the whole set of probabilities masses under 
each regime (Sansom & Thomson, 2001). This strategy is computationally tractable only when 
the study involves a long time series with short dwell times and it does not guarantee against wiggly 
dwell time distributions with implausible gaps and spikes (Bulla et al., 2010). Recently, Pohle et al. 
(2022) suggest penalized likelihood methods to estimate the dwell time distribution in a (homoge
neous) HSMM. This idea could in principle be integrated into our proposal to estimate hazard 
functions nonparametrically, at the price of additional computational burden.
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Appendix. Further results of the simulation study

Table A1. Results of the simulation study: RMSE for β in each considered scenario

K 2 3 4

T δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5

β01 1,000 2.031 1.336 1.332 2.353 1.682 1.776 4.262 1.952 3.847

2,000 1.441 0.966 0.965 1.546 1.154 1.069 3.022 1.319 2.759

3,000 1.182 0.820 0.819 1.049 0.812 0.806 3.107 1.040 2.219

β02 1,000 0.626 0.543 0.539 2.144 0.853 0.926 3.010 1.738 2.174

2,000 0.389 0.333 0.331 1.253 0.531 0.496 1.674 0.905 1.068

3,000 0.312 0.273 0.275 0.984 0.399 0.389 1.511 0.687 0.814

β03 1,000 – – – 1.718 1.627 1.682 1.294 0.925 1.288

2,000 – – – 0.736 0.885 0.775 0.924 0.559 0.760

3,000 – – – 0.552 0.499 0.543 0.758 0.418 0.627

β04 1,000 – – – – – – 1.204 0.577 0.925

2,000 – – – – – – 0.597 0.343 0.539

3,000 – – – – – – 0.549 0.288 0.466

β11 1,000 0.235 0.082 0.082 0.235 0.127 0.146 0.556 0.157 0.355

2,000 0.191 0.063 0.063 0.152 0.090 0.082 0.261 0.096 0.166

3,000 0.163 0.048 0.048 0.110 0.062 0.059 0.208 0.084 0.128

(continued)
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Table A1. Continued

K 2 3 4

T δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5

β12 1,000 0.058 0.056 0.055 0.215 0.051 0.051 0.441 0.145 0.302

2,000 0.038 0.031 0.031 0.141 0.033 0.028 0.166 0.071 0.100

3,000 0.031 0.026 0.026 0.104 0.022 0.023 0.134 0.053 0.134

β13 1,000 – – – 0.199 0.299 0.183 0.137 0.077 0.111

2,000 – – – 0.073 0.092 0.069 0.076 0.030 0.041

3,000 – – – 0.056 0.054 0.053 0.045 0.025 0.036

β14 1,000 – – – – – – 0.179 0.150 0.181

2,000 – – – – – – 0.092 0.077 0.090

3,000 – – – – – – 0.085 0.063 0.089

β21 1,000 0.133 0.117 0.118 0.161 0.135 0.175 0.330 0.219 0.431

2,000 0.097 0.081 0.081 0.094 0.108 0.100 0.326 0.131 0.207

3,000 0.099 0.066 0.066 0.079 0.080 0.079 0.153 0.091 0.115

β22 1,000 0.133 0.122 0.122 0.105 0.103 0.117 0.179 0.146 0.161

2,000 0.074 0.072 0.072 0.064 0.066 0.066 0.097 0.091 0.093

3,000 0.061 0.059 0.059 0.056 0.058 0.057 0.075 0.068 0.073

β23 1,000 – – – 0.647 0.643 0.521 0.230 0.182 0.232

2,000 – – – 0.194 0.209 0.203 0.156 0.110 0.142

3,000 – – – 0.140 0.135 0.140 0.139 0.082 0.117

β24 1,000 – – – – – – 0.235 0.106 0.186

2,000 – – – – – – 0.141 0.065 0.124

3,000 – – – – – – 0.178 0.049 0.105

Note. RMSE=root mean squared error.

Table A2. Results of the simulation study: RMSE for θ in each considered scenario

K 2 3 4

T δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5

μ11 1,000 0.087 0.085 0.083 0.110 0.121 0.107 0.149 0.118 0.140

2,000 0.062 0.062 0.063 0.070 0.076 0.074 0.089 0.087 0.086

3,000 0.054 0.059 0.057 0.076 0.070 0.063 0.081 0.070 0.078

μ12 1,000 0.146 0.162 0.148 0.166 0.189 0.189 0.311 0.205 0.253

2,000 0.135 0.133 0.133 0.104 0.110 0.105 0.203 0.146 0.145

3,000 0.098 0.098 0.099 0.089 0.083 0.088 0.159 0.116 0.161

μ13 1,000 – – – 0.097 0.097 0.107 0.397 0.028 0.383

2,000 – – – 0.068 0.063 0.068 0.314 0.022 0.247

3,000 – – – 0.055 0.055 0.056 0.309 0.018 0.246

μ14 1,000 – – – – – – 0.442 0.087 0.398

2,000 – – – – – – 0.289 0.057 0.239

3,000 – – – – – – 0.308 0.046 0.235

(continued)
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Table A2. Continued

K 2 3 4

T δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5

μ21 1,000 0.074 0.073 0.071 0.094 0.101 0.093 0.149 0.103 0.124

2,000 0.053 0.054 0.055 0.011 0.011 0.010 0.076 0.074 0.073

3,000 0.047 0.052 0.049 0.009 0.009 0.009 0.070 0.059 0.068

μ22 1,000 0.019 0.019 0.019 0.176 0.013 0.171 0.223 0.019 0.130

2,000 0.015 0.014 0.014 0.011 0.011 0.011 0.143 0.014 0.014

3,000 0.011 0.011 0.011 0.010 0.011 0.010 0.116 0.012 0.116

μ23 1,000 – – – 0.200 0.097 0.209 0.366 0.008 0.270

2,000 – – – 0.067 0.063 0.067 0.173 0.006 0.054

3,000 – – – 0.058 0.055 0.058 0.208 0.005 0.130

μ24 1,000 – – – – – – 0.097 0.091 0.094

2,000 – – – – – – 0.066 0.056 0.060

3,000 – – – – – – 0.063 0.046 0.052

κ11 1,000 0.023 0.023 0.022 0.031 0.026 0.030 0.046 0.033 0.044

2,000 0.018 0.018 0.018 0.021 0.020 0.021 0.028 0.024 0.029

3,000 0.015 0.014 0.014 0.017 0.016 0.016 0.025 0.020 0.023

κ12 1,000 0.045 0.045 0.044 0.051 0.033 0.049 0.063 0.048 0.050

2,000 0.029 0.028 0.028 0.024 0.023 0.024 0.045 0.030 0.031

3,000 0.025 0.024 0.024 0.019 0.019 0.019 0.030 0.022 0.029

κ13 1,000 – – – 0.065 0.056 0.066 0.124 0.025 0.099

2,000 – – – 0.040 0.036 0.039 0.084 0.017 0.066

3,000 – – – 0.031 0.030 0.030 0.089 0.014 0.065

κ14 1,000 – – – – – – 0.090 0.046 0.078

2,000 – – – – – – 0.053 0.031 0.046

3,000 – – – – – – 0.056 0.028 0.048

κ21 1,000 0.023 0.022 0.022 0.028 0.024 0.029 0.055 0.030 0.039

2,000 0.018 0.017 0.017 0.020 0.019 0.021 0.025 0.021 0.026

3,000 0.014 0.014 0.014 0.016 0.015 0.017 0.024 0.018 0.023

κ22 1,000 0.020 0.018 0.018 0.032 0.014 0.035 0.095 0.018 0.074

2,000 0.016 0.015 0.015 0.009 0.009 0.009 0.041 0.011 0.014

3,000 0.012 0.010 0.010 0.008 0.007 0.008 0.014 0.010 0.012

κ23 1,000 – – – 0.069 0.054 0.076 0.098 0.009 0.117

2,000 – – – 0.038 0.038 0.039 0.117 0.006 0.104

3,000 – – – 0.031 0.030 0.029 0.098 0.005 0.083

κ24 1,000 – – – – – – 0.128 0.050 0.114

2,000 – – – – – – 0.083 0.034 0.068

3,000 – – – – – – 0.088 0.027 0.070

ρ1 1,000 0.018 0.018 0.018 0.022 0.024 0.022 0.044 0.027 0.044

2,000 0.013 0.013 0.013 0.016 0.017 0.016 0.032 0.019 0.030

3,000 0.011 0.010 0.010 0.014 0.013 0.015 0.033 0.015 0.026

ρ2 1,000 0.054 0.055 0.057 0.044 0.047 0.045 0.083 0.055 0.080

2,000 0.041 0.041 0.042 0.032 0.033 0.032 0.049 0.043 0.045

3,000 0.036 0.032 0.036 0.029 0.027 0.028 0.042 0.040 0.037

(continued)
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Table A2. Continued

K 2 3 4

T δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5

ρ3 1,000 – – – 0.088 0.055 0.087 0.080 0.050 0.074

2,000 – – – 0.037 0.037 0.038 0.042 0.029 0.030

3,000 – – – 0.030 0.029 0.030 0.049 0.023 0.034

ρ4 1,000 – – – – – – 0.094 0.045 0.087

2,000 – – – – – – 0.062 0.032 0.054

3,000 – – – – – – 0.063 0.026 0.050

Note. RMSE=root mean squared error.

Table A3. Results of the simulation study: RMSE for ω in each considered scenario

K 3 4

T δ = 0.5 δ = 1 δ = 1.5 δ = 0.5 δ = 1 δ = 1.5

ω12 1,000 0.091 0.072 0.086 0.181 0.127 0.166

2,000 0.053 0.054 0.052 0.112 0.078 0.092

3,000 0.044 0.045 0.041 0.114 0.071 0.091

ω13 1,000 0.148 0.137 0.148 0.157 0.110 0.161

2,000 0.093 0.088 0.091 0.120 0.060 0.109

3,000 0.072 0.072 0.072 0.113 0.051 0.103

ω14 1,000 – – – 0.159 0.114 0.150

2,000 – – – 0.105 0.066 0.097

3,000 – – – 0.110 0.053 0.091

ω21 1,000 0.109 0.119 0.104 0.169 0.122 0.159

2,000 0.067 0.080 0.066 0.100 0.062 0.096

3,000 0.063 0.059 0.061 0.095 0.056 0.080

ω23 1,000 0.148 0.137 0.148 0.122 0.098 0.114

2,000 0.093 0.088 0.091 0.072 0.068 0.070

3,000 0.072 0.072 0.072 0.075 0.051 0.057

ω24 1,000 – – – 0.128 0.093 0.119

2,000 – – – 0.077 0.053 0.060

3,000 – – – 0.082 0.051 0.076

ω31 1,000 0.109 0.119 0.104 0.162 0.123 0.162

2,000 0.067 0.080 0.066 0.133 0.072 0.123

3,000 0.063 0.059 0.061 0.120 0.063 0.106

ω32 1,000 0.091 0.072 0.086 0.148 0.100 0.130

2,000 0.053 0.054 0.052 0.083 0.067 0.076

3,000 0.044 0.045 0.041 0.093 0.057 0.063

ω34 1,000 – – – 0.162 0.118 0.146

2,000 – – – 0.099 0.073 0.091

3,000 – – – 0.102 0.059 0.084

(continued)
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