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1 Introduction

One of major challenges in the model building is to provide a framework where the hier-

archies in the fermion masses and the values of the mixing angles can be explained in a

natural way. Recent results in the neutrino sector [1, 2] have inspired many authors to

discuss the possible origin of a relatively large reactor angle, as obtained first by the T2K

and MINOS collaborations [3, 4] and, more recently, by Double Chooz [5], Daya Bay [6]

and RENO [7]. In particular, the Daya Bay collaboration has given a 5.2σ evidence of

θ13 6= 0:

sin2 2θ13 = 0.092± 0.016± 0.005 , (1.1)

probably solving the longstanding question of the magnitude of θ13 (see [8], [9], [10], [11]

and [12] for a discussion of the impact of such a result for lepton flavour mixing and leptonic

CP violation). Several models based on the breaking of additional symmetries beyond the

Standard Model have been proposed to explain this and other peculiarities emerged from

neutrino oscillation experiments, as the large solar and atmospheric mixing angles as well

as a small solar-to-atmospheric mass differences ratio r. In an unified view of fermion mass

hierarchies and flavour mixing, the quark sector must also be taken into account and this

poses the question of how to reconcile the numerous differences in the spectra and mixing
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of quarks compared to leptons, the most relevant ones being a different structure of the

CKM mixing matrix and the strong mass hierarchy in the up-quark sector. Although many

attempts have been done in this direction, the question of explaining the values of fermion

masses and mixing (one of the aspects of the flavour problem) is still an open issue and

deserves further studies. Discrete symmetries [13] have been invoked as a powerful tool to

solve/mitigate some of these problems and, among several choices, the non-abelian discrete

group S3 [14] has also been investigated. Remarkably, models based on S3 describing both

quarks and leptons (with very few assumptions on the scalar and Yukawa sectors of the

theory) are not very common. Interesting attempts in this direction have been done in

the context of GUT theories [15–17] and in a non-unified approach [18, 19]–[20]. In this

paper we want to contribute to this discussion, presenting a SUSY see-saw model based on

the flavour group S3 × Z3 × Z6. Identifying ε as the small S3 breaking parameter (whose

magnitude will be discussed later), the main features of our construction are:

• the neutrino mass hierarchy can only be of normal type;

• the solar-to-atmospheric mass differences ratio r is naturally small, at the level of

O(ε2), without invoking any fine-tuning among the Yukawa parameters (section 2);

• after the inclusion of suitable next-to-leading order corrections (NLO), the vanishing

leading order (LO) θ13 receives a relatively large shift of O(ε) whereas θ23 is only

modified by terms of O(ε2); the solar angle remains large, of O(1) (sections 4–5);

• in the quark sector, we are able to reproduce the correct order of magnitude of the

mass hierarchies in both up and down sectors (section 6);

• the Cabibbo angle is predicted in the correct range as well as |Vcb| (or |Vub|, depending

on the charge assignment of the right-handed b-quark);

• the flavon alignments needed to get the previous results are obtained from the mini-

mization of the superpotential allowed by the symmetry of the model (section 3).

A bit more problematic is the explanation of the muon-to-tau mass ratio and the value of

|Vub| (or |Vcb|), in any case naturally smaller than the Cabibbo angle. Other interesting

features of our model are the prediction for the effective mass |mee|, quite small as usual for

neutrinos with normal mass ordering, and the fact that the Tri-bimaximal mixing structure

(TBM) [21] can be easily obtained using only one additional relation among the Yukawas

(not dictated by the symmetry of the theory).

The model is formulated in the framework of the SUSY see-saw mechanism. At LO,

the contribution to θ12 only comes from the neutrino sector whereas θ23 is completely

generated by the charged lepton sector. At this order, the reactor angle is vanishing. To

produce such a pattern, the mass matrices m`m
†
` and mν must be block-diagonal in the

(23) and (12) sectors, respectively. In particular, having a block-diagonal light neutrino

mass matrix helps in giving different order of magnitude to the mass eigenstates and then

in obtaining a small r.
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We use a non-conventional assignment of the left-handed doublets L of the second and

third generations in a 2 representation of S3 as follows:

L =

(
τ

µ

)
, (1.2)

whereas for the right-handed doublet we assume:

Lc =

(
µc

τ c

)
. (1.3)

Electron fields are assigned to the singlet 1. In the neutrino sector, we introduce three

right-handed fields: the first two generations are grouped in the 2 representation:

νc =

(
νce
νcµ

)
, (1.4)

whereas νc3 belongs to a 12. We use the following representation of the S3 group:

S2 = T 3 = (ST )2 = 1 . (1.5)

The six elements of S3 can be written as products of generators of the group and are 1,

S, T , ST , TS and T 2. The even permutations are generated by 1, T, T 2 and form a Z3

subgroup. The one-dimensional unitary representations are given by:

1 : S = 1 T = 1

12 : S = −1 T = 1 (1.6)

This means that the vev of a pseudo singlet scalar field S3 can be broken down to Z3.

In the so-called “T-diagonal” basis, the two-dimensional unitary representation is

given by:

S =

(
0 1

1 0

)
T =

(
ω 0

0 ω2

)
, (1.7)

with ω = ei2/3π. We see that S corresponds to an interchange of the two components of

a doublet field so that S3 can be broken down to a Z2 subgroup by the vev of a doublet

scalar field with equal components 〈Φ〉 = v (1, 1).

The tensor products involving pseudo-singlets are given by 12× 12 = 1 and 12× 2 = 2

while the product of two doublets is 2× 2 = 2 + 1 + 12 which, in terms of the components

of the two doublets A = (a1, a2)T and B = (b1, b2)T, are as follows:

a1b2 + a2b1 ∈ 1 a1b2 − a2b1 ∈ 12

(
a2b2
a1b1

)
∈ 2 . (1.8)

To ensure the breaking of S3 along appropriate directions in the flavour space, we need

two doublet flavons φ and ξ with the following vevs (derived from the minimization of the

superpotential, see section 3):

〈φ〉 = vφ

(
1

1

)
〈ξ〉 = vξ

(
0

1

)
; (1.9)
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Field νc νc3 Le Lce L Lc hu,d φ χ ξ χ′ ξ0 ∆0

S3 2 12 1 1 2 2 1 2 1 2 12 1 2

Z6 ω ω 1 ω3 ω5 ω3 1 ω4 ω4 ω4 ω5 ω4 ω4

Z3 1 1 1 ω′ 1 ω′2 1 ω ω′ 1 1 1 ω′

U(1)R 1 1 1 1 1 1 0 0 0 0 0 2 2

Table 1. Transformation properties of leptons, electroweak Higgs doublets and flavons under

S3 × Z3 × Z6 and U(1)R .

two other scalar singlets χ ∼ 1 and χ′ ∼ 12 are also needed to guarantee appropriate

non-vanishing entries in the fermion mass matrices; both singlets have non vanishing vevs:

〈χ〉 = vχ 〈χ′〉 = v′χ . (1.10)

The particle content and the transformation properties of leptons, electroweak Higgs dou-

blets and flavons under S3 × Z3 × Z6 are summarized in table 1. We use the short-hand

notations ω = eiπ/3 and ω′ = ei2π/3.

2 Leptons: leading order

2.1 Charged leptons

The leading order lagrangian in the left-right basis reads:

Lcl = x1 LL
c hd

φ

Λ
+ x2 LL

c hd
χ

Λ
. (2.1)

At this stage, there are no contributions to the electron entries (since χ′ has been assigned

to the 12 representation) and the electron mass is vanishing. After symmetry breaking, the

initial S3 invariance is broken down to Z2 and, in the µ− τ subsector, the charged lepton

mass matrix is as follows:

m` =
vd
Λ

(
x2vχ x1vφ
x1vφ x2vχ

)
, (2.2)

where vd = 〈hd〉. The phases of the Yukawas x1,2 can be rotated away, with no loss of

generality. The charged lepton masses and the mixing matrix are then:

mµ =
vd
Λ
|x1vφ + x2vχ| mτ =

vd
Λ
|x1vφ − x2vχ| , (2.3)

U` =
1√
2

(
1 −1

1 1

)
. (2.4)

The question is how to realize a naturally small muon-to-tau mass ratio. In [22–24] it

has been suggested to introduce a further symmetry under which x1 = −x2 and vφ = vχ;

however, as pointed out in [20], this additional symmetry does not commute with S3 and the

whole symmetry group is larger than the latter. Here we observe that for real flavon vevs

(as assumed here) any couple of real (x1, x2) determines a larger and a smaller eigenvalue,
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so a mass splitting is quite natural in this model. If we want to correctly reproduce the

mu-to-tau mass ratio we have to fine-tune the Yukawa parameters; in particular, assuming

mµ/mτ ∼ λ2 (λ being the Cabibbo angle) we get:

x1 = −x2 (1 + 2λ2) +O(λ4) , (2.5)

(so that, as expected, the two Yukawas must be opposite in sign and almost equal in

magnitude). We notice that, at this level, we do not need to specify a value of the ratios

of the flavon vevs over the cut-off Λ.

2.2 Neutrinos

The first useful terms to generate a Dirac mass matrix are:

LD = aL νc hu + b Le ν
c
3 hu

χ′

Λ
, (2.6)

so that:

mD = vu

 0 0 b χ
′

Λ

a 0 0

0 a 0

 , (2.7)

where vu = 〈hu〉. For the Majorana mass matrix we have:

LM = ανc νc ξ + β νc νc3 ξ + γ νc νc
χ′2

Λ
+ δ νc3 ν

c
3

χ′2

Λ
, (2.8)

and:

mM =

 0 γ
v′ 2
χ

Λ β vξ

γ
v′ 2
χ

Λ α vξ 0

β vξ 0 δ
v′ 2
χ

Λ

 . (2.9)

The first contribution to the heavy masses arise from the previous matrix with v′χ = 0

and are:

α vξ , ±β vξ . (2.10)

The degeneracy is then lifted by taking into account the corrections from the v′χ terms.

The light neutrino mass matrix is obtained from the see-saw formula:

mν = −mDm
−1
M mT

D ; (2.11)

to make the following analytical evaluations more readable, we fix a = 1 (but it will be

considered as a free parameter in the numerical evaluations to follow) and assume an equal

order of magnitude of the flavon vevs to the cut-off ratio 〈Φ〉Λ = vΦ
Λ = ε, that we take as a

small parameter. At first order in ε we get:

mν = − v
2
u

vΦ

 0 b
β ε 0

b
β ε −

δ
β2 ε 0

0 0 1
α

 . (2.12)
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Notice that there is no remnant of the initial S3 symmetry because, although the Dirac

mass matrix is Z3 invariant, the Majorana mass matrix completely breaks S3 due to the

presence of the ξ flavon vev.

All phases in mν can be reabsorbed into a redefinition of the right-handed neutrino

fields, so we deal with real parameters. We see that, at this order, we get a block-diagonal

form of the light mass matrix, with the contribution to the (12) sector of O(ε) and the

(33) element larger. The matrix mν is compatible with normal hierarchy only and the light

masses (still at the first order in ε) are then given by:

|m1| =

(
v2
u

vΦ

) [
(4b2β2 + δ2)1/2 − δ

2β2

]
ε

|m2| =

(
v2
u

vΦ

) [
(4b2β2 + δ2)1/2 + δ

2β2

]
ε (2.13)

|m3| =

(
v2
u

vΦ

)
1

α

so that the solar and atmospheric mass differences read:

∆m2
sol =

(
v2
u

vΦ

)2
δ(4b2β2 + δ2)1/2

β4
ε2

∆m2
atm =

(
v2
u

vΦ

)2
1

α2
+O(ε2) .

(2.14)

Taking α = 1, ∆m2
atm = 2.5 × 10−3 eV2 and vu = 100 GeV, we estimate vΦ ∼ 2 × 1014

GeV, which is a common order of magnitude for the heavy neutrino masses. It is now easy

to derive the ratio r:

r =
∆m2

sol

∆m2
atm

=
α2 δ (4b2β2 + δ2)1/2

β4
ε2 (2.15)

which, for O(1) parameters, is naturally suppressed by ε2. The value of ε cannot be

precisely determined at this stage; to recover the experimental value r ∼ 1/30, ε should

be as small as the Cabibbo angle but a small numerical enhancement (suppression) of the

coefficient α2 δ (4b2β2+δ2)1/2

β4 can bring it to smaller (larger) values. The matrix in eq. (2.12)

determines a non-vanishing solar angle: a straightforward computation gives:

tan2 θ12 = 1− 2δ

(4b2β2 + δ2)1/2 + δ
, (2.16)

so that it is generically of O(1). Summarizing, the whole neutrino mixing matrix at LO

UPMNS = U †` Uν has a vanishing reactor angle, maximal θ23 and large O(1) solar angle.

It is interesting to observe that, to reproduce the TBM value tan2 θ12 = 1/2, one

simply needs

δ = ±b β/
√

2 , (2.17)

which is still a number of O(1); in this respect, this external condition does not appear to

be completely unnatural since it does not require any strong hierarchy among the model
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parameters. Another interesting possibility to get the TBM matrix from the S3 symmetry

has been proposed in [25] where, however, after the inclusion of the charged lepton correc-

tions one of the two allowed S3 invariant Yukawa couplings must be switched off by hand.

Notice that a maximal value for θ12 in our model can only be obtained if δ = 0, which

implies a vanishing ∆m2
sol.

3 Flavon alignment

The structure of the flavon vevs can be obtained minimizing the scalar superpotential in

the limit of exact SUSY [26]. Within this approach, a continuous U(1)R symmetry is

introduced, under which matter fields have R = 1, while Higgses and flavon fields have

R = 0. Such a symmetry will be eventually broken down to the R-parity by small SUSY

breaking effects which can be neglected in the first approximation. Since the superpotential

must have R = 2, we need to introduce two additional scalar fields, a doublet ∆0 and a

singlet ξ0, with R = 2. Within these assumptions, the relevant part of the scalar potential

of the model is given by the F-terms with:

VF =
∑
i

∣∣∣∣ ∂w∂ϕi
∣∣∣∣2 . (3.1)

In the following, we parametrize the vevs as:

〈φ〉 = vφ

(
φ1

φ2

)
〈ξ〉 = vξ

(
ξ1

ξ2

)
〈χ〉 = vχ 〈χ′〉 = v′χ , (3.2)

where φ1,2 and ξ1,2 are adimensional quantities. At the leading order we have:

wd = g1 ξ0 ξ
2 + g2 ∆0 φ

2 + g3 ∆0 φχ . (3.3)

The condition for the minima are:

∂wd
∆1

0

= g2 v
2
φ φ

2
1 + g3 vφ φ2 vχ = 0

∂wd
∆2

0

= g2 v
2
φ φ

2
2 + g3 vφ φ1 vχ = 0 (3.4)

∂wd
ξ0

= ξ1 ξ2 = 0 .

The set of equations admit the solution:

φ1 = φ2 vχ = −g2

g3
vφ ξ1 = 0 . (3.5)

The relation among vξ and vφ allows us to assume a common order of magnitude for these

vevs; on the other hand, the choice ξ1 = 0, ξ2 6= 0 is not restrictive since the other one,

with ξ1 6= 0, ξ2 = 0 [20], can be obtained acting with the generator S on it. At this stage,

the flavon χ′ does not appear in the superpotential. However, the first corrections to wd
involve χ′ 4 and read:

δwd = g′1 ξ0
χ′ 4

Λ2
. (3.6)

– 7 –
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Since it appears with the driving field ξ0, this term can modify the vev of the ξ flavon;

assuming a perturbed structure like:

〈ξ〉 = vξ

(
ξ′1

1 + ξ′2

)
, (3.7)

the minimizing equation (at the first order in the perturbations ξ′1,2) gives:

2 g1 v
2
ξ ξ
′
1 + g′1

(
v2
χ′

Λ

)2

= 0 . (3.8)

Dividing this equation by 1/Λ2 and assuming, as usual, that vξ/Λ ∼ vχ′/Λ ∼ ε, we can

estimate ξ′1 ∼ ε2 and also:
v′ 4χ
Λ2

= −2 g1

g′1
v2
ξ ε

2. (3.9)

The perturbation ξ′2 remains unspecified and we put it to zero. Summarizing:

〈ξ〉 = vξ

(
ξ′ ε2

1

)
, v′χ ∼ vξ , (3.10)

with ξ′ a coefficient of O(1). For the other two flavons φ and χ, the first useful corrections

arise at the level of five-flavon insertion. The corrective terms are then of relative O(ε3)

with respect to the leading order results and will be neglected in the following. Then, the

NLO corrections to the mass matrices will be computed using the vev structures for φ and

χ as given in eqs. (1.9)–(1.10).

4 Next to leading order corrections

It is important to check that the previous results on the mixing angles are not destroyed

once the corrections to the lagrangians are taken into account.

4.1 Charged leptons

The most relevant corrections come from the term:

δLcl = x3 Le L
c hd

φχ′

Λ2
, (4.1)

which modifies the mass matrix as follows:

δm` = vd

 0 x3ε
2 −x3ε

2

0 0 0

0 0 0

 . (4.2)

Still working with real parameters for simplicity, we see that the expression of the masses

are not modified whereas the mixing matrix is now given by:

U` =


sign[(x1 − x2)x3]

√
2x3

x1−x2
ε 0∣∣∣ x3

x1−x2

∣∣∣ ε 1√
2
− 1√

2

−
∣∣∣ x3
x1−x2

∣∣∣ ε 1√
2

1√
2

 . (4.3)
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Then, there are new contributions to the leptonic θ12 and θ13 but not to the atmospheric

angle, since the 2–3 sub-block still remains unchanged at this order. The electron mass is

not generated at this order but only at the level of 5-flavon insertion, from the following

two (non-vanishing) operators:

Le L
c
e hd

{
ξ2 φ2 χ′, ξ2 φχχ′

}
,

which give a contribution of O(ε5); reminding that mτ ∼ ε, the electron-to-tau mass ratio

is of O(ε4). Considering that this ratio should be some units of 10−4, we deduce that ε

cannot be too different from ≈ 0.13. It is important to stress, however, that this value of

ε is merely indicative, as it can be enhanced or suppressed by a proper arrangement of the

Yuwaka couplings. We will study more in details the magnitude of the breaking parameter

in section 5. As it will be clear in the next section, U` will provide the largest corrections

to the LO results.

4.2 Neutrinos

At the next level of approximation, the light neutrino mass matrix can be still evaluated

using eq. (2.11) but expanded now at O(ε2) with flavon alignments as discussed in section 3.

Here we want to comment that the filling of some of the vanishing entries in eq. (2.7)

and (2.9) requires multiple-flavon insertions; for example, the elements (22), (23), (31) and

(33) in mD are generated by operators with three flavons (like Lνc φ3 hu) and are then of

O(ε3). All next-to-leading order Majorana operators are also of O(ε3) since they contain

at least four flavons. Then, the main contributions to the LO vanishing matrix elements in

eq. (2.9) come from the vev shift in eq. (3.10) and are of O(ε2). From these considerations

is not difficult to understand that the NLO light neutrino mass matrix is given by (still

using a = 1):

mν = − v
2
u

vΦ


0 b

β ε
b γ
αβ ε

2

b
β ε − δ

β2 ε
(
ξ′β2−γδ
αβ2

)
ε2

b γ
αβ ε

2
(
ξ′β2−γδ
αβ2

)
ε2 1

α

 . (4.4)

The expression of the neutrino mixing matrix is quite cumbersome; we have found that

all eigenvalues and eigenvectors are corrected by (intricate) O(ε2) terms. As previously

stated, the charged lepton rotation U` gives the main corrections to the LO results for θ12

and θ13, whereas the atmospheric angle only receives O(ε2) corrections from the neutrino

sector. The final results for the mixing angles are then:

tan θ12 = tan θLO12 +

√
2x3 (4b2β2 + d2)1/2

(x1 − x2)
√

2b2β2 + δ[δ + (4b2β2 + d2)1/2]
ε+O(ε2)

tan θ23 = 1 +O(ε2) (4.5)

sin θ13 =

∣∣∣∣ x3

x1 − x2

∣∣∣∣ ε+O(ε2) .

As we can see, it is not difficult to reconcile our results with the experimental data, barring

accidental cancellations; in fact, the NLO have preserved many good features of the LO

results (large solar and atmospheric mixings) while producing a relatively large shift for

θ13 ∼ O(ε).
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4.3 Effective mass terms and |mee|

The previous results are not substantially modified by effective Weinberg operators. Up to

four-flavon insertion, the lagrangian is as follows:

Lw =
αw

ΛLN
Le Le hu hu +

βw
Λ3
LN

LLhu hu ξ
2 +

γw
Λ4
LN

Le Lhu hu ξ
2 χ′ , (4.6)

where ΛLN is the lepton number breaking scale. The contributions to the neutrino mass

matrix is then:

mw =
v2
u

ΛLN


αw −γw

v3
Φ

Λ3
LN

0

−γw
v3
Φ

Λ3
LN

0 0

0 0 βw
v2
Φ

Λ2
LN

 , (4.7)

so we still have a block-diagonal form. In practise, the relevant contribution to mν is given

by the first operator in Lw, which fills the (11) vanishing entry in eq. (4.4) with a term of

O(v2
u/ΛLN ). In the case ΛLN ∼ Λ, this term also contributes to eq. (2.13) and eq. (2.14),

changing the coefficients in front of the ε parameter but not their order of magnitude. In

the case ΛLN � Λ, this term is negligible and the effective operators do not play any

relevant role in the determination of the neutrino masses and mixings.

To evaluate the prediction of our model for the effective mass mee, we work in the

basis where the charged leptons are diagonal and extract the (11) matrix element of the

rotated neutrino mass matrix, that is:

|mee| = |UT` mν U`|11 . (4.8)

We get:

|mee| = sin2 θ13

∣∣∣∣ [2α b (x1 − x2) + β x3]

αβ x3

∣∣∣∣ . (4.9)

As expected in models for the normal hierarchy, |mee| is small, at the level of θ2
13, although

a clear correlation with the reactor angle is lacking because of the O(1) coefficient.

5 Numerical analysis of the lepton sector

The main purpose of this section is to analyze in detail the implication of our model

for the lepton masses and mixing. In doing that, we use the NLO charged lepton and

neutrino mass matrices as given in eqs. (2.2)–(4.2) and eq. (4.4) and perform a MonteCarlo

simulation extracting complex lagrangian parameters with absolute values in the interval

[1/2, 2] whereas the small S3 breaking parameter is taken randomly in [λ2, λ]. To study

more in detail the magnitude of ε, we imposed relaxed bounds on the charged lepton mass

ratios:1

2× 10−3 <
me

mµ
< 9× 10−3 2× 10−2 <

mµ

mτ
< 9× 10−2 ; (5.1)

1More restricted bounds would only select a narrower range of ε’s.
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Figure 1. Mixing angles sin2 θ12 (left panel) and sin2 θ23 (right panel) as a function of the breaking

scale ε. The horizontal gray bands are the regions excluded by the experimental data at 3σ, as

obtained from the second reference in [1, 2].

we also impose the constraints on the neutrino mass differences:

7.09×10−5 < ∆m2
sol < 8.2×10−5 eV2 2.14×10−3 < ∆m2

atm < 2.76×10−3 eV2 , (5.2)

derived from the second reference in [1, 2], so that the value of r is automatically repro-

duced. The main results of such an analysis are presented in figures 1–2. In the former,

we are interested to the dependence of sin2 θ12 and sin2 θ23 on the breaking scale ε. In

these plots, the horizontal gray bands are the regions excluded by the experimental data

at 3σ, as obtained from the second reference in [1, 2]. We clearly see that ε ∼ O(λ2) are

almost excluded because too small to fill the relations in eq. (5.1). For every mixing angle,

the bulk of the selected points is around ε ∼ 0.14, not really different from the estimate

we gave in section 4.1. The analytical results anticipated in eq. (4.5) are also confirmed;

in particular, we see that the solar angle (left plot) is mainly undetermined but a large

fraction of the points fall into the allowed 3σ range, as a consequence of the fact that the

TBM approximation is, in some sense, contained in the model via the simple relation in

eq. (2.17). For the atmospheric angle (right plot), the majority of the points are well inside

the 3σ range, showing also a tendency to a largest spread for ε & 0.14, as indicated in

eq. (4.5). Similar considerations could also be drawn for the dependence of the reactor

angle on ε; however, insted of presenting a scatter plot, we prefer to compare the sin2 2θ13

distribution as obtained from our numerical simulation directly with the Daya Bay result.

This is shown in figure 2, where the 3σ bounds derived from eq. (1.1) are enclosed in the

solid vertical lines, whereas the dashed line is the best fit point. We can appreciate that,

although the distribution is quite broad, the largest density of sin2 2θ13 extractions is just

inside the allowed region. We stress that this result has been obtained with an ab-initio

simulation of the charged lepton and neutrino mass matrices with no other constraint than

those given in eqs. (5.1)–(5.2). Notice that, given the large number of O(1) parameters, no

definite predictions for the CP phase can be drawn.
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Figure 2. Distribution of the valus of sin2 2θ13 as obtained from our model; the vertical solid

lines enclose the 3σ range derived from eq. (1.1) whereas the dashed line is the corresponding best

fit point.

Field QL q3L uc cc tc bc sc dc

S3 2 1 1 1 1 12 1 1

Z6 ω5 1 ω4 1 1 ω 1 ω4

Z3 ω 1 1 ω2 1 1 ω2 1

Table 2. Transformation properties of quarks under S3 × Z3 × Z6.

6 The quark sector

The S3×Z3×Z6 symmetry provides a good description of the quark sector also; we use the

same flavon fields and alignments described in the previous sections. The first two families

of left-handed quarks are assigned to a 2 representation of S3 whereas all other fields belong

to singles 1 or 12 in the case of bc (see table 2). The lagrangian in the up-quark sector,

including all relevant operators to generate non-vanishing entries in the mass matrix, reads

as follows:

Lup = au q3L hu t
c + bu q3L hu c

c ξ
2 φ

Λ3
+ cu q3L hu u

c ξ
2

Λ2
+ duQL hu t

c φ
2 χ′

Λ3

+euQL hu c
c ξ

2 χ′

Λ3
+ e′uQL hu c

c ξ χ
′3

Λ4
+ fuQL hu u

c (ξ2)2 (φ2)2 χ
′

Λ5
(6.1)

+f ′uQL hu u
c (ξ2)2 (φ2)1 χ

′

Λ5
+ f

′′
u QL hu u

c (ξ2)2 φχχ
′

Λ5
+ f

′′′
u QL hu u

c (ξ2)2 χ
2 χ′

Λ5
,

where we have indicated the S3 contractions when necessary. The related mass matrix is

as follows:

mup = vu

 (fu + f
′′
u ) ε5 −e′u ε4 −du ε3

−(2f ′u + f
′′′
u ) ε5 eu ε

3 du ε
3

2 cu ξ
′ ε4 bu ε

3 au

 . (6.2)
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First of all, we observe that the mass hierarchy is well reproduced for the same value of ε

as deduced from the lepton sector; in particular, we have:

mu = vu (fu + f
′′
u ) ε5 mc = vu eu ε

3 mt = vu au . (6.3)

Then, taking real Yukawas for simplicity, the matrix Uup diagonalizing mupm
†
up is given by:

Uup =

 1 e′u
eu
ε du

au
ε3

− e′u
eu
ε 1 −du

au
ε3

−du
au
ε3 du

au
ε3 1

 . (6.4)

This matrix goes into the desired direction: at LO, Uup is the identity and at the NLO

there exist a well defined hierarchy among the (12) element, not far away from the value of

the Cabibbo angle, and the other off-diagonal matrix elements, which contribute to Vcb and

Vub. From the charge assignment in table 2, we see that the operators in the down sector

involving dc and sc are the same as those with uc and cc, respectively (with the obvious

replacement hu → hd), whereas all operators including bc do not have a corresponding in

Lup; then we have:

Ldown = ad q3L hd b
c χ
′

Λ
+ bd q3L hd s

c ξ
2 φ

Λ3
+ cd q3L hd d

c ξ
2

Λ2
+ ddQL hd b

c (φ2)1 ξ

Λ3

+d′dQL hd b
c (φ2)2 ξ

Λ3
+ d

′′
d QL hd b

c χ
2 ξ

Λ3
+ d

′′′
d QL hd b

c χφ ξ

Λ3
(6.5)

+edQL hd s
c ξ

2 χ′

Λ3
+ e′dQL hd s

c ξ χ
′3

Λ4
+ fdQL hd d

c (ξ2)2 (φ2)2 χ
′

Λ5

+f ′dQL hd d
c (ξ2)2 (φ2)1 χ

′

Λ5
+ f

′′
d QL hd d

c (ξ2)2 φχχ
′

Λ5
+ f

′′′
d QL hd d

c (ξ2)2 χ
2 χ′

Λ5
,

with mass matrix as:

mdown = vd ε

 (fd + f
′′
d ) ε4 −e′d ε3 −(2dd + d

′′
d) ε2

−(2f ′d + f
′′′
d ) ε4 ed ε

2 (d′d + d
′′′
d ) ε2

2 cd ξ
′ ε3 bd ε

2 ad

 . (6.6)

Again, the mass ratios are well reproduced, since:

md = vd (fd + f
′′
d ) ε5 ms = vd ed ε

3 mb = vd ad ε . (6.7)

Also, the bottom-to-top mass ratio is given by

mb

mt
=

(
ad
au

)
ε (tanβ)−1 , (6.8)

implying tanβ ∼ 5 for Yukawas of O(1). The matrix Udown diagonalizing mdownm
†
down is

given by:

Ud =

 1
e′d
ed
ε (2dd + d

′′
d) ε2

− e′d
ed
ε 1 −(d′d + d

′′′
d ) ε2

−(2dd + d
′′
d) ε2 (d′d + d

′′′
d ) ε2 1

 . (6.9)
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Two comments are in order: on the one-hand, the (12) element is still of the correct order

of magnitude to explain, in combination with the result from the up sector, the value of

the Cabibbo angle. On the other hand, all other off diagonal entries are smaller than

(12) but the (13) element is a bit larger than the required values to fit Vub. In fact, these

elements in eq. (6.9) are the dominant contributions to Vcb and Vub in the CKM, since the

corresponding matrix elements in eq. (6.4) are generally smaller. We get:

Vus =

(
e′d
ed
− e′u
eu

)
ε Vub = (2dd + d

′′
d) ε2 Vcb = −(d′d + d

′′′
d ) ε2

Vcd = −Vus Vtd = −Vub Vts = −Vcb . (6.10)

Obviously, the last equalities are lifted once the O(ε3) terms are taken into account. To

corroborate the previous considerations, we perform a numerical simulation of the up and

down mass matrices of eqs. (6.2) and (6.6) extracting, as we did for the lepton sector,

complex Yukawa parameters with absolute values in the interval [1/2, 2]. We fixed the

breaking scale ε = 0.15, as suggested by the same procedure done in the lepton sector. We

also impose the following constraints on the relevant mass ratios [27]:

5.40× 10−6 <
mu

mt
< 1.18× 10−5 3.60× 10−3 <

mc

mt
< 4.10× 10−3

7.90× 10−4 <
md

mb
< 1.34× 10−3 1.60× 10−2 <

ms

mb
< 2.90× 10−2 . (6.11)

Our results for every CKM matrix elements are shown in figure 3, where we plot the absolute

values of the nine distributions of the Vij entries. The diagonal entries are displayed in

linear scale whereas we adopt a log scale for the off-diagonal elements; for them, we also

showed the best fit values [28] with a solid vertical line. As we can see, it is very easy in

our model to reproduce, with no fine-tuning, the correct values of Vus, Vcd as well as Vcb, Vts
while a small discrepancy remains with the best fit of Vub and Vtd, as anticipated above.

To make also these matrix elements fully compatible with the data, we need a moderate

cancellation among the Yukawas d′d and d
′′′
d , see eq. (6.9). We do not present any plot

related to the CP phase since the large number of O(1) parameters does not allow any

definite prediction. As a last comment, we observe that taking a charge assignment for the

field bc as the one adopted for tc, we would get a structure of Ud similar to Uup as given is

eq. (6.4); this automatically would imply Vub ∼ Vcb ∼ Vtd ∼ Vts ∼ ε3, so an enhancement

should be invoked to reproduce the values of Vub and Vtd. In this case, the bottom-to-tau

mass ratio would be completely explained by large tanβ.

7 Conclusions

The Daya Bay Collaboration has released the measurement of the reactor angle θ13, showing

a 5.2σ discrepancy from zero. From the model building point of view, neutrino mass

textures predicting a vanishing θ13 at leading order seem to be less appealing, unless large

corrections bring the reactor angle to values compatible with the recent results, without

destroying the predictions for the other mixing parameters. In this paper we have presented

a see-saw SUSY model for fermion masses and mixing based on the non-abelian discrete
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Figure 3. Distributions of the CKM matrix elements as obtained in our model. The best fit

values [28] of the off-diagonal matrix elements are shown with a solid vertical line.

symmetry S3, whose main result is the prediction of a large θ13 ∼ 0.13, fully compatible

with the Daya Bay claim of eq. (1.1). Other remarkable features of our construction are:

• in the lepton sector, the spectrum is of normal type, with θ12 and θ23 compatible

with their experimental allowed ranges;

• in the quark sector, we obtained a good description of the relevant mass ratios and

the absolute values of all the CKM matrix elements (including the Cabibbo angle)

but Vub, Vtd, for which we need a moderate fine-tuning among the Yukawas defining

these matrix elements;

• the flavon alignments needed to get the previous results are natural minima of the

superpotential in the SUSY limit.
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