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Abstract: Revising Nekhoroshev’s geometry of resonances, we provide a fully con-
structive and quantitative proof of Nekhoroshev’s theorem for steep Hamiltonian sys-
tems proving, in particular, that the exponential stability exponent can be taken to be
1/(2nα1 · · ·αn−2) (αi ’s being Nekhoroshev’s steepness indices and n ≥ 3 the number
of degrees of freedom). On the base of a heuristic argument, we conjecture that the new
stability exponent is optimal.

1. Introduction and Results

A. Motivations. In 1977–1979 N. N. Nekhoroshev published a fundamental theorem
[22,23] about the “exponential stability” (i.e., “stability of action variables over times
exponentially long with the inverse of the perturbation size”) of nearly-integrable, real-
analytic Hamiltonian systems the with the Hamiltonian given, in standard action-angle
coordinates, by

H(I, ϕ) = h(I ) + ε f (I, ϕ), (I, ϕ) ∈ U × T
n , (1)

where: U ⊆ R
n is an open region, Tn = R

n/(2πZ)n is the standard flat n-dimensional
torus and ε is a small parameter. The integrable limit h(I ) is assumed to satisfy a
geometric condition, called by Nekhoroshev “steepness” (the definition is recalled in (3)
below). Under such assumptions, Nekhoroshev’s states his theorem as follows:1

Let H in (1) be real-analytic with h steep. Then, there exist positive constants a, b and ε0
such that for any 0 ≤ ε < ε0 the solution (It , ϕt ) of the (standard) Hamilton equations
for H(I, ϕ) satisfies

|It − I0| ≤ εb

1 Compare [22, p. 4 and p. 8]; see also [22, p.30] for a more detailed and precise statement.
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for any time t satisfying

|t | ≤ 1

ε
exp

( 1

εa

)
.

Furthermore, a and b can be taken as follows:

a = 2

12ζ + 3n + 14
, b = 3a

2αn−1
(2)

where

ζ =
[
α1 ·

(
α2

(
. . .

(
αn−3(nαn−2 + n − 2) + n − 3

)
+ · · ·

)
+ 2

)
+ 1

]
− 1,

and αi are the steepness indices of h.
Usually, a and b are called the “stability exponents”. Clearly, the most relevant

quantity in this theorem is the stability exponent a appearing in the exponential, which
gives the dominant time-scale for the stability of the action variables. The exponential
stability exponent a depends only on the number n of degrees of freedom and on the
values of the first n − 2 steepness indices αi , i ≤ n − 2. Notice that, for any fixed n,
the “best” exponents a, b in (2) are obtained in the special case α1 = · · · = αn−1 =
1, corresponding to convex (or quasi-convex) h(I ) (which is the simplest instance of
steep function). Actually, for any values of the steepness indices αi , the parameter ζ

defined in (3) grows faster than2 n(n−1)/2. The hypotheses of Nekhoroshev’s theorem,
as pointed out by Nekhoroshev himself, are qualitatively optimal, and, in particular,
non-steep Hamiltonians are in general non exponentially-stable [22, §11]. Furthermore,
Nekhoroshev proved that steepness is a generic (in C∞ category) property [21]. Finally,
several interesting problems (e.g., in Celestial Mechanics, compare below) are steep
but do not satisfy simpler assumptions (such as quasi-convexity). For all these reasons
it seems natural and important to try to optimize the exponential stability exponents,
especially with respect to the number n of the degrees of freedomwhich, in applications,
typically range from n = 3 (restricted three-body problems) up to several tens (planetary
problems); this has been done, up to now, under simplifying assumptions but not in the
general steep case. This paper is devoted to the general case.

Before stating our result, let us briefly review the main extensions, applications and
improvements concerning Nekhoroshev’s theorem.

Various extensions have been discussed, so as to cover the degeneracies of the Hamilton
function that are usually met in some important mechanical systems (fast rotations of
the Euler–Poinsot rigid body [1–3]; the planetary N -body problem [9,22,24]; restricted
three body problems [8], elliptic equilibria [10,15,25,32]). Furthermore, steepness could
be used, in non-convex systems, to study the long-term stability in problems such as the
Lagrangian equilibrium points L4–L5 of the restricted three body problem [4], asteroids
of the Main Belt [16,20,29] and the Solar System [30,33].
As far as improvements of the theoretical stability bounds (i.e., improvements on the
stability exponent a), quite complete results have been achieved in the special case of
convex and quasi-convex functions h: the proof of the theorem has been significantly
simplified (see [5,6,11]) and the stability exponent improved up to a = (2n)−1, [17,
19,31]; see [7] for exponents that are intermediate between a = (2n)−1 and a =

2 For any fixed sequence α j ≥ 1, j = 1, 2, . . ., by considering a sequence of steep Hamiltonians hn
with n degrees of freedom and steepness indices α1, . . . , αn−1, the sequence of corresponding parameters
ζn := ζ satisfies ζn − ζn−1 ≥ (n − 1)α1 · · · αn−2, and the sequence of stability exponents an := a satisfies
a−1
n − a−1

n−1 ≥ 6(n − 1)α1 · · ·αn−2.
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(2(n − 1))−1): such exponents (in the convex case) are nearly optimal, compare [35].
These improvements have been obtained by exploiting specific geometric properties of
the convex and quasi-convex cases, which allow one to use conservation of energy in
order to obtain topological confinement of the actions [6]. This is no more the case in
the general steep case since the Hamilton function cannot be used to obtain topological
confinement. Incidentally,wemention that the geometry of resonances, i.e., the geometry
of the manifolds

{I ∈ U : k · ω(I ) = 0}, with ω(I ) = ∇h(I ) and k ∈ Z
n\{0} ,

can be in the general steep case quite complicated, due to possible folds and other
degeneracies of the frequency map (even though this fact does not appear explicitly
in the proof). Furthermore, while new different proofs of Nekhoroshev’s theorem have
appeared (compare [27], which is based on the method of simultaneous Diophantine
approximations introduced in [17]), no improvements on the original Nekhoroshev’s
stability exponents, in the general steep case, are yet available,3 and no conjecture
about their optimal values has been discussed up to now.4

In this paper, we revisit and extend Nekhoroshev’s geometric analysis obtaining, in
particular, for5 n ≥ 3, the new stability exponents a = 1/(2np1) and b = a/αn−1 with
p1 being the product of the first (n − 2) steepness indices.6

The new stability exponents represent an essential improvement with respect to Eq. (2);
in particular, the dependence of a−1 on the number of degrees of freedom improves from
quadratic to linear. It is also remarkable that, for α1 = · · · = αn = 1 (quasi-convex
case), we obtain the “optimal” stability exponents proved in [17,19,31], without using
the Hamiltonian as a Lyapunov function. On the base of a simple heuristic argument, we
conjecture that the new stability exponent is optimal: the details will be given in point
E below, here we only mention that the root 1/p1 comes in by a natural and necessary
iterative dimensional argument (related to a power-law scaling of the amplitudes of the
resonance domains) and the tangential non-degeneracies given by the steepness property,
while the constant in front of p1 in the simplest and less degenerate case is the 2n coming
from the quasi-convex case. Putting these two things together one sees that the exponent
1/(2np1) is, roughly speaking, “necessary”.
A precise and fully quantitative formulation of our result is given in the following
paragraph.

B. Statement of the result. A function f ∈ C1(U ), with U a bounded region (i.e.,
open, bounded and connected set) of Rn is said to be steep in U with steepness indices
α1, . . . , αn−1 ≥ 1 and (strictly positive) steepness coefficients C1, . . . ,Cn−1 and r , if
its gradient h′(I ) = ω(I ) satisfies the following estimates: inf I∈U ‖ω(I )‖ > 0 and, for
any I ∈ U , for any j-dimensional linear subspace � ⊆ R

n orthogonal to ω(I ) with
1 ≤ j ≤ n − 1, one has7

max
0≤η≤ξ

min
u∈�:‖u‖=η

‖π�ω(I + u)‖ ≥ C jξ
α j ∀ ξ ∈ (0, r ], (3)

3 In the paper [26] there is a statement concerning improved values for the stability exponents, however,
the proof appears to have a serious gap and such values are not justified; see [28].

4 The need for, at least, a conjecture about the optimal value of the stability exponents in the general steep
case was stressed also in [18], page 81.

5 The cases n ≤ 2 are, in general, totally stable and therefore are not included in our analysis.
6 This result has been announced in [12].
7 For any vector u ∈ C

n we denote by ‖u‖ :=
√∑

i |ui |2 its hermitean norm and by |u| = ∑
i |u1|.
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where π� denotes the orthogonal projection over �.
To deal properly with initial data near the boundary, we will use the following notation:
for any η > 0 and any D ⊆ R

n , we let D − η := {I ∈ D : B(I, η) ⊆ D}, where
B(I, η) = {I ′ ∈ R

n : ‖I ′ − I‖ < η}
is the real Euclidean ball centered in I of radius η and B(I, η) its closure.

Theorem 1. Let H in (1) be real-analytic with h steep in the bounded region U with
steepness indices α1, . . . , αn−1 and let

p1 :=
n−2∏
k=1

αk, a := 1

2np1
, b := a

αn−1
. (4)

Then, there exist positive constants ε0, R0, T, c > 0 such that for any 0 ≤ ε < ε0 the
solution (It , ϕt ) of the Hamilton equations for H(I, ϕ) with initial data (I0, ϕ0) with8

I0 ∈ U − 2R0ε
b satisfies

‖It − I0‖ ≤ R0ε
b (5)

for any time t satisfying:

|t | ≤ T√
ε
exp

( c

εa

)
. (6)

C. Quantitative formulation. Next, we provide explicit estimates for the parameters
ε0, R0, T, c appearing in Theorem 1.

To do this, we need to introduce some notations. Given “extension parameters” η, σ > 0
and any set D, we let the “extended complex domains” be defined by:

Dη =
⋃
I ′∈D

{I ∈ C
n : ‖I − I ′‖ ≤ η} and T

n
σ = {ϕ ∈ C

n/(2πZ)n : | Im ϕi | ≤ σ }.

For any real action-angle function u(I, ϕ) analytic in Dη ×T
n
σ , with Fourier harmonics

uk(I ), we denote its Fourier-norm

|u|η,σ =
∑
k∈Zn

|uk |Dη
e|k|σ ,

where |. |Dη denotes the sup-norm in Dη; if it needs to be specified, we shall also use
the heavier notation |u|D;η,σ .
Let H be real-analytic inU ×T

n with h steep inU with steepness indices α1, . . . , αn−1
and steepness coefficients C1, . . . ,Cn−1 and r . Without loss of generality, we can take
the extension parameter in action space to be equal to the steepness coefficient r and we
can find positive constants s, ω, ω and M such that:

• h(I ) is real analytic on an open set which contains Ur ;
• f (I, ϕ) is real analytic on an open set which contains Ur × T

n
s ;

8 Since U is open, if ε0 is small enough, U − 2R0εb �= ∅.
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• For any I ∈ U , we have:

ω ≤ ‖ω(I )‖ ≤ ω (7)

and, for any I1, I2 ∈ Ur , we have:

‖ω(I1) − ω(I2)‖ ≤ M‖I1 − I2‖.
Now, for 1 ≤ j ≤ n − 2, let

p j :=
n−2∏
k= j

αk, q j := np j − j, β j := α j + j (α j − 1), (8)

and define the parameters

κ j := ω

M

(C j

ω

) 1
α j + 4

(
2
2ω + Mr

ω

) 1
α j , (9)

E := max

⎛
⎜⎜⎝ max

j≤n−2

⎛
⎜⎝ (4Mκ j )

α j 6q j (α j−1)

C j

(
ω

2
√
2

)α j−1

⎞
⎟⎠

1
β j

, 4

⎞
⎟⎟⎠ . (10)

Then, in Theorem 1, one can take

ε∗ := 1

28
1

64np1−5E2np1−1

ω2

M | f |r,s
ε0 := ε∗ min

((6√2

n

Mr

ω

) 1
b
,
(18√2

n

) 1
b
,
( r

4nκn−1

) 1
b
(12√2ECn−1

ω

) 1
a
,
( s
6

) 1
a
, 1

)

c := εa∗
s

6

R0 := r n μ0

εb∗
, with μ0 := max

(
1

24
√
2

ω

Mr
,

1

622
√
2
,
κn−1

r

( ω

12
√
2ECn−1

) 1
αn−1

)

T := s

24
√
2

ω

M(6E)
1
a
√

ε∗| f |r,s
. (11)

D. On the proof. The proof of Nekhoroshev’s theorem, in its various settings, can be
split into:

a geometric part, devoted to the analysis of distribution of small divisors in action-
space;
an analytic part, devoted to the construction of normal forms;
a stability argument yielding the confinement of the actions.

While the analytic part is obtained by adapting averaging methods to an analytic setting,
the heart of Nekhoroshev’s theorem resides in its geometric part. The geometric part of
the steep case presented in [22,23] still needed a deep revisitation, which is performed
here and leads, in particular, to substantially improved stability exponents.

The proof of Theorem 1 will be obtained by deeply revisiting the geometric part of
[22,23]. The essential improvements are the following.
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First, we extend Pöschel’s Geometric Lemma (see [31]) to allow for a more general
power-law scaling of the amplitudes of the resonance domains. In thisway,we allow for a
definition of the resonance domains that depends on the Euclidean volume (of a minimal
cell) of the lattice generating the resonance, and is compatible with steepness indices
αi > 1. In contrast with the convex case, the analog of Pöschel’s Geometric Lemma is
here far to accomplish the geometric part of the theorem. In fact, motions with initial
conditions characterized by a given resonance,maymove along preferential planes of the
action space, called fast drift planes. In particular, one needs to extend in the action space
with fast drift planes the resonant domains obtained by a pull back from the frequency
space. Nevertheless, a regularity of the distribution of these extended resonant sets must
be proved: this is needed in order to grant the non overlapping of resonant domains of
the same multiplicity. In [22,23], the non-overlapping is granted simply by construction
of the resonance domains, but the price paid was an overestimate of resonant domains
with the consequence of a strong n−2 scaling of the stability exponent (2). Here, we do
not grant the overlapping by construction but, with a careful analysis of the topology of
these sets, we obtain a better balance between optimal definition of resonant domains
and their non-overlapping. Finally, our geometric construction is fully compatible with
the usual analytic part and stability argument, such as the so called resonance trap of
[22,23], and its improved version introduced in [5].
E. Heuristic discussion. The aim of this section is to provide some evidence that the
result we obtained, for general steep Hamiltonians, is natural and cannot be substantially
improved; in particular, the stability exponents a and b cannot be taken better. The reader
is here assumed to have some familiarity with the traditional geometric construction
entering the Nekhoroshev theorem in the convex case.

The essence of the Nekhoroshev theorem is to take care of the resonant motions,
namely motions taking place in a neighborhood of the resonant set

k · ω(I ) = 0, k ∈ Z
n, |k| ≤ K := K (ε),

with suitable K (ε) > 0. The reduction to a finite set of resonances, up to a cut-off
K , is possible thanks to the assumed analyticity of the perturbation: indeed the dis-
regarded harmonics produce a drift of the actions with exponentially small speed of
order exp(−σK ); choosing eventually the cut-off to be an inverse power of ε, precisely
K ∼ ε−a , the drift is negligible up to exponentially large times. Non-resonant motions
are easily shown to be confined by constructing a non-resonant normal form in which all
harmonics up to the cut-off are averaged out. The challenge of the Nekhoroshev theorem
is to show that resonant motions are also confined, within the same exponentially large
times, if steepness is assumed.

Thenon-resonant construction is possible in anon-resonant domain,namely a domain
which projects, in the frequency space, to a set where all small divisors satisfy an
inequality of the form

|k · ω| ≥ λ1 ∼ K
√

ε ∀k ∈ Z
n\0 : |k| ≤ K . (12)

The product K
√

ε at the r.h.s. needs perhaps an explanation. As is well known, by an
elementary perturbation step (no matter how it is performed) a factor ε is gained in
front of the perturbation, but a factor proportional to the square of the small divisor
gets lost: so,

√
ε is a kind of hard-core of the resonant region, and the extra factor K in

(12) provides the effective gain of the step. Thanks to this extra factor, standard analytic
techniques lead, with a number of steps proportional to K , to the wanted exponential
estimates.
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Consider now a resonance of multiplicity j ≥ 1, i.e. a resonance related to a lattice
� generated by j ≤ n − 1 independent vectors k(1), . . . , k( j), such that |k(i)| ≤ K
for any i ≤ j . (The case of complete resonance, j = n, corresponds to ω � 0 and is
not interesting.) The exact resonance, in the frequency space, is the linear manifold of
codimension j satisfying

k · ω = 0 ∀k ∈ � ;
the corresponding set in the action space, in lack of invertibility of the frequency map,
could be complicated: however in this discussion, oriented to show that our result cannot
be substantially improved, we shall assume ω(I ) is locally invertible and in the action
space too the exact resonance is a manifold of codimension j .

The influence of the resonance is assumed to extend, still in the frequency space, up
to a distance λ j depending in an essential way on the multiplicity j , larger for larger
j . (Fine tuning requires that the size attributed to the resonant region also depends on
the individual lattice �, through the minimal volume of its cells, and not only on its
dimension. This is important in the proof, but is not essential in this heuristic discussion,
and will be disregarded.) Understanding the correct dependence of λ j on ε is a delicate
matter.

Suppose we are inside a resonance �, but far from other resonances. Then, standard
resonant averaging shows that the motion, up to a negligible diffusion, is flattened on
the so-called “plane of fast drift” I + 〈�〉, namely the plane parallel to � containing
the initial datum I . The speed of fast drift is relatively large, namely of order ε. Unless
during such motion new resonances are met, steepness directly provides confinement.
Indeed, the essence of steepness is that, moving away from I along the plane of fast
drift, (or any other linear manifold), the frequency ω(I ) must change, following essen-
tially a power law in the distance from I . Consequently, if no new resonances enter
the game, resonant motions, no matter how complicated, cannot extend over a long dis-
tance, remaining inside the resonant region. The maximal distance �I the actions can
travel inside a resonance, staying close to the fast drift plane, depends very much on the
steepness indices. For convex Hamiltonians, the fast drift plane intersects transversely
the resonance manifold, and �I ∼ �ω; in the general steep case instead the fast drift
plane may be tangent to the local manifold, and it turns out that �I and �ω are related
by

�I ∼ �ω1/α j . (13)

A fast motion of course might exit the resonant region by loosing a resonance relation:
in such a case however it enters a less resonant region, and the argument repeats till,
possibly, the non-resonant region is reached, where fast motions cannot further extend
(this is the so-called “trapping” argument introduced byNekhoroshev; only in the convex
case trapping can be replaced by energy conservation [6]).

The actions can instead travel unboundedly large distances, if resonances of the same
multiplicity are not well separated, and during the motion on the plane of fast drift
I + 〈�〉 a new resonance is met. The possible scenario (see Fig. 1) is that the fast drift
plane approaches a resonant manifold of larger multiplicity, there crosses some fast drift
plane associated to a different resonance, and starts following it. The phenomenon could
repeat: the new fast drift plane might cross, after approaching a convenient resonance
of larger multiplicity, a third fast drift plane, and so on and so forth from resonance to
resonance, till�I gets large. In lack of steepness, a similar diffusion with speed ε inside
the web of resonances is possible and, remarkably, is compatible with the presence, in
the phase space, of a large set of KAM tori. A similar fast diffusion inside the web of
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I(0) I(t)

Fig. 1. Illustrating the possible mechanism of fast diffusion through crossing of fast drift planes, if resonances
are not well separated. Dashed curves the resonant manifolds. Gray neighbours the corresponding resonant
regions. Lines: the planes of fast drift. Irregular curve a possible motion of actions from I (0) to I (t), in a
time of order 1/ε

resonances should not be confused with the Arnol’d diffusion, which is a much slower
quite different phenomenon.

Such a possible scenario has been described already by Nekhoroshev, who provided
examples of resonances acting as “channels of superconductivity” where large varia-
tions of the actions in a time 1/ε do occur [22,23]. Numerical results, in turn, show
the phenomenon of fast diffusion rather clearly [13,34]: if the transversality between
resonances and planes of fast drift is too weak, transitions from a resonance to a differ-
ent resonance of the same multiplicity, through a resonance of higher multiplicity, are
indeed observed, the higher multiplicity resonance behaving, so to speak, as a highways
crossing. In such conditions, a sequence of similar transitions is numerically observed
to produce a variation �I of the actions of order one in a polynomial time scale. In
conclusion: the above scenario is realistic, the problem of crossing of fast drift planes
is real, resonances of the same multiplicity need to be well separated, as a necessary
condition to prevent fast diffusion and assure stability of the actions over exponentially
long times.

So, let us now discuss which is the minimal separation between resonances, which
is necessary in order to exclude the above crossing and prove long-term stability of the
actions.We shall reason as follows:we assume that, in the convex case, theNekhoroshev–
Pöschel’s geometric construction, leading to a = b = 1/(2n), is optimal, and discuss
which is the “unavoidable worsening” one should expect in the general steep case. The
expression (4) of the stability exponents a and b will naturally follow. The claim is that
our values of a and b cannot be improved, unless the corresponding estimates in the
convex case are also improved.

The separation of resonances of the same multiplicity is obtained, both in the convex
and in the general steep case, by appropriately tuning the sizes λ1, . . . , λn−1 of the
resonant regions of different multiplicity. In the convex case the appropriate scaling is

λ j+1 ∼ Kλ j , λn−1 ∼ K−1,

with K ∼ ε1/(2n). The latter relation assures indeed that the largest resonant zones, of
multiplicity n − 1, are still as small as εb, with b = 1/(2n); the factor K in the former
one takes into account the fact that, by raising K , the angle between different resonant
manifolds possibly gets small.

In the general steep case the above scaling is replaced by

λ j+1 ∼ K A j λ
1/α j
j , A j ≥ 1, (14)
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still with λn−1 ∼ K−1. The exponent 1/α j of λ j in (14) is unavoidable, for the possible
tangency between resonantmanifolds and fast-drift planes. The exponent A j is a quantity
that for the moment we leave undetermined. Having established that, on the one side,
λ1 must satisfy (12), while on the other side we need λn−1 ∼ K−1, the value of K
cannot be too large: more precisely, from the above scaling law (14) it follows that the
dependence of K on ε cannot be better than

K ∼ ε−a, a = 1

2A α1 · · · αn−2
,

with

A = 1 + An−2 +
An−3

αn−2
+

An−4

αn−3αn−2
+ · · · + A1

α2 · · · αn−2
+

1

α1 · · ·αn−2
. (15)

In the convex case α1 = · · · = αn−1 = 1, A1 = · · · An−2 = 1, the “optimal” value
A = n is recovered. In the general steep case one should obviously conjecture that such a
value cannot improve, that is A ≥ n. Computing A, with rigorous estimates everywhere,
is not a trivial task.We obtain A j = q j/α j −q j+1 (see (8)): the negative terms−q j+1 are
an improvement due to our new construction, and provide the compensations in the sum
(15) which allow us to recover the value A = n, as in the convex case. Correspondingly,
we geta = 1/(2nα1 · · · αn−2). Concerningb, its expressionb = a/αn−1 directly follows
from�ω ∼ λn−1 ∼ K−1 (the largest oscillation clearly occurs for j = n−1), using (13)
to relate �I and �ω. So, the values of a and b appear to be the optimal generalizations
of the convex case.9

F. The paper is organized as follows. The main part (i.e., the geometric analysis) is
presented in Sect 2: in Sect. 2.1 we introduce several auxiliary parameters (needed to
measure various covering sets, small divisors, cut-offs in Fourier space, time scales, etc.)
and point out the relevant relations among them (relations, which, although based on
simple calculus, are proven, for completeness in Appendix B). In Sect. 2.2, merging and
extending the geometric analysis of [22] and [31], we introduce a covering in action-
space formed by (a suitable scale of) resonant and non-resonant regions. Section 2.3 is
the heart of the paper, where the relevant analytic properties of the resonant and non-
resonant regions are proven; the section is divided into three lemmata: the first is about
geometric estimates concerning resonant domains; the second deals with small divisor
estimates and the third one is a non-overlapping result for resonant regions corresponding
to resonances of the same dimension. In Sect. 3 we recall briefly Pöschel’s normal form
theory [31] and show how it can be used in our setting. In the final Sect. 4 we put all the
pieces together and prove Theorem 1with the constants listed inC above. In Appendix A
we briefly review the notion of angles between linear spaces and, as mentioned above,
AppendixB is an elementary check of themain relations among the auxiliary parameters.

2. Geometry of Resonances

2.1. Auxiliary parameters. In the proof of the Theorem 1 several auxiliary parameters
will occur; in this section we define such parameters and point out some compatibility

9 As pointed out, e.g., in [31] (see [7] for a more refined discussion), in the convex case it is always possible
to improve one exponent by worsening the other. The same argument repeats identical in the general steep
case.
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relations expressed as in inequalities, which will be needed in the following (we recall
that ε∗, R0, q j are defined in (8) and (11)).

K :=
(ε∗

ε

)a
(16)

R := 2R0ε
b (17)

ρ := R

2n
, (18)

ω̂ := ω

2
√
2

(19)

qn := 0, qn−1 := 1, an−1 := 1, a j := q j − q j+1 (1 ≤ j ≤ n − 2). (20)

Notice that the q j ’s are strictly decreasing since a j ≥ 1, indeed:

an−2 = n(αn−2 − 1) + 1; a j = np j+1(α j − 1) + 1, (1 ≤ j ≤ n − 3). (21)

Let � be any maximal K -lattice over Zn of dimension10 1 ≤ j ≤ n− 1, |�| its volume,
and set:

λ j := ω̂

(AK )q j
, where A := 6E (22)

r j := κ j

( λ j

C j

) 1
α j (23)

δ� := λ j

|�| (24)

r� := δ�

M
(25)

γ� := (EK )a j δ� (26)

R� := γ�

4MK
. (27)

Finally, we set

r0 := λ1

2MK
(28)

T0 := sr0
5ε| f |r,s e

K s
6 , T� := e s

24

r�
ε| f |r,s e

K s
6 , Tj := min

�:dim�= j
T� (29)

Texp := min
i=0,...,n−1

Ti . (30)

It is then easy to check (see Appendix B) that under the assumption of Theorem 1,
namely, 0 ≤ ε < ε0, for any maximal K -lattice of dimension 1 ≤ j ≤ n − 1 (unless
otherwise specified) one has:

A ≥ max

(
max

j∈{1,...,n−1}

(
(Ea j + 1)2 + 1

) 1
2a j ,

( 4

Ea j
+ 2

) 1
a j

)
(31)

10 We recall that a “maximal K -lattice” � is a lattice which admits a basis of vectors k̃ ∈ Z
n with |k̃| :=∑n

i=1 |k̃i | ≤ K , and it is not properly contained in any other lattice of the same dimension; the volume |�|
of the lattice � is defined as the euclidean volume of the parallelepiped spanned by a basis for �; (see [31]).
Notice that for any K -lattice of dimension j , one has 1 ≤ |�| ≤ K j .
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Ks ≥ 6 (32)

r� ≤ min
(ρ

2
, R�

)
, (33)

δ� ≤ min
(ω

r

ρ

4
,

ω

2r
(ρ − r�), ω̂

)
, ( j ≤ n − 2) (34)

KMκ j

( δ�

C j

) 1
α j ≤ 1

4
γ�, ( j ≤ n − 2) (35)

R� ≤ r, (36)

ε| f |r,s ≤ min

(
1

28
λ1r0
K

,
γ�r�
29K

,
γ�R�

29K

)
(37)

max
0≤i≤n−1

ri ≤ ρ (38)

r0 ≤ r (39)
n−1∑
j=0

r j ≤ R

2
(40)

R ≤ r

2
, (41)

Texp ≥ T√
ε
exp

(Ks

6

)
. (42)

2.2. Resonant and non-resonant domains. Fix I0 ∈ U − R and consider the set:

B := B(I0, R) ⊆ U.

In order to prove the stability of all motions with initial actions I0, we need to cover the
domain B with open domains where suitable normal forms adapted the local resonance
properties may be constructed. We here introduce resonant zones and resonant blocks
as in [31], but, since we do not require any local inversion for the frequency map ω(I )
(as it is typical of steepness [22,23], see also [14]), these domains are directly defined in
the action-space, without using any pull-back from a frequencies space. Then, we define
suitable extensions, in the spirit of the original construction of [22] (see also [5]; see
Fig. 2).
We first define the resonant zones and blocks depending on the parameter K ≥ 1,
representing a cut-off for the resonance order, and also on the parameters 0 < λ1 <

· · · < λn−1 < ω̂ defined above. As in [31], we consider only the resonances defined by

k · ω(I ) = 0

with k in some maximal K -lattice � ⊆ Z
n . We define the resonant zone

Z� := {I ∈ B : ‖π〈�〉ω(I )‖ < δ�}, (43)

where 〈�〉 denotes the real vector space spanned by the lattice�, and the resonant block

B� := Z�\Z j+1, j = dim�, (44)
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BB

fast drift fast drift

B

B
Z

Z

Convex,
transversal

Steep,
possibly tangent

B

B
Z

Steep,
noinvertiblet

fast drif t

B

B

Z

Resonant manifolds
are possibly tangent

Fig. 2. Sketch of the resonant sets: two resonances related to the lattices � and �′ of the same multiplicity
j are sketched, together with the resonance related to the lattice � ⊕ �′ of multiplicity j + 1, identified at
the crossing of the two previous resonances, and some fast drift lines. Precisely, dashed curves represent the
resonant manifolds of multiplicity j ; dark gray areas denote resonant blocks of multiplicity j ; light gray
areas represent resonant zones of multiplicity j + 1; by λ we denote some j dimensional fast-drift lines.
Different situations are illustrated: in the top-left panel we plot the situation which is typical of the quasi-
convex cases, with the fast drift planes which are transverse to the resonance; in the other panels we illustrate
some situations which one may encounter in the more generic steep cases, where the fast drift planes may be
tangent to the resonant manifolds, and also self-intersections (bottom-left panel) and tangencies of resonances
(bottom-right panel) are possible. In all the represented cases, the fast drift lines λ = (I+ < � >) ∩ Z� or
λ = (I+ < �′ >) ∩ Z ′

� through points I ∈ B�
⊕

�′ do not intersect other resonant blocks of multiplicity
j + 1

where:

Zi := ∪{�′: dim�′=i}Z�′ .

We also define Z0 := B and the non-resonant block B0 by

B0 := Z0\Z1.

We remark that, since ‖ω(I )‖ ≥ ω > ω̂ ≥ δ� for any I ∈ B, the completely resonant
zone ZZn is empty and so is Zn . This implies

B� = Z�, ∀� s.t. dim� = n − 1. (45)
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Furthermore, if one defines

Bj := ∪{�′:dim�′= j}B�′,

one sees immediately that

Bj = Z j\Z j+1,

so that, for any 1 ≤ j ≤ n − 1, we have:

B = B0 ∪ B1 ∪ · · · ∪ Bj−1 ∪ Z j , (46)

and, in particular,

B = B0 ∪ B1 ∪ · · · ∪ Bn−1. (47)

Next, following Nekhoroshev, we introduce discs

Dρ
�,η(I ) :=

⎛
⎝

⎛
⎝ ⋃

I ′∈I+〈�〉
B(I ′, η)

⎞
⎠ ∩ Z� ∩ (B − ρ)

⎞
⎠

I

⊆ Z� ∩ (B − ρ), (48)

where I + 〈�〉 (called by Nekhoroshev, “fast drift plane”) denotes the plane through I
parallel to 〈�〉, (C)I denotes the connected component of a set C which contains I and
η is any positive number less or equal than ρ. The extended resonant blocks are then
defined by:11

Bρ
�,r�

:=
⋃

I∈B�∩(B−ρ)

Dρ
�,r�

(I ) ⊆ Z� ∩ (B − ρ), (49)

and the extended non-resonant block by:

Bρ
0 := B0 ∩ (B − ρ).

We remark that the set B − ρ is not empty since ρ < R, and for any lattice � with
dim� = n − 1, we have, by (45), (49) and footnote 11,

Bρ
�,r�

= B� ∩ (B − ρ), (dim� = n − 1). (50)

2.3. Geometric properties of the resonant domains.
• Geometric estimates for resonant domains

For any maximal K -lattice �, we need to estimate the diameter of the intersection of
the fast drift planes I + 〈�〉 with the resonant zones:
Lemma 2.1. For any I ′ ∈ B� ∩ (B − ρ) and I ′′ ∈ Dρ

�,r�
(I ′) we have:

‖I ′ − I ′′‖ ≤ κ j

( δ�

C j

) 1
α j ≤ r j . (51)

11 Notice that, if I ∈ B�, then I ∈ Dρ
�,η(I ) so that B� ∩ (B − ρ) ⊆ Bρ

�,r�
.
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Proof. We divide the proof of this lemma in three steps.
Step 1. Let δ̃, ρ̃ > 0 be such that

δ̃ ≤ min
( ρ̃

r
,

1√
2

)
ω, (52)

and define
Z�(δ̃) = {I ∈ B : ‖π〈�〉ω(I )‖ < δ̃}. (53)

Let us also denote by 〈ω〉 the linear space generated by ω(I ); by 〈ω〉⊥ the linear space
orthogonal toω(I ) and by�ω = π〈ω〉⊥〈�〉 the linear space obtained by projecting every
vector u of 〈�〉 on 〈ω〉⊥.
The first step will consist in proving that:

For any I ∈ Z�(δ̃)∩ (B − ρ̃) and any I ′ ∈
(
(I + 〈�〉)∩Z�(δ̃)∩ (B − ρ̃)

)I
one has:12

‖I − I ′‖ < 4
(2ω + Mr

ω

δ̃

C j

) 1
α j . (54)

Fix I ′ ∈
(
(I + 〈�〉) ∩ Z�(δ̃) ∩ (B − ρ̃)

)I
, with I ′ �= I (if I ′ = I there is nothing to

prove). Then, there exists a curve13 u(t) ∈ 〈�〉 such that u(0) = 0, u(1) = I ′− I , and for

any t , I +u(t) ∈
((

I + 〈�〉
)

∩ Z�(δ̃) ∩ (B − ρ̃)
)I

. In particular, ‖π〈�〉ω(I +u(t))‖ <

δ̃.

The proof of (54) will be based on the following claims (i)÷(vii).

(i) �ω is a vector space of dimension j .
Proof of (i): Clearly, if u1, . . . , u j is a basis for 〈�〉, then any vector in �ω can be
represented as a linear combination of π〈ω〉⊥u1,…, π〈ω〉⊥u j ∈ �ω. We prove that the
vectorsπ〈ω〉⊥u1, . . . , π〈ω〉⊥u j ∈ �ω are linearly independent, so that dim�ω = j . First,
we remark that the only vector u of 〈�〉 satisfying: π〈ω〉⊥u = 0 is u = 0. In fact, if there
exists u �= 0 such that u ∈ 〈�〉 and π〈ω〉⊥u = 0, then ω(I ) ∈ 〈�〉, and therefore we
have:

‖ω(I )‖ = ‖π〈�〉ω(I )‖ < δ̃ ≤ ω√
2
,

which is not possible since for any I ∈ B we assumed ‖ω(I )‖ > ω. Now, let us consider
c1, . . . , c j such that:

∑ j
i=1 ciπ〈ω〉⊥ui = 0. Then, π〈ω〉⊥

∑
i ci ui = 0, and therefore∑

i ci ui = 0. But, since the ui are linearly independent, it follows c1, . . . , c j = 0.

(ii) For any u ∈ 〈�〉, we have π�ωu = π〈ω〉⊥u.
Proof of (ii): We first compute:

π〈ω〉⊥u = π�ωπ〈ω〉⊥u + π�ω
⊥π〈ω〉⊥u. (55)

12 Recall the definitions of ω and ω in (7).
13 Notice that the set

(
(I + 〈�〉) ∩ Z�(δ̃) ∩ (B − ρ̃)

)I
is open in the relative topology of I + 〈�〉 and

therefore is arc-connected in I + 〈�〉.
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Since π〈ω〉⊥u ∈ �ω, we have π�ω
⊥π〈ω〉⊥u = 0, so that (55) becomes:

π〈ω〉⊥u = π�ωπ〈ω〉⊥u. (56)

But, π�ωu = π�ω(π〈ω〉⊥u + π〈ω〉u) = π�ωπ〈ω〉⊥u + π�ωπ〈ω〉u and since �ω ⊆ 〈ω〉⊥,
we have π�ωπ〈ω〉u = 0, and therefore:

π�ωu = π�ωπ〈ω〉⊥u. (57)

From Eqs. (56) and (57) we get (ii).

(iii) The angle14 between 〈�〉 and �ω is equal to the angle between ω(I ) and 〈�〉⊥, in
formulae:

〈�〉� �ω = ω(I ) � 〈�〉⊥. (58)

Proof of (iii): By (ii) we have: 〈�〉 � �ω = max
u∈〈�〉,u �=0

u � π�ωu = max
u∈〈�〉,u �=0

u � π〈ω〉⊥u

= 〈�〉 � 〈ω〉⊥, and using (x) of Appendix A, we obtain 〈�〉 � �ω = 〈�〉 � 〈ω〉⊥ =
〈ω〉 � 〈�〉⊥.

(iv) For any t, one has ‖π�ωω(I + u(t))‖ <
2ω δ̃

ω
.

Proof of (iv): We start with

‖π�ωω(I + u(t))‖ =
√

‖ω(I + u(t))‖2 − ‖π�ω
⊥ω(I + u(t))‖2

= ‖ω(I + u(t))‖
√
1 − | cos(ω(I + u(t)) � �ω

⊥)|2
= ‖ω(I + u(t))‖| sin(ω(I + u(t)) � �ω

⊥)|
≤ ω| sin(ω(I + u(t)) � �ω

⊥)|
and then we produce an upper bound estimate of the angle ω(I + u(t)) � �ω

⊥. By using
property (ix) of Appendix A, we first obtain:

ω(I + u(t)) � �ω
⊥ ≤ ω(I + u(t)) � 〈�〉⊥ + 〈�〉⊥ � �ω

⊥. (59)

Now, recalling that 〈�〉 and �ω have the same dimension (claim (i) above), we see that
by properties (x) and (xi) of Appendix A, 〈�〉⊥ � �ω

⊥ = �ω
� 〈�〉 = 〈�〉 � �ω =

ω(I ) � 〈�〉⊥. From (59), we therefore obtain:

ω(I + u(t)) � �ω
⊥ ≤ ω(I + u(t)) � 〈�〉⊥ + ω(I ) � 〈�〉⊥. (60)

Then, since:

| sin
(
ω(I + u(t)) � 〈�〉⊥

)
| = ‖π〈�〉ω(I + u(t))‖

‖ω(I + u(t))‖ <
δ̃

ω

| sin
(
ω(I ) � 〈�〉⊥

)
| = ‖π〈�〉ω(I )‖

‖ω(I )‖ <
δ̃

ω
, (61)

14 The notion of angle between linear spaces is briefly reviewed in Appendix A.
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and δ̃/ω ≤ 1/
√
2, both angles are strictly smaller than π/4, their sum is strictly smaller

thanπ/2, and since sin(x) is monotone in [0, π/2], from (60) and standard trigonometry,
we obtain:

| sinω(I + u(t)) � �ω
⊥| ≤ | sin(ω(I + u(t)) � 〈�〉⊥ + ω(I ) � 〈�〉⊥)|

≤ | sin(ω(I + u(t)) � 〈�〉⊥)| + | sin(ω(I ) � 〈�〉⊥)| < 2
δ̃

ω
.

We therefore obtain: ‖π�ωω(I + u(t))‖ ≤ ω| sinω(I + u(t)) � �ω
⊥| <

2ω δ̃

ω
.

(v) ‖π〈ω〉u(t)‖ <
δ̃

ω
‖u(t)‖.

Proof of (v): Since u(t) ∈ 〈�〉 and I ∈ Z�(δ̃), we have:

‖π〈ω〉u(t)‖ = |ω(I ) · u(t)|
‖ω(I )‖ = |π〈�〉ω(I ) · u(t)|

‖ω(I )‖ <
δ̃

ω
‖u(t)‖.

(vi) I + π〈ω〉⊥u(t) ∈ B.
Proof of (vi): Since I, I +u(t) ∈ B− ρ̃, we have ‖u(t)‖ ≤ 2r and, using (41), we obtain

‖u(t)‖ ≤ r . Then, from (v) and (52), we have:‖π〈ω〉u(t)‖ <
δ̃

ω
‖u(t)‖ ≤ δ̃

ω
r ≤ ρ̃.

Therefore, I + π〈ω〉⊥u(t) ∈ B.

(vii) ξ := ‖π〈ω〉⊥(I ′ − I )‖ ∈ (0, r ].
Proof of (vii): Let us first assume ξ = 0, that is I ′ − I ∈ 〈ω〉 so that

I ′ − I = ω(I )
‖I ′ − I‖
‖ω(I )‖ .

Since I ′ − I ∈ 〈�〉 and I ′ �= I , this would imply also ω(I ) ∈ 〈�〉, and therefore:

‖ω(I )‖ = ‖π〈�〉ω(I )‖ < δ̃ ≤ ω√
2
,

which is not possible since for any I ∈ B we have ‖ω(I )‖ > ω. Therefore we have
ξ > 0. Then, we have

ξ = ‖π〈ω〉⊥(I ′ − I )‖ ≤ ‖I ′ − I‖ = ‖u(1)‖ ≤ r.

Now, we are ready to complete the proof of (54). Since 0 < ξ ≤ r , let 0 ≤ η∗ ≤ ξ the
η which realizes the maximum in the definition of the steepness index of dimension j ,
that is:

min
u∈�ω: ‖u‖=η∗

‖π�ωω(I + u)‖ > C jξ
α j . (62)

The curve π〈ω〉⊥u(t) ∈ �ω joins I and I + π〈ω〉⊥(I ′ − I ), and therefore

[0, ξ ] ⊆ ∪t∈[0,1]‖π〈ω〉⊥u(t)‖ ,
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so that there exists t∗ ∈ [0, 1] such that ‖π〈ω〉⊥u(t∗)‖ = η∗. From (62) it follows:

‖π�ωω(I + π〈ω〉⊥u(t∗)‖ > C jξ
α j .

But using claims (iv) and (v) we also obtain:

‖π�ωω(I + π〈ω〉⊥u(t∗)‖ ≤ ‖π�ωω(I + u(t∗))‖ + M‖π〈ω〉u(t∗)‖ < 2
ω

ω
δ̃ + M

δ̃

ω
‖u(t∗)‖

<
2ω + Mr

ω
δ̃

so that

C jξ
α j <

2ω + Mr

ω
δ̃,

and therefore

‖π〈ω〉⊥(I ′ − I )‖ = ξ <
(2ω + Mr

ω

δ̃

C j

) 1
α j .

Using again (v), we obtain:

‖I ′ − I‖ ≤ ‖π〈ω〉⊥(I ′ − I )‖ + ‖π〈ω〉(I ′ − I )‖

<
(2ω + Mr

ω

δ̃

C j

) 1
α j +

δ̃

ω
‖I ′ − I‖

≤
(2ω + Mr

ω

δ̃

C j

) 1
α j +

1√
2
‖I ′ − I‖, (63)

that is:

‖I ′ − I‖ <
1

1 − 1√
2

(2ω + Mr

ω

δ̃

C j

) 1
α j < 4

(2ω + Mr

ω

δ̃

C j

) 1
α j .

This finishes the proof of (54).
Step 2. Next, we prove that:
For any I ∈ Z� ∩ (B − ρ) and any I ′ ∈ Dρ

�,r�
(I ), we have:

‖I − I ′‖ ≤ r� + 4
(2ω + Mr

ω

δ� + Mr�
C j

) 1
α j . (64)

Fix I ′ ∈ Dρ
�,r�

(I ). SinceDρ
�,r�

(I ) is open and connected, there exists a curve I +u(t) ∈
Dρ

�,r�
(I ), t ∈ [0, 1], such that I + r(0) = I , I + u(1) = I ′. Since Dρ

�,r�
(I ) ⊆ Z�, we

have: ‖π〈�〉ω(I + u(t))‖ < δ� for any t ∈ [0, 1], and also ‖π〈�〉⊥u(t)‖ ≤ r�. In fact,

since I + u(t) ∈ Dρ
�,r�

(I ) ⊆ ∪ Ĩ∈I+〈�〉B( Ĩ , r�), there exists a curve u′(t) ∈ 〈�〉 such
that ‖u(t) − u′(t)‖ ≤ r�, and therefore

‖π〈�〉⊥u(t)‖ = ‖π〈�〉⊥(u(t) − u′(t))‖ ≤ ‖u(t) − u′(t)‖ ≤ r�.
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Then, we define u′′(t) := π〈�〉u(t), so that u′′(0) = π〈�〉u(0) = 0, I + u′′(t) ∈ I + 〈�〉,
and

‖u′′(t) − u(t)‖ = ‖π〈�〉u(t) − u(t)‖ = ‖π〈�〉⊥u(t)‖ ≤ r�.

Therefore, on the one hand we have I + u′′(t) ∈ B − ρ + r�, on the other hand:

‖π〈�〉ω(I + u′′(t))‖ ≤ ‖π〈�〉ω(I + u(t))‖ + ‖π〈�〉(ω(I + u′′(t)) − ω(I + u(t)))‖
≤ ‖π〈�〉ω(I + u(t))‖ + ‖ω(I + u′′(t)) − ω(I + u(t))‖
≤ ‖π〈�〉ω(I + u(t))‖ + M‖u′′(t) − u(t)‖ ≤ δ� + Mr�.

Therefore, for any t ∈ [0, 1], we have:

I + u′′(t) ∈
(
(I + 〈�〉) ∩ Z�(δ� + Mr�) ∩ (B − (ρ − r�))

)I
.

We use, now, (54) (step 1) with

δ̃ := δ� + Mr� and ρ̃ := ρ − r�.

In fact, I ∈ Z� ⊆ Z�(δ̃); I ∈ B − ρ ⊆ B − ρ̃; from (34) it follows:

δ̃ ≤ min
(ω

r
ρ̃,

ω√
2

)
.

Therefore, we have:

‖u′′(t)‖ ≤ 4
(2ω + Mr

ω

δ̃

C j

) 1
α j = 4

(2ω + Mr

ω

δ� + Mr�
C j

) 1
α j ,

for any t ∈ [0, 1]. In particular we have:

‖I ′ − I‖ = ‖u(1)‖ ≤ ‖u′′(1) − u(1)‖ + ‖u′′(1)‖ ≤ r� + 4
(2ω + Mr

ω

δ� + Mr�
C j

) 1
α j .

Step 3.We may conclude the proof of the lemma. From (33) and (34) we obtain

δ� + Mr� = 2δ� ≤ ωρ

2r
≤ ω

r
(ρ − r�),

so that applying (64) and using again (33), we have:

‖I ′ − I ′′‖ ≤ r� + 4
(2ω + Mr

ω

δ� + Mr�
C j

) 1
α j ≤ δ�

M
+ 4

(
2
2ω + Mr

ω

δ�

C j

) 1
α j .

Then, since α j ≥ 1 and (recall (34)) δ�/ω < 1, we have (δ�/ω) ≤ (δ�/ω)
1

α j , from
which the first inequality in (51) follows at once; the second inequality follows from the
fact that δ� ≤ λ j and from the definition of r j . ��
• Small divisor estimates

Werecall [31] that a set B̃ ⊆ B is (γ, K )non-resonantmodulo� ifwehave |k·ω(I )| ≥ γ

for any k ∈ Z
n\� such that |k| ≤ K ; we will say that B̃ ⊆ B is γ non-resonant

if |k · ω(I )| ≥ γ for any k ∈ Z
n\{0} such that |k| ≤ K . The following result is a

generalization of the Geometric Lemma in [31].
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Lemma 2.2. (i) For any maximal K -lattice �, the resonant block B� is (γ�, K ) non-
resonant modulo �, while the non resonant block B0 is (λ1, K ) non-resonant.

(ii) If j = n − 1, the extended block Bρ
�,r�

is (γ�, K ) non-resonant modulo �; if

j ≤ n − 2, the extended block Bρ
�,r�

is (γ�/2,K ) non-resonant modulo �.

Proof of (i): Let us first consider I ∈ B0, so that I /∈ Z1. For any k ∈ Z
n , with |k| ≤ K ,

let us denote by k̃ the vector which generates the maximal one dimensional K -lattice
containing k. Since I /∈ Z1 we have:

‖π〈k̃〉ω(I )‖ ≥ λ1

‖k̃‖ ≥ λ1

‖k‖ ,

and consequently |k · ω(I )| = ‖k‖‖π〈k̃〉ω(I )‖ ≥ λ1. Therefore, B0 is (λ1, K ) non-
resonant.

Now, consider amaximal K -lattice�, with j := dim� ∈ {1, . . . , n−1} and let I ∈ B�.
As in [31], let k /∈ � with |k| ≤ K and denote by �+ the maximal K -lattice generated
by � and k (since � is maximal, dim�+ = j + 1). For the purpose of this proof, let us
denote

π := π〈�〉, π⊥ := π〈�〉⊥ = Id − π, π+ := π〈�+〉,
where Id denotes the identity map. Since ππ+ = π , it is easy to check that

π⊥k · (
π+ω(I ) − πω(I )

)
+ πk · πω(I ) = k · ω(I ).

Thus, since the vectors π⊥k and π+ω(I ) − πω(I ) = π⊥π+ω(I ) are proportional, and
|�+| ≤ |�| ‖π⊥k‖, we obtain

|k · ω(I )| ≥ ∣∣π⊥k · (
π+ω(I ) − πω(I )

)∣∣ − ∣∣πk · πω(I )
∣∣

= ‖π⊥k‖ ‖π+ω(I ) − πω(I )‖ − ∣∣πk · πω(I )
∣∣

≥ |�+|
|�|

√
‖π+ω(I )‖2 − ‖πω(I )‖2 − ‖πk‖‖πω(I )‖.

Using ‖πk‖ ≤ ‖k‖ ≤ |k| ≤ K , ‖πω(I )‖ < δ�, ‖πω(I )‖ ≥ δ�+ we obtain:

|k · ω(I )| ≥ |�+|
|�|

√
λ2j+1

|�+|2 − λ2j

|�|2 − K δ�.

Using again |�+| ≤ |�|K , and K ≤ Kaj , we obtain:

|k · ω(I )| ≥ 1

|�|
(√

λ2j+1 − K 2λ2j − Kλ j

)
≥ δ�

(√(λ j+1

λ j

)2 − K 2 − K
)

≥ δ�

(√
(AK )2a j − K 2 − K

)
≥ δ�

(√
(AK )2a j − K 2a j − Kaj

)

= δ�Kaj
(√

A2a j − 1 − 1
)
, (65)

so that, by (31), we finally get:

|k · ω(I )| ≥ δ�Kaj
(√

A2a j − 1 − 1
)

≥ Ea j K a j δ� = γ�.

��
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Proof of (ii): If j = n− 1, the conclusion follows directly from lemma 2.2-(i) and (50).
Let us therefore consider, for any j = 1, . . . , n − 2, I ∈ Bρ

�,r�
and I ′ ∈ B� ∩ (B − ρ)

such that I ∈ Cρ
�,r�

(I ′). By (34) and (64) we get

‖I ′ − I‖ ≤ r� + 4
(2ω + Mr

ω

δ� + Mr�
C j

) 1
α j .

Using also lemma 2.2-(i), for any k ∈ Z
n\� with |k| ≤ K , we have

|k · ω(I )| ≥ |k · ω(I ′)|−KM‖I − I ′‖ ≥ γ�−KM
(
r�+4

(2ω+Mr

ω

δ� + Mr�
C j

) 1
α j

)
.

(66)

But, since, by (33) and (26), KMr� ≤ γ�/4 from (35) there follows

4KM
(2ω + Mr

ω

δ� + Mr�
C j

) 1
α j ≤ 4KM

(
2
2ω + Mr

ω

δ�

C j

) 1
α j

≤ KMκ j

( δ�

C j

) 1
α j ≤ γ�

4
, (67)

which, together with (66) yields |k · ω(I )| ≥ γ�/2. ��
• Non overlapping of extended blocks and zones

Lemma 2.3. For anymaximal K -lattices� �= �′ of the same dimension j = 1, . . . , n−
1, we have

Bρ
�,r�

∩ Z�′ = ∅.

Proof. Let� �= �′ bemaximal K -lattices of the same dimension j ≤ n−1 and consider
I ∈ Bρ

�,r�
: we have to prove that I /∈ Z�′ , i.e.,

‖π〈�′〉ω(I )‖ ≥ δ�′ . (68)

We divide the proof in two steps: the case j ≤ n − 2 and the case j = n − 1.

Step 1. (1 ≤ j ≤ n − 2). The argument follows from the following claims (i)÷(vi).

(i) For any η > 0, there exists I ′ ∈ B� ∩ (B − ρ) such that ‖I − I ′‖ ≤ κ j

(
δ�

C j

) 1
α j + η.

Proof of (i): Since I ∈ Bρ
�,r�

, there exists I ′′ ∈ Bρ
�,r�

such that ‖I ′′ − I‖ < η; (by
definition of Bρ

�,r�
) there exists I ′ ∈ B� ∩ (B − ρ) such that I ′′ ∈ Dρ

�,r�
(I ′). Then, (i)

immediately follows from (51).

(ii) ‖π〈�′〉ω(I ′)‖ ≥ Ea j K a j−1δ�.

Proof of (ii): Since � �= �′, there exists k ∈ �′ such that k /∈ � and |k| ≤ K . Therefore
we have ‖π〈�′〉ω(I ′)‖ ≥ |k · ω(I ′)|/‖k‖ and since I ′ ∈ B�, (ii) follows from Lemma
2.2.

(iii) ‖π〈�′〉ω(I )‖ ≥ 1
2 E

a j K a j−1δ�.
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Proof of (iii): Choose η ≤ γ�

4KM . Then, by using (35), (i) and (ii), we obtain

‖π〈�′〉ω(I )‖ ≥ ‖π〈�′〉ω(I ′)‖ − M‖I − I ′‖ ≥ Ea j K a j−1δ� − Mη − Mκ j

( δ�

C j

) 1
α j

≥ Ea j K a j−1δ� − γ�

2K
= 1

2
Ea j K a j−1δ�.

Now, observe that, if we have 1
2 E

a j K a j−1δ� ≥ δ�′ , then (68) follows at once. Therefore,
let us henceforth assume that

1

2
Ea j K a j−1δ� < δ�′ i.e.

|�′|
|�| <

2

Ea j K a j−1 . (69)

(iv) ‖π〈�′〉ω(I ′)‖ ≥ Aa j K a j−1δ�′ − 2δ�.

Proof of (iv): Since � �= �′, we consider k ∈ � such that k /∈ �′ and |k| ≤ K , and we
denote by �′′ the maximal K -lattice of dimension j + 1 which contains �′ and k. For
the purpose of the proof of (iv) let us denote:

π := π〈�〉, π ′ := π〈�′〉, π ′′ := π〈�′′〉.

First, since I ′ ∈ B�, we have

‖π ′ω(I ′)‖ ≥ ‖π ′(Id − π)ω(I ′)‖ − ‖π ′πω(I ′)‖ ≥ ‖π ′(Id − π)ω(I ′)‖ − δ�. (70)

Then, since I ′ ∈ B�, I ′ /∈ Z�′′ and we have

‖π ′′ω(I ′)‖ ≥ δ�′′ . (71)

Let us consider the vector ν = π〈�′〉⊥k. We remark that ν ∈ 〈�′′〉\0. In fact, on the one
hand k /∈ 〈�′〉, so that ν �= 0; on the other hand, since ν = k − π〈�′〉k is the sum of
k ∈ 〈�〉 and of −π ′k ∈ 〈�′〉, we have also ν ∈ 〈�′′〉. Therefore, since ν is orthogonal
to 〈�′〉, we have:

π〈�′′〉 = π〈�′〉 + π〈ν〉. (72)

Moreover, we have:
|ν · k|
‖ν‖ ≥ |�′′|

|�′| . (73)

In fact, on the one hand we have

|ν · k|
‖ν‖ = |π〈�′〉⊥k · k|

‖π〈�′〉⊥k‖
= ‖π〈�′〉⊥k‖,

on the other hand we have

‖π〈�′〉⊥k‖ ≥ |�′′|
|�′| .

From (72), we obtain:

‖π ′(Id − π)ω(I ′)‖2 = ‖π ′π ′′(Id − π)ω(I ′)‖2
= ‖π ′′(Id − π)ω(I ′)‖2 − ‖π〈ν〉π ′′(Id − π)ω(I ′)‖2

= ‖π ′′(Id − π)ω(I ′)‖2 − |ν · π ′′(Id − π)ω(I ′)|2
‖ν‖2 . (74)
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We notice that:
π ′′(Id − π)ω(I ′) �= 0. (75)

In fact, first we have

‖π ′′(Id − π)ω(I ′)‖ ≥ ‖π ′′ω(I ′)‖ − ‖π ′′πω(I ′)‖ ≥ δ�′′ − δ�

≥ λ j

|�′′|
(
Aa j K a j − |�′′|

|�|
)

,

then, using (73), (69), we obtain

|�′′|
|�| = |�′′|

|�′|
|�′|
|�| ≤ ‖k‖ |�′|

|�| <
2‖k‖

Ea j K a j−1 ≤ 2K

Ea j K a j−1 ,

and therefore we have:

‖π ′′(Id − π)ω(I ′)‖ >
λ j

|�′′|
(
Aa j K a j − 2K

Ea j K a j−1

)
.

Finally, since K ≥ 1, a j ≥ 1, and using also (31), we have

‖π ′′(Id − π)ω(I ′)‖ >
λ j

|�′′|
(
Aa j K − 2K

Ea j

)
= λ j K

|�′′|
(
Aa j − 2

Ea j

)

≥ λ j K

|�′′|
(
2 +

2

Ea j

)
> 0.

Therefore, from (74), (75), we have:

‖π ′(Id − π)ω(I ′)‖ = ‖π ′′(Id − π)ω(I ′)‖
√
1 − (ν · π ′′(Id − π)ω(I ′))2

‖ν‖2‖π ′′(Id − π)ω(I ′)‖2 ,

and, since

π ′′(Id − π)ω(I ′) · k = (Id − π)ω(I ′) · k = 0,

we obtain:

‖π ′(Id − π)ω(I ′)‖ ≥ ‖π ′′(Id − π)ω(I ′)‖ min
u∈k⊥,‖u‖=1

√
1 − (ν · u)2

‖ν‖2 . (76)

We remark that the maximum of |ν · u| = |π〈k⊥〉ν · u|, for u ∈ k⊥ and ‖u‖ = 1, is
obtained for u parallel to π〈k⊥〉ν, that is for u = π〈k⊥〉ν/‖π〈k⊥〉ν‖. Therefore, we have:

max
u∈k⊥,‖u‖=1

|ν · u| = ‖π〈k⊥〉ν‖

and correspondingly:

min
u∈k⊥,‖u‖=1

√
1 − (ν · u)2

‖ν‖2 =
√
1 − ‖π〈k⊥〉ν‖2

‖ν‖2 =
√

‖ν‖2 − ‖π〈k⊥〉ν‖2
‖ν‖2 = ‖π〈k〉ν‖

‖ν‖
= |ν · k|

‖ν‖‖k‖ .
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Therefore, from (76) and (73) we obtain

‖π ′(Id − π)ω(I ′)‖ ≥ ‖π ′′(Id − π)ω(I ′)‖ |ν · k|
‖ν‖‖k‖ ≥ ‖π ′′(Id − π)ω(I ′)‖ |�′′|

|�′|‖k‖ .

Then, since: ‖π ′′(Id − π)ω(I ′)‖ ≥ ‖π ′′ω(I ′)‖ − ‖π ′′πω(I ′)‖ ≥ δ�′′ − δ�, we obtain:

‖π ′(Id−π)ω(I ′)‖ ≥ (δ�′′−δ�)
|�′′|

|�′|‖k‖ ≥ λ j+1

|�′|‖k‖−δ�

|�′′|
|�′|‖k‖ ≥ Aa j K a j−1δ�′−δ�,

(77)
and using (70) we obtain (iv).

We now are ready to finish the proof of (68) in the case j ≤ n − 2. From inequalities
(iv) and (i), we obtain:

‖π ′ω(I )‖ ≥ Aa j K a j−1δ�′ − 2δ� − M
(
κ j

( δ�

C j

) 1
α j + η

)
. (78)

Using (35) and choosing η ≤ γ�

4KM , we obtain:

‖π ′ω(I )‖ ≥ Aa j K a j−1δ�′ − 2δ� − 1

2
Ea j K a j−1δ�. (79)

Since we are assuming (69) and since Kaj−1 ≥ 1, we obtain

‖π ′ω(I )‖ ≥ Aa j K a j−1δ�′ − 2δ� − 1

2
Ea j K a j−1δ�

> Aa j K a j−1δ�′ − 4

Ea j K a j−1 δ�′ − δ�′ >
(
Aa j − 4

Ea j
− 1

)
δ�′ ,

which, by (31), yields (68).

Step 2.We now consider maximal K -lattices � �= �′ of the same dimension j = n−1.
Since Bρ

�,r�
= B� ∩ (B − ρ), we have I ∈ B� and

‖π ′ω(I )‖ ≥ Ea j K a j−1δ�. (80)

In fact, since � �= �′, there exists k ∈ �′ such that k /∈ � and |k| ≤ K . Therefore we
have ‖π ′ω(I )‖ ≥ |k · ω(I )|/‖k‖ and since I ∈ B�, by Lemma 2.2 we have

‖π ′ω(I )‖ ≥ |k · ω(I )|
‖k‖ ≥ Ea j K a j−1δ�.

We also have:
‖π ′ω(I )‖ ≥ Aa j K a j−1δ�′ − 2δ�. (81)

First, since I ∈ B�, we have

‖π ′ω(I )‖ ≥ ‖π ′(Id − π)ω(I )‖ − ‖π ′πω(I )‖ ≥ ‖π ′(Id − π)ω(I )‖ − δ�. (82)

Then, since � �= �′, we consider k ∈ � such that k /∈ �′ and |k| ≤ K . In particular,
since I ∈ B�, we have

‖ω(I )‖ ≥ ω̂. (83)
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Let us consider the vector ν = π〈�′〉⊥k. Since ν is orthogonal to 〈�′〉, we have:
Id = π ′ + π〈ν〉. (84)

Moreover, we have:

‖π〈�′〉⊥k‖ = |ν · k|
‖ν‖ ≥ 1

|�′| . (85)

In fact, since the K -lattice 〈�′, k〉 is generated by �′ and k is properly contained in Zn ,
we have

|�′|‖π〈�′〉⊥k‖ ≥ |〈�′, k〉| ≥ 1.

From (84), we obtain:

‖π(Id − π)ω(I )‖2 = ‖(Id − π)ω(I )‖2 − ‖π〈ν〉(Id − π)ω(I )‖2,
and since:

‖π〈ν〉(Id − π)ω(I )‖ = |ν · (Id − π)ω(I )|
‖ν‖ ,

and:

‖(Id − π)ω(I )‖ ≥ ω̂ − δ� ≥ ω̂ − λn−1 > 0,

we have:

‖π ′(Id − π)ω(I )‖ = ‖(Id − π)ω(I )‖
√
1 − (ν · (Id − π)ω(I ))2

‖ν‖2‖(Id − π)ω(I )‖2 .

Then, since (Id − π)ω(I ) · k = 0, we have

‖π ′(Id − π)ω(I ′)‖ ≥ ‖(Id − π)ω(I ′)‖ min
u∈k⊥,‖u‖=1

√
1 − (ν · u)2

‖ν‖2 . (86)

We remark that the maximum of |ν · u| = |π〈k⊥〉ν · u|, for u ∈ k⊥ and ‖u‖ = 1, is
obtained for u parallel to π〈k⊥〉ν, that is for u = π〈k⊥〉ν/‖π〈k⊥〉ν‖. Therefore, we have:

max
u∈k⊥,‖u‖=1

|ν · u| = ‖π〈k⊥〉ν‖

and correspondingly:

min
u∈k⊥,‖u‖=1

√
1 − (ν · u)2

‖ν‖2 =
√
1 − ‖π〈k⊥〉ν‖2

‖ν‖2 =
√

‖ν‖2 − ‖π〈k⊥〉ν‖2
‖ν‖2 = ‖π〈k〉ν‖

‖ν‖
= |ν · k|

‖ν‖‖k‖ .

Therefore, from (86), we obtain:

‖π ′(Id − π)ω(I )‖ ≥ ‖(Id − π)ω(I )‖ |ν · k|
‖ν‖‖k‖ ,
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and from (85) we obtain also:

‖π ′(Id − π)ω(I )‖ ≥ ‖(Id − π)ω(I )‖ 1

|�′|‖k‖ .

Then, since: ‖(Id − π)ω(I )‖ ≥ ‖ω(I )‖ − ‖πω(I )‖ ≥ ω̂ − δ�, we obtain:

‖π ′(Id − π)ω(I )‖ ≥ (ω̂ − δ�)
1

|�′|‖k‖ ≥ Aa j K a j−1δ�′ − δ�, (87)

and using (82) we obtain (81). If Ea j K a j−1δ� ≥ 2δ�′ , using (80), there is nothing more
to prove. Therefore, we assume:

Ea j K a j−1δ� < 2δ�′ .

Then, using (81), we obtain:

‖π ′ω(I )‖ ≥ Aa j K a j−1δ�′ − δ� > Aa j K a j−1δ�′ − 2

Ea j K a j−1 δ�′ . (88)

Since Kaj−1 ≥ 1, we have:

‖π ′ω(I )‖ >
(
Aa j − 2

Ea j

)
δ�′,

and using (31) we obtain (68). ��

3. Normal Forms and Dynamics in Resonant Blocks

The geometric construction of Sect. 2 together with normal form theory allows to have
some control of the dynamics in the extended blocks. We shall use normal form theory
in the version given by Pöschel in [31]; see, in particular, the “Normal Form Lemma”
at p. 192 of [31] (which we shall use with parameters p = q = 2); notice that the
constant M used in [31] is an upper bound on the derivative of ω(I ), which is used only
as Lipschitz constant, so that our notation is consistent with that used in [31].
In fact, the following lemma holds

Lemma 3.1. (i) Let (It , ϕt ) be the solution of the Hamilton equations with initial con-
dition15 ( Ī0, ϕ0) ∈ Bρ

0 × T
n. Then,

‖It − Ī0‖ ≤ r0 (89)

for all times16 |t | ≤ T0.
(ii) Let � be a maximal K -lattice of dimension j ∈ {1, . . . , n − 1}, and let (It , ϕt )

be the solution of the Hamilton equations with initial data ( Ī0, ϕ0) ∈ (B� ∩ (B − ( j +
1)ρ)) × T

n. Let τe be the (possibly infinite) exit time from17 Bρ
�,r�

. Then, if |τe| ≥ T�,

we have ‖It − Ī0‖ ≤ r j for any time |t | < T�; otherwise, there exists 0 ≤ i ≤ j − 1
such that Iτe ∈ Bi ∩ (B − jρ).

15 I.e. It |t=0 = Ī0: we are using here a slight abuse of notation in order not to confuse the point I0 in the
statement of Theorem 1 with the arbitrary point Ī0 used here.
16 Recall the definition of T0 in (29).
17 I.e., τe is such that It ∈ Bρ

�,r�
for |t | < |τe| and Iτe /∈ Bρ

�,r�
.
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Proof. of (i): The non-resonant block B0 is λ1 non-resonant (see Lemma 2.2). Let us
consider as extension vector (r0, s). Because of the definition of r0, (39), (32) and the
first inequality in (37), we can apply the normal form lemma in [31] in B0. It then follows
at once (89) for all times |t | ≤ T0 with T0 as in (29). ��
Proof. of (ii): Let us first assume that |τe| ≥ T� and consider the extension vector
(r�, s). By Lemma 2.2-(ii), the domain Bρ

�,r�
is (γ�/2, K ) non-resonant modulo �.

Thus, since r� ≤ r (by (36)), and because of (32), the definition of R� and the third
inequality in (37), we can apply the Normal Form Lemma in [31] (with p = q = 2), in
Bρ

�,r�
. Thus, there exists a canonical transformation:

φ : (Bρ
�,r�

) r�
2

× T
n
s
6

→ (Bρ
�,r�

)r� × T
n
s

(I ′, ϕ′) �−→ (I, ϕ) = φ(I ′, ϕ′) (90)

conjugating H to its resonant normal form:

H� = H ◦ φ = h + εg + ε f∗ (91)

with g a real-analytic function having the Fourier expansion

g =
∑
k∈�

gk exp(ik · ϕ) , (92)

and the “remainder” f∗ satisfying the exponential bound:

| f∗|Bρ
�,r�

; r�2 , s6
≤ e−K s

6 | f |r,s . (93)

Also, for any (I ′, ϕ′) ∈ (Bρ
�,r�

) r�
2

× T
n , by the third inequality in (37), one has:

‖I ′ − I‖ ≤ 8K

γ�

ε| f |r,s ≤ 1

26
r�,

so that φ−1(Bρ
�,r�

× T
n) ⊆ (Bρ

�,r�
) r�
26

× T
n . Finally, using the second inequality in

(37) we have also:

‖I ′ − I‖ ≤ 8K

γ�

ε| f |r,s ≤ 1

26
r�.

Therefore, since It ∈ Bρ
�,r�

for any |t | < |τe|, we may define (I ′
t , ϕ

′
t ) = φ−1(It , ϕt ),

and using the specific form of Hamiltonian (91), we have

‖π〈�⊥〉(I ′
t − I ′

0)‖ ≤ ε‖
∫ t

0

∂ f∗
∂ϕ

(I ′
t , ϕ

′
t )dt‖ ≤ ε|t | sup

(Bρ
�,r�

) r�
26

×Tn

‖∂ f∗
∂ϕ

‖.

By Cauchy estimate (see Lemma B.3 of [31]) and by (93), we have:

sup
(Bρ

�,r�
) r�
26

×Tn

‖∂ f∗
∂ϕ

‖ ≤ 6

es
| f∗|Bρ

�,r�
; r�2 , s6

≤ 6

es
e−K s

6 | f |r,s,
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so that, for any |t | < T�, we have:

‖π〈�⊥〉(I ′
t − I ′

0)‖ ≤ 6ε

es
|t |e−K s

6 | f |r,s ≤ 1

4
r�.

As a consequence, the motion It has the representation:

It = Ī0 + v(t) + d(t) (94)

with v(t) ∈ 〈�〉 with v(0) = 0, and ‖d(t)‖ < 3
4r�: indeed, we can write

It = Ī0 + (It − I ′
t ) + (I ′

t − I ′
0) + (I ′

0 − Ī0),

and take v(t) = π〈�〉(I ′
t − I ′

0) and d(t) = (It − I ′
t ) + π〈�〉⊥(I ′

t − I ′
0) + (I ′

0 − Ī0).
Therefore, It ∈ Bρ

�,r�
⊆ Z�∩(B−ρ) and because of the representation (94) the distance

between It and the space Ī0 + 〈�〉 is smaller than 3
4r�. Furthermore, It is connected to Ī0

in the set
(

∪I ′∈ Ī0+〈�〉 B(I ′, 3
4r�)

)
∩Z� ∩ (B−ρ) so that It ∈ Cρ

�, 34 r�
( Ī0) ⊆ Cρ

�,r�
( Ī0).

Thus, by Lemma 2.1 we have ‖It − Ī0‖ ≤ r j for any |t | < T�, as claimed.
Let us now assume that the exit time τe satisfies: 0 < |τe| < T�. Since for any time |t | <

|τe|, we have It ∈ Cρ

�, 34 r�
( Ī0), we have also: Iτe ∈ Cρ

�, 34 r�
( Ī0). As a consequence (again

Lemma 2.1), we have ‖It − Ī0‖ ≤ r j < ρ for any |t | ≤ |τe|and since Ī0 ∈ B − ( j + 1)ρ,
we also have

Iτe ∈ B − jρ. (95)

Since It ∈ Cρ

�, 34 r�
( Ī0), the distance between It and Ī0 + 〈�〉 is strictly smaller than 3

4r�,

and the distance between Iτe and Ī0 + 〈�〉 is smaller or equal than 3
4r�. Finally, since

It ∈ Cρ

�, 34 r�
( Ī0), we have It ∈ Z�, that is: ‖π〈�〉ω(It )‖ < δ�. As a consequence, since

Iτe /∈ Bρ
�,r�

, the only possibility is: ‖π〈�〉ω(Iτe)‖ = δ�. But this means that Iτe /∈ Z�.
On the other hand, by Lemma 2.3, Iτe cannot belong to any Z�′ for any maximal K -
lattice �′ �= � of the same dimension j ; therefore Iτe /∈ Z j , whence, by (46), there
must exist an i ∈ 0, . . . , j − 1 such that Iτe ∈ Bi , which, together with (95), concludes
the proof of the lemma. ��

4. The Resonance Trap Argument and Conclusion of the Proof

We are now in position to conclude the proof of the theorem, proving (5) and (6).
In view of (47), there are two alternatives:18

(a) either I0 ∈ B0 ∩ (B − nρ);
(b) or I0 ∈ B� ∩ (B − ( j + 1)ρ) for some maximal K -lattice of dimension j ∈

{1, . . . , n − 1}.
In case (a), by Lemma 3.1-(i), by (38), the definition of T0 and Texp ((29), (30)) and (42),
the theorem is proved.
In case (b), by Lemma 3.1-(ii), there two alternatives:

18 Recall that I0 is the center of B ⊆ U , which is a sphere of radius r = 2R0εb = 2nρ.
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(b1) either ‖It − I0‖ ≤ r j
38≤ ρ, for |t | ≤ Texp ≤ T�

(b2) or there exist a t1 such that ‖It − I0‖ ≤ ρ for all |t | ≤ |t1| and It1 ∈ Bi ∩ (B − jρ)

for some i ∈ {0, . . . , j − 1}.
In case (b1), by (29), (30) and (42), and recalling that ρ = R0ε

b/n, the theorem is
proved.
In case (b2) we iterate the above scheme. Hence, after 0 ≤ k ≤ n − 1 steps we see that
the action-trajectory It ends up either in a “trapping resonant region” B� ⊆ Bi where it
gets stuck for exponentially long times or it will end up in B0 where also gets stuck for
exponentially long time. Since in such k steps It moves at most by kρ we see that in the
(possible) fast drift we have ‖It − I0‖ ≤ kρ ≤ (n − 1)ρ to which we have to add the
displacement in the trapping region which is again at most ρ. Thus, for times |t | ≤ Texp
we have ‖It − I0‖ ≤ nρ = R0ε

b as claimed. ��
We remark that, in the case (b) above, It may visit several blocks in the time Texp; let us
denote by j∗ their minimal multiplicity, and t∗ < Texp be such that It∗ ∈ B�∗ ∩ (B −
( j∗ + 1)ρ) with dim�∗ = j∗. Then, we have I0 ∈ B�∗ (and, therefore, It ∈ B�∗ for
all |t | ≤ Texp). In fact, since the geometry of resonances of the Hamilton function −H
is identical to the geometry of resonances of H , if we consider the solution (I ′

t , ϕ
′
t ) of

the Hamilton equations of −H with I ′
0 = It∗ , and apply Lemma 3.1, we obtain that

I0 = I ′−t∗ ∈ B� ∩ B�∗ .

A. Angles Between Linear Spaces

In this appendix n ≥ 2, u, v, w, z . . . denote vectors in R
n and L1, L2, L ′, . . . linear

vector subspaces of Rn of dimension m ∈ {1, . . . , n − 1}; πL denotes the orthogonal
projection onto the linear space L and Arccos : [−1, 1] → [0, π ] denotes the principal
branch of the inverse real cosine.

Definition A.1. Let. The angle between u and v is defined as

u � v =
{

Arccos
u · v

‖u‖ ‖v‖ , if u, v �= 0
π
2 . otherwise.

Definition A.2. The angle between L1 and L2 is defined as

L1 � L2 := max
u∈L1\{0}

u � πL2
u.

We, next, list a few elementary properties of angles between linear spaces, whose
simple proof is left to the reader (for the proof of items (x) and (xi) , see, also, [23, p.
45]).

(i) u � v ∈ [0, π ] and u � v ∈ [0, π/2] if and only if u · v ≥ 0; L1 � L2 ∈ [0, π/2].
(ii) L1 � L2 = π

2 if and only if19 L1 ∩ L⊥
2 �= {0}.

L1 � L2 < π
2 if and only if {u ∈ L1 : πL2

u = 0} = {0}.
(iii) u � πL u = Arccos

‖πL u‖
‖u‖ , ∀ u �= 0.

(iv) u � πL u + u � π
L⊥ u = π

2 , ∀ u �= 0.
(v) u � πL u = minv∈L\{0} u � v.

19 L⊥ := {u ∈ R
n : u · v = 0 , ∀ v ∈ L}.
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(vi) cos L1 � L2 = min
u∈L1\{0}

max
v∈L2\{0}

u · v

‖u‖ ‖v‖ .
(vii) For any u and v one has20 u � v = v � u.
(viii) If u �= 0 �= v, u � v coincides with the (Euclidean) length of the shortest geodesic

(equivalently, shortest curve) on the unit sphere Sn−1 := {ξ ∈ R
n : ‖ξ‖ = 1}

having as end-points the projections of u and v on Sn−1.
(ix) u � v ≤ u � w + w � v. Also: L1 � L2 ≤ L1 � L3 + L3 � L2.
(x) L1 � L2 = L⊥

2
� L⊥

1 .
(xi) If dim L1 = dim L2, then L1 � L2 = L2 � L1.

B. Parameter Relations

For completeness, in this appendix, we prove the elementary inequalities (31)÷(42).
Recall the definitions of the parameters given in (9)÷(30).
First, we observe that from these definitions and the hypothesis 0 ≤ ε ≤ ε0, it follows
easily:

E ≥ 4 ; A := 6E ≥ 24, K :=
(ε∗

ε

)a ≥
(ε∗

ε0

)a ≥ 1; 1 ≤ |�| ≤ K j ; (B.1)

δ� ≤ λ j ; ρ = rμ0

K 1/αn−1
; r = 2nρ; (B.2)

q1 + 1 = 1

2a
≥ n ; q j ≥ 2 ( j ≤ n − 2) ; q j

(
1 − 1

α j

)
= a j − 1 − j

(
1 − 1

α j

)
.

(B.3)

(31): It follows immediately from (B.1).

(32): It follows from
ε0

ε∗
≤

( s
6

) 1
a
.

(33): To get the 1st inequality observe that q j ≥ 1 ≥ 1/αn−1, rμ0 ≥ ω/(24
√
2M) so

that

r� = ω

2
√
2

1

(AK )q j

1

|�|
1

M
≤ ω

2
√
2

1

A

1

K
1

αn−1

1

M

(B.1)≤ ω

48
√
2

1

K
1

αn−1

1

M

= 1

2

ω

24
√
2M

( ε

ε∗

)b ≤ rμ0

2

( ε

ε∗

)b = ρ

2
.

As for the 2nd inequality we have: r� ≤ r�
(EK )a j

4K
= R�.

(34), first inequality: Using: q j ≥ 2 ≥ 1/αn−1, (B.1) and μ0 ≥ 1/(622
√
2) >

2/(
√
2(24)2), one finds

δ� = ω

2
√
2

1

(AK )q j

1

|�| ≤ ω

2
√
2

1

242
1

K
1

αn−1

≤ ω

4

μ0

K
1

αn−1

= ωρ

r 4
.

20 But, in general, L1 � L2 �= L2 � L1: for example, if n = 3, L1 = {(0, t, t) : t ∈ R} and L2 = {x3 = 0},
then L1 � L2 = π/4, while L2 � L1 = π/2.
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(34), second inequality: δ�

(34)≤ ω

r

ρ

4

(33)≤ ω

2r
(ρ − r�).

(34), third inequality: δ� = ω

2
√
2

1

(AK )q j
≤ ω̂.

(35): Using: the definitions given, the inequality |�| ≤ K j and last equality in (B.3),
one has:

KMκ j

(
δ�

C j

) 1
α j

1
4γ�

=
( 1

C j

) 1
α j (4Mκ j ) K

1−a j+q j

(
1− 1

α j

)
|�|1−

1
α j

(2√2

ω
Aq j

)1− 1
α j 1

Ea j

≤ ( 1

C j

) 1
α j (4Mκ j ) K

qj

(
1− 1

α j

)
+1−a j+

(
1− 1

α j

) (2√2

ω
Aq j

)1− 1
α j 1

Ea j

=
⎛
⎜⎝ (4Mκ j )

α j 6(np j− j)(α j−1)

C j

(
ω

2
√
2

)α j−1

1

Eα j+ j (α j−1)

⎞
⎟⎠

1
α j

≤ 1 ,

where last inequality comes from the definition of E .

(36): Using: q j ≥ 1, q j − a j ≥ 0, E ≥ 1, a/b = αn−1 ≥ 1, one has:

R�

r
= 1

8
√
2

1

6q j

ω

Mr

1

Kqj−a j+1

1

Eq j−a j

1

|�| ≤ 1

48
√
2

ω

Mr

1

K

(B.1)≤ 1

48
√
2

ω

Mr

(
ε0

ε∗

)a

(11)≤ 1

48
√
2

ω

Mr

(
min

(
1,

6
√
2

n

Mr

ω

)) a
b ≤ 1

8n
< 1.

(37), first inequality: Using: the definitions given, q1 + 1 = 1
2a = np1, εK 1/a = ε∗, the

definition of ε∗ and E , one has:

28K

λ1r0
ε | f |r,s = 24

62np1−3

1

E
≤ 24

63
1

4
= 1

54
< 1 ,

where in the inequality we used n ≥ 3, p1 ≥ 1 and E ≥ 4.

(37), second inequality: By the first inequality in (37), we see that the second inequality
is implied by

1

28
λ1r0
K

≤ γ�r�
29K

.

Now, using: the definitions given, |�| ≤ K j , q1 − q j = n(p1 − p j ) + ( j − 1) ≥ 0 and
the relation a j + 1 + 2(q1 − q j − j) = a j − 1 + 2n(p1 − p j ) ≥ 0, one has:

1

28
λ1r0
K

29K

γ�r�
= 1

Ea j

1

A2(q1−q j )

|�|2
Kaj+1+2(q1−q j )

≤ 1

Ea j

1

A2(q1−q j )

1

Kaj+1+2(q1−q j− j)
≤ 1

E
< 1.
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(37), third inequality: It follows immediately from the 2nd inequality in (33) and from
the second inequality in (37).

(38):
r0
ρ

=
(
4
√
2
Mr

ω
μ0 A

q1 K
q1− 1

αn−1

)−1
< 1 since q1 ≥ 2 > 1/αn−1, K ≥ 1, and

μ0 ≥ Mr
ω

6
√
2

n .

rn−1

ρ
= K

− qn−1−1
αn−1

κn−1

rμ0

( ω

Cn−1

1

2
√
2Aqn−1

) 1
αn−1 ≤

(6E
A

) 1
αn−1 = 1 , where in the

inequality we used qn−1 ≥ 2 > 1/αn−1, K ≥ 1,
1

μ0
≤ r

κn−1

(12√2ECn−1

ω

) 1
αn−1 and

qn−1 ≥ 1.

Now, let 1 ≤ j ≤ n − 2 and define α′
j := α j − 1, b j := q j

β j
− 1 (recall (8)) and observe

that

b j ≥ α j

β j
> 0 ,

1

α j
− 1 +

q jρ
′
j

α jβ j
=

(
1 − 1

α j

)
b j . (B.4)

Observe also that from the definitions of κ j , E and μ0 it follows that

κ j ≥ ω

M

(C j

ω

) 1
α j = ω

1− 1
α j C

1
α j
j

M
, E ≥

(
(Mκ j )

α j

C jω
α′
j

) 1
β j

, μ0 ≥ ω

r 24
√
2M

.

(B.5)

Then, noticing also that
24

√
2

6
q j
α j

≤ 24
√
2

62
< 1, we obtain

r j
ρ

= K
− q j−1

αn−1
κ j

rμ0

( ω

C j

1

2
√
2(6E)q j

) 1
α j ≤ M

ω
κ j

( ω

C j

) 1
α j

(
C jω

α′
j

(Mκ j )
α j

) q j
α j β j

(B.4)=
⎛
⎜⎝ω

1− 1
α j

M

C
1

α j
j

κ j

⎞
⎟⎠

b j

(B.5)≤ 1.

(39): Using q1 + 1 = 1
2a , 6E ≥ 1 and ε ≤ ε0 ≤ ε∗ ·

(
min

(
1, 6

√
2

n
Mr
ω

)) 1
b
one finds:

r0
r

= ω

4
√
2(6E)np1−1Mr

(
ε

ε∗

) 1
2 ≤ ω

4
√
2Mr

min

(
1,

6
√
2

n

Mr

ω

)
≤ 1.

(40): Since ρ = R/(2n), (40) follows at one from (38).

(41): Set x = n

6
√
2

ω

Mr
, y = n

18
√
2
, z = 4nκn−1

r

( ω

12
√
2ECn−1

) 1
αn−1 . Then, from the

definitions given and the hypothesis ε ≤ ε0 it follows:

2R

r
= 4nμ0

( ε

ε∗

)b ≤ 4nμ0

(ε0

ε∗

)b = max(x, y, z)min(x−1, y−1, z−1, 1) ≤ 1.
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(42): From the definitions given (and since e
24 > 1

10 ) it follows:

Texp

√
ε

T e
Ks
6

= 6A
1
a

√
ε∗
ε

min

⎛
⎝ 1

10

1

(AK )q1

1

K
,

e

24
min

1≤ j≤n−1
�:dim�= j

( 1

|�|
1

(AK )q j

)
⎞
⎠

≥ 3

5
A

1
a

√
ε∗
ε

min
1≤ j≤n−1

1

Aq j

1

Kqj+1
= 3

5
K Anp1+1 ≥ 3

5
A4 > 1.
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