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A novel signal processing method for the analysis of financial and commodity price time series is here 
introduced to assess the predictability of financial markets. Our technique, exploiting the maximum 
entropy method (MEM), predicts the entropy of the next future time interval of the time series under 
investigation by a least square minimization approach. Like in conventional ex-post analysis based on 
estimated entropy, high entropy values characterize unpredictable series, while more stable series exhibit 
lower entropy values. We first evaluate (by theory and simulation) the performance of our method in 
terms of mean and variance of the predictions. Then, we apply our technique to several sets of historical 
financial data, correlating the entropy trend to contemporary socio-political events. The efficiency of our 
technique for application to financial engineering analysis is shown in comparison with the conventional 
approximate entropy method (usually applied in econometrics).
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1. Introduction

Notwithstanding their fundamental importance, signal process-
ing and finance have been usually considered as two separate 
fields both in the general knowledge and in academic (higher) ed-
ucation [1]. Signal processing applications, which hold promising 
potential, are yet relatively unexplored within finance [2,3]. Con-
versely, in the last years there has been an explosive growth in the 
research area relating economics and mathematical modeling [4,5], 
especially in the fields of financial markets and trading researches 
and applications [6–11]. This work aims at exploiting signal pro-
cessing methodologies applied to finance. In particular, we propose 
to apply prediction methods, usually employed in signal process-
ing or communications problems, for assessing the predictability 
of market time series.

A typical example of signal processing application in finance 
is represented by financial stock trading, where most of the opera-
tors (i.e. the stock traders) ignore but fully exploit the potentialities 
of signal processing. They use analysis and prediction methodolo-
gies that are classical problems in research related with signal 
processing. In fact, stock traders usually try to profit from short-
term price volatility with trades lasting anywhere, from several 
seconds to several weeks. Hence, the knowledge about the dy-
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namic characteristics of the series under investigation becomes of 
fundamental importance in order to effectively perform effective 
forecasting procedures. The observation of historical data as well 
as the analysis of their standard deviation (e.g. volatility and price 
fluctuations) can be useful indicators of the dynamic characteris-
tics of the series. Volatility is strictly related with the amplitude 
of the series fluctuations: high volatility results in large devia-
tions from the mean, hence stating high unpredictability for that 
series. The observation of historical data as well as the analysis 
of their standard deviation (e.g. volatility and price fluctuations) 
can be useful indicators of the dynamic characteristics of the se-
ries. For example, the Chicago Board Options Exchange (CBOE) 
computes since 1993 the volatility index VIX® to measure mar-
ket expectations of the near-term volatility implied by stock index 
option prices. As stated by [12], the VIX® index essentially offers a 
market-determined, forward-looking estimate of one-month stock 
market volatility. Most studies in the literature that tackle the in-
formation content of implied market volatility employ the VIX®

index, see for example [13,14]. Options-implied volatility is typi-
cally more informative than time-series volatility models based on 
stock market index returns for forecasting purposes, though the 
latter may sometimes carry incremental information [15,16]. Since 
the VIX® index can be considered as a barometer of the overall 
market sentiment as to what concerns investors’ risk appetite [17], 
many trading strategies rely on the VIX® index for hedging and 
speculative purposes. Then, volatility is strictly related with the 
amplitude of the series fluctuations: high volatility results in large 
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deviations from the mean, hence stating high unpredictability for 
that series.

According to [18], financial market time series (FMTS) may de-
viate from constancy exhibiting two different behaviors: (i) the se-
ries is characterized by high standard deviation, and (ii) the series 
show a lot of irregularities. It is really important to discriminate 
between these two cases because they lead to different conclusions 
about the series predictability. In fact, the degree of variation from 
the mean is not usually related with unpredictability, while the 
amount of irregularities drastically affects the further forecasting 
process, resulting in unpredictable series. For example, if it would 
be possible to ensure to an investor that the series of future prices 
would be characterized by a precise sinusoidal pattern (although 
characterized by high deviation from the mean), then future prices 
can be planned according to a precise forecasting strategy. An ex-
ample of a practical forecasting strategy exploited in the presence 
of sinusoidal patterns is shown in [19,20].

We can address, as usual, to standard deviation as a measure of 
deviation from the mean, while we will use entropy as the metric 
for evaluating the irregularities and, hence, the predictability of a 
series. In particular, it is well known since the publication of the 
pivotal work of the mathematician C. Shannon “A Mathematical The-
ory of Communications” in 1948, [21], that the concept of entropy 
is related to that of uncertainty. Hence, high values of the Shan-
non entropy results in an unpredictable series, while lower values 
mean less uncertainty and hence a more predictable behavior of 
that series. This concept has been also applied to non-stationary 
signals as well. In particular, in [22] it is found that, observing per-
formance of entropy by time, the value of entropy is corresponding 
to “the predictivity of signals”. Namely, the entropy value becomes 
smaller, the predictivity becomes higher on the entropy curves by 
time. This concept has led to the publication of many works in the 
field of entropy-based analysis of financial markets. For example, 
the validity of the entropy approach in analyzing financial time se-
ries is demonstrated in [23]. Then, in [18], an empirical method for 
evaluating the entropy of a series is proposed, namely the approxi-
mate entropy (ApEn). ApEn is able to obtain the entropy estimation 
by modifying an exact regularity statistic, namely the maximum 
entropy method (or Kolmogorov–Sinai entropy). In particular, the 
authors use the approximate entropy technique as a marker of 
market stability, with rapid increases possibly foreshadowing sig-
nificant changes in a financial variable. Entropy has been also used 
to quantify efficiency in foreign exchange markets, [24], in stock 
markets [25–28], and also to gain insight into the evolution of 
the aggregate market expectations [29,30]. Recently, studies focus-
ing on energy commodity markets have been carried out under 
the entropy-based approach. As an instance, an entropy analysis of 
crude oil price dynamics is revealed in [31], while evidences from 
informational entropy analysis in evaluating the efficiency of crude 
oil markets were discussed in [32]. Then, in [33] a market effi-
ciency index based on the ApEn metric is discussed for application 
to several energy commodities. However, all the aforementioned 
works evaluate the entropy of historical data and, applying ex-post 
considerations, try to declare the predictability of the series, i.e. 
they implicitly assume that the series under investigation are char-
acterized by a stationary behavior. This means that they suppose 
that the past statistical features of the analyzed series remain un-
altered also in the future.

In this paper, we move further by proposing an algorithm to 
assess the predictability of FMTS (and in particular of energy com-
modity market time series), by predicting the entropy regarding 
the future behavior of the series under investigation. We do not 
estimate the entropy of the analyzed series; rather, we predict the 
entropy of the next (i.e. future) time interval of the series. We 
remove the assumption of stationary series (i.e. we work in the 
presence of non-stationary signals), and then we exploit the max-
imum entropy method (MEM) to obtain the predicted entropy. In 
addition, our prediction is performed according to optimum pre-
diction methods, such as the least squares minimization scheme. 
Finally, and according to the conventional entropy analysis (see for 
example [18,31,32]), if we predict high entropy values we are fac-
ing with unpredictable series, while more stable market time series 
exhibit lower predicted entropy values.

The remainder of this paper is organized as follows. Section 2
depicts the system model highlighting first the maximum entropy 
method, and then the conventional entropy estimation approach 
used in finance and economics. In Section 3 our entropy prediction 
method is described in details, while its performances, in terms 
of mean and variance of the estimates, are shown in Section 4. 
Applications of our technique to financial market time series are 
illustrated in Section 5, versus the conventional ApEn approach, 
and finally our conclusions are briefly summarized in Section 6.

2. System model

2.1. The maximum entropy method

Conventional entropy theories are usually related to infinite 
data series, corresponding to an infinitely accurate precision and 
resolution for entropy evaluation. However, practical data are finite 
time series data, sampled with a sampling rate Ts and character-
ized by limited resolution. The problem is that accurate estimation 
of the series entropy requires a big amount of data to be pro-
cessed, and the results will be greatly influenced by the system 
noise. In 1967, Burg proposed a new approach to spectral estima-
tion by attempting to derive a procedure for high resolution when 
only a small number of data of the estimates of an autocorrela-
tion sequence are available [34,35]. This is called the maximum 
entropy method (MEM). MEM gives a highest frequency resolu-
tion compared to auto-correlation and covariance methods [36]. 
In addition, [37] and [38] showed that MEM is equivalent to the 
least-squares method for fitting an autoregressive (AR) model (or 
all-pole model) to the given data. MEM relates the entropy rate of 
a time series with its power spectral density (PSD). Hence, know-
ing the PSD of a series, allows us to know its entropy rate. Previous 
characterizations of the maximum entropy spectral density assume 
that the process is stationary and Gaussian [36,39]. Nonetheless, in 
economics and financial time series analysis literature there is not 
a theoretical consensus among researchers that price sequences 
should exhibit stationary Gaussian process. For example, in the 
financial literature prices of high volume-traded markets, (such 
as US markets), are considered to follow a random walk process 
in order to avoid any trade-off and to eliminate predictable pat-
terns [40]. In the following, we will consider a stationary Gaussian 
time-series only to show that in this particular case we expect to 
obtain the maximum entropy (i.e. the entropy upper bound). Then, 
in our approach (depicted in Section 3) we will completely remove 
the stationary Gaussian hypothesis.

More in details, let x(1), x(2), . . . , x(N) be a stationary Gaussian 
time series (of length N samples and with a sampling rate Ts) 
with autocovariance function Cov(k), where k = −N, . . . , +N . Then, 
if we denote with S(ω) the PSD of the Gaussian time series, the 
entropy rate, h (in the following referred as entropy), is given by 
the following [37]:

h = 1

2
ln(2 · π · e) + 1

4 · π ·
π∫

−π

ln
(
2 · π · S(ω)

) · dω (1)

where ln(·) is the natural logarithm. It is now interesting to un-
derline that the entropy of a finite segment of a stochastic process 
is upper-bounded by the entropy of a segment of a Gaussian ran-
dom process, according to (1). This means that a white time series 
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Fig. 1. Block Scheme of the conventional ApEn (ex-post) approach.
is characterized by the maximum entropy, i.e. it is obviously un-
predictable as also noted in [36]. Then, lower entropy values result 
in more predictable time series, while the value of entropy is not 
found to decrease for noise [22]. Hence, the entropy can be used 
as an indicator of the time series predictability.

2.2. Conventional entropy estimation in finance

In [41], the ApEn method is introduced to numerically quantify 
the entropy content of a finite time series, as a measure of the reg-
ularity of the series itself (see Fig. 1). The regularity of the series 
clearly reflects in the predictability of the series. The ApEn com-
putations are conceptually simple and are based on the likelihood 
that templates in the time series which are similar remain similar 
on the next incremental comparisons. In other words, the pres-
ence of repetitive patterns of fluctuation in a time series renders it 
more predictable than a time series in which such patterns are ab-
sent. ApEn needs two input parameters to be specified in order to 
evaluate the approximate entropy of a given time series: a block or 
run length m, and a tolerance window r. Then, the ApEn procedure 
first measures the logarithmic frequency that runs of patterns that 
are close (within the tolerance window r) for m contiguous ob-
servations remain close (within the same tolerance r) on the next 
incremental comparison.

More in details, the ApEn algorithm can be formalized as fol-
lows (see [18] and [41] for a detailed analysis). A time series x(n)

of length N (i.e. with n = 1, 2, . . . , N) sampled at time intervals 
Ts is considered. The length N can be also related to a time scale 
τ = N · Ts . Let us now select two m-dimensional sequence vectors, 
u(i) and v( j), defined as follows:

u(i) = {
x(i), x(i + 1), . . . , x(i + m − 1)

}
(2)

v( j) = {
x( j), x( j + 1), . . . , x( j + m − 1)

}
(3)

with i �= j, i ≥ 1, and j ≤ N − m + 1. The distance between these 
two sequences is defined as:

du,v(i, j) = max
{

u(i + q) − v( j + q)
}

(4)

where 0 ≤ q ≤ m − 1. If the distance expressed by (4) is smaller 
than a specified tolerance r, the two vectors are called similar. 
Then, for each of the N −m + 1 vectors u(i), the number of similar 
vectors v( j) is given by measuring their respective distances. Now, 
if NVi is the number of vectors v( j) similar to u(i), then the rela-
tive frequency f i(m, r, τ ) to find a vector v( j) which is similar to 
u(i) within a tolerance level r and in the time scale τ , is given by:

f i(m, r, τ ) = NVi (5)

(N − m)
where (N − m) is the number of vectors v( j) �= u(i) that are po-
tentially similar to u( j). Now, we look at the relative frequency of 
the logarithm of (5), defined as:

∅(m, r, τ ) = 1

N − m + 1
·

N−m+1∑
i=1

ln
[

f i(m, r, τ )
]

(6)

Finally, the approximate entropy is estimated by the following 
statistics [31]:

AE(m, r, τ ) = 1

Ts
· [∅(m, r, τ ) − ∅(m + 1, r, τ )

]
(7)

Widely used values for the first two input parameters are 
m = 1, m = 2, and r = 20% of the standard deviation of the ana-
lyzed time series. Recently, in [31] a modified version of the ApEn 
procedure, namely the Multiscale approximate entropy (MApEn), 
is introduced in order to overcome the aforementioned limitations 
of the original ApEn, In particular, the authors in [31] apply the 
MApEn algorithm to energy commodity markets, to characterize 
and monitor the dynamics of crude oil prices. They consider the 
entropy of a price time series as an index of the market com-
plexity: high entropy values are related to less predictable market 
evolution (high complexity market). They evaluate the approximate 
entropy for different time-scales, performing low-pass filtering of 
the price difference dynamics. One main drawback of this method 
is that the low-pass filtering introduces correlation in the ana-
lyzed time series (and also changes the original data) so that the 
estimation of the approximate entropy is biased by this filtering 
operation and depends on the considered time-scale. For instance, 
a simple uncorrelated series should be always characterized by 
high entropy values. However, applying the MApEN method for 
high time scales results in decreasing the complexity of the ran-
dom signal, since the low-pass filtering removes the most complex 
dynamics of the input time series (that now paradoxically exhibits 
a lower entropy value).

3. Maximum entropy-based signal processing algorithm

3.1. Rationale of the method

The novelty of our approach, namely the maximum entropy es-
timator (MEE), is that we now predict (ex-ante) the entropy of the 
next (future) time interval, instead of estimating (ex-post) the en-
tropy of the observed series. In other words, the ApEn as well as 
the MApEn methods estimate the entropy of the observed series, 
hence making ex-post considerations about the predictability of 
the series itself. Conversely, our approach allows us to make some 
ex-ante considerations (based on the historical observed data) by 
predicting the entropy of the series in the next time interval. 
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Fig. 2. Block Scheme of the proposed MEE (ex-ante) approach.
Moreover, the conventional methods implicitly assume the sta-
tionarity of the series, i.e. they assume that future values of the 
series are characterized by the same behavior observed in the past. 
Here, we completely remove this statement (i.e. we work with 
non-stationary signals), assuming that future values of the series 
are different from the observed ones, but can be predicted as a 
linear combination of these past values. Then, in full accordance 
with the ApEn-based methods, if the predicted entropy is high, 
this means that the series under investigation would be character-
ized by high unpredictability. On the contrary, if we estimate lower 
entropy values, the series would be characterized by low irregular-
ities, hence resulting in a more predictive behavior for the series 
itself.

The starting point of our proposed signal processing method is 
to first obtain the predicted autocovariance sequence of the series 
in the next (unknown) time interval. Then, we can easily obtain its 
power spectral density, thus finally obtaining the searched entropy 
according to the MEM theory outlined in (1). In the case of our in-
terest, future values of the predicted autocovariance sequence are 
obtained as an optimum linear combination of past (observed) au-
tocovariance values. These values are weighted and linearly com-
bined by means of a number p of prediction coefficients. The 
Levinson–Durbin recursion is used to solve the equations of the 
AR prediction coefficients that arise from the least-squares formu-
lation [42]. The inputs of the optimum linear predictor are hence 
p autocovariance sequences.

According to the block scheme in Fig. 2, we first divide the in-
put series into a number (K + 1) of consecutive blocks. Then, we 
remove from each block the mean estimated from the previous 
block. This step is required in order to remove the determinis-
tic components and highlight the innovation process of the series 
itself. In fact, we are working with financial series that are pos-
itive series (i.e. they are series of prices), and characterized by a 
(positive or negative) trend. If we consider a financial time series 
as a sequence of random observations, this random sequence, or 
stochastic process, may exhibit some degree of correlation from 
one observation to the next [43]. Exploiting the correlation struc-
ture allows us to decompose the time series into a deterministic 
component (expressed as a function of any information known 
at the previous time, including past innovations) and a random 
component (i.e., the uncertainty or the innovation). In the con-
text of financial series, the random components are interpreted as 
the market innovations, and usually assumed to be Gaussian pro-
cesses [44]. Therefore, we assume original observation of financial 
sequence (given data) model free, but contamined by a stationary 
Gaussian process as an error term (i.e. innovation term) into it. 
Hence, we estimate the deterministic components as the mean of 
the previous block, and then we subtract this mean from the next 
block. The first block is used only to evaluate its mean and then 
is discarded. Then, for the remaining K blocks (with K ≥ p) the 
autocovariance sequences are computed. Only p autocovariance se-
quences over K (the most recent ones) are used as the inputs of 
the optimum linear predictor.

Finally, these p autocovariance sequences are weighted and lin-
early combined by the p optimum prediction coefficients, in or-
der to obtain the predicted autocovariance sequence, and then the 
searched entropy. In the following subsection, the MEE signal pro-
cessing algorithm is described in details.

3.2. MEE algorithm

Given a time series x(n) of length N samples, i.e. n = 1, 2, . . . N , 
the proposed MEE algorithm works accordingly to the following 
steps (see Fig. 2):
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1. The N samples of x(n) are divided in (K + 1) blocks, each of 
length M = N/(K + 1) samples.

2. The mean of each i-th block (with i = 0, . . . , K ) is then esti-
mated according to the following:

μ̂i = 1

M

M∑
j=1

xi( j) (8)

where xi( j) stands for the j-th sample of the i-th block, with 
j = 1, . . . , M .

3. Now, starting from i = 1, the mean of the previous ((i − 1)-th) 
block is subtracted from the current (i-th) block, according to 
the following:

yl( j) = xl( j) − μ̂l−1 (9)

where l = 1, . . . , K and again j = 1, . . . , M . Note that we have 
now only K blocks (not K +1), since the first block (that is the 
one that contains the oldest samples) is used to evaluate the 
mean to be used in the next block and then is discarded (see 
again Fig. 2). As explained before, this step is realized so that 
each block now contains only the market innovations with re-
spect to the past.

4. Now, the autocovariance sequence of each l-th block is esti-
mated according to the following:

Ĉovl(k) = 1

M

M∑
j=1

yl( j) · y∗
l ( j − k) − |α̂l|2 (10)

where k = 0, ±1, . . . , ±M , y∗( ) means complex conjugate, and 
α̂l is the mean of the l-th block, estimated according to (8), 
with yl( j) instead of xi( j).

5. Finally, p autocovariance sequences (over K ) become the in-
put of the optimum linear predictor of parametric order p. The 
outputs of the optimum linear predictor are p prediction coef-
ficients that are used to predict the autocovariance C̃ovK+1(k)

of the next (future) block. This sequence is evaluated accord-
ing to the following:

C̃ovK+1(k) =
p−1∑
b=0

ab · ĈovK−b(k) (11)

where ĈovK−b(k) are the (K − b) previously estimated auto-
covariance sequences, now linearly combined by a number p
of AR coefficients ab . The predicted autocovariance sequence 
expressed by (11) is transformed in the frequency domain ob-
taining the PSD of the analyzed block defined as:

S(ω) =
∑

k

C̃ovK+1(k) · e− j·ω·k (12)

Then, in full accordance with the MEM theory described in Sec-
tion 2.1, the entropy (of the innovation process) of the (future) 
(K + 1)-th block is estimated according to (1), where the PSD is 
now expressed by (12). In conclusion, if the entropy tends to lower 
values, the series is characterized by high predictivity (small inno-
vations), otherwise the series is unpredictable (high innovations). 
Finally, it has to be noted that the Levinson–Durbin recursion is 
used to solve the equations of the auto-regressive (AR) prediction 
coefficients used in eq. (11). In practice, the p AR coefficients are 
chosen as the best coefficients that minimize the error term e(t). 
More in details, e(t) is the innovation or error term concerning 
omitted variables or socio-political events which can or cannot 
be determined before the time t regarding its structure, i.e., e(t)
can be an AR(k) process or a white noise, with constant mean 
and variance. The error term should be white since the optimum 
linear predictor acts as a whitening filter. But, since a small num-
ber of prediction coefficients are usually employed, the innovation 
term could not be white. In such a situation, we can consider the 
Said–Dickey method or nonlinearity such as chaos or conditional 
heteroskedasticity [45] to whitening the error term, or we can also 
increase the prediction order (i.e. use more prediction coefficients) 
as well. The order of the predictor (i.e. how much of the past story 
should be taken into account to evaluate the future) drastically 
affects the performance of the method, in terms of both compu-
tational complexity and accuracy of the prediction, as shown in 
Section 4 for some case studies of interest.

4. Performance analysis

In order to evaluate the performance of the proposed predictor, 
we will analyze in the following some case studies, first theoret-
ically evaluating the entropy of the input series, and then com-
paring this value with the one obtained by our MEE approach. 
In particular, we evaluate the mean and standard deviation of 
the entropy estimated through our method, varying some param-
eters of interest such as: the prediction order p, the number of 
blocks K , and the number of samples M per block. In addition, 
since the innovation process for financial series is usually assumed 
as a Gaussian process [see [37], and references therein], we have 
considered three cases of interest for the input series: (i) white 
Gaussian series; (ii) Gaussian AR filtered series, and (iii) Gaussian 
moving average (MA) filtered series, respectively. In all the follow-
ing analysis, a series of length N = 5000 has been considered, and 
a high number of Monte-Carlo simulation trials (103 independent 
runs) have been implemented to numerically evaluate the perfor-
mance of our method so to assure that the set of samples is not 
arbitrary. Note that these series are auto-regressive moving average 
(ARMA) type, but can be auto-regressive integrated moving average 
(ARIMA) structure as well [46,47]. However, these two models are 
characterized by the same predicted entropy since the drift term 
(that characterizes the ARIMA structure) is completely predictable, 
and hence it adds no contribution in the evaluation of the entropy. 
Thus, in the following we focus only on ARMA series, without loss 
of generality.

(i) Entropy of white Gaussian series
Let us now consider that the input series x(n) of length N sam-

ples is a white Gaussian series of mean Mx and variance σ 2
x . For 

the sake of the simplicity, we can consider Mx = 0, since the mean 
does not add contribution in the evaluation of the entropy (i.e. 
translations of a random variable have the same entropy as the 
untranslated random variable). From the direct application of the 
MEM theory, see (1), we can theoretically compute the entropy h
of this white Gaussian series as a function of its variance. In partic-
ular, it is well known that the entropy of the white Gaussian series 
(of variance σ 2

x ) can be written as [48]:

h = 1

2
ln(2 · π · e) + 1

2
· ln

(
2 · π · σ 2

x

)
(13)

The mean and standard deviation of the entropy estimated ac-
cording to our MEE approach are presented versus the prediction 
order, for a white Gaussian series of length N = 5000 samples, and 
for several numbers of blocks in Fig. 3 and in Fig. 4, respectively. 
In particular, Fig. 3 reports here the curves referring to the esti-
mations obtained exploiting a number of blocks K equal to 5, 10, 
20, and 50. For the sake of completeness, the value of the theo-
retical (i.e. true) entropy of the series is reported. It can be seen 
from this graph that the best estimates can be obtained with lower 
values of the prediction order (for all the considered curves). This 
is obviously true, since the series is a white Gaussian series, and 
hence, increasing the correlation between consecutive blocks (i.e. 
increasing the prediction order p) means decreasing the efficacy 
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Fig. 3. Predicted entropy (in bit/symbol) by the proposed MEE method, for a white Gaussian series of unitary variance versus the prediction order and for several numbers 
of blocks K .

Fig. 4. Standard deviation of the predicted entropy by the proposed MEE method, for a white Gaussian series of unitary variance versus the prediction order and for several 
numbers of blocks K .
of the estimation. Finally, in Fig. 4 the standard deviation is re-
ported, again versus the prediction order and for several values of 
the number of blocks. It is interesting to note that the standard de-
viation decreases, while the number of blocks used to estimate the 
entropy decreases. In fact, decreasing the number of blocks implies 
increasing the number of samples per block (with a fixed length of 
the series of N = 5000 samples), and hence is equivalent to in-
crease the accuracy of the estimation.

(ii) Entropy of Gaussian AR series
Let us now consider that the input series is a Gaussian AR se-

ries of parametric order. For the sake of simplicity, and without 
loss of generality, we can assume in the following that the series 
under investigation is a first-order Gaussian AR series. In particu-
lar, the first order Gaussian AR series is obtained, in the case of 
our interest, as the output of a one-pole filter when the input is 
the white Gaussian series of the previous case. The only vinculum 
is that we consider that the Gaussian AR series has the same vari-
ance σ 2

x of the input white Gaussian series. This means that the 
one-pole filter is defined as follows:

HAR(ω) = 1 − a2

1 − a · e− j·ω (14)

where a is the pole of the filter, with |a| < 1. Again, as depicted 
in [48], it is well known that the entropy of a first-order Gaus-
sian AR series (of variance σ 2

x ) is the same as expressed by (13). It 
is also evident that the entropy does not depend on the order of 
the Gaussian AR series, neither on the values of the poles. There-
fore, even if it is well-known that an AR series whose characteristic 
polynome has 1 or more roots is classified as a nonstationary pro-
cess, our algorithm is still efficient in predicting its entropy. In fact, 
the entropy rate of the Gaussian AR series is equal to the one 
of the Gaussian white series. Hence, linear filtering generates no 
change in the per unit time entropy of the process (if the variance 
of the output series is equal to that of the input series).

In Fig. 5, the entropy estimated according to our MEE approach 
is presented versus the prediction order, for a first order Gaussian 
AR series of length N = 5000 samples, and for several numbers 
of blocks. Again, the value of the theoretical (i.e. true) entropy of 
the series is also reported on the graph. It can be seen that the 
best entropy estimation can be obtained exploiting K = 50 blocks, 
and a prediction order of p = 10. Then, Fig. 6 reports the stan-
dard deviation of these estimates versus the prediction order and 
for several values of the number of blocks. As before, the standard 
deviation decreases, decreasing the number of blocks used to es-
timate the entropy. Hence, the curve with K = 50 is characterized 
by the highest standard deviation. Finally, it has to be noted that 
the standard deviation of each curve goes to zero, increasing the 
order of the prediction.

(iii) Entropy of Gaussian MA series
Finally, let us now consider that the input series is again the 

white Gaussian series of the first case, but now filtered with a 
moving average (MA) filter. With the constraint that the variance 
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Fig. 5. Predicted entropy (in bit/symbol) by the proposed MEE method, for a 1st order Gaussian AR series of unitary variance versus the prediction order and for several 
numbers of blocks K .

Fig. 6. Standard deviation of the predicted entropy by the proposed MEE method, for a 1st order Gaussian AR series of unitary variance versus the prediction order and for 
several numbers of blocks K .

Fig. 7. Predicted entropy (in bit/symbol) by the proposed MEE method, for a Gaussian MA series of unitary variance versus the prediction order and for several numbers of 
blocks K .
of the output Gaussian MA series is the same of the input series, 
the MA filter (composed by 2S + 1 samples) is hence defined as 
follows:

HMA(ω) = 1√
2S + 1

sin[ω
2 (2S + 1)]
sin(ω

2 )
(15)

Again, since linear filtering provides no change in the entropy 
of the output process, the entropy of the Gaussian MA series is the 
same as in (13), and the result does not depend on the number of 
samples of the MA filter.

As before, Fig. 7 and Fig. 8 report the entropy estimated by our 
approach and the standard deviation of these estimates, respec-
tively, versus the prediction order, for a white Gaussian series of 
length N = 5000 samples, and for several numbers of blocks. Re-
ferring to Fig. 7 (where, as before, the curve of the true theoretical 
entropy is shown), the best estimates can be obtained exploiting 
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Fig. 8. Standard deviation of the predicted entropy by the proposed MEE method, for a Gaussian MA series of unitary variance versus the prediction order and for several 
numbers of blocks K .
Table 1
Analyzed commodities.

Full name Short name Type

COMEX Gold GC1 Gold Metals
COMEX Silver SI1 Silver Metals
ICE Cocoa CC1 Cocoa Softs
ICE Coffee KC1 Coffee Softs
CBOT Corn C1 Corn Grains
CBOT Oats O1 Oats Grains
CME Feeder Cattle FC1 Feeder cattle Other agriculturals
CME Lean Hogs LN1 Lean hogs Other agriculturals

the highest number of blocks (since the filtered series is character-
ized by high correlation between samples and consecutive blocks). 
This is witnessed by the fact that, increasing the prediction order, 
the accuracy of the estimation for each curve increases. Then, Fig. 8
depicts the standard deviation of the previous estimates, showing 
an analogous behavior as in the previous cases. In fact, the curve 
with K = 50 is characterized by the highest standard deviation. 
Moreover, the standard deviation of each curve goes to zero, in-
creasing the order of the prediction.

5. Results and discussion

Several simulation trials were performed to validate the pro-
posed entropy prediction method for application to energy com-
modity market time series analysis. We have analyzed daily prices 
of several energy commodities in the period between May 20, 
1991 and August 14, 2012. The analyzed dataset contains the fol-
lowing commodities types: two metals series (gold, silver), two 
grains (corn, oats), two soft commodities (cocoa, coffee) and two 
other agricultural commodities (feeder cattle, lean hogs) futures 
from the Chicago Board of Trade (CBOT), Chicago Mercantile Ex-
change (CME), Inter Continental Exchange (ICE), New York Mer-
cantile Exchange (NYMEX), and its division Commodity Exchange 
(COMEX), summarized in Table 1. The time series were obtained 
from http :/ /www.quandl .com.

Then, we have applied both the ApEn metric and the MEE 
method in order to verify if the entropy (that is ex-post estimated 
by ApEn and ex-ante predicted by MEE) and its variations can be 
related to the series predictability. We have considered one year as 
composed by 256 observed samples (i.e. 256 business days). Then, 
starting from 1991, we have predicted the entropy of the next year 
(i.e. the entropy of the next 256 samples) by the MEE method. 
We have compared this predicted value with the ApEn evaluated 
over 512 samples, i.e. after observing all the next 256 samples. 
Then, we have iterated this process, by increasing the length of 
the series year by year (i.e. increasing the series by 256 samples 
each time). The ApEn method estimates the entropy ex-post (i.e. 
we need all the samples of that current year to estimate the en-
tropy of that year), while the MEE approach predicts the entropy 
ex-ante (i.e. we only need the past samples to predict the entropy 
of the next time interval). Finally, we have normalized to one the 
entropy values obtained by these two methods in order to com-
pare them on the same scale. In the following, we are going to 
show: (i) first, that some entropy peaks are strictly connected to 
some socio-political events, strongly affecting the diversity of the 
energy commodities under investigation; then, (ii) that our MEE 
method is characterized by a super-resolution in terms of entropy 
peaks detection, versus the conventional approach.

Because most financial analyses and modeling center on log 
price differences or returns, rather than on raw data or prices, we 
have applied our analysis on both the two sequences composed 
by returns and raw prices. However, Pinkus and Kalman in [18], 
when demonstrating the application of the ApEn method to fi-
nancial analysis, stated that they “expect that application of ApEn 
to price series directly will prove useful in clarifying additional 
changes”. This is a consequence of the fact that working on returns 
implies that the original time-series is filtered (by a differentiator 
filter), and a correlation is introduced in the data. Therefore, the 
estimation of the entropy is biased by this filtering operation, since 
many irregularities of the original series are smoothed. Figs. 9(a, b) 
show the annual entropy variations obtained with both the con-
ventional ApEn technique and the new MEE method for the two 
kinds of metal commodities (gold and silver). In particular, Figs. 9
report here the entropy estimated via the ApEn technique and ob-
tained with m = 1, and a value of r = 20% of the SD of the series. 
Moreover, the MEE method is also depicted, with p = 10. More 
in details, Fig. 9a refers to the application of the two methods to 
log price differences (returns), while Fig. 9b refers to the cases of 
prices (raw data). It is evident that the entropy methods yield very 
similar results in both the analyzed cases, but (as expected and 
noted by Pincus and Kalman in [18]) the entropy peaks reduce in 
dynamics and resolution when applied to log prices differences, 
because of the smoothing performed on the original data by the 
differentiator filter. Hence, the following analysis is then performed 
only on raw prices, since the same behavior has been observed in 
the presence of series of log price differences. Figs. 9(a, b) clearly 
show that, for the gold series, some peaks of the entropy pattern 
coincide with the outbreak of some major events. At the same 
time, we see that some other peaks occur just before or after 
these critical events. For example, we have entropy peaks in cor-
respondence to the 1991 Gulf War, while other peaks occur just 

http://www.quandl.com


F. Benedetto et al. / Digital Signal Processing 46 (2015) 19–31 27
Fig. 9a. Annual (normalized to 1) entropy variations of the metals commodities (Gold, Silver) for the conventional ApEn (with m = 1) and the proposed MEE (with p = 10) 
methods, performed on returns (i.e. log-price differences).

Fig. 9b. Annual (normalized to 1) entropy variations of the metals commodities (Gold, Silver) for the conventional ApEn (with m = 1) and the proposed MEE (with p = 10) 
methods, performed on prices (i.e. raw data).
before or after some critical events, such as 2001-9-11 twin tow-
ers crash, the Lehman Brothers bankruptcy, and the Asian Financial 
Crisis. This suggests that major financial and socio-political events 
strongly affect the diversity of the gold market. On the other hand, 
in the case of the silver prices, the correspondence between the 
entropy peaks and these socio-political events is less evident. This 
is because, as also stated in [33], the silver prices series is char-
acterized by a more unpredictable behavior than the gold series, 
meaning that the silver process series is less predictable than be-
fore. In fact, in the work by Kristoufek and Vosvrda, [33], the ApEn 
evaluated for the silver commodity, for the same observation pe-
riod, is greater than the ApEn of the gold commodity series. The 
same analysis has been conducted also for other different com-
modities.

In particular, Fig. 10 shows the annual entropy variations for 
two kinds of softs commodities (cocoa and coffee), then Fig. 11 re-
ports the case of grains commodities (corn and oats). Finally, the 
two other agricultural commodities (feeder cattle and lean hogs) 
are depicted in Fig. 12. It is now interesting to highlight some 
considerations. Again, applying the MEE method, we can confirm 
the same results obtained in [33] via the ApEn approach. In fact, 
it is evident from Fig. 10 that the two softs commodities (cocoa 
and coffee) show an entropy variation that is more correlated with 
the major historical events in the case of the coffee commodities 
than in the case of the cocoa commodities. In other words, the 
coffee commodity series should be more predictable than the co-
coa commodity series. Again, this behavior is in accordance with 
the results in [33], where it is shown that the ApEn of the cof-
fee is lower (i.e. higher predictability) than the one of the cocoa. 
The same behavior can be observed in the case of the other com-
modities shown in Figs. 11–12, where grains and other agricultural 
commodities are taken into account. Hence, the conventional ApEn 
and the new MEE approaches allows us to correlate the entropy 
variations to some socio-political events. In particular, this correla-
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Fig. 10. Annual (normalized to 1) entropy variations of the soft commodities (Cocoa, Coffee) for the conventional ApEn (with m = 1) and the proposed MEE (with p = 10) 
methods, performed on prices (i.e. raw data).

Fig. 11. Annual (normalized to 1) entropy variations of the grains commodities (Corn, Oats), for the conventional ApEn (with m = 1) and the proposed MEE (with p = 10) 
methods, performed on prices (i.e. raw data).
tion can be performed only ex-post by the conventional method, 
while in the MEE procedure this correlation can be performed 
ex-ante, by predicting the entropy of the next time-interval. In ad-
dition, it is also evident from Figs. 9–12 that the proposed MEE 
method can extrapolate the dependencies of the entropy variations 
on the major financial and socio-political events better than the 
conventional ApEn approach. In terms of signal processing, these 
two aspects mean that the two signals (i.e. the entropy varia-
tions obtained with the ApEn and the MEE methods) are charac-
terized by the same trend (i.e. the same low-pass components). 
Conversely, they differently follow the dynamicity of the entropy 
variations (i.e. they have different high-pass components). The fol-
lowing quantitative analysis will confirm these assumptions. Let us 
now filter the curves referring to the conventional and new meth-
ods by an ideal low-pass FIR filter, characterized by a band of 1/5
of the total bandwidth. Then, let us evaluate the correlation coef-
ficient between the low-pass filtered versions of these curves. The 
correlation coefficient between two series x and y is defined as 
follows:

ρx,y = Cov(x, y)

σx · σy
(16)

where Cov(x, y) is the covariance function between the two se-
ries x and y, while σx and σy are the standard deviations of 
the two series x and y, respectively. Table 2 reports the correla-
tion coefficient between the ApEn and the MEE approaches for the 
commodities under investigation. The results show that, for each 
commodity and as expected, the two methods present similar low-
pass components, meaning that they exhibit the same trend. The 
most correlated commodities are the ones belonging to the softs 
and grains areas. However, the two methods are characterized by 
an overall correlation that is (on average) equal to 75%, stating that 
the method we propose is able to follow the entropy variations as 
the conventional ApEn procedure.
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Fig. 12. Annual normalized (to 1) entropy variations of other agricultural commodities (Feeder cattle, Lean hogs) for the conventional ApEn (with m = 1) and the proposed 
MEE (with p = 10) methods, performed on prices (i.e. raw data).
Table 2
Correlation Coefficient and Dynamics Gain between the low-pass filtered curves of 
the conventional and new method for all the analyzed commodities.

Commodity Correlation 
Coefficient

Dynamics 
Gain

COMEX Gold GC1 67.10% 17.48%
COMEX Silver SI1 65.30% 4.86%
ICE Cocoa CC1 94.85% 2.92%
ICE Coffee KC1 87.29% 6.29%
CBOT Corn C1 74.96% 8.09%
CBOT Oats O1 94.55% 3.07%
CME Feeder Cattle FC1 52.94% 23.30%
CME Lean Hogs LN1 67.60% 9.13%

Then, in order to determine how these two methods dynami-
cally follow the entropy variations, we have defined the dynamics 
gain as the ratio (expressed in percentage) between the energy 
of the high-pass filtered ApEn and MEE curves, where the cur-
rent high-pass filter is the complementary filter the previous low-
pass filter. We have called it dynamics gain because it quantifies 
how much of the total energy is filtered by the high-pass filter, 
hence the filtered curve that exhibits the highest energy is the 
method that is characterized by a greater dynamicity in its high-
pass components (i.e. the method that has the greater bandwidth). 
Accordingly, we have evaluated the dynamics gain between the 
two approaches, and Table 2 reports here the dynamics gain of 
all the analyzed commodities. In particular, the overall (on aver-
age) dynamics gain is equal to 10%, meaning that our method has 
a resolution (in detecting entropy peaks in time) that is greater by 
a 10% than the conventional method. This behavior is much more 
evident for the gold commodity, and for the case of the feeder cat-
tle series (see also Fig. 9 and Fig. 12).

In order to complete our empirical analysis, we have also fo-
cused on the relation between volatility and predicted entropy. 
In particular, we have focused on the analysis of two new time-
series: the Standard and Poor’s 500 Index (S&P500 index), and the 
Chicago Board Options Exchange Volatility Index (CBOE VIX®) [49]. 
The S&P500 index is a capitalization-weighted index of 500 stocks 
and it is designed to measure the performance of the broad do-
mestic economy through changes in the aggregate market value of 
500 stocks representing all major industries. Conversely, the CBOE 
volatility index is a leading measure of market expectations of 
near-term volatility conveyed by the S&P500 index option prices. 
Fig. 13 reports the daily closing values of these indexes, from Jan-
uary, 1993 to December, 2013. Low and high volatility periods are 
evident from the graph, with a maximum volatility peak in corre-
spondence to November, 2008. Conversely, the S&P500 index tends 
to a minimum in correspondence to the same period. Then, Fig. 14
shows the corresponding entropy values evaluated with the MEE 
and ApEn approaches for both the two aforementioned indexes. 
Regarding the relation between volatility and predicted entropy, it 
is interesting to note that, in full accordance with [29], the pre-
dicted entropy falls to minimum values in correspondence to high 
volatility regimes. In particular, the entropy predicted exploiting 
the CBOE index drops to its minimum value in the proximity of 
November, 2008 (i.e. when the volatility is at its maximum). Con-
versely, when the volatility index reaches its minimum levels (see 
for example the 2006 period in Fig. 13), it is interesting to un-
derline that the predicted entropy reaches a maximum (see the 
maximum corresponding to the Iraq war- Asian growth of 2006 in 
Fig. 14). The same happens within the 1995 low volatility period 
and again around 2009 (see again Fig. 13), where we observe cor-
responding peaks in the predicted entropy (see again Fig. 14). It 
is in fact shown that the annual entropy variations predicted by 
the MEE approach is much more correlated with the major histor-
ical events than in the case of the entropy evaluated via the ApEn 
approach, meaning that our method can be usefully applied for 
a fruitful entropy-based analysis of the financial and commodity 
market time series.

6. Conclusion

This paper has devised a novel signal processing technique for 
application to financial engineering to assess the predictability of 
financial time series based on the maximum entropy method. The 
theoretical results, substantiated by simulation, have evidenced the 
performance of the proposed predictor in the presence of white, 
AR, and MA Gaussian random series. We have finally applied our 
method to real sets of financial data, matching the performance of 
the conventional econometric approach (i.e. the approximate en-
tropy method). The obtained outcomes evidence the effectiveness 
of the proposed method to resolve entropy peaks that are strictly 
correlated to contemporary socio-political events.
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Fig. 13. Daily closing values of the CBOE volatility and S&P500 indexes.

Fig. 14. Annual (normalized to 1) entropy variations of the CBOE and S&P500 indexes for the conventional ApEn (with m = 1) and the proposed MEE (with p = 10) methods.
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