
<name of your journal> manuscript No.
(will be inserted by the editor)

Reducible quasi-periodic solutions for the Non Linear
Schrödinger equation

M. Procesi · C. Procesi

Received: date / Accepted: date

Abstract The present paper is devoted to the construction of small reducible
quasi–periodic solutions for the completely resonant NLS equations on a d–dimensional
torus Td. The main point is to prove that the normal form is reducible, block diag-
onal and satisifies the second Melnikov conditon block wise. From this we deduce
the result by a KAM algorithm.
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1 Introduction

The present paper is devoted to the construction of small reducible (see Definition
9) quasi–periodic solutions for the completely resonant NLS equations on a d–
dimensional torus Td:

iut −∆u = k|u|2qu+ ∂ūG(|u|2). (1)

Here u := u(t, ϕ), ϕ ∈ Td, ∆ is the Laplace operator and G(a) is a real ana-
lytic function whose Taylor series starts from degree q + 2, q ≥ 1. Finally k is a
coupling constant which can be normalised to ±1. Since in our results the sign
is irrelevant we will set it equal to one. Note that we have restricted our atten-
tion to ϕ-independent non-linearities G. The corresponding symmetries imply the
presence of d + 1 constants of motion given by the L2 norm and the momentum
(translation invariance).
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A relevant feature is that the NLS equation is completely resonant near u = 0
(i.e. all the linear solutions are periodic), hence we look for our quasi-periodic
solutions close to some periodic solutions

n∑
i=1

√
ξie

i|ji|2 teiji·ϕ (2)

of the linear equation involving n frequencies S = {j1, . . . , jn} ⊂ Zd. It is well
known, see for instance [8], that due to the presence of resonances, there exist
choices of the frequencies S for which the solutions of the non–linear system differ
drastically from the ones of the linear system. In order to avoid such phenomena
we restrict to generic choices of S, where generic means that this list of vectors
does not satisfy some explicit, although quite complicated, polynomial equations
which express the resonances to be avoided.

Our results are obtained by exploiting the Hamiltonian structure of equation
(1), and by studying a simplified Hamiltonian, denoted HBirk see Formula (8),
obtained from H by removing all terms of degree 2q + 2 which do not Poisson
commute with the quadratic part. Its Hamiltonian vector field is tangent to in-
finitely many subspaces obtained by setting some of the coordinates equal to 0 (cf.
[13], Prop. 1). On infinitely many of them the restricted system is completely inte-
grable, thus the next step consists in choosing such a subset S which, for obvious
reasons, is called of tangential sites.

In this step the linear solution of (2) deforms to a quasi–periodic solution∑
i

√
ξie

it(|ji|2+ω
(1)
i (ξ))eiji·φ, for ω

(1)
i (ξ) see Formula (53). (3)

We then apply a KAM algorithm, starting from the small quasi–periodic orbits
parametrised by ξ in a suitable domain. To be precise

Theorem 1 For any choice of n generic frequencies S = {j1, . . . , jn} ⊂ Zd, and
for ε sufficently small, there exists a compact set O∞ contained in {(ξ1, . . . , ξn)},
ε2/2 ≤ ξi ≤ ε2} of measure of order ε2n, parametrizing bijectively a set of quasi–
periodic solutions of (1) which are a small perturbation of the solutions of type (3)
of the equations associated to the hamiltonian HBirk. Moreover the quasi-periodic
solutions for all ξ ∈ O∞ are reducible KAM tori, see Definition 9.

As is well known KAM algorithms require strong non-degeneracy conditions
(namely the the eigenvalues of the operator linearized in a neighborhood of zero
be bounded away from zero and distinct) not always valid, even for finite dimen-
sional systems, this has for long time been an obstacle for applications to PDEs
on tori. Indeed existence results for quasi-periodic solutions (with no control on
the reducibility) for such equations were proved, starting from the late ’90, by
"multiscale" techniques (see [6],[3]). In the case of the resonant NLS we mention
the paper [16] which covers our equation (1) and provides an existence result. The
breakthrough result in KAM theory was in the paper [9], where the authors proved
reducibility for a class of non-resonant NLS equations (see also [17] and [7], [10]
for the beam equation). A main point in these papers was to impose a quantitative
lower bound on the difference of the eigenvalues, this required the introduction of
Töplitz Lipschitz functions.
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In the case of resonant PDEs the first problem that arises in KAM schemes
is to prove (when it holds) reducibility for the Birkhoff normal form, for the NLS
this was done in [15]. Then, in order to proceed with the KAM scheme one needs
further non-resonance assumptions on the normal form (the so called Melnikov
conditions) which are in general much harder to prove that in the non-resonant
cases.

In the case of the cubic NLS, i.e. q = 1, in [14] we have discussed in detail the
KAM algorithm and proved the existence of families of stable and unstable quasi-
periodic solutions. This required a very subtle combinatorial analysis (performed in
[15]) which enabled us to prove the second Melnikov conditions (which amounts to
proving that the NLS equation linearised at an approximate solution has distinct
eigenvalues on the space of quasi-periodic functions). This combinatoric is not
available for q > 1 except in dimension d ≤ 2 (see. [11]).

In the present paper we discuss the general case d ≥ 1, q ≥ 1 and prove that,
for a generic choice of the excited frequencies S, the multiplicity of the eigenvalues
of the corresponding linearised system is uniformly bounded, and moreover there
is a normal form with a block diagonal non–degeneracy, see Proposition 1.

Using the properties of this normal form in section §4 we explain how a KAM
algorithm leads to existence and reducibility of quasi-periodic solutions. This re-
quires some minor variations in the KAM scheme of [14] in order to take into
account the block diagonal structure (essentially one needs to control more deriva-
tives in the ξ variables). Since the material is quite standard, but very heavy and
lengthly, we only give a schematic proof, contained Propositions 3 and 4, see 4.3.
For a detailed exposition we refer the reader to [14].

Finally we mention that very similar kind of problems appear in the preprint
[10] where the authors study the non-linear beam equation.

2 The Hamiltonian formalism

Passing to the Fourier representation

u(t, ϕ) :=
∑
k∈Zd

uk(t)ei(k,ϕ) (4)

we have, up to a rescaling of u and of time, in coordinates, dropping the part of
G which will be placed in the perturbation, the Hamiltonian:

H :=
∑
k∈Zd

|k|2ukūk +
∑

ki∈Zd:
∑2q+2
i=1 (−1)iki=0

uk1
ūk2

uk3
ūk4

. . . uk2q+1
ūk2q+2

. (5)

The complex symplectic form is i
∑
k duk ∧ dūk, and we work on the scale of

complex Hilbert spaces (u, ū) ∈ ¯̀(a,p) × ¯̀(a,p), where:

¯̀(a,p) := {u = {uk}k∈Zd
∣∣ |u0|2 +

∑
k∈Zd

|uk|2e2a|k||k|2p := ||u||2a,p ≤ ∞}, (6)

Where a > 0, p > d/2. Note that both H and its Hamiltonian vector field XH are
analytic functions on these spaces1 We denote as usual by {A,B} the associated

1 it is well known that the NLS is locally well posed under much weaker regularity conditions.
This is not the purpose of the present paper.
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Poisson bracket and, if we want to stress the role of one of the two variables, we
also write ad(A) for the linear operator B 7→ {A,B}.2

We systematically apply the fact that we have d+ 1 conserved quantities: the
d–vector momentum M :=

∑
k∈Zd |uk|

2k and the scalar mass L :=
∑
k∈Zd |uk|

2

with

{M, uh} = iuhh, {M, ūh} = −iūhh, {L, uh} = iuh, {L, ūh} = −iūh. (7)

The terms in equation (5) commute with L. The conservation of momentum is
expressed by the constraints

∑2q+2
i=1 (−1)iki = 0.

We partition Zd = S ∪ Sc, S := (j1, . . . , jn) where the elements of S play
the role of tangential sites and those of the complement Sc the normal sites. We
divide u ∈ ¯̀a,p in two components u = (u1, u2), where u1 has indexes in S and
u2 in Sc. Here we always assume that S is subject to the constraints which make
it generic and which are fully discussed in [13] and finally refined in [15]. Further
constraints will appear later in this paper.

We apply a standard semi-normal form change of variables Ψ (1) := ead(FBirk),
which is well defined and analytic: Bε0 ×Bε0 → B2ε0 ×B2ε0 , for ε0 small enough,
see [13].

The map Ψ (1) brings (5) to the form H = HBirk+P 2q+2(u)+P 4q+2(u) where
P 2q+2(u) is of degree 2q+2 in u and at least cubic in u2 while P 4q+2(u) is analytic
of degree at least 4q + 2 in u, finally

HBirk :=
∑
k∈Zd

|k|2ukūk +
∑

α,β∈C′

(
2

α

)(
2

β

)
uαūβ . (8)

C′ : α, β ∈ (Zd)N
∣∣∣∣ |α2|+ |β2| ≤ 2; |α| = |β| = q + 1 ,∑

k(αk − βk)k = 0 ,
∑
k(αk − βk)|k|2 = 0.

(9)

The constraint |α2| + |β2| ≤ 2 comes from the definition of P 2q+2(u), the other
three constraints in this formula express the conservation of L, M and of the
quadratic energy:

K :=
∑
k∈Zd

|k|2ukūk. (10)

Switching to polar coordinates we set

uk := zk for k ∈ Sc , uji :=
√
ξi + yie

ixi =
√
ξi(1 +

yi
2ξi

+ . . .)eixi (11)

for i = 1, . . . , n. Here we conside the ξi > 0 as parameters |yi| < ξi while y, x, w :=

(z, z̄) are dynamical variables3. We denote by `(a,p) := `
(a,p)
S the subspace of

¯̀(a,p)× ¯̀(a,p) of the sequences ui, ūi with indices in Sc and denote the coordinates
w = (z, z̄). We define

Λ :=

[
1

2
,

3

2

]n
.

2 ad stands for adjoint in the language of Lie algebras.
3 To be completely formal one should think of z, z̄ as independent dynamical variables, to

this purpose they are often denoted by z+, z−, then one shows that the real subspace, where
z̄+ = z− is invariant w.r.t. the dynamics
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We choose ε > 0 small and note that for all ξ ∈ ε2Λ and for all r < ε/2, formula
(11) is an analytic and symplectic change of variables Φξ in the domain

Da,p(s, r) = D(s, r) :=

{x, y, w : x ∈ Tns , |y| ≤ r2 , ‖w‖a,p ≤ r} ⊂ Tns × Cn × `(a,p). (12)

Here ε > 0, s > 0 and 0 < r < ε/2 are auxiliary parameters while Tns denotes the
compact subset of the complex torus TnC := Cn/2πZn where x ∈ Cn, |Im(x)| ≤ s.
Moreover there exist universal constants c1 < 1/2, c2 such that if

r < c1ε and
√

2nc2κ
pe(s+aκ)ε < ε0 , κ := max(|ji|) (13)

the change of variables sends D(s, r)→ Bε0 so we can apply it to our Hamiltonian.
We thus assume that the parameters ε, r, s satisfy (13). Formula (11) puts in

action angle variables (y;x) = (y1, . . . , yn;x1, . . . , xn) the tangential sites, close to
the action ξ, parameters for the system. The symplectic form is now dy ∧ dx +
i
∑
k∈Sc dzk∧dz̄k. By abuse of notations we still call H the composed Hamiltonian

H ◦ Ψ (1) ◦ Φξ.
Remark that, in polar coordinates the Hamiltonians L, M, K, after dropping

some constant terms which Poisson commute with everything become

M =
∑
i

yiji +
∑
k∈Sc

k|zk|2, L =
∑
i

yi +
∑
k∈Sc

|zk|2 ,

K = j
(2) · y +

∑
k∈Sc

|k|2|zk|2 , j(2) := (|j1|2, . . . , |jn|2). (14)

The standard form By the rules of Poisson bracket, on the real space spanned by
z, z̄, we have {ā, b̄} = −{a, b} = {a, b} so {a, b̄} = −{ā, b} = {b, ā} is imaginary:

Definition 1 (a, b) := i{a, b̄} is a real symmetric form, called the standard form.

For the variables we have (zh, zk) = δhk , (z̄h, z̄k) = −δhk , so the form is positive
definite on the space spanned by the z, which give an orthonormal basis, negative
on the space spanned by the z̄ and of course indefinite if we mix the two types
of variables. Thus we may say that an element a in the real space spanned by
z, z̄ is of type z (resp. z̄) if (a, a) = 1 resp. (a, a) = −1. For a quadratic real
Hamiltonian H = H̄ we have {H, {a, b̄}} = 0 since {a, b̄} is a scalar. The map x 7→
i{H, x} preserves the real subspace spanned by z, z̄ hence by the Jacobi identity
(a, i{H, b}) = (i{H, a}, b) so the operator i{H,−} is symmetric with respect to
this form.

2.1 Functional setting

Following [12] we study regular functions F : ε2Λ×Da,p(s, r)→ C, that is whose
Hamiltonian vector field XF (·; ξ) is M-analytic from D(s, r)→ Cn×Cn× `a,pS . In
the variables ξ we require C5d2 regularity. Let us recall the definitions from [4].
Let us consider the Banach space V := Cn × Cn × `a,pS with (s, r)-weighted norm

−→v = (x, y, z, z̄) ∈ V , ‖−→v ‖V,s,r :=
|x|∞
s

+
|y|1
r2

+
‖z‖a,p
r

+
‖z̄‖a,p
r

(15)
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where, |x|∞ := maxh=1,...,n |xh|, |y|1 :=
∑n
h=1 |yh| and we restrict r, s with 0 <

s < 1, 0 < r < c1ε.
For a vector field X : D(s, r)→ V , described by the formal Taylor expansion:

X =
∑

ν,i,α,β

X
(v)
ν,i,α,βe

i(ν,x)yizαz̄β∂v , v = x, y, z, z̄

we define the majorant and its norm:

MX :=
∑

ν,i,α,β

|X(v)
ν,i,α,β |e

s|ν|yizαz̄β∂v , v = x, y, z, z̄

||X||s,r := sup
(y,z,z̄)∈D(s,r)

‖MX‖V,s,r . (16)

The different weights ensure that, if ‖XF ‖s,r is sufficiently small, then F generates
a close–to–identity symplectic change of variables from D(s/2, r/2)→ D(s, r).

In our algorithm we deal with functions which depend in a C` way on some
parameters ξ in a compact set O ⊆ ε2Λ, the integer ` in fact will be chosen
to be (2d + 1)2, the maximal size of diagonal blocks of the normal form of the
NLS. To handle this dependence one introduces weighted norms for a map X :
O ×D(s, r)→ V setting:

‖X(ξ)‖λs,r :=
∑

k∈Nn:|k|≤`

λ|k|‖∂kξX‖s,r, ‖X‖λs,r,O := sup
ξ∈O
‖X(ξ)‖λs,r (17)

where λ is a parameter of order ε2. Sometimes when O is understood we just write
‖X‖λs,r,O = ‖X‖λs,r.

During the KAM algorithm we shall use a stronger norm, called quasi–Töplitz,
depending on various parameters−→p given by λ, s, r,O and three parametersK,ϑ, µ
with K a large positive integer and 1

2 < ϑ, µ < 4. We denote such norm by ‖ · ‖T−→p .
Since the definition is quite long we do not restate it in the present paper but
refer the reader to [17] and [14], we only give in the appendix B an informal
presentation of quasiTöplitz Hamiltonians and their main properties. The main
point is that this norm is closed w.r.t Poisson brackets and moreover it controls the
behaviour of linear Hamiltonian vector fields with respect to linear stratifications
(cf. Definition 5), this will be essential in the KAM algorithm for controlling the
measure estimates.

Definition 2 We define by Vλ,s,r,O = Vs,r, Hλ,s,r,O = Hs,r, resp. HT−→p with −→p =
(λ, s, r, ϑ, µ,K,O), the space of M–analytic vector fields, resp. regular analytic
and finally quasi–Töplitz, Hamiltonians depending on a parameter ξ ∈ O with the
norms4

‖X‖λs,r, ‖F‖λs,r := ‖XF ‖λs,r <∞, resp ‖XF ‖T−→p <∞ , (18)

where −→p = (λ, s, r, ϑ, µ,K,O).

4 in fact Hamiltonians should be considered up to scalar summands and then this is actually
a norm
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The main properties of the majorant norm, contained in [2], Lemmata 2.10, 2.15,
2.17, express the compatibility of the norm with projections and Poisson brackets.
Similarly the main properties of the quasi–Töplitz norm may be found in §8.17.1
and in Proposition 9.2 of [14].

Since HT−→p is a space of M–analytic functions it is naturally spanned by the
monomials eiν·xyizαz̄β . It is natural to give degree 0 to the angles x, degree 2 to
y and 1 to w. In this way each element F ∈ HT−→p is expanded as F =

∑∞
j=0 F

(j).
We will need the projections onto various subspaces, in particular those defined
by the degree, which are all continuous w.r.t the majorant norm.

Definition 3 A linear operator L on HT−→p has degree j if it maps elements of
degree k into elements of degree k + j for all k.

Notice that the degree of the composition of two linear operators of degree i, j is
their sum i+ j.

Remark 1 If A ∈ Hs,r has degree j the linear operator ad(A) has degree j− 2. By
the Cauchy estimates (Lemma 2.17 of [2]) this is continuous as operator Hs,r →
Hs′,r′ with s′ < s and r′ < r.

Definition 4 The normal form N collects all the terms of HBirk of degree ≤ 2
(dropping the constant terms). We then set P := H −N or H = N + P .

For a basic finiteness property of the normal form we need the following:

Definition 5 A linear stratification of Rn is a finite decomposition Rn =
⋃
j Yj

where the closure Ȳj of each Yj is a linear affine subspace, and Yj is obtained from
Ȳj by removing a finite number of proper linear affine subspaces.

A given stratum Y lies in a minimal affine space Ȳ and the group TY of
translations of Ȳ is the group of translations of Y .

Remark 2 A linear stratification is obtained by choosing a finite list of linear affine
subspaces Ai. Then to each Ai is associated, as stratum, the set of points in Ai
which do not lie in any of the affine spaces Aj of the list which do not contain Ai.

Thus Y is obtained from any of its elements y as y + TY and then removing the
lower dimensional strata.

Remark 3 If each Yi is defined by linear equations over Z we speak of an integral
linear stratification, this induces by intersection a linear stratification of Zn.

The integral points satisfying ` independent linear equations with coefficients
in Z form a subgroup Γ of Zd isomorphic to Zd−` (with an integral basis which
can be extended to a basis of Zd). Correspondingly the intersection of an affine
space Ȳ (defined over Z) of dimension k = d−` with Zd is of the form Γ +u where
u ∈ Zd and Γ ⊂ Zd is a group of integral translations isomorphic to Zk (usually k
is called rank). Each stratum has thus a rank and is obtained from such a translate
by removing a finite number of translates of subgroups of strictly lower rank.

The linear stratifications appearing in this paper come from two sources, the theory
of graphs and block diagonal structure of the Normal form and the Theory of cuts,
see § 7.1 and Appendix B.



8 M. Procesi, C. Procesi

3 Properties of the normal form

Here we state the main properties used in the KAM algorithm. These properties
are detailed and proved in §5.

We need to explain the following notation and fact. First given a sign σ = ±1
and a variable zk we write zσk = zk if σ = 1 and z̄k if σ = −1.

Denote by F the space of Hamiltonians of degree ≤ 2 (which form a Lie algebra
under Poisson bracket). In our treatment we have a normal form Hamiltonian with
normal variables zk, z̄k k ∈ Sc. The Hamiltonian is block diagonal w.r.t a block
decomposition with finite blocks Dt ⊂ Sc indexed by a denumberable index set T.
In turn this set is divided into an infinite set Ts and a finite set Tf . For each t ∈ T
we have a finite set of indices k ∈ Dt ⊂ Sc and, for the finitely many elements in
Tf also a sign function s(k) = ±1 for k ∈ Dt. When we have such a sign we need to
divide the corresponding variables {zk, z̄k}k∈Dt in the set zs(k)

k and its conjugate.
The variables span a symplectic space and the two sets each span a lagrangian
subspace.

Definition 6 An x independent quadratic Hamiltonian on the space {zk, z̄k}k∈Dt
will be called Lagrangian if under Poisson bracket it preserves these two spaces,
this means that we never have in its expression a term of type zhzk or z̄hz̄k (with
h, k ∈ Dt) if s(k) = s(h) or zhz̄k if s(k) = −s(h). In matrix terms this is the
standard embedding of m × m matrices into the Lie algebra of the symplectic
group of dimension 2m.

In fact, by Formula (21), this Lagrangian structure is equivalent to conservation
of momentum (or of quadratic energy). We then have the main properties of the
normal form summarized as follows:

Proposition 1 For any generic choice of the tangential sites S = {j1, . . . , jn},
there exists a homogeneous algebraic hypersurface A, whose complement in Rn+ is
union of simply connected open regions Rα with the property:

For each α there is an analytic family of symplectic changes of variables Rα×
D(s, r) 7→ Bε0 which conjugates the NLS Hamiltonian to the following form H =
N (s) +N nil + P where:

N (s) := ω(ξ) · y +
∑
t∈Ts

Ωt(ξ)
∑
k∈Dt

|zk|2 +
∑
t∈Tf

Ωt(ξ)
∑
k∈Dt

s(k)|zk|2 ,

N nil =
∑
t∈Tf

Qnil
t . (19)

The set Ts is a denumerable index set while Tf is finite. Each index t identifies
a point rt ∈ Sc and an algebraic function θt, homogeneous of degree q, chosen
from a finite list Υ (see Formula (69)). The map t → (rt, θt) is injective. To t is
associated a finite set Dt ⊂ Sc .

The cardinality dt of the set Dt is dt ≤ 2d + 1 for t ∈ Tf and dt ≤ d + 1 for
t ∈ Tf (note that one may have that rt /∈ Dt).

Moreover the sets Dt give a disjoint decomposition of the normal sites Sc =
Zd \ S.
i) Non-degeneracy We have ω(ξ) = j(2) +ω(1)(ξ) where ω(1)(ξ) is homogeneous
of degree q in the variables ξ. The map (ξ1, . . . , ξm) 7→ (ω1(ξ), . . . , ωm(ξ)) is an
algebraic local diffeomorphism for ξ outside some real algebraic hypersurface.
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ii) Asymptotic of the normal frequencies: We have

Ωt(ξ) = |rt|2 + θt(ξ)

where all the functions θt are chosen from the finite list Υ .
Finally s(k) = ±1 while Qnil

t is a Lagrangian (see Definition 6) nilpotent
quadratic Hamiltonian in the variables {zk, z̄k}k∈Dt independent of x.
iii) Translation invariance: The infinite set Ts decomposes into finitely many
components Ts(i) with the following property.

For all t ∈ Ts(i) the dimension dt is the same.
For each given Ts(i), the elements rt2 −rt1 , t1, t2 ∈ Ts(i) generate a subgroup

of translations Γi ⊂ Zd of rank ki = d − dt + 1, (that is isomorphic to some
Zki , ki ≤ d). Choosing an element t0 ∈ Ts(i) gives a subset Γ 0

i ⊂ Γi obtained
from the group Γi by removing finitely many translates of subgroups of lower rank
so that

∀t1, t2 ∈ Ts(i), Dt2 =Dt1 + rt2 − rt1 , rt2 − rt1 ∈ Γi⋃
t∈Ts(i)

Dt =
⋃
a∈Γ 0

i

Dt0 + a. (20)

iv) Affine structure: Formula (20) determines an integral linear stratification
Σ0 of Zd such that the set of roots rt is a union of strata.

We take all points in some Dt, t ∈ Tf to be zero dimensional strata.
Then for each i, the set

⋃
t∈Ts(i) Dt is the union of the parallel strata Γ 0

i +k, k ∈
Dt0 .
v) Piecewise Töplitz: The function θt(ξ) is the same for all t ∈ Ts(i).
vi) Constants of motion: in the new coordinates, mass and momentum are:

L =
∑
i

yi +
∑
k

s(k)|zk|2 , M =
∑
i

yiji +
∑
t∈T

rt(
∑
k∈Dt

s(k)|zk|2) , (21)

moreover N has as further constant of motion the quadratic energy:

K =
∑
i

|ji|2yi +
∑
t∈T

|rt|2(
∑
k∈Dt

s(k)|zk|2). (22)

vii) Smallness: Consider any compact domain O in Rα∩ε2Λ. If ε3 < r < c1ε, the
perturbation P in the new variables is small, more precisely we have the bounds:

‖XP ‖T−→p ≤ C(ε2q−1r + ε2q+3r−1) , (23)

where −→p = (λ, s, r, ϑ0, µ0, N0,O) with ϑ0 = 1, µ0 = 2 and N0 = 8(d + 1)!κd+1

(see (13) for κ) while C is independent of s, r and depends on ε, λ only through
λ/ε2.

Proof Most of these statements are part of Proposition 13 and Corollary 3. The
smallness condition in the λ norm is the content of Theorem 1 of [13], the corre-
sponding estimate for the quasi–Töplitz norm follows verbatim from part 4 of [14]
extending Proposition 11.19. ut
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Remark 4 Here generic means that the list of excited frequencies S, thought of as
a vector in Zdn, is not a solution of a (complicated) polynomial P (in dn variables)
with integer coefficients, the polynomial P is the product of explicit polynomials
associated to a finite list of graphs which represent resonances to be avoided. Of
course this list grows exponentially with the dimension and with q so, although the
polynomial is described explicitly, it is not possible to write down the polynomial
in a file. Nevertheless the density of generic choices clearly tends to 1 (cf. [14]).

Remark 5 The index set T and the corresponding decomposition of the space as
well as the affine structure depend only on the chosen connected component.

In the case of the cubic NLS the picture simplifies drastically since there is no
nilpotent part and moreover, all the sets Dt reduce to one element. This depends
on the fact that the normal form is diagonalizable with distinct eigenvalues, while
here we have to take into account the multiplicities.

Proposition 2 (Melnikov conditions) For any α and for all ξ ∈ Rα, the
kernel of adN (s) in the space F (of hamiltonians with degree ≤ 2) is given by the
subspace Fker, of hamiltonians of the form

ψ(ξ) · y +
∑
t∈T

Qt(ξ, w)

where ψ(ξ) ∈ Rn and Qt(ξ, w) are x independent Lagrangian quadratic Hamilto-
nians depending only on the variables {zk, z̄k}k∈Dt .

Proof The proof is in Proposition 14. ut

This proposition induces a decomposition5 of F into:

Definition 7 The subalgebra Fker and its unique complement Frg stable under
adjoint action of Fker.

Definition 8 We consider the free abelian group Zn with canonical basis ei and
define the following linear maps η : Zn → Z, π : Zn → Zd, π(2) : Zn → Z

η : ei 7→ 1, π : ei 7→ ji, π(2) : ei 7→ |ji|2. (24)

Warning In Zn we always use as norm |l| the L1 norm
∑n
i=1 |l

(i)|. On the other
hand in Zd, and hence in Sc, we use the euclidean L2 norm.

The space F decomposes as a direct sum of its parts of degree 0, 1, 2 respectively
with basis

0) e−iν·x, 1) e−iν·xzσk , 2) e−iν·xzσ1

h zσ2

k , e−iν·xyi

satisfying mass and momentum conservation, deduced from Formula (21). We
usually denote z+ = z, z− = z̄ for convenience. We exclude the constants. We
denote this degree decomposition as F := F 0 ⊕ F 0,1 ⊕ F 2, F 2 = F 0,2 ⊕ F 1,0.

We now decompose F 0,1 as orthogonal sum (with respect to the symplectic
form), of subspaces (blocks) (Dt, ν)±1 with t ∈ T and ν ∈ Zn costrained by the
conservation laws. Each (Dt, ν)+ has as basis the elements eiν·xz

s(k)
k where k ∈ Dt.

5 Roughly speaking this is just dividing a space of matrices into some block diagonal subal-
gebra and the stable off-diagonal part.
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For each index (t, ν) the contraints

π(ν) + rt = ν · j + rt = 0, η(ν) + 1 = 0 (25)

express respectively the conservation of momentum and mass.
These blocks are obviously stable under ad(N ) and on each block this action

is invertible. On the blocks (Dt, ν)σ ad(N ) is self adjoint for the standard form. If
t ∈ Ts the standard form is positive definite if σ = 1 negative if σ = −1.

The previous decomposition of F 0,1 induces a block decomposition of F 0,2.
The product of two blocks (Dti , νi)

±1, i = 1, 2 produces a quadratic block in
F 0,2 stable under ad(N ) with basis the products of basis elements. In order to
avoid repetitions we index different quadratic blocks by (ν, t1, t2)σ1,σ2 where the
conservation laws are:

η(ν) + 1 + σ1σ2 = 0 , π(ν) + rt1 + σ1σ2rt2 = 0 (26)

while the basis elements are eiσ1ν·xz
σ1s(k)
k z

σ2s(h)
h where k ∈ Dt1 and h ∈ Dt2 . For

σ1σ2 fixed the blocks come in conjugate pairs and we usually exhibit the one with
σ1 = 1.
The action of ad(N ) is invertible on all the blocks different from (0, t, t, σ,−σ)
which add up to the part of Fker in F (0,2).

4 A KAM theorem

Having now prepared our normal form we need to explain how to perform a suc-
cessful KAM algorithm.

We follow the same path as in [14] but with some differences due to the fact that
our normal form is no more diagonal with different eigenvalues but rather block
diagonal with uniformly bounded blocks corresponding to different eigenvalues.

The starting point for our KAM Theorem is a class of Hamiltonians

H := N + P, N := ω(ξ) · y +
∑
t∈T

Qt(ξ, z, z̄) , P = P (x, y, z, z̄, ξ). (27)

which is a small variation the class described in Proposition 1 from which we
maintain all the notations. The Hamiltonians are defined in D(s, r) × O, where
O ⊆ ε2Λ is a compact domain of diameter of order ε2 contained in one of the
componentsRα∩ε2Λ where the local diffeomorphism ω(ξ) is injective. Here ω(ξ) =
j(2) + ω(1)(ξ) + ω̃(ξ) where j(2), ω1 are the ones of the NLS normal form, defined
in Proposition 1 item ii), while ω̃(ξ) is small of the order of Formula (23). The
finite (at most 2d + 1 degrees of freedom) dimensional quadratic Hamiltonians
Qt depend on the variables zk, z̄k with k ∈ Dt. By the lagrangian structure of the
blocks (Dt, ν)± we represent these Hamiltonians by the matrices, denoted by Ωt(ξ),
acting on the blocks (Dt, ν)+. Note that these are independent of ν. We have that
for all t ∈ Tg the matrix Ωt(ξ) is self-adjoint (the basis is orthonormal for the
standard form). For all t ∈ T we have:

Ωt(ξ) = (|rt|2 + θt(ξ))It +Ωnil
t + Ω̃t(ξ). (28)
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where rt is the root of the stratum indexed by t ∈ T. Ωnil
t is a nilpotent matrix

chosen from a finite list of matrices depending on ξ in an analytic way and homo-
geneous of degree q, similarly for θt. Moreover the functions θt satisfy the piecewise
Töplitz property (iv) of Proposition 1. Finally the Ω̃t(ξ) define a quadratic Hamil-
tonian which is quasi Töplitz and small of the order of Formula (23). The same
properties hold for the perturbation P .

It is well known that the Hamiltonian equations of motion for the normal form
N admit the special solutions (x, 0, 0, 0) → (x + ω(ξ)t, 0, 0, 0), that correspond
to invariant tori in the phase space, for each ξ ∈ O. These special solutions are
solutions also of the perturbed system if and only if the Hamiltonian vector field
associated to P vanishes on these invariant tori.

Our aim is to prove that, under suitable hypotheses, there is a set O∞ ⊂ O
of positive Lebesgue measure, so that, for all ξ ∈ O∞ the Hamiltonians H still
admit invariant tori (close to the ones of the unperturbed system) given (in the
new variables) by the equations y = z = 0. Moreover, the associated Hamiltonian
vector field XH restricted to these tori is

∑n
i=1 ω

∞
i (ξ)∂xi while XH linearised at a

torus is block-diagonal in the normal variables with x-independent block matrices
Ω∞t (ξ).

Definition 9 (reducible KAM tori) A quasi-periodic solution of frequency ω∞

is a reducible KAM torus if (in appropriate sympectic variables) it is expressed
by the equations y = z = 0 and moreover the associated Hamiltonian vector field
XH restricted to the torus is

∑n
i=1 ω

∞
i (ξ)∂xi , while XH linearized at the torus is

block-diagonal in the normal variables with x-independent block matrices Ω∞t (ξ)
of uniformly bounded dimension.

4.1 The algebraic algorithm

Let us explain the algebraic part of the algorithm. We have seen that the space
F := F 0 ⊕ F 0,1 ⊕ F 2, F 2 = F 0,2 ⊕ F 1,0 can be canonically decomposed in an
orthogonal sum of two parts, F = Frg ⊕ Fker where, for generic values of ξ the
space Frg is the range of the normal form operator ad(N s) and Fker the Kernel.
Denote by Πrg, Πker the corresponding projections.

Recall the degree projections Π≤j , Πj , Π>j onto polynomials of degree ≤
j, j, > j, we also denote by A≤j := Π≤jA for any Hamiltonian A. We shall also
need to perform a ultraviolet cut, that is separate the subspace where the frequency
ν is bounded by some |ν| ≤ K and the rest, these projections will be denoted by
putting K as pedex as in Πrg,≤K , Πker,≤K , Π≤K , Π>K etc..

Up to now we have considered F as an algebraic object by describing a basis but
we will soon need to consider infinite linear combinations of these basis elements,
defining regular quadratic Hamiltonians on some of the regions D(r, s), moreover
these will depend on parameters ξ on suitable compact domains, nevertheless the
projections still make sense.

In fact it is convenient to define Πrg, Πker on the entire space of series of which
F is the part of degree ≤ 2. We hence decompose

Hs,r = Fker ⊕Frg ⊕H>2
s,r. (29)
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Remark 6 [The goal] By definition, the normal form N of Proposition 1 is in Fker.
In general, the condition for a hamiltonian H = N+P, N = ΠkerH to have KAM
tori is ΠrgH = ΠrgP = 0. So our goal is to find a symplectic transformation S so
that

ΠrgS(H) = 0.

The strategy is to construct this as a limit of a quadratic Nash-Moser algorithm.
WarningWe deviate from the standard notation to put in evidence the intrin-

sic decomposition of Hr,s given by Formula (29). In particular for a Hamiltonian
H ∈ Hr,s we will denote:

N := Πker(H) , Prg := Πrg(H) , P>2 := Π>2(H) , (30)

so that H = N + Prg + P>2. The first two terms correspond to the canonical
decomposition of the Lie algebra (under Poisson bracket), F into the subalgebra
Fker and its complement Frg, which is stable under the action of Fker.

By Remark 1 if A has degree i we have that ad(A) has degree i− 2 so as soon
as i ≥ 3 these operators have positive degree and are nilpotent on F , the cube is
always 0.

We start with H0 := N0 + Prg,0 + P>2
0 , where N0 is close to N and Prg,0 is

appropriately small. We wish to find a convergent sequence of changes of variables,
dependent on a sequenceKm of ultraviolet cuts,Sm+1 := eadFmSm so that at each
step Hm+1 = Sm+1(H0) is such that Nm stays close to N , P>2

m stays bounded
while Prg,m converges to zero (super–exponentially).

At a purely formal level we would like that Prg,m+1 is quadratic w.r.t. Prg,m.
The generating function Fm ∈ Frg,≤Km+1

is fixed by solving the homological
equation

{Nm, Fm}+Πrg,m{P>2
m , Fm} = Π≤Km+1

Prg,m , Πrg,m := Πrg,≤Km+1
(31)

which uniquely determines Fm as a linear function of Prg,m provided that the
linear operator:

Lm := ad(Nm) +Πrg,mad(P>2
m ) = ad(Nm) +Πrg,mad(P 3

m) +Πrg,mad(P 4
m),

is invertible on Frg,≤Km+1
(clearly we also need some quantitative control on the

inverse).

Remark 7 On F the operators ad(Nm), Πrg,mad(P 3
m), Πrg,mad(P 4

m) have respec-
tively degree 0,1,2 so it should be be clear that Lm is invertible if and only if
ad(Nm) is invertible and in this case one inverts

Lm = ad(Nm)

(
1 + ad(Nm)−1Πrg,mad(P>2

m )

)
by inverting the second factor. This is of the form 1 + A with A a sum of two
linear operators of degree 1,2 respectively, so A3 = 0 and we invert 1 +A with the
3 term Neumann series 1−A+A2.
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We now justify our choice by computing one KAM step, for notational convenience
we drop the pedex m in Hm etc.. and substitute Hm+1 with H+ etc... .

Let us computeH+ := eadFH. First split the operator ead(F ) = 1+ad(F )+EF ,
by definition EF is quadratic in F and hence quadratic in Prg. Regarding the term

(1 + ad(F ))(N + Prg + P>2) = N + Prg + P>2 − {N + P>2, F}+ {F, Prg}

we first notice that, since F is linear w.r.t. Prg then the last summand is quadratic
moreover since F solves the homological equation we have

Prg − {N + P>2, F} = (Πker +Π>2 +Π>KΠrg){P>2, F}+Π>KPrg.

Then we deduce that

Πkere
adFH := N+ = N +Πker{P>2, F}+ΠkerQ(Prg) ,

Πrge
adFH := P≤2

+ = Π>K(Prg +Πrg{P>2, F}) +ΠrgQ(Prg) ,

Π>2e
adFH := P>2

+ = P>2 +Π>2{P>2, F}+Π>2Q(Prg)

where Q(Prg) , is quadratic in Prg and collects the terms from EF (H) and {F, Prg}.

4.2 The quantitative estimates

In the course of our computations we will often have a statement for functions f, g
of the following type:
there is a constant C depending only on some of the parameters d, n, q, t with
|f | ≤ C|g| we then will replace this statement by the formula

|f |ld,n,q,t |g|, or just |f |l |g|.

Notice that the relation |f |l |g| satisfies all the usual properties of the relation ≤,
that is it is a partial order compatible with sums and products.

At a more quantitative level, we start by choosing a domain O0 ⊂ Rα ∩ ε2Λ
where some appropriate quantitative non-degeneracy conditions (see Lemma 11)
hold.

By construction the measure of O0 is of the order of ε2n. Then we choose two
positive parameters τ,K0, bounded from below by some estimate depending only
on n, d, q and the set O0. Such a choice determines bounds on ε, r through formula
23 of the type rε−1 + ε3r−1 < CK−τ0 . When these bounds hold our algorithm
converges for all ξ in some set whose complement, in the starting domain O0, has
measure of order ε2nK

−f(τ)
0 where f is some linear increasing function of τ , see

Proposition 4.
Each Hamiltonian H is constrained by several parameters, s, r, Θ, L,M, a,

ϑ, µ,K, which control the quantitative structure. The frequency cut-off parameter
K grows exponentially while the other parameters shall be proved to be telescopic.

Definition 10 We say that a positive parameter b is telescopic if for each step
m we have b0/2 < bm < 3

2b0 (usually bm is either an increasing or a decreasing
sequence).
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Note that a sufficient condition is that
∞∑
m=0

|bm+1 − bm| ≤
b0
2
. (32)

Finally the domain O shrinks at each step but its measure remains bounded from
below.

Definition 11 The parameters s, r control the decreasing domain D(s, r) of def-
inition in the dynamical variables.

The parameters ϑ, µ,K control the quasi–Töplitz norm of P and of the quadratic
Hamiltonian associated to the Ω̃t, and we set ‖P‖T−→p ≤ Θ.

The parameters M,L control the derivatives up to order ` = (2d + 1)2 of ω
and Ωt, the fact that ω is invertible and an estimate on the dilation factor.

|∂ωξ|∞ ≤ Lε−2(q−1) , |ω − j
(2)|∞ , |Ωt − |rt|2It|∞ ≤Mε2q

|∂αξ ω|∞ + |∂αξ θt|+ |∂αξ Ωnil
t |∞ + |∂αξ Ω̃t|∞ ≤ ε2(q−|α|)M |α| . (33)

for all α 6= 0 such that |α| ≤ `.
Finally the parameter a is defined by

| (ω · ν)−1|,≤ ε−2qa , |(ω · ν +Ωt)
−1| ≤ ε−2qa ,

| (ω · ν + L(Ωt) + σσ′R(Ωt′))
−1| ≤ ε−2qa , ∀ν : |ν| ≤ S0 (34)

where S0 is some fixed positive number, see Lemma 11. Here Ωt is defined by (28)
and L(Ωt), resp. R(Ωt′), are the operators of left respectively right multiplication
by the matrices Ωt, resp. Ωt′ , on dt × dt′ matrices. Finally | · | is the L2 operator
norm.

We choose as in [14]:

rm+1 = (1− 2−m−3)rm , sm+1 = (1− 2−m−3)sm ,

ϑm+1 = ϑm + ϑ02−m−2, µm+1 = µm − µ02−m−2 , Km = 4mK0. (35)

This choice allows us to perform the Cauchy and ultraviolet estimates.
We choose any sequence of nested domains Om as follows6. The domain Om+1

is a subset of Om where not only (31) admits a unique solution but moreover

‖Fm‖T−→p ′m ≤ ε
−2qKτ

m‖Prg‖T−→p m , (36)

where −→p m = (λm, sm, rm, ϑn, µm,Om), −→p ′m = (λm, s
′
m, r

′
m, ϑ

′
m, µ

′
m,Om+1) with

b′m = (bm + bm+1)/2, for b = s, r, ϑ, µ, and λm = ε2M−1
m .

Proposition 3 For K0, τ large and for all ε, r such that rε−1 + ε3r−1 lK−τ0 , at
each step m, in the set Om, one has the estimate

ε−2q‖Prg,m‖T−→p m ≤ e
− 3

2

m

. (37)

Moreover all the constants s, r, Θ, L,M, a, ϑ, µ are telescopic. Finally our algebraic
algorithm converges on the set ∩mOm, and we obtain a Hamiltonian H∞ which
has reducible KAM tori.

6 of course we will need to show that we can make non-empty choices
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Proof These estimates are all standard and follow the same lines as the corre-
sponding ones in [14]. The procedure is recursive, suppose we have reached some
step m and computed all the necessary estimates, then using for instance Lemma
10.20 of [14], one proves the estimate (37) for Fm.

Then Fm defines a symplectic change of variables and one proves, see Propo-
sition 10.16 and section 10.17 of [14], that in the new Hamiltonian Hm+1 both
the perturbation Pm+1 and the quadratic Hamiltonian associated to the Ω̃(m+1)

t

are well defined in the domain D(sm+1, rm+1) and quasi–Töplitz with parameters
(Km+1, ϑm+1, µm+1). Note that by definition of EF and since F solves the Ho-
mological equation we have that Q(Prg,m) is quasi-Töplitz. The variation in the
parameters s, r, ϑ, µ is due to Cauchy estimates, namely it is used in order to con-
trol the norm of the Poisson bracket of two Hamiltonians, following Proposition
10.16 of [14].

The corrections of the parameters L,M, a,Θ are obtained from the coordinate
change, which is very close to the identity due to the super–exponential decay of
the norm of F , this implies easily the telescopic nature of the parameters used, as
|bm+1 − bm| < const b0e−(3/2)m see Lemma 10.20 of [14].

Then one easily sees that the algorithm converges.
By the nature of the majorant norm, for all j, the part of homogeneous degree

j of Hm converges to the part of homogeneous degree j of H∞.
In particular, since Prg,m converges to 0 this implies thatNm and P>2

m converge
to N∞ and P>2

∞ respectively. ut

The main problem is thus to exhibit some domain of parameters ξ where the
estimates (36) hold and prove that at the end of the algorithm we are left with a
set O∞ := ∩mOm (of Cantor type) of positive measure (in particular non–empty)
of order ε2n.

4.3 Measure estimates

For the remaining discussion we drop the indices m and assume we are working
at some undefined step, with F,H,N etc. the hamiltonians at this given step.
By remark 7 the linear operator F 7→ Πrg{F, P>2} is nilpotent of order three so
in order to invert the homological equation we only need to invert the operator
F 7→ ad(N)(F ) which is of degree 0 hence block diagonal on the decomposition
F 0 ⊕ F 0,1 ⊕ F 2.
Indeed, by the formulas (28) and (27), adN acts on F 0 and on F 1,0 as ω · ∂x and
on each block (ν, t)σ of F 0,1 as

σ(ω · ν +Ωt). (38)

Finally on each block (ν, t, t′)σ,σ′ of F 0,2, thought of as dt×dt′ matrices, adN acts
as

σ(ω · ν + L(Ωt) + σσ′R(Ωt′)) (39)

where the notations are those of (34).
In each case we have to show that these linear operators (which we represent as

matrices of dimension resp. one, dt and dtdt′) are invertible and moreover estimate
the norm (we choose the L2 operator norm) of the inverse. This will be done, when
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the matrices are self–adjoint (i.e. both t and t′ in Tg), by lower bound estimates on
the eigenvalues. By momentum conservation, the remaining set of matrices is finite
and we estimate it by lower bounds on the determinants. We impose as constraint
on the parameters ξ to have estimates of the form:

|(ω · ν)−1|, |(ω · ν +Ωt)
−1|, |(ω · ν + L(Ωt) + σσ′R(Ωt′))

−1| ≤ ε−2qK% (40)

for all ν such that |ν| ≤ K and for some (K independent) value of %.

Lemma 1 Fixing % = %(τ) := (τ − 1)/3((2d + 1)2 + 4), in the set of the ξ for
which (40) holds one has the estimate (36).

Proof The result follows directly from Lemma 14. We apply it with s, r = (sm, rm),
δ = 2−m−5, P  Pm, F  Fm and K  Km+1 = 4m+1K0. Then by our choices
δ−2 ≤ K (provided K0 ≥ 29). ut

Definition 12 We choose Om+1 to be the set of ξ ∈ Om for which (40) holds
with % = (τ − 1)/3((2d+ 1)2 + 4), ω  ωm and Ω  Ωm for all t, t′.

Proposition 4 i) The measure of Om \Om+1 is bounded by ε2nK
− τ
b
+n+1

m+1 with
b = 3(4d)d+4.

ii) Provided that τ ≥ b(n + 3), we have |O∞| ≥ |O0| − ε2nK
− τ
b
+n+2

0 , and
thus is a parameter set of positive measure by taking K0 large.

The proof of this Proposition occupies the rest of this section and concludes the
proof of Theorem 1.

Proof (Proof of Theorem 1 ) By Proposition 3 we have reducible KAM tori for all
ξ ∈ O∞ = ∩mOm for all choices of the sets Om for which one has (36). By Lemma
1 the choice done in Definition 12 satisfies this requirement. Then Proposition 4
ensures that O∞ has positive measure provided K0 is large enough. ut

In order to prove Proposition 4 we drop the index m and first give some notation.

Definition 13 [Resonant sets] For all |ν| ≤ K, t, t′ ∈ T we define the resonant
sets R%ν,t,t′,σ,σ′ with σ, σ

′ = 0,±1 as the sets of ξ ∈ O where

|(ω · ν + σL(Ωt) + σ′R(Ωt′))
−1| > ε−2qK%. (41)

Note that this formula includes all cases of the complement of the region given by
Formula (40). When one (or both) of the σ equals zero then we drop it and the
corresponding symbol t, for instance R%ν,t,t′,σ,0 = R%ν,t,σ.

Proof (Proof of Proposition 4) Part ii) of Proposition 4, follows trivially from part
i) since Km = 4mK0 and |O0| ∼ ε2n. Indeed by hypothesis − τb + n+ 1 ≤ −2 and
hence |O∞| ≥ |O0| −

∑
m |Om−1 \Om| ≥

≥ |O0| − ε2nK
− τ
b
+n+1

0

∑
m

4−m ≥ |O0| − ε2nK
− τ
b
+n+2

0 .

In order to prove part i), the first thing (Lemma 2) is to show that for all choices
of % and for any |ν| < K, and t, t′, σ, σ′, we may impose the corresponding estimate
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(40), by only removing, from the domainO, a resonant set of parametersR%ν,t,t′,σ,σ′
of measure ≤ Cε2nK−c(%−1) for some C, c depending only on q, d, n.

Then we evaluate the measure of the union of resonant sets. Since t, t′ vary in
an infinite set it is not sufficient to simply count the resonant sets. In Lemma 3
we prove that for all % and for all ν, t, t′, σ, σ′ such that |ν| ≤ K and σσ′ 6= −1 one
has that the non-empty sets R%ν,t,t′,σ,σ′ belong to a finite list GK with cardinality
|GK | < Kp. Hence we need to remove a set of measure ≤ Cε2nK−c(%−1)Kp where
we choose c to be the minimum over the possible c and C the maximum.

In the case of the second Melnikov condition with σσ′ = −1 we proceed in a
slightly subtler way. We use the quasi-Töplitz property which is defined in terms
of (among others) a free parameter %0, then we prove, in Lemma 4, that fixing
%d+2 = (4d)d+2%0 there exists a set R of measure at most ε2nK−%0+n such that
for all ν, t, t′ :

R
%d+2

ν,t,t′,σ,−σ ⊂ R.

In conclusion fixing %0 so that %d+2 = % we have proved that, provided % is
sufficiently large, by removing a small measure resonant set we may impose all
the Melnikov conditions (40). We then verify (Corollary 1) that the measure is of
order ε2nK−%/(4d)

d+2+n+1. When we substitute % = %(τ) we easily obtain item i)
of Proposition 4. ut

Lemma 2 For |ν| ≤ K, t, t′ ∈ T, σ, σ′ = 0,±1, we have:

|R%ν,t,t′,σ,σ′ | ≤ Cε
2nK−c(%−1) , (42)

where c = 1 if either σ = σ′ = 0 or if σ′ = 0 and t ∈ Tg or if t, t′ ∈ Tg.
If σ′ = 0 and t ∈ Tf then c = d−1

t , otherwise c = (dtdt′)
−1.

Proof We give a brief overview of the proof, the details are in the appendix.
The first remark is that all the resonant sets with |ν| ≤ S0 are empty since

formula (34) implies (40) provided that Kρ
0 is large enough.

Moreover if |u| := |ω · ν + σ|rt|2 + σ′|rt′ |2| > 2(2d+ 1)2Mε2q then the bounds
(40) hold trivially and the resonant sets are empty.

Indeed, by (33), we have |Ωt − |rt|2|∞ ≤ Mε2q and we have to invert some
matrix of the form u+ Z with Z a matrix of size p ≤ (2d+ 1)2 deduced from Ωt

in such a way that also |Z|∞ ≤ Mε2q. Since the operator norm of Z is bounded
by pMε2q if 2|Z|2 ≤ 2pMε2q ≤ |u| we invert in Neumann series and obtain
the estimate |(u + Z)−1|2 ≤ 2|u|−1 ≤ cost ε−2q. So we only need to consider
S0 ≤ |ν| ≤ K and given ν, t, t′, σ, σ′ we only need to work in the subset of ω where

|ω · ν + σ|rt|2 + σ′|rt′ |2| < 2(2d+ 1)2Mε2q. (43)

Remark 8 The condition |ν| > S0 is used so that one can perform the measure
estimates not on the set O but on its image Õ under ω, by multiplying by the dila-
tion constant. For this, an upper bound for the absolute value of the determinant
of the Jacobian of the inverse map is estimated, by Formula (33), as Lnε−2n(q−1).
This is justified by two remarks, first Õ is contained in a hypercube of length 2ε2q

and second the dilation constant is uniformly bounded in both ways.
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Then the basis of our measure estimates is Lemma 7 which shows how to
control the resonant set |f(ω)| ≤ α of a Ck function f provided that one has a
uniform lower bound on some derivative |∂hωf | with |h| ≤ k.

We now discuss each of the three inequalities of (40) separately, the technical
parts are in the appendix.

On F 0 (i.e. σ = σ′ = 0) the estimate is classical, see the appendix.
On F 0,1 we treat separately t ∈ Tf and t ∈ Tg. In the second case, since by

hypothesis the Ωt are self-adjoint one uses the typical KAM estimates on eigen-
values:

|ω · ν + λ
(i)
t | ≥ ε

2qK−% , ∀λ(i)
t ∈ spec(Ωt) , (44)

which are equivalent to the bounds (40) on the operator norm of the inverse matrix.
To estimate the measure of the resonant set of this case, one just passes to the
variables ω and then shows that the derivative of the small divisor is bounded
from below by S0/n, see the appendix.

Regarding the t ∈ Tf , we cannot bound the L2 norm with the eigenvalues since
they do not dominate the L2 norm and moreover may not be regular functions of
ξ.

We can obtain the bound (40), by requiring

|det(ω · ν +Ωt)| ≥ ε2qdtK−%+1 (45)

here dt is the dimension of the matrix Ωt.
The L∞ norm of the matrix we are inverting is estimated as lMε2q by the

two bounds (43) and (33). By Cramer’s rule, we have that (45) implies the bounds
(40) provided K0 is large enough (we use the exponent % − 1 in order to absorb
the constants). Thus the measure of Rν,t,σ is dominated by the measure of the
resonant set where (45) does not hold.

In this case again we obtain the measure estimates by a lower bound on some
derivative. We need to perform dt derivatives, thus we use the fact that all our
functions are at least Cdt .

We are left with the second Melnikov conditions σ, σ′ = ±1. If at least one of
the couple t, t′ belongs to Tf , following the same reasoning as in the case of σ′ = 0,
we impose

|det(ω · ν + L(Ωt) + σσ′R(Ωt′))| ≥ ε2qdtdt′K−%+1 (46)

By Cramer’s rule, since |ω ·ν+σ|rt|2+σ′|rt′ |2| is small and by the second bound on
(33), we have that (45) implies the bounds (40) provided K0 is large enough. This
means that the measure of Rν,t,σ is dominated by the measure of the resonant set
where (45) does not hold.

In this case in order to obtain the measure estimates, by a lower bound on
some derivative, we need to perform dtdt′ derivatives, thus we use the fact that all
our functions are at least Cdtdt′ ).

When both t, t′ ∈ Tg then the matrices we need to control are self-adjoint and
we bound their inverse by controlling the eigenvalues, namely we need a condition

|ω · ν + λ
(i)
t + σλ

(j)
t′ | ≥ ε

2qK−% ,

∀ σ = ± , λ(i)
t ∈ spec(Ωt) , λ

(j)
t′ ∈ spec(Ωt′) , (47)
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This measure estimate is done just as in formula (44), indeed one just passes to
the variables ω and then shows that the derivative of the small divisor is bounded
from below by S0/n, see the appendix. ut

Lemma 3 For all % and for all ν, t, t′, σ, σ′ such that |ν| ≤ K and σσ′ 6= −1 one
has taht the non-empty sets R%ν,t,t′,σ,σ′ belong to a finite list GK with cardinality
|GK | < Kp with p = n+ d

2 + 1.

Proof For the sets R%ν,t,σ we recall the conservation of momentum rt = −π(ν),
then a set is determined by |ν| < K and σ = 0,±1. We have at most 3(2K)n sets
of this type.

In the sets R%ν,t,t′,σ,σ′ we preliminarily notice that there are a finite number
of cases where at least one of the pair t, t′ belongs to Tf . Indeed let us suppose
that t ∈ Tf . Then |rt| < C0 � K0, rt′ is fixed by momentum conservation, θt′ is
chosen in the finite list Υ (see formula (69)) and the pair identifies the index t′.
Consequently we have at most |Υ |2(2C0)d(2K)n sets of this type.

We are left with R%ν,t,t′,σ,σ′ with both t, t′ ∈ Tg. We notice that

λ
(i)
t = |rt|2 + θt + λ̃

(i)
t , (48)

then if σ′σ = + the left hand side of (47) is trivially ≥ 1/2 for all ξ ∈ O, if
|rt|2 + |rt′ |2 ≥ 4K ≥ 2|ω||ν|and we only need to consider a finite number of t such
that |rt|2 ≤ 4K. Consequently we have at most |Υ |2(4K)d/2(2K)n non-empty sets
of this type. ut

Treating the case σ′σ = − is a well-known problem in the study of NLS
on Td which is overcome by exploiting the quasi–Töplitz property of the NLS
Hamiltonian.

As explained in Appendix B, given K we can construct a stratification Σ(K)

of Zd with the following properties.

Proposition 5 i) To each stratum Σ is associated an order parameter %Σ ≥ %0

which can be taken from the finite list %i = (4d)i%0, i = 1, . . . , d+ 1.
ii) For each t ∈ Tg, Dt belongs to a set Σt union of parallel strata each meeting

Dt in a single point, all of codimension ` ≤ dt − 1 whose union is a union
of translates Dt′ = Dt + u and with the same cut %Σ , moreover the eigenvalue
θ(k), k ∈ Σt depends only on t.

iii) If ` = 0 one has that the corresponding matrix (39) is invertible with the bounds
(40).

iv) If ` 6= 0 but π(ν) · v is not constant on each stratum again the corresponding
matrix (39) is invertible with the bounds (40).

Proof i) The order parameter is that of the cut %j associated to the points of Σ.
ii) Each Dt determines in the initial stratification a stratum for each of its points
of codimension dt − 1. The stratification Σ(K) is a refinement of he stratification
Σ0 of Proposition 1 so the properties follow from that. iii) If ` = 0 this means that
for every v ∈ BK we have |v · rt| > 4K4d%0 , in particular we have π(ν) ∈ BK so
|π(ν) · rt| > 4K4d%0 . iv) In this case by definition we have |π(ν) · rt| > 4K4d%

Σ ≥
4K4d%0 . So in both cases we need to observe that the matrix (ω ·ν+L(Ωt)−R(Ωt′)
has integral part j(2) · ν + |rt|2 − |rt′ |2 = j(2) · ν − |π(ν)|2 − 2π(ν) · rt since by
conservation of momentum π(ν) + rt − rt′ = 0.



Reducible quasi-periodic solutions for the NLS 21

Now , if |π(ν) · rt| > 4K4d%0 , we have ||π(ν)|2 + π(ν) · rt − j(2) · ν| ≥ |π(ν) ·
rt|− |π(ν)|2−|j(2)||π(ν)| > 4K4d%0 − 2K2 is a large positive integer and since the
remainder is small with ε2qM by formula (33), we can invert the matrix for all
ξ ∈ Om by Neumann series with a good estimate. ut

For each stratum Σ of the stratification of Ts, given in Remark 17, we choose one
representative tΣ (by fixing Dt

Σ
).

Then for each |ν| ≤ K such that π(ν) · x is constant for x on the stratum, we
proceed as follows:

– For each Σ we determine (if it exists) the unique t′ so that (rt′ , θt′) = (rt
Σ

+

π(ν), θ′);
– if t′ exists we impose

|(ω · ν + L(ΩtΣ ) + σσ′R(Ωt′))
−1| ≤ ε−2qK2d%

Σ .

The complementary of this set is by definition R
2d%

Σ

ν,tΣ,t′
and has measure of order

ε2nK−2d%
Σ , by Lemma 2. Now by Lemma 15 we have less than K(2d−2)%

Σ strata
of this type so setting

R :=
⋃
|ν|≤K

⋃
Σ,θ′

R
2d%

Σ

ν,tΣ,t′
(49)

we have

ε−2nK−n|R| ≤
∑
Σ,θ′

K−2d%
Σ ≤ |Υ |

d+1∑
j=0

K−2d%jK(2d−2)%j ≤ K−%0 .

Lemma 4 For all ν, t, t′ we have R
%d+2

ν,t,t′,σ,−σ ⊂ R.

Proof For each stratum Σ of Ts we have chosen a representative tΣ . Now for all
ν for which a small divisor may occur we have for the scalar products π(ν) · rt

Σ
=

π(ν) · rt for all t in this stratum. It then follows that

|Ωt −ΩtΣ |∞ = |Ω̃t − Ω̃tΣ |∞ ≤ ε
2qMK−4d%

Σ , ∀t ∈ Σ

by applying Lemma 16. Consequently for each pair t, t′ with t ∈ Σ, t′ ∈ Σ′ we
have

|(ω · ν + L(Ωt)−R(Ωt′))
−1| = |(ω · ν + L(ΩtΣ )−R(ΩtΣ′ ))

−1||(1 +A)−1|

with

A = (ω · ν + L(ΩtΣ )−R(ΩtΣ′ ))
−1(Ωt −ΩtΣ ) , |A| ≤MK−2d%

Σ

so that

|(ω · ν + L(Ωt)−R(Ωt′))
−1| ≤ 2ε−2qK2d%

Σ ≤ ε−2qK2d%
Σ

+1

In conclusion, since %Σ ≤ %d+1, we have proved our claim. ut
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Corollary 1 For % large enough, the measure of the union of all resonant sets
R%ν,t,t′,σ,σ′ with |ν| ≤ K is bounded by

ε2nK
− %

(4d)d+2 +n+1

Proof This follows by Lemmas 2 3 and 4. Indeed we fix %d+2 = % so that %0 =
%/(4d)d+2. Then the Lemmas imply that we need to remove a region of order

K
− %

(2d+1)2
+n+ d

2
+1

+K
− %

(4d)d+2 +n ≤ K−
%

(4d)d+2 +n+1
,

provided % and K are both large.

5 The normal form

We will work with many quadratic Hamiltonians in the variables w (thought of as
a row vector). We represent a quadratic Hamiltonian m F by a matrix F as

F(w) =
1

2
w · wJF t = −1

2
wFJwt , (50)

where J := −i{wt, w} is the standard matrix of the symplectic form.
By explicit computation, and under simple genericity conditions, we have:

N = ω(ξ) · y +
∑
k∈Sc

|k|2|zk|2 +Q(ξ;x,w) , ωi(ξ) := |ji|2 + ω
(1)
i (ξ) (51)

here Q(ξ;x,w) is a quadratic Hamiltonian in the variables w with coefficients
trigonometric polynomials in x given by Formula (30) of [13]. The frequency mod-
ulation ω(1) is homogeneous of degree q in ξ and given by the following explicit
formula. We introduce

Ar(ξ1, . . . , ξm) :=
∑

∑
i ki=r

(
r

k1, . . . , km

)2∏
i

ξkii . (52)

and we have
ω(1)(ξ) = ∇ξAq+1(ξ)− (q + 1)2Aq(ξ)1. (53)

By applying the results of [13] we decompose this very complicated infinite dimen-
sional quadratic Hamiltonian into infinitely many decoupled finite dimensional
systems reduced to constant coefficients by an explicit symplectic change of vari-
ables.

Since this construction is needed in the following we recall quickly Theorem 1
of [13].

Theorem 2 [Theorem 1 of [13]] For all generic choices S = {j1, . . . , jn} ∈ Znd
of the tangential sites, there exists a phase shift map L : Sc → Zn, L : k 7→
L(k) , |L(k)| ≤ 4qd such that the analytic symplectic change of variables:

Ψ : zk = e−iL(k)·xz′k, y = y′ +
∑
k∈Sc

L(k)|z′k|2, x = x′, (54)
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from D(s, r/2)→ D(s, r) has the property that N in the new variables:

N ◦ Ψ = ω(ξ) · y′ +
∑
k∈Sc

Ω̃k|z′k|2 + Q̃(w′) , (55)

has constant coefficients, where ω(ξ) is defined in (51) and furthermore:
i) Non-degeneracy The map (ξ1, . . . , ξm) 7→ (ω1(ξ), . . . , ωm(ξ)) is a local diffeo-
morphism for ξ outside a homogeneous real algebraic hypersurface.
ii)Asymptotic of the normal frequencies:We have Ω̃k = |k|2+

∑
i |ji|

2L(i)(k).
iii) Reducibility: The matrix Q̃(ξ) (see formula (50)) of the quadratic form
Q̃(ξ, w′) (see formula (64)) depends only on the variables ξ, its entries are ho-
mogeneous of degree q in these variables. It is block–diagonal and satisfies the
following properties:

All of the blocks except a finite number are self adjoint of dimension ≤ d+1.
The remaining finitely many blocks have dimension ≤ 2d+ 1.

All the (infinitely many) blocks are described, through Formula (50), by a
finite list of matricesM(ξ).
iv) Smallness: If ε3 < r < c1ε, the perturbation P̃ := P ◦ Ψ is small, more
precisely we have the bounds:

‖XP̃ ‖
λ
s,r ≤ C(ε2q−1r + ε2q+3r−1) , (56)

where C is independent of r and depends on ε, λ only through λ/ε2.

Regarding ω(1) given by Formula (53) we will need the following

Lemma 5 For each i the polynomial ω(1)
i (ξ) equals −q(q+ 1)ξqi plus terms which

contain at least two variables.

Proof We do it for i = 1 by symmetry. From ∇ξAq+1(ξ) the terms ξqj are obtained
by

∂ξ1(ξq+1
1 + (q + 1)2

∑
j 6=1

ξqj ξ1) = (q + 1)ξq1 + (q + 1)2
∑
j 6=1

ξqj .

From the second summand we subtract (q+1)2∑
j ξ
q
j getting the desired formula.

ut

5.1 The matrix blocks and the geometric graph ΓS

The quadratic Hamiltonian Q̃ is described, as we shall see in Formula (64), in
terms of a 2–colored marked graph ΓS with vertices in Zd and labels in Zn which
encodes the possible interactions between the normal frequencies k ∈ Sc. In order
to describe this in a combinatorial way we recall some notation from [13], see
Definition 8 for the meaning of the maps η, π, π(2).

Definition 14 (edges) Consider a finite set X of elements in Zn.

X := {` =
n∑
i=1

`iei, `i ∈ Z ` 6= 0,−2ei ∀i , η(`) ∈ {0,−2}}. (57)
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Notice the mass constraint
∑
i `i = η(`) ∈ {0,−2}. We call all these elements

respectively the black, η(`) = 0 and red η(`) = −2 edges and denote them by
X(0), X(−2) respectively.

Each edge carries a quadratic energy (which is an integer):

K(`) :=
1 + η(`)

2
(|π(`)|2 + π(2)(`)),

1 + η(`)

2
= ±1

2
.

Of particular interest for the q–NLS is

Xq := {` :=

2q∑
j=1

±eij =
m∑
i=1

`iei, ` 6= 0,−2ei ∀i , η(`) ∈ {0,−2}}. (58)

Choose now a finite set of integral vectors S := {j1, . . . , jn} in Zd. For the NLS
these are the tangential sites but the construction is purely geometric.

Definition 15 Given ` ∈ X(0) denote by P` the set of pairs h, k ∈ Zd satisfying:

n∑
j=1

`jjj + h− k = 0,
n∑
j=1

`j |jj |2 + |h|2 − |k|2 = 0 ` ∈ X(0). (59)

If ` ∈ X(−2) we denote by P` the set of unordered pairs {h, k}, h, k ∈ Zd satisfying:
n∑
j=1

`jjj + h+ k = 0,
n∑
j=1

`j |jj |2 + |h|2 + |k|2 = 0 ` ∈ X(−2). (60)

It is convenient to formalise this definition in the language of graphs with two
types of edges corresponding to the two conditions. When h, k satisfy formula
(59) we join them by an oriented black edge, marked `, with source h and target
k = h+

∑m
j=1 `jjj . Formula (60) is symmetric and we join h, k by an unoriented

red edge marked `.

Note that the two conditions have a geometric meaning expressed through the
quadratic energy. The first means that h lies on the hyperplane

H` : x · π(`) = K(`) (61)

while k lies on the parallel hyperplane H−`.
The second condition means that h, k are opposite points on the sphere

S` : |x|2 + x · π(`) = K(`). (62)

Our main object of interest are the connected components of this graph, called
geometric blocks. In [13] we have shown that for a generic choice of S the set S is
itself a connected component, called the special component all other components
thus decompose Sc.

Definition 16 For a given choice of edges X and vectors S we denote by ΓS,X
the resulting graph.

In the NLS, when q is fixed, we denote ΓS := ΓS,Xq

Remark 9 Note that if S ⊂ S′ and X ⊂ X ′ we have ΓS,X ⊂ ΓS′,X′ .
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Proposition 6 For generic choices of S the connected components of ΓS,X have
at most 2d+ 1 vertices.

We have only finitely many components containing red edges, moreover the
components which do not contain any red edge have vertices which are affinely in-
dependent (and hence at most d+1) and are naturally decomposed in a finite family
of subsets in each the connected components are obtained from one by translation.

Proof Our graph is a subgraph of the graph defined in [13] relative to the edges
of some Xp provided that we choose p large enough. Then by Theorem 3 of [13]
for generic choices of ji we have the desired bound. ut

In [13], Definition 17, we have associated to each connected component A a
purely combinatorial graph A which contains only the markings of the edges of A
and hence encodes the information on the equations which the vertices of A must
solve (equations (61) of [13]) of type as (61) and (62). We then have that there are
only finitely many such combinatorial graphs, called combinatorial blocks, while
there may be infinitely many A which have the same A. In case the graph has
no red edges the equations for the vertex x are all linear. This implies that the
connected components of ΓS which correspond to a given combinatorial graph
with only black edges and with a chosen vertex are all obtained from a single one
by translations by vectors which are orthogonal to the edges of the graph.

We also have chosen a preferred vertex, called the root, in each connected
component, in such a way that the roots of the translates are the translates of this
root. Formalizing:

– we have a map r : Sc → Sc with image the chosen set Sc,r of roots.
– The fibers of this map are the connected components of the graph ΓS .
– When we walk from the root r(k) to k the parity ±1 of the number of red

edges on the path is independent of the path and we denote it by σ(k) (the
color of k).

– There are only finitely many elements k with σ(k) = −1, the finitely many
corresponding roots are exactly the roots of the components with red edges.

– In any case the color of the root is always 1 (black).

The vector L(k) =
∑
Li(k)ei, with k ∈ Sc, appearing in Theorem 2 is defined

in Lemma 10 of [13] through the edges appearing in a path from the root to k. It
depends only on the combinatorial graph. The vector L(k) tells us how to go from
the root of the component A of the graph ΓS to which k belongs, to k, namely:

k +
∑
i

Li(k)ji = σ(k)r(k) , |k|2 +
∑
i

Li(k)|ji|2 = σ(k)|r(k)|2 ,

1 +
∑
i

Li(k) = σ(k). (63)

This definition is well posed even if A is not a tree, so that one can walk from r(k)
to k in several ways, from our genericity conditions.
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5.1.1 The NLS graph

We now apply the previous geometric construction to the NLS and the tangential
sites S of Theorem 2. With the previous notations we have

Q̃ =
∑
k∈Sc

ω(1)(ξ) · L(k)|z′k|2 +
∑
`∈X0

q

cq(`)
∑

(h,k)∈P`

z′hz̄
′
k

+
∑

`∈X−2
q

cq(`)
∑

{h,k}∈P`

[z′hz
′
k + z̄′hz̄

′
k]. (64)

where, given an edge `, we set ` = `+ − `− and define:

cq(`) :=



(q + 1)2ξ
`++`−

2

∑
α∈Nm

|α+`+|1=q

(
q

`+ + α

)(
q

`− + α

)
ξαi ` ∈ X0

q

(q + 1)qξ
`++`−

2

∑
α∈Nm

|α+`+|1=q−1

(
q + 1

`− + α

)(
q − 1

`+ + α

)
ξαi ` ∈ X−2

q

(65)

We see now that the graph has been constructed in order to decouple Q̃ =∑
A Q̃A. The sum runs over all geometric blocks A ∈ ΓS and, if Eb(A), Er(A)

denotes the set of resp. black and red edges in A:

Q̃A :=
∑
k∈A

ω(1)(ξ) ·L(k)|z′k|2 +
∑

`∈Eb(A)

cq(`)z
′
hz̄
′
k+

∑
`∈Er(A)

cq(`)[z
′
hz
′
k+ z̄′hz̄

′
k] (66)

is a quadratic Hamiltonian in the variables w′A := z′k, z̄
′
k with k running over the

vertices of A, we have {Q̃A, Q̃B} = 0, ∀A 6= B. In [13] we have shown that

Proposition 7 For each geometric block A (with a vertices) we can divide the
corresponding 2a dynamical variables w′A into two conjugate components w′A =
(u′, ū′) each spanning a Q̃A stable Lagrangian subspace where u′k = zk if σ(k) = 1,
u′k = z̄k if σ(k) = −1. In this basis −iQ̃A has a block matrix CA ⊕ −CA. By
convention in the first block the root r corresponds to z′r.

Given two vertices h 6= k ∈ A we have that the matrix element cu′h,u′k of CA is
non zero if and only if h, k are joined by an edge (marked say (i, j)) and then

cu′h,u′k = σ(k)cq(`), cu′k,u′k = σ(k)(ω(1)(ξ), L(k)). (67)

By definition L(k) depends only on the combinatorial graph A of which A is
a realization, therefore the matrix CA = CA depends only on the combinatorial
block A (but the dynamical variables in −iQ̃A depend on the geometric block).

We thus finally have a finite list G := {A1, . . . ,AN} of combinatorial graphs
which may appear, together with a list of matrices CAi which are explicitly de-
scribed using Formula (67). The entries of these matrices are polynomials in the
elements

√
ξi and homogeneous of degree q in ξ.
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5.1.2 The space F 0,1

In the KAM algorithm we shall need to study in particular the action by Poisson
bracket of N on a special space of functions (linear Hamiltonians on ¯̀(a,p)) called
F 0,1 defined in [13], for the readers convenience we recall the basic facts.

It is convenient to write a variable z or z̄ as zσ where σ is 1 resp. −1.

Definition 17 We set F 0,1 to be the space of functions spanned by the basis
elements eiσσ(k)ν·xz′k

σ = eiσ([σ(k)ν+L(k)]·x)zk
σ, k ∈ Sc which preserve mass and

momentum. 7

One easily sees that F 0,1 is a symplectic space under Poisson bracket. The formulas
for mass and momentum in the new variables are for m := eiσσ(k)ν·xz′k

σ.

{L,m} = iσσ(k)(
∑
i

νi + 1)m, {M,m} = iσσ(k)(
∑
i

νiji + r(k))m. (68)

hence the conservation laws tell us that for an element eiσσ(k)ν·xz′k
σ ∈ F 0,1 the

vector ν ∈ Zd is constrained by the fact that −
∑
i νiji must be in the set of roots

in Sc and moreover the mass constraint
∑
i νi = −1.

For each connected component A of the graph ΓS with root r, any solution
ν of

∑
i νiji + r = 0, where the mass of ν is −1, determines in F 0,1 a block

denoted A, ν. This is a symplectic space sum of two Lagrangian spaces (A, ν)+

and (A, ν)− = (A, ν)+. (A, ν)+ has basis the elements eiσσ(k)ν·xz′k
σ(k), k ∈ A.

Thus F 0,1 decomposes as orthogonal sum (with respect to the symplectic form),
of these blocks A, ν. Notice that, for a given geometric block A there are infinitely
many blocks A, ν as soon as n > d.

Proposition 8 The matrix of −i ad(N ) on the block (A, ν)+ is the sum of the
matrix CA plus the scalar matrix [(|r(m)|2 +

∑
i νi|ji|

2) + ω(1)(ξ) · ν] IA.

Proof The action of −iQ̃ does not depend on ν, it is only through −iQ̃A and gives
the matrix CA. As for the elements −i[ω(ξ) ·y′+

∑
k∈Sc Ω̃k|z

′
k|2] by Formula (63),

the term −i
∑
k∈Sc Ω̃k|z

′
k|2 contributes on the first block the scalar |r(m)|2. As of

−iω(ξ) · y′ it also contributes by a scalar, this time (
∑
i νi|ji|

2 + ω(1)(ξ) · ν). ut

6 Normal form reduction

6.1 Fitting decomposition

Let us recall some basic definitions of linear algebra, given a linear operator A :
V → V where V is a finite dimensional vector space over a field F (we will
work on function fields so of characteristic 0), we have the Jordan decomposition
A = As + An where As is semisimple and An nilpotent with [As, An] = 0. Such
a decomposition is unique so that As is called the semisimple part of A and An
the nilpotent part. Semisimple may be defined in several ways but for us means
that As is diagonalizable, not necessarily over F but in some finite extension field
G ⊂ F which contains the eigenvalues of A (which are in fact the same as the

7 we deviate from the notations of [13] and in F 0,1 we also impose zero mass
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eigenvalues of As). The characteristic polynomials of A and As coincide, on the
other hand As satisfies its minimal polynomial which has coefficients in F and as
root all the eigenvalues with multiplicity 1.

If F contains the eigenvalues of A, call the distinct eigenvalues α1, . . . , αi,
each may appear with some multiplicity, we have the Fitting decomposition of
V = ⊕iVαi where each Vαi is a uniquely determined subspace which is stable
under A and where A has the unique eigenvalue αi. It is easily seen that in fact
Vαi is just the eigenspace of As for the eigenvalue αi.

In our case we are interested in matrices C(ξ) depending in a polynomial way
from the parameters

√
ξi, we may consider the field F of rational functions in

these parameters so that A = C(ξ) is a matrix of some size p, with coefficients in
F , denote by Mp(F ) the space of these matrices.

Take the Jordan decomposition and notice that, in this decomposition, As has
no more polynomial entries but may acquire denominators. Then we have some
finite field extension G ⊃ F and a matrix X ∈ Mp(G) such that XC(ξ)X−1 is a
block diagonal form ⊕Ci with Ci ∈Mpi(G) has a unique eigenvalue αi ∈ G and the
various eigenvalues are distinct. In fact X is defined up to a scalar multiplication
so that we may further assume that all the entries of X are integral over the ring
of polynomials in the ξi, that is satisfy each some monic polynomial (dependent
of the entry) tN + a1t

N−1 + . . .+ aN where the coefficients ai are polynomials in
the ξ.

Now we have to interpret G as field of algebraic functions in the parameters ξ,
this follows a standard path. The distinct eigenvalues are solutions of the minimal
polynomial, then by removing the discriminant (which gives a algebraic hyper-
surface) on the complement these are distinct as functions, then one can further
remove some real algebraic variety, which we may assume to be homogeneous, so
that the open components of the complement are all simply connected (this follows
for instance from the fact that one has an algebraic triangulation of the sphere
such that it also triangulates the intersection of all these algebraic hypersurfaces
with the sphere, then one takes the corresponding cones of the open triangles [5]).
As a result we have that we may remove from the space of parameters ξ (which
for us are real parameters) some algebraic hypersurface (of course real), such that
outside this hypersurface the entries of X are true functions, which are as we have
said algebraic so analytic, and integral in the sense explained, and finally assume
distinct values for each value of ξ outside these algebraic hypersurfaces. Of course
once we remove an algebraic hypersurface the complement is open and dense.

If A ∈ End(V ) is a linear map and we decompose V = ⊕αVα into a Fitting
decomposition, we have for the linear operator ad(A) : X 7→ [A,X], on the space
End(V ) of linear maps on V , the following facts.

ad(A)s = ad(As), ad(A)n = ad(An).

The Fitting decomposition of End(V ), under ad(A), is deduced from the decom-
position in blocks induced by V = ⊕αVα that is first

End(V ) = ⊕α,β hom(Vα, Vβ).

The subspace hom(Vβ , Vα) is relative to the eigenvalue α−β so that ad(A) on this
space acts as (α− β)Id+ ad(An). The map ad(An) is nilpotent, in fact if Akn = 0
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we have ad(An)2k = 0. So for the off diagonal blocks, α 6= β we have ad(A) on
such a block is invertible with inverse

(α− β)−1(1 +

2k−1∑
j=1

(−1)j [
ad(An)

(α− β)
]j).

It is possible that for different eigenvalues we may have α1 − β1 = α2 − β2 so
that this decomposition in general refines, but need not be equal, to the Fitting
decomposition of ad(A).

6.1.1 Blocks and matrices

We now apply this analysis to the finitely many matrices CAi associated to the
list G := {A1, . . . ,AN} of combinatorial graphs which may appear.

Thus we have finitely many distinct eigenvalues (with some multiplicity) of this
finite list of matrices, which are algebraic functions of the parameters ξ and defined
outside some homogeneous algebraic hypersurface. To make the discussion precise
from now on one may remove from Rn a homogeneous real algebraic hypersurface
so that the connected components of the complement are all simply connected,
and so that the distinct eigenvalues are functions in each component and with
distinct values pointwise (see §6.1).

We fix one of these open simply connected regions, call it Rα in which these
algebraic functions are well defined and then we denote this list of functions by

Υ := {θ1, . . . , θO}. (69)

Contrary to what happens for the cubic NLS we may have various kinds of degen-
eracies in these eigenvalues, one eigenvalue may appear in two different matrices
CAi and with multiplicity > 1. This is discussed in §6.1 and 7.1.

Later we will need to restrict to some compact domain in one of the Rα ∩ Λ
in order to make estimates on the derivatives.

Decomposing N . We now want to simplify N by applying the Jordan and Fitting
decomposition to the quadratic Hamiltonians Q̃A. In oder to do this we first write
Q̃A = Q̃sA + Q̃nA so that Q̃sA and Q̃nA commute, Q̃sA is represented by a semi-
simple matrix and Q̃nA is represented by a nilpotent matrix. Note that, since Q̃A
is a polynomial in

√
ξ, then both its nilpotent and semi-simple part are rational

functions in
√
ξ, so they are analytic outside an algebraic hypersurface (cf. §6.1).

Clearly Q̃s =
∑
A Q̃

s
A and the matrix 1

2Q
s
A = CsA ⊕ (−CsA) where CsA is the

semi-simple part of CA.
Notice that all the Q̃A such that A does not have red edges are represented

by self-adjoint matrices and hence do not contribute to Q̃n. Moreover since K and
ω(1)(ξ) · y′ commute with N we can decompose N = N s +Nn (semi-simple and
nilpotent parts) where Nn = Q̃n and {N s,Nn} = 0.

We put N s in normal form by reducing each of the CsA. This means that we
only need to work on a finite number of matrices.
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Proposition 9 There exists a homogeneous algebraic hypersurface A such that the
open region Rn\A decomposes into finitely many simply connected components Rα
with the following property:
For each combinatorial graph A the eigenvalues of the matrix CA, are algebraic,
hence analytic, functions of ξ say θ1, . . . , θk which are homogeneous of degree q.

For all ξ ∈ Rn \ A there exists a linear symplectic change of coordinates u′ →
UA(ξ)u′ = u′′ such that:

1. UA(ξ) is unitary with respect to ΣA and it can be chosen homogeneous of
degree zero in ξ.

2. UA(ξ) is analytic in ξ.
3. UA(ξ) conjugates CA into a Fitting normal form: that is a block diagonal

matrix such that each block has a unique eigenvalue.
More precisely for each real eigenvalue θ , CsA acts as θI on the eigenspace of

θ.
For each pair of conjugate complex eigenvalues θ± = a ± ib, of multiplicity k

we have a real 2k dimensional space such that the two complex eigenvectors lie in
its complexification. Then we have a basis of this subspace such that CsA restricted
to this subspace is a 2× 2 block matrix(

aIk −bIk
bIk aIk

)
.

The matrix σA of the standard form on this basis is diag(Ik,−Ik).

Note that two eigenvalues which are distinct as functions of ξ can be assumed to
be distinct for all values of the parameters ξi ∈ Rn \ A.

Change of variables. For each geometric block A we have the two Lagrangian
blocks of variables where the Hamiltonian Q̃A acts by Poisson bracket with the
matrix CA⊕(−CA), we thus perform on the two Lagrangian blocks the symplectic
change of variables induced by the matrix UA which puts into Fitting decomposi-
tion CA. This is by construction a symplectic change of variables and we call with
w′′ the new variables obtained. In these new variables we have a further decoupling
of each Q̃A as a sum Q̃A =

∑
θ Q̃A,θ, since the component A is determined by its

root r we denote also Q̃A,θ = Q̃r,θ.
For the A with no red edges the variables u′k = z′k. So it is obvious that

w′′ = (Uz′, Ū z̄′). In general we have always w′′ = (Uu′, Ū ū′) but we should specify
which of the u′′k have σ(k) = 1 or −1. We notice that by definition {u′k, ū′h} =
iδhkσ(k) and since U is unitary with respect to ΣA =diag (σ(k))k∈A then also
{u′′k , ū′′h} = iδhkσ(k), so we still may say that u′′k = (z′′)

σ(k)
k . By abuse of notation

we still call x, y, zk, z̄k the new variables.
Since UA mixes only the variables u and since L,M,K are scalar on the com-

ponents u then in the new variables we have still

L =
∑
i

yi +
∑
k

σ(k)|zk|2 , M =
∑
i

jiyi +
∑
k

σ(k)r(k)|zk|2 , (70)

K =
∑
i

|ji|2yi +
∑
k

σ(k)|r(k)|2|zk|2. (71)
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Definition 18 We denote by Sc the set of pairs r, θ where r is a root of a block
A in the geometric graph while θ is one of the eigenvalues appearing in the corre-
sponding Fitting decomposition of A.

After the change of variables the new basis is still indexed by convention by the
set Sc. Then Sc is decomposed as a union of finite blocks Scr,θ corresponding to
the elements of Sc. Notice that only finitely many of the blocks indexed by Sc

contain k with σ(k) = −1. Therefore all Q̃r,θ, except finitely many, have the form,
Q̃r,θ = θ(

∑
k∈Sc

r,θ
|zk|2).

The finite bad blocks have still a semisimple part Q̃sr,θ = θ(
∑
k σ(k)|zk|2) and∑

k∈Sc
r,θ
σ(k)|zk|2 acts as the scalar i,−i on the two corresponding Lagrangian

spaces, since a basis of one of them is zσ(k)
k , k ∈ Scr,θ (and the other the conjugate).

The normal form N is

N = K + K1 , K1 = (ω(1), y) +
∑

(r,θ)∈Sc
Q̃r,θ (72)

where the decoupled quadratic Hamiltonian Q̃r,θ corresponds to the block of the
Fitting decomposition, of eigenvalue θ, of the matrix CA.

Remark 10 For a given k it is useful to denote by θ(k) the corresponding eigen-
value. Note that the map k 7→ θ(k) depends only on the combinatorial graph.

In order to keep track of the information on the eigenvalue in the geometric
and combinatoric graphs, we mark each vertex with its eigenvalue θ(k).

7 the kernel of ad(N )

We now study the subspace of regular analytic Hamiltonians of degree ≤ 2 which
Poisson commute with N , M, L for generic values of ξ. Note that they must
commute separately with K and K1 since they are homogeneous of degree 0,q
respectively in ξ.

Degree zero in w: This space, which we denote by F 0 can be divided into
F 0,0 ⊕ F 1,0 with basis eiν·x and eiν·xyl. Since monomials are eigenvectors of all
the operators we need to verify when all the eigenvalues are identically zero.

0 = {L, eiν·x} ⇐⇒ i
∑
i

νi = 0 , 0 = {M, eiν·x} ⇐⇒ i
∑
i

νiji = 0 ,

0 = {K, eiν·x} ⇐⇒ i
∑
i

νi|ji|2 = 0 , 0 = {K1, eiν·x} ⇐⇒ i(ω(1), ν) = 0.

The last condition implies that ν = 0, by 5. The same rules hold if the monomial
has degree one in y. Hence the Kernel of ad(N ) is x independent and hence of the
form c+

−→
C · y.

Degree one in w:We analyze the action of ad(N ) on a block of the space F 0,1

given by an element of Sc. Given k ∈ Scr in this block the monomial eiσσ(k)ν·xzσk is
an eigenvector for all our operators, by conservation of L, M we have

∑
i νi + 1 =

0,
∑
i νiji + r(k) = 0 and with eigenvalue for K:

{K, eiσσ(k)ν·xzσk } → iσσ(k)(
∑
i

νi|ji|2 + |r(k)|2) ,
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as for K1 we have the diagonal contribution

{ω(1) · y, eiσσ(k)ν·xzσk } → iσσ(k)ω(1) · y

plus the contribution of the term Q̃r,θ. Now we claim that we may assume that
the determinant of the matrix of ad(N ) is non-zero as a function in ξ. This is clear
if the scalar part

∑
i νi|ji|

2 + |r(k)|2 6= 0. Since we are working in the space where
we have the constraint

∑
i νiji + r(k) = 0 this condition amounts to ask that∑

i

νi|ji|2 + |
∑
i

νiji|2 6= 0. (73)

We then choose our tangential sites ji satisfying this constraint for all ν with
coordinates |νi| ≤ a where a ≤ 4dq is a common bound for the absolute value
of the coordinates of each L(k) (which form a finite list). We then claim that for
the remaining ν the matrix CA has non–zero determinant, as polynomial in ξ. For
such a ν we have some coordinate νi with |νi| > a, we may assume that it is ν1

then set ξj = 0, ∀j 6= 1 and verify that still the determinant of the specialyzed
matrix is 6= 0. All the off diagonal entries, which are given by formulas (65) vanish
since they all contain at least 2 variables ξ due to Formula (57).

From Lemma 5, when we set ξj = 0, ∀j 6= 1 we get ω(1) = −q(q + 1)ξq1e1.
To prove our claim we need to analyze in more detail the matrix CA in par-

ticular its diagonal part which, from Formula (66) comes from ω(1)(ξ) · L(k)|z′k|2.
Finally after the specialization the diagonal matrix has entries a non zero con-
stant times ξq1(ν1 − L1(k)) which is non–zero by our constraint on ν1 since the
coordinates of each L(k) are in absolute value bounded by a.

We have proved that for all ξ outside a countable set of algebraic hypersurfaces
the kernel of ad(N ) is zero on functions of degree one commuting with L,M.

Since the determinants depend only on the semi–simple part we have the same
statement also for N s,

Remark 11 Note that the genecirity constraints (73) can be imposed since they
are not zero as functions of ji, indeed the only trivial case is when ν = −ei which
contradicts r ∈ Sc. Actually constraints like (73) appeared already in [13].

Degree two in w: We denote this space by F 0,2. We do not exhibit explicitly
such a kernel (since we do not control the nilpotent part of N ). We observe that
ker(ad(N )) is contained in ker(ad(N s)) which now depends only on the eigenval-
ues. The eigenvectors of degree two for ad(N s) in w are obtained by multiplying
eigenvectors of degree one in all possible ways and the eigenvalues are sums of two
eigenvalues. Since each eigenvalue appears together with its negative in the kernel
we have the following two cases. This depends on wether we pair (ν1, A1)+ with
(ν2, A2)+ (then we set ν = ν1 + ν2 ) or we pair (ν1, A1)+ with (ν2, A2)− (and we
set ν = ν1 − ν2).
Case 1: ∑

i

νi = −2 ,
∑
i

νiji + r(h) + r(k) = 0

∑
i

νi|ji|2 + |r(h)|2 + |r(k)|2 , ω(1)(ξ) · ν + θh + θk = 0 . (74)
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Case 2: ∑
i

νi = 0 ,
∑
i

νiji + r(h)− r(k) = 0.

∑
i

νi|ji|2 + |r(h)|2 − |r(k)|2 = 0 , ω(1)(ξ) · ν + θh − θk = 0 . (75)

Remark 12 Of course in the kernel we always have the case ν = 0, therefore we
are in Case 2 with r(h) = r(k) and h, k in the same Fitting block.

On the other hand we may have a kernel arising from different Fitting blocks and
also with ν 6= 0. We want to encode this phenomenon in a new graph, whose edges
we denote by Y = Y 0 ∪ Y −2, and defined as follows.

7.1 The graph Γ (f)
S

Definition 19 We say that ` ∈ Zn \ {0} is an edge ` ∈ Y 0 if η(`) =
∑
i `i = 0

and we can obtain ω(1)(ξ) · ` as difference of two eigenvalues of the list (69) (of the
matrices CA).

We say ` ∈ Zn is an edge ` ∈ Y −2 if η(`) =
∑
i `i = −2, ` 6= −2ei (i = 1, . . . , n)

and we can obtain ω(1)(ξ) · ` as sum of two eigenvalues of the list (69).

Remark 13 i) Notice that ` is uniquely determined by the polynomial ω(1)(ξ) · `
since −q(q + 1)`i is the coefficient of ξqi , see Lemma 5.

ii) We notice that Y depends only on the structure of the matrices CA which form
a list of matrices associated to finitely many combinatorial graphs and do not
depend on the choice of the ji.

iii) Then Y is contained in the set of edges Xp (see Definition 57) for some p
sufficiently large.

iv) Notice that in the case of complex eigenvalues we must have that the imaginary
parts cancel.

The basic stratification. The geometric graph ΓS,Xq∪Y is now used to define the
basic stratification of Zd of which all the stratifications used in proposition 1 form
a refinement.

The construction of the stratification is explained in [15], we take as single
point strata all the points in the finite graphs with red edges. Then the graphs
with only black edges come into a finite family such that the graphs of each family
are all isomorphic and obtained each from the other by a translation. The set of
translations, for a given graph Γ with a+ 1 affinely independent points is defined
as follows, one chooses a root r ∈ Γ and takes the subgroup of elements u ∈ Zd
orthogonal to the a linearly independent elements x − r, x ∈ Γ \ {r}. Then
generically Γ + u is still a connected component of the graph ΓS,Xq∪Y while for
some special u this translate is contained in a larger connected component.

Definition 20 The stratum associate to a point k lying in a graph Γ with only
black edges is then defined by taking all the points h = k+u lying in an isomorphic
graph Γ + u connected component of ΓS,Xq∪Y .
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The graph Γ̃S,Xq∪Y . Starting from the geometric graph ΓS we construct a new
geometric graph, which we denote by Γ̃S,Xq∪Y , with vertices in Sc and edges
Xq ∪ Y . This is obtained from the geometric graph ΓS,Xq∪Y , which contains the
graph ΓS by keeping only the new edges which connect two roots (of ΓS) with the
following constraints.

As explained in Remark 10 we have marked each vertex in Sc with its eigenvalue
θ(k) ∈ Υ . Consider any two connected components A,B of ΓS with roots r, r′:

Definition 21 If r, r′ are connected in ΓS,Xq∪Y by a black oriented edge marked
` ∈ Y 0, that is∑

i

ji`i + r− r
′ = 0 ,

∑
i

|ji|2`i + |r|2 − |r′|2 = 0 , (76)

we keep this edge in Γ̃S,Xq∪Y if and only if there exists k ∈ A and h ∈ B such
that

ω(1)(ξ) · `+ θ(k)− θ(h) = 0.

If r, r′ are connected in ΓS,Xq∪Y by a red edge marked ` ∈ Y −2 that is∑
i

ji`i + r + r
′ = 0 ,

∑
i

|ji|2`i + |r|2 + |r′|2 = 0 , (77)

we keep this edge in Γ̃S,Xq∪Y if and only if there exists k ∈ A and h ∈ B such
that

ω(1)(ξ) · `+ θ(h) + θ(k) = 0.

Remark 14 If r, r′ are connected by a black oriented edge marked ` then r′, r are
connected by a black oriented edge marked −`, for red edges instead the relation
is symmetric.

Notice moreover that for most points k ∈ Sc, in fact outside finitely many
hyperplanes plus a finite set, one has r(k) = k and θk = 0.

Proposition 10 The connected components of Γ̃S,Xq∪Y for generic choices of S
have at most 2d + 1 vertices moreover the components which do not contain any
red edge have vertices which are affinely independent (and hence at most d+ 1).

Proof Our graph is a subgraph of ΓS,Xq∪Y and we may apply Proposition 6. ut

Some geometry.

Remark 15 There is an equivalent way of looking at this construction, the condi-
tions of Definition 21, define a graph, called the root graph, with vertices the roots
r and edges in Y , a connected component of the graph Γ̃S,Xq∪Y is obtained by a
connected component C of this graph with vertices roots, by taking the union of
the components of ΓS with root r ∈ C.

Then we see the following important fact. In Γ̃S,Xq∪Y the components containing
only black edges are clearly obtained by the previous gluing construction from all,
except finitely many, the connected components of ΓS containing only black edges.
In other words we have a set Scg, complement of a finite set, formed by all vertices
of the connected components of Γ̃S,Xq∪Y containing only black edges.
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We have that these components come into a finite family of usually infinite
sets each obtained by translations from some subgroup of a given component.

We then have a linear stratification of Zn, which we still denote by Yj , in which
the roots of the components are a union of strata.

So a stratum Y of roots of dimension k determines a subgroup Λ of Zn of
translations, of its closure, of rank k and for any r ∈ Y we have that Y = Λ\Λ′+r

where Λ′ is a finite union of subgroups of Λ or rank stricly lower than k.
For a given stratum Y of roots, the graphs having roots in Y are all isomor-

phic as combinatorial graphs marked by the elements θ under translation by the
difference of the roots their union form a union of strata parallel to Y (i.e. inside
cosets of Λ).

Definition 22 [Final graph] Notice that this construction induces a graph Γ (f)
S

also on the set Sc, see 18 of pairs (r, θ). We define that (r, θ), (r′, θ′) are connected
if r, r′ are connected and θ(k) = θ, θ(h) = θ′ for some k, h with r(k) = r, r(h) = r′.

In this graph then the eigenvalues θ, θ′ are either both real or both complex. In
the case of complex eigenvalues we must note that if (r, θ), (r′, θ′) are connected
then so are (r, θ̄), (r′, θ̄′).

Lemma 6 If (r, θ), (r′, θ′) are connected by a path of edges then they are connected
by an edge. Such edge is black if the path contains an even number of red edges
and is red otherwise.

Proof We only need to prove our statement when the path is made of two edges.
Suppose (r, θ), (r1, θ1) are connected by the edge ` and (r1, θ1) is connected to
(r′, θ′) by `′. If ` and `′ are both black we have θ1 − θ = (ω(1)(ξ), `) and θ′ − θ1 =
(ω(1)(ξ), `′) which implies that θ′ − θ = (ω(1)(ξ), ` + `′) an hence ` + `′ ∈ X. In
the same way:∑

i

ji`i + r− r1 =
∑
i

ji`
′
i + r1 − r

′ = 0 →
∑
i

ji(`i + `′i) + r− r
′ = 0,

same for the quadratic formulae. We have proved that (r, θ), (r′, θ′) are connected
by a black oriented edge marked `+ `′. Similarly if `, `′ are red then (r, θ), (r′, θ′)
are connected by a black oriented edge marked `− `′. Finally if ` is red and `′ is
black (r, θ), (r′, θ′) are connected by a red edge marked `− `′. ut

We need now some further constraints of the frequencies j. Since we have seen
that this final graph does not depend on S we can impose the condition that
(r, θ), (r, θ′), θ 6= θ′ is never connected by an edge, since we may assume that, if
θ ± θ′ = (ω(1)(ξ), `) we have always ` · j 6= 0.

Then we have

Proposition 11 The projection (r, θ) 7→ r is a map of the graph Γ (f)
S to ΓS,Xq∪Y .

It maps thus a connected component injectively into a connected component.

In each connected component D of Γ (f)
S we now want to choose a root, we do

this by choosing as root a pair (r, θ) with r a root of a components A of ΓS , in other
words we choose a root of the component of the root graph, in order to distinguish
this from the other pairs appearing we shall use the symbol t := (rt, θt). By the
previous remarks we can make this choice translation invariant for the components
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with black edges, we always make this choice. We shall denote this last set of roots
by T which therefore is an indexing set for the connected components of Γ (f)

S .
It is important to remark that we can divide T into a finite set Tf (which

contains all the bad blocks) and the infinite good set Tg which by definition is the
part which projects to the part of Γ̃S,Xq∪Y made of the components containing
only black edges.

By Lemma 6 each vertex (r, θ) of the chosen component D is connected to the
root t by an edge `(r, θ).

Given a root t ∈ T let us denote by Dt the corresponding component of Γ (f)
S

and by Dt, the support of Dt to be the set of the k ∈ Sc such that (r(k), θk) ∈ Dt.
Notice that by construction this is a union of some of the subsets Scr,θ defined by
the Fitting decomposition. If k ∈ Dt we set t(k) = (rt(k), θt(k)) := t. In general
rt(k) 6= r(k), θt(k) 6= θ(k).

Corollary 2 The sets Dt decompose the connected components of Γ̃S,Xq∪Y . This
decomposition of the components with only black edges is invariant under transla-
tions.

Set `k through the Formulas

j · `k + r(k) = (η(`k) + 1)rt(k), ω(1)(ξ) · `k + θ(k) = (η(`k) + 1)θt(k). (78)

We also define a new color s(k) := σ(k)(η(`) + 1) = ±1. Note that we can re-
formulate the Formulas (63), in terms of Lk, `k, s(k), t(k) by substituting in those
Formulas the expressions given in Formulas (76), (77).

We see now that we have a parallel with 15. Take a degree 2 monomial m
product of two eigenvectors as in the previous discussion.

Proposition 12 A monomial m = eiν·xzσhz
σ′

k with ν 6= 0 is in the kernel of
ad(N s) if and only if (r(h), θh), (r(k), θk) are connected by an edge ` and ν = ±`
(here the sign is determined by σ, σ′σ(k), σ(h)).

In Formula (74) the edge is a red edge while in Formula (75) it is a black edge.

Proof We apply the commutation rules; we only need to show that the possible
monomials have ν 6= −2ei for all i. Indeed in this case we see that the equations
for the conservation of M and K have the unique solution r(h) = ji /∈ Sc, a
contradiction. ut

7.2 A new phase shift

At this point we can perform a new symplectic change of variables which is done
with the same method of phase shift as in Formula (54).

We now define Ψ :

zk = e−iσ(k)`k·xz′k , ∀k ∈ Sc ,

x = x′ , y = y′ +
∑
k∈Sc

σ(k)`k|z′k|2 .

Proposition 13 i) Ψ is symplectic analytic and leaves M,L,K,K1 and N in
normal form. ii) For any function f ∈ Rs,r of degree ≤ 2 and such that f Poisson
commutes with N s we have that f ◦ Ψ does not depend on x.
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Proof We first prove item ii). Since f is an absolutely convergent sum of monomials
we only need to prove our claim on single monomials m. If the degree in w is zero
or one the statement follows trivially (by substituting the new variables). In case
of degree two we substitute and get in one case

eiσσ(h)ν·xzσhz
σ′

k = ei(σσ(h)ν−σσ(h)`(h)−σ′σ(k)`(k))·x(z′)σh(z′)σ
′

k = (z′)σh(z′)σ
′

k

by applying Lemma 6 to the vertices (R, t), (r(h), θh), (r(k), θk) and recalling that
the last two vertices are joined by an edge marked ν. The other case is identical.

It is possible that f contains monomials with ν = 0. Then by Remark 12
(r(h), θh) = (r(k), θk) and σσ(h) = σ′σ(k) and such term remains x independent.

i) We can compute the new Hamiltonians explicitly by substitution:

L =
∑
i

yi +
∑
k

σ(k)|zk|2 =
∑
i

y′i +
∑
k∈Sc

σ(k)η(`k)|zk|2 +
∑
k

σ(k)|zk|2

=
∑
i

y′i +
∑
k

s(k)|z′k|2

M = j · y +
∑
k

σ(k)r(k)|zk|2 = j · y′ +
∑
k∈Sc

σ(k)j · `k|z′k|2 +
∑
k

σ(k)r(k)|z′k|2

= j · y′ +
∑
k

s(k)rt(k)|z′k|2 =
∑
t∈T

rt(
∑
k∈Dt

s(k)|z′k|2).

As for the nilpotent part Q̃n in N we notice that it is a sum of monomials as
in Remark 12, so Q̃n remains block diagonal and x independent by the same
argument as in item ii). ut

In order to simplify the notations we now drop the apex ′ and write y, z the new
coordinates.

Corollary 3 For ξ ∈ Aα, in the final coordinates the normal form of the Hamil-
tonian has the form

N = K + K1 , K1 = ω(1)(ξ) · y +
∑
t∈Tf

Qt +
∑
t∈Tg

θt(
∑
k∈Dt

|zk|2) (79)

K =
∑
i

|ji|2yi +
∑
t∈T

|rt|2(
∑
k∈Dt

s(k)|zk|2). (80)

As for the finitely many Qt each corresponds to a Hamiltonian which can be split
in Jordan decomposition, with a scalar and a nilpotent part Qnil

t :

Qt = Qnil
t + θt(

∑
k∈Dt

s(k)|zk|2), ∀t ∈ Tf .

The associated matrix corresponds to a map on two Lagrangian blocks each with a
single non–zero eigenvalue ±i θt but contains possibly also some nilpotent part.

Proof When we substitute in Formula (72), setting Scf the support of the finitely
many blocks in Tf

K1 = ω(1)(ξ) · y +
∑

(r,θ)∈Scf

Q̃r,θ +
∑

(r,θ)/∈Scf

θ(
∑
k

|zk|2)
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= ω(1)(ξ) · y′ +
∑
k∈Sc

σ(k)ω(1)(ξ) · `k|z′k|2 +
∑

(r,θ)∈Scf

Q̃r,θ +
∑

(r,θ)/∈Scf

θ(
∑
k

|z′k|2).

For the k in the support of Tg we have σ(k) = 1, η(`k) = 0, the coefficient of |z′k|2
comes from two terms, ω(1)(ξ) · `k and θk the sum is by Formula (78), θt(k) = θt
which gives the last term of Formula (79), Formula (80) is similar.

The remaining terms are collected in the finite sum namely, for a given t ∈
Tf the contribution to Qt is the sum of the sum

∑
(r,θ)∈Dt

Q̃r,θ plus the sum∑
k∈Dt σ(k)ω(1)(ξ) · `k |z′k|2. Formula (78) gives the statement on the eigenvalues.

ut

Remark also that, if k ∈ Dt, t ∈ Tg then s(k) = 1. Thus N s is the sum of the
terms ∑

i

(|ji|2 + ω
(1)
i (ξ))yi +

∑
t∈T

(|r(t)|2 + θt)(
∑
k∈Dt

s(k)|zk|2). (81)

That is in y, given by
∑
i(|ji|

2 + ω
(1)
i (ξ))yi, the infinite real diagonal part given

by
∑

t∈Tg (|r(t)|2 +θt)(
∑
k∈Dt |zk|

2) and finally the finite semisimple part involving
the bad sites

∑
t∈Tf (|r(t)|2 +θt)(

∑
k∈Dt s(k)|zk|2). These finitely many blocks may

also contribute to the nilpotent part of N .
Recall that

∑
k∈Dt s(k)|zk|2 acts as the scalar i,−i on the two corresponding

Lagrangian spaces, since a basis of one of them is zs(k)
k (and the other the conju-

gate).

F 0,1 and the algebra Fker. We now decompose F 0,1 as orthogonal sum (with re-
spect to the symplectic form), with blocks each decomposed as sum of two conju-
gate Lagrangian subspaces, (Dt, ν)+ ⊕ (Dt, ν)− with t ∈ T and ν ∈ Zn constrained
by the conservation laws.

For each index t, ν the constraints

π(ν) + rt = ν · j + rt = 0, η(ν) + 1 = 0

express respectively the conservation of momentum and mass. We have as basis
for (Dt, ν)+ the elements eiν·xz

s(k)
k where k ∈ Dt and for (Dt, ν)− the conjugate

elements.
These blocks are obviously stable under ad(N ) and the action is deduced from

corollary 3, note that on each block this action is invertible.
The product of two blocks (Dti , νi)

±1, i = 1, 2 produces a quadratic block in
F 0,2 stable under ad(N ) with basis the products of basis elements. In order to
avoid repetitions we index different quadratic blocks by (ν, t1, t2, σ1, σ2) where the
conservation laws are:

η(ν) + 1 + σ1σ2 = 0 , π(ν) + rt1 + σ1σ2rt2 = 0

while the basis elements are eiσ1ν·xz
σ1s(k)
k z

σ2s(h)
h where k ∈ Dt1 and h ∈ Dt2 .

For σ1σ2 fixed the blocks come in conjugate pairs and we usually exhibit the
one with σ1 = 1.

Proposition 14 The action of ad(N ) is invertible on all the blocks different from
(0, t, t, σ,−σ).
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Proof It is enough to prove that the action of the semisimple part ad(N s) is
invertible on all these blocks.

Now from Formula (81) on a block (ν, t, t′, σ, σ′) the action is via the scalar
function ∑

i

(|ji|2 + ω
(1)
i (ξ))νi + σ(|r(t)|2 + θt) + σ′(|r(t′)|2 + θt′)

so we only need to observe that if (ν, t, t′, σ, σ′) is different from (0, t, t, σ,−σ) this
function is non zero. If this expression equals 0 we must have separately∑

i

|ji|2νi + σ|r(t)|2 + σ′|r(t′)|2 = 0,
∑
i

ω
(1)
i (ξ)νi + σθt + σ′θt′ = 0.

Now we also have conservation of momentum π(ν) + σr(t) + σ′r(t′) = 0.
These properties then imply that the two roots r(t), r(t′) are joined by the edge

ν but in the final graph this implies that ν = 0 and r(t) = r(t′) the final graph
was built so that these equalities imply that (ν, t, t′, σ, σ′) = (0, t, t, σ,−σ). ut

This Proposition allows us to define the decomposition of F (0,2) given by Definition
7 into the subalgebra Fker and its unique complement Frg stable under adjoint
action of Fker.

A Measure estimates

Lemma 7 Consider a Cq function f of n variables in a domain A contained in some hyper-
cube of side of length ζ. If for some k ∈ Nn such that |k|1 ≤ q one has

inf
x∈A
|∂kxf | ≥ c|k| > 0

then for all α ≥ 0 we have, setting:

A0 := {x ∈ A : |f(x)| ≤ α|k|}, meas(A0) ≤ 2|k|ζn−1αc−1. (82)

Proof By induction. If |k| = 1 this is a standard argument (which one can develop also for
Lipschitz functions). Without loss of generality let us suppose that k = e1. We consider the
map F : x 7→ (f(x), x2, . . . , xn) which, since |∂x1f | > 0, is a diffeomorphism from A0 to some
set B which is contained in the product of an n− 1–dimensional hypercube with size of length
ζ times a segment of length 2α, hence the volume of F (A0) is ≤ meas(B) = 2αζn−1.

The Jacobian of F−1 is ∂xf−1 so in absolute value is ≤ c−1. Therefore the volume of the
set A0 = F−1(F (A0)) can be estimated by 2αζn−1c−1.

Let us now write (again without loss of generality) ∂kx = ∂hx∂x1 (where |h| = |k| − 1) and
set g(x) := c−1∂x1f(x). So that we know

inf
x∈A
|∂hxg| ≥ c|h|.

Then by the inductive hypothesis

A1 := {x ∈ A : |g(x)| < α|h|}, meas(A1) ≤ 2|h|ζn−1αc−1.

On the region A \A1 we have c|g(x)| = |∂x1f(x)| ≥ cα|h|. Then by case |k| = 1 we have

A2 := {x ∈ A \A1 : |f(x)| ≤ α|k|}, meas(A2) ≤ 2ζn−1α|k|c−1α−|h| = 2ζn−1αc−1

and this concludes the proof since A2 = A0 \A1 so A0 ⊂ A1 ∪A2 and:

meas(A0) ≤ meas(A1) + meas(A2) ≤ 2|h|ζn−1αc−1 + 2ζn−1αc−1 = 2|k|ζn−1αc−1.

ut
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We shall often apply this Lemma as follows, we have our domain O in the coordinates ξ
and its image Õ in the coordinates ω. We want perform an estimate of a set A0 ⊂ O as before.
We first perform the estimate for the corresponding B0 ⊂ Õ which satisfies the hypotheses
of Lemma 82 with ζ = ε2q . The dilation factor of the inverse of the transformation ξ 7→ ω is
bounded by Lnε−2n(q−1) (Remark 8). In all the estimates which we shall perform we have
α = ε2qβ where usually β = K−cρ. We deduce

Corollary 4 If the measure of B0 = ω(A0) is bounded by Cζn−1α = Cε2q(n−1)ε2qβ =

Cε2qnβ that of A0 is bounded by CβLnε−2n(q−1)ε2qn ≤ C′ε2nβ.

Let f, g be inverse functions between two domains in Rn, i.e. g ◦f = 1 and both diffeomor-
phisms of some class Cp, we write in coordinates ωi = fi(ξ1, . . . , ξn) and ξi = gi(ω1, . . . , ωn).
Then there are universal formulas due to Faà di Bruno, to express the derivatives bα := ∂αωg

as polynomials in terms of aβ := ∂βξ f and the first derivatives bi := ∂ωig (computed at the
corresponding points, ξ, ω = f(ξ)).

We do not need the explicit formulas but only to know that the nature of such a polynomial
is the following. We give a weight |β| to aβ and −1 to bi. Then the polynomial expressing bα
is a linear combination with rational coefficients of monomials of weight −1.

So let h = |α|, in each monomial we have some number k of factors bi which contribute
−k to the weight and other factors of type aβ of total weight k − 1, the total number k of
factors bi can be seen to be bounded by 2h− 1.

We assume to have some estimates |∂βξ ω| = |aβ | ≤ ε2q−2|β|M |β|, |∂ωiξ| = |bi| ≤ ε2−2qL

and LM < c, c > 1. In our setting these estimates come from Proposition 11 and are justified by
the fact that we work on a domain of width ε2 and we start the algorithm from ω homogeneous
of degree q.

Under these estimates we obtain for bα = ∂αωξ an estimate, with h = |α|, (and ε < 1)

|bα| ≤ Cε2Lε−2hq(LM)2(h−1) ≤ Cε2(1−hq)Lc2h−2 (83)

where the order comes from estimating the worst monomial in the polynomial expression of
bα. The constant C is some positive number, sum of the absolute values of the coefficients of
this combinatorial expression and so depending only on n and β. Summarising

Lemma 8 Let P (ξ) be such that |∂hξ P (ξ)| ≤ ε2(q−|h|)M |h| and consider the map ξ → ω(ξ)

with derivatives |∂hξ ω| ≤ ε2(q−|h|)M |h| and its inverse ξ(ω) with |∂ωξ| ≤ ε2(1−q)L. Then if
LM ≤ c

|∂jωξ| ≤ Cε2(1−|j|q)Lc2|j|−2

|∂jωP (ξ(ω))| ≤ C′ε2q(1−|j|)c2|j|−2 (84)

Proof The first is formula (83) and the second follows from the chain rule. ut

Lemma 9 Consider a p× p matrix A(ω) and given ν ∈ Zn, set

f(ω) = det(ω · νI +A(ω))

and suppose that |ω · ν| ≤ pMε2q and

|∂jω1
A|∞ ≤ C1ε

2q(1−|j|) (85)

for some C1 ≥ pM .Then there exists C2 (depending on C1, q, p) such that if |ν1| > C2 we
have

|∂pω1f | > C
p
2

Proof Clearly

f(ω) = PA(ω · ν) = (ω · ν)p + (ω · ν)p−1tr(A) + · · ·+ det(A).

For the derivative we have that ∂pω1 [(ω ·ν)p−iσi(A)] is a sum of terms ∂hω1
(ω ·ν)p−i∂p−hω1 σi(A),

with |h| ≤ p− i. We estimate

|∂hω1
(ω · ν)p−i| = |h!νh1 (ω · ν)p−i−h| ≤ h!νh1 (pMε2q)p−i−h.



Reducible quasi-periodic solutions for the NLS 41

As for ∂p−hω1 σi(A) we have that σi(A) is a sum, with signs, of
(p
i

)
products of i entries of A.

For such a product ∂p−hω1 is again a sum of some C(h, i) products where each factor has been
derived some ui ≥ 0 times with

∑
ui = p − h. For these factors we apply the estimate (85)

getting an estimate Ci1ε
2q(i−p+h) for their product. Thus for each |∂hω1

(ω · ν)p−i∂p−hω1 σi(A)|
we have an estimate h!

(p
i

)
νh1 (pM)p−i−hCi1 ≤ h!

(p
i

)
νh1C

p−h
1 . Then:

|∂pω1f | ≥ p!|ν1|p −
∑
|j|≤p−1

κj |ν1|jCp−|j|
1 ≥ (C2)pp!−

∑
j

κjC
|j|
2 C

p−|j|
1 ).

The coefficients κj are purely combinatorial so given C1 we just need to choose C1/C2 so that∑
j

κj(
C1

C2
)p−|j| < p!/2.

ut

In our compact set O ⊂ ε2Λ ⊂ Rn we now consider the pointwise λ norm associated to
the C` maps from O → Cp with the L∞ norm, ‖b(ξ)‖λ :=

∑
|α|≤` λ

|α||∂αξ b(ξ)|∞.

Lemma 10 Take a p× p matrix A(ξ) satisfying the bounds:

|∂αξ A|∞ ≤ λ
−|α|ε2q , ∀|α| ≤ `

and a p vector b(ξ) with finite λ norm. Suppose now that A is invertible for all ξ ∈ O and
that |A−1|2 ≤ ε−2qK% then y(ξ) = A−1(ξ)b(ξ) satisfies the bounds

‖y‖λ ≤ `n2`
2
p3`+1ε−2qK(`+1)%‖b‖λ.

Proof We preliminarily note that

|∂αξ b|∞ ≤ λ
−|α|‖b‖λ.

Then we derive α times the equation Ay = b and obtain

A∂αξ y = ∂αξ b−
∑

j1+j2=α,
j1 6=0

cj1,j2 (∂j1ξ A) ∂j2ξ y , 1 +
∑

j1+j2=α,
j1 6=0

cj1,j2 = 2|α|.

This gives the bound

|∂αξ y|∞ ≤ |A
−1|2

(
p|∂αξ b|∞ + p2

∑
j1+j2=α, j1 6=0

cj1,j2 |∂
j1
ξ A|∞|∂

j2
ξ y|∞

)
We now prove by induction that

|∂βξ y| ≤ ε
−2qλ−|β|2`|β|p3|β|+1K(|β|+1)%‖b‖λ

by simply substituting in the right hand side of the formula all our bounds

|∂αξ y|∞ ≤ ε
−2qK%

(
pλ−|α|‖b‖λ+

p2
∑

j1+j2=α
j1 6=0

cj1,j2λ
−|j1|ε2qε−2qλ−|j2|2`|j2|p3|j2|+1K(|j2|+1)%‖b‖λ

) |j1|+|j2|=|α|
=

ε−2qλ−|α|‖b‖λK%
(
p +

∑
j1+j2=α
j1 6=0

cj1,j22`|j2|p3(|j2|+1)K(|j2|+1)%
) |j2|≤|α|−1

≤

≤ ε−2qλ−|α|‖b‖λK(|α|+1)%(p + p3|α|2`(|α|−1)
∑

j1+j2=α
j1 6=0

cj1,j2 ) ≤

≤ ε−2qλ−|α|‖b‖λK(|α|+1)%(p + p3|α|(2`|α| − 1)) ≤ ε−2qλ−|α|2`|α|p3|α|+1K(|α|+1)%‖b‖λ.

multiplying by λ|α| and summing over α (at most `n) we obtain the desired estimate. ut
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A.0.1 NLS estimates

Consider the NLS equation restricted to some domain Rα ∩ ε2Λ. This defines ω and Ωt by
setting Ω̃t = 0. By [14] we know that the perturbation P is quasi–Töplitz for some parameters
K0, θ0, µ0.

Lemma 11 i) There exist constants L0,M0 so that formulæ (33) hold.
ii) Given S0, we can choose the domain O0 and a constant a0 so that Formulæ (34) hold for

ω,Ωt defined by N with O = O0 and a = a0.

Proof i) We have that the functions ω − j(2) and its inverse are homogeneous and invertible,
moreover the functions θt and Ωnilt are also homogeneous and from a finite list so we satisfy
these formulas by taking the appropriate maximum on a compact domain of the unit sphere
contained in some Rα and such that its cone from the origin contains the domain O0.

ii) By the Melnikov conditions, Proposition 14, the matrices under consideration are all
invertible as functions outside the algebraic hypersurfaces where the determinant is 0. All
these matrices evaluated at ξ = 0 are an integer multiple of the identity, the remaining part
is homogeneous and runs in a finite list. If this integer is non–zero then the estimates hold
provided ε is small enough. Otherwise we have to restrict the domain so to avoid the finite
number of hypersurfaces where one of these determinants vanish and estimate on the unit
sphere. ut

As for S0 we need to fix it as nC2 so to apply lemma 9 at all steps where A(ω) are the matrices,
appearing in Formulaæ (40) in the coordinates ω.

Proof (Conclusion of the proof of Lemma 2) By the non-degeneracy condition insured by
Lemma 11, we may assume |ν| > S0 so one of the coordinates νi has |νi| > S0/n and we may
assume this happens for ν1. We will fix S0 sufficiently large as seen in the course of the proof.

If σ = σ′ = 0 we claim that we remove from the set O a region of order ε2nK−%. For this
follow the strategy of Remark 8. Namely, apply Lemma 7 to f(ξ) = ω · ν we then estimate the
measure of the set A0 where |ω · ν| < ε2qK−% as follows.

First by Formula (82) the measure of the imageB0 ofA0 under ω is bounded by 2ζn−1ε2qK−%c−1

where ζ is the size of the side of a hypercube containing B0 and c is a lower bound for one of
the derivatives νi = ∂ωi (ω · ν). We may take for c the maximum of the absolute values of the
νi which is > S0/n. As for ζ we have ζ ≤Mε2q so we have a bound

meas(A0) ≤ Lnε2n(q−1)meas(B0) ≤ Lnε−2n(q−1)(Mε2q)n−1K−%ε2qc−1 l ε2nK−%.

If t, t′ are both in Tg we set for σ = 0,±1

f(ω) = ω · ν + λ
(i)
t + σλ

(j)
t′ .

By definition of M we have |∂ξλ
(j)
t |)l ε2q−1M so by applying Lemma A.2. we know that

|∂ω1f(ω)| = |ν1 + ∂ω1 (λ
(i)
t + σλ

(j)
t′ )| ≥ |ν1| − |∂ω1 (λ

(i)
t + σλ

(j)
t′ )| ≥ S0/n − Cε2q−1 for some

constant C, so taking S0 sufficiently large the proof is concluded by applying Lemma 7 with
x replaced by ω.

We get that the resonant set in the variables ω has measure of order ε2q(n−1)+2qK−% =
ε2qnK−%. In order to obtain the estimates in the variables ξ we multiply by the dilation factor
Lnε2n−2nq getting l ε2nK−%.

When either t or t′ are in Tf we need to study

f(ω) = det((ω · ν)I + L(Ωt) + σR(Ωt′ )).

This is a matrix of dimension p = δtδt′ (resp. of dimension p = δt if σ = 0). By hypothesis
setting F (ξ) = L(Ωt(ξ)) + σR(Ωt′ (ξ)) we get |∂αξ F |∞ ≤ 2ε2q−2|α|M .

We have that A(ω) = F (ξ(ω)) satisfies estimates as in (85) and under the hypothesis
|ω · ν| ≤ pMε2q we can apply Lemma A.2. Since we are assuming |ν1| > S0/n we only need to
choose S0 large enough in order to prove |∂pω1f | ≥ C2 some positive constant.

By our definitions the resonance condition is |f(ω)| ≥ ε2qpK−%+1 where p = dtdt′ . Then
we apply Lemma 7 with |k| = p and α = ε2qK−%/p. We get that the resonant set in the
variables ω has measure of order 2pζn−1ε2qK(−%+1)/p. So by Corollary 4 the resonant set in
the variables ξ has measure of order ε2n−2qε2qK−%/p = ε2nK(−%+1)/p. ut
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Consider a normed space of sequences v := (vi) we say that v ≤ w if and only if vi ≤ wi, ∀i.
Given k sequences v(j), j = 1,≤ m we have by definition supj v

(j) := (supj v
(j)
i ). Assume

that the norm | · | satisfies
0 ≤ v ≤ w =⇒ |v| ≤ |w|.

Lemma 12 If v(j) ≥ 0, j = 1, . . . ,m arem positive sequences we have then v(j) ≤ supj v
(j) ≤∑

j v
(j) hence

sup
j
|v(j)| ≤ | sup

j
v(j)| ≤

∑
j

|v(j)| ≤ m sup
j
|v(j)|. (86)

If ai are positive numbers

|
∑
j

ajv
(j)| ≤

∑
j

aj |v(j)| ≤ m| sup
j
ajv

(j)| ≤ m|
∑
j

ajv
(j)|. (87)

Lemma 13 Consider a Hamiltonian

Q(x,w) =
∑

|ν|≤K,α,β
|α|+|β|≥1

eν·xQν,α,βz
αz̄β ,

(i.e. independent of y, of degree at least one in w and in x a trigonomentric polynomial of
degree |ν|1 ≤ K). Denote its associated vector field by

XQ = X
(y)
Q +X

(w)
Q , X

(y)
Q = ∂xQ(x,w) · ∂y , X

(w)
Q = −i∂zQ(x,w) · ∂z̄ + i∂z̄Q(x,w) · ∂z ,

then one has that
‖X(y)

Q ‖s,r ≤ K‖X
(w)
Q ‖s,r (88)

Proof We can write (collecting is some arbitrary way the monomials)

Q =
∑
k

Ak(x,w)zk +Bk(x,w)z̄k.

Then, by definition

‖X(y)
Q ‖s,r = r−2 sup

‖w‖a,p≤r

n∑
j=1

|
∑
k

|M∂xjAk(x,w)|zk + |M∂xjBk(x,w)|z̄k|

now we know that
∑n
j=1 |M∂xjAk(x,w)| ≤ K|MAk(x,w)| then by Cauchy-Schwartz we have

‖X(y)
Q ‖s,r ≤ r

−2K sup
‖w‖a,p≤r

√∑
k

|zk|2 + |z̄k|2
√∑

k

|MAk|2 + |MBk|2

and we have that |MAk| ≤ |M∂zkQ| (same for B) since
∑
k |zk|2 + |z̄k|2 ≤ r2 and the `2 norm

is dominated by the ‖ · ‖a,p norm the claim follows. ut

Now in `a,p we can define the norm

v = {vk}k∈Zd |v|2a,p =
∑
t

e2a|rt||rt|2p sup
k∈Dt

|vk|2.

Remark 16 This norm is built so that if for v, w ∈ `a,p we have for all t ∈ T that supk∈Dt |vk| ≤
supk∈Dt |wk| then |v|a,p ≤ |w|a,p. One sees that the norms ‖ · ‖a,p and | · |a,p are equivalent,
namely ca,p|v|a,p ≤ ‖v‖a,p ≤ Ca,p|v|a,p, with:

Ca,p := sup
t,k∈Dt

√
dte

a(|k|−|rt|) |k|
p

|rt|p
, ca,p = inf

t,k∈Dt
ea(|k|−|rt|) |k|

p

|rt|p
.
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Lemma 14 Given a hamiltonian H = N+P with P a quasi–Töplitz function with parameters
(K, θ, µ), and N as in (30). Consider the linear operator

L := ad(N) +Πrg,≤Kad(Π>2P )

and the equation LF = Πrg,≤KP . In the set of ξ for which formulæ(40) hold, for all |ν| < K,
t, t′ ∈ T, such equation admits a unique solution F = ΠrgF which is a quasi–Töplitz function
with parameters (K, θ, µ) and satisfies the bounds

‖XF ‖T−→p + l δ−2K3(`+4)%‖XPrg‖
T−→p ,

where −→p + = (s− 2δs, r − 2δr,K, θ + 2δθ, µ− 2δµ) and −→p = (s, r,K, θ, µ).

Proof We discuss in detail the estimates on the λ norm, the ones on the Töplitz norm follow
verbatim from Proposition 10.16 of [14].

We recall that by remark 7, setting D = ad(ΠkerP ) and A = D−1Πrg,≤Kad(Π>2P ) we
have

L = D(1 +A) −→ L−1 = D−1(1−A+A2).

Let us now work in the set of ξ where (40) hold. We first prove that for any quadratic Hamil-
tonian b ∈ Frg,≤K , setting Y = D−1b, we have

‖XY ‖λs,r ≤ ε−2qK(`+3)%‖Xb‖λs,r. (89)

As a first step we notice that if we divide Y = Y (0)+Y (1)+Y (2) w.r.t the degree in w = z, z̄
then it is sufficient to bound each ‖XY (i)‖λs,r in terms of the corresponding ‖Xb(i)‖

λ
s,r.

The term Y (0) is trivial. We now study Y, b of degree one.
In studying linear real Hamiltonians of the form h =

∑
σ,k,ν hσ,k(ν)eiν·xzσk , by Lemma

13, we only need to bound the w component of the vector field, namely

‖Xh‖s,r ≤ 2(K + 1)r−1
(∑
k

(
∑
ν

|h+,k(ν)|es|ν|)2e2a|k||k|2p
) 1

2

Now we use this formulas with h = ∂αξ Y
(1) , |α| ≤ `. Then, by using (87) with aj = λ|α|,m ≤

(`+ 1)n, vj = {
∑
ν e

s|ν||∂αξ hs(k),k(ν)|}k∈Zd and | · | = ‖ · ‖a,p, we have that

‖XY ‖λs,r ≤ (2K + 2)(`+ 1)nr−1‖MλY ‖a,p,

Mλh := {
∑
ν

es|ν|
∑
|α|≤`

λ|α||∂αξ hs(k),k(ν)|}k∈Zd . (90)

Now we have by Lemma 10 that for each t and for each k ∈ Dt∑
|α|≤`

λ|α| sup
k∈Dt

|∂αξ Ys(k),k(ν)| ≤ ε−2qK(`+2)%
∑
|α|≤`

λ|α| sup
k∈Dt

|∂αξ bs(k),k(ν)|

We exchange the sup with the sum over ν using (86) with |{vν}| =
∑
ν e

s|ν||vν |, then we have
that

sup
k∈Dt

|(MλY )k| ≤ dtε−2qK(`+2)% sup
k∈Dt

|(Mλb)k|

By Remark 16 we conclude that |MλY |a,p ≤ `ε−2qK(`+2)%|Mλb|a,p and

‖MλY ‖a,p ≤ `Ca,pc−1
a,pε
−2qK(`+2)%‖Mλb‖a,p. (91)

Then by (87)

‖Mλb‖a,p ≤
∑
|α|≤`

λ|α|‖{
∑
ν

es|ν||∂αξ bs(k),k(ν)|}k∈Zd‖a,p ≤ r‖Xb‖
λ
s,r.
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Substituting (91) in (90) and then using this last bound we obtain

‖XY ‖λs,r ≤ (2K + 2)(`+ 1)n`Ca,pc
−1
a,pε
−2qK(`+2)%‖Xb‖λs,r ≤ ε−2qK(`+3)%‖Xb‖λs,r,

provided K is large (note that % > 1).

We need to treat now the case of (regular) quadratic Hamiltonians (with conservation of
momentum) which belong to the range. To any quadratic hamiltonian Q(x,w) we associate an
x dependent linear operator Q̃(x) on `a,p by Poisson bracket. By Formula (50) this amounts
to writing Q(x,w) = − 1

2
wQ̃(x)Jwt. Then in the basis zk, z̄k we can define the majorant (of

the operator ad(Q) ) in matrix terms as

Q̂σ,σ
′

k,h =
∑
ν

es|ν||Q̃σ,σ
′

k,h (ν)|

Similarly to the linear case we only need to control

‖X(w)
Q ‖s,r = sup

‖w‖a,p≤1
‖Q̂w‖a,p , w = {zk, z̄k}k∈Zd .

Then passing to the equivalent norm | · |a,p of Remark 16, we have

‖XQ‖s,r ≤ (K + 1)c−1
a,pCa,p sup

|w|a,p≤1
|Qw|a,p.

Now as in the linear case we pass to the λ norm and get

‖XQ‖λs,r ≤ (`+ 1)n(K + 1)c−1
a,pCa,p sup|w|a,p≤1 |Q̂λw|a,p ,

(Q̂λ)σ,σ
′

k,h :=
∑
α λ
|α|∑

ν e
s|ν||∂αξ Q̃

σ,σ′

k,h (ν)| (92)

We consider Y = D−1b where b is a quadratic Hamiltonian in the range. Since D preserves
the range we have that also Y is in the range. Now we claim that for all w and for all t we
have

sup
k∈Dt

|(Ŷ λw)k| ≤ `ε−2qK(`+2)% sup
k∈Dt

|(b̂λw̃)k| , w̃h = sup
k∈Dt

|wk| ∀h ∈ Dt. (93)

If this holds true by remark 16 we have

|Ŷ λw|a,p ≤ `ε−2qK(`+2)%|b̂λw̃|a,p

then since |w̃|a,p = |w|a,p (by definition) we have

sup
|w|a,p≤1

|Ŷ λw|a,p ≤ `ε−2qK(`+2)% sup
|u|a,p≤1

|b̂λu|a,p.

Now we can apply (87) to take out the sum over α from the norm | · |a,p and we get

|b̂λu|a,p ≤ (`+ 1)n
∑
α

λ|α||∂̂αξ b u|a,p ≤ (`+ 1)n‖Xb‖λs,r

‖XY ‖λs,r ≤ (`+ 1)n(K + 1)c−1
a,pCa,p`ε

−2qK(`+2)%(`+ 1)n‖Xb‖λs,r ≤ K(`+3)%ε−2q‖Xb‖λs,r.
For the proof of (93) we first use Lemma 10 to deduce∑

α

λ|α| sup
k∈Dt
h∈D

t′

|∂αξ Ỹ
s(k),s(h)
k,h (ν)| ≤ ε−2qK(`+2)%

∑
α

λ|α| sup
k∈Dt
h∈D

t′

|∂αξ b̃
s(k),s(h)
k,h (ν)|.

By repeated use of (86) and (87) and using the fact that dtdt′ ≤ ` the formula follows. This
completes the proof of (89). Now we turn to F = L−1Prg. For any regular hamiltonian h
and for all s′ < s, r′ < r, we can bound ‖X{P,h}‖λs′,r′ by Cauchy estimates recalling that



46 M. Procesi, C. Procesi

‖XP ‖s,r ≤ Θ ≤ 3
2
Θ0 (here Θ is one of the telescopic parameters defined in section 4.2). Then

by using (89) at most three times we get

‖XF ‖λs−2δs,r−2δr l δ−2K3(`+3)%‖XPrg‖
λ
s,r. (94)

Then passing to the Töplitz norm we follow word by word [14], Proposition 10.16.
By definition the quasi–Töplitz property for F depends only on the quadratic part F (2).

Then proving that F is quasi-Töplitz requires that we produce a piece-wise Töplitz approxi-
mation and an error. As in Proposition 10.16 for the part of F with σσ′ = 1 we take zero as
piece-wise Töplitz approximation.

For given ν we treat the quadratic part as sum of blocks Fν,t,t′ . When σσ′ = −1 by
conservation of momentum π(ν)+rt−rt′ = 0 so only θt′ = θ′ must be fixed (and must belong
to a finite list) then the couple (π(ν) + rt, θ′) identifies (at most) one t′ and hence the block
Dt′ . Then we identify the parallel strata Z to which Dt belong and the same for Dt′ . We define
the quasi-Töplitz approximation as follows. Recall that Fν,t,t′ solves the equation discussed
in remark (7) inverting the operator Lm. This solution is a 3 step algorithm in each step we
either perform a Poisson bracket, which preserves the Quasi–Töplitz property or we solve an
equation of type(

(ω · ν)− 2π(ν) · rt − |π(ν)|2 + θt + Ω̃t − θt′ − Ω̃t′

)
Fν,t,t′ = Pν,t,t′ , (95)

by induction Pν,t,t′ has a quasi–Töplitz approximation P qt
ν,t,t′ same for Ω̃t and Ω̃t′ . We dis-

tinguish two cases, if π(ν) · x is not constant on Σt we have seen that π(ν) · rt is large hence
Fν,t,t′ is quite small and we can again take zero as its piece-wise Töplitz approximation.

Otherwise in Formula (95), the only terms which are not constant on the stratum are
Ω̃t− Ω̃t′ . By induction they have a quasi–Töplitz approximation Ω̃qtt − Ω̃

qt
t′ and the final error

will produce the error of the quasi-Töplitz approximation.
That is we take the solution F̄ qt

ν,t,t′ of(
(ω · ν)− 2π(ν) · rt − |π(ν)|2 + θt + Ω̃qtt − θt′ − Ω̃

qt
t′

)
F̄ qt
ν,t,t′ = P qt

ν,t,t′ . (96)

as quasi-Töplitz approximation of Fν,t,t′ on this stratum.
The final point is now to show that we can bound the inverse of the matrix on the left-

hand side of (96) by Kρ. on this stratum the constraint (41) on a single point is sufficient to
constraint on all points of the stratum. For this one has to compute the value of % to be used
on the stratum and compare it with the error term in the quasi–Töplitz approximation.

‖XF ‖T−→p + l δ−2K3(`+4)%‖XPrg‖T−→p ,
−→p + = (s− 2δs, r − 2δr,K, θ + 2δθ, µ− 2δµ) , −→p = (s, r,K, θ, µ) (97)

ut

B Quasi Töplitz structure

We group here an informal description of the main properties of quasi-Töplitz functions needed
through the KAM algorithm. Recall that the notion of quasi-Töplitz is given through some
parameters K,ϑ, µ.

First one has to identify, for each N ≥ K a natural affine structure. This is done by
introducing the notion of optimal presentation for a point m and the notion of cut.

The stratification by cuts. The optimal presentation of a point m ∈ Zd is a combinatorial
notion dependent on N . One presents the pointm as the intersection of d hyperplanes (vi, x) =
pi with vi of norm ≤ N and such that the list pi, vi is minimal in an explicit lexicographic
order. This presentation, called optimal is unique and denoted mN→[vi; pi].

Then, given an open interval I = (a, b), one says that a point mN→[vi; pi] has a cut at I if
no coordinate pi lies in I. If it has such a cut then we have some p` < a, p`+1 > b and the first
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` equations of the optimal presentation of p define some affine space of codimension `, denoted
[vi; pi]`. This defines a linear stratification at least on the set of points which have such a cut.

If one gives d+ 1 disjoint increasing intervals Ij , j = 1, . . . , d+ 1 clearly for any point m
there is a minimum j such that m has a cut for Ij . To this cut is then associated an affine
space and in this way one constructs the desired stratification as explained in remark 2. We
introduce a parameter %0 which will be fixed at the end. We start from intervals (%i, %i+1) in
the scale logN with

%1 = 4d%0, %i+1 = 4d%i

and impose for the condition that mN→[vi; pi] has a cut at ` if there exists j such that,
logN 2p` < %j , logN

p`+1

4
≥ %j+1. This indeed is a cut associated to d + 1 disjoint inter-

vals and hence provides a stratification ΣN,%, see section 3.1 of [17]. We shall usually drop the
symbol % and write just ΣN .

Thus given any point m this construction determines the stratum ΣNm to which it belongs
to and the linear space, of some codimension `, spanned by the stratum. If v is a vector with
|v|1 ≤ N consider the scalar product (v, x), x ∈ ΣNm . If this is not constant on the stratum by
the definitions it is large with 4N%j+1 .

Lemma 15 The number of strata with a cut at %j is less than N(2d−1)%j .

Proof This is Remark 7.7 of [14] with p = 4N%j , indeed summing over the codimension

d∑
`=0

(2κN)`d(4N%j )` ≤ Nd(%j+d+1) ≤ N(2d−2)%j

provided that %0 > d(d+ 1)/(d− 2). ut

The stratification ΣN , provided that N is large enough, refines the stratification given by
Definition 20 (cf.Theorem 5 of [14]). In fact given any element t ∈ Ts, this determines the set
Dt and the root rt (which in general is NOT in the set Dt).

We then have that, the stratum through rt and the ones passing through each individual
point of Dt are all parallel to each other and the union of these strata is also a union of some
family of sets {Dt, rt}.8

Remark 17 In other words we have a decomposition of the set Ts into sets Ts(i) (which are
the ones introduced in Proposition 19), so that each stratum Ts(i) is the indexing set of the
strata through the points in Dt and rt for all t ∈ Ts(i).

τ–bilinear and quasi–Töplitz functions The quasi-Töplitz property can not be given only
on the quadratic terms of a Hamiltonian since we need a class of functions closed w.r.t. Poisson
brackets, so we first relax the notion of quadratic Hamiltonian.

Given 1
2
≤ µ, ϑ ≤ 4 and %1 ≤ 4dτ ≤ %d+1 we define (cf. 8.6 of [14]) the (N, θ, µ, τ)–bilinear

functions to be the functions which are bilinear in the high variables zσm, zσ
′
n . By this we mean

that |m|, |n| > ϑNad+1 and both m and n have a cut at (µNτ , θN4dτ ). These functions may
depend on x, y and on the small variables zσj with |j| < µN3 in a possibly complicated way
but with the constraint that the coefficients have low momentum (cf. 8.2 of [14]).

Finally we define the piecewise Töplitz functions as those (N, θ, µ, τ)–bilinear functions
which are constant when restricted to each stratum (cf. 8.10 of [14]).

We can now define the (K, θ, µ)–quasi–Töplitz functions. Informally speaking given a func-
tion f , for all N > K, %1 ≤ 4dτ ≤ %d+1, we project it on the (N, θ, µ, τ)–bilinear functions and
we say that f is quasi–Töplitz if all these projections are well approximated by a piecewise
Töplitz function. To be more precise, τ controls the size of the error function, namely the
(N, θ, µ, τ)–bilinear part of f is approximated by a piecewise Töplitz function with an error of
the order N−4dτ , for all N ≥ K.

The role of the parametersK, θ, µ is to ensure that if f, g are quasi–Töplitz with parameters
K, θ, µ then {f, g} is quasi–Töplitz for all ϑ′ > ϑ and µ′ < µ provided K′ > K is large enough.

8 strictly speaking one needs a slight refinement of the definitions adding some more strata
but with the same estimate on the number of strata.
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The stratification ΣN described above is connected to the quasi-Töplitz structure, in-
deed if m belongs to a stratum ΣNm of codimension ` then, by construction, m has a cut at
(µN%j , θN4d%j ) for all 1

2
≤ µ, ϑ ≤ 4 where %j is fixed by ΣN and we shall denote it by %Σ .

Then one can show that all points n close to m have a similar cut, see Lemmata 7.21 to 7.24 of
[14]. In §8.12 of [14] there are several properties of diagonal quasi-Töplitz functions which are
needed in the KAM algorithm. These properties are in fact also valid with the obvious mod-
ifications for the block diagonal quasi-Töplitz functions in the subalgebra Fker of Definition
7.

This is due to the fact that, provided we start from N ≥ K0 and K0 is large enough the
corresponding stratifications refine the affine stratification of Proposition 1, part iii).

When we apply it to the hamiltonians in the KAM algorithm we exploit the fact that, by
part iv) of the same proposition the corresponding function θt is the same on all points of the
stratum. Moreover we need the following

Lemma 16 Take a quasi–Töplitz function F quadratic in w and its projection ΠkerF =∑
t Ft. Then for each N ≥ K consider the stratification Σ(N). If rt, rt′ belong to the same

stratum Y (of codimension `) and Dt = Dt′ + TY (as in Proposition 1 iii.) then θt = θt′ and

|Ft − Ft′ |λ∞ ≤ N
−4d%

Σ ‖XF ‖T−→p

Proof This follows word by word as the proof of Lemma 8.20–Formula (92) of [14]. ut
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