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Abstract

Omni-directional imaging records the visual information from any direction
with respect to a given view-point. It is gaining consumers’ popularity due
to fast spreading of low-cost devices both for acquisition and rendering. The
possibility to render the whole surrounding space represents a further step
towards immersivity, thus providing the user with the illusion of physically
being in a virtual environment. The understanding of visual attention mecha-
nisms for these images is a relevant topic for processing, coding, and exploit-
ing such data. In this contribution, a saliency model for omni-directional
images is presented. It is based on the combination of low-level and seman-
tic features. The first ones account for texture, viewport saliency, hue and
saturation, while the second are used to take into account the impact of the
presence of human subjects on the saliency. The proposed model has been
tested in the “Salient360! Visual attention modeling for 360° Images” Grand
Challenge. The model, the achieved results, and finding/discussions are here
presented.

Keywords: Saliency estimation, Human fixation, Omni-directional images,
360° images

1. Introduction1

Immersivity strongly depends on successfully fooling several senses, prin-2

cipally sight and hearing. Thanks to this process, it provides the viewers with3

the feeling of physically being in the place shown by the rendering system. It4
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is generally achieved through the implementation of virtual environments, in5

which the viewer perceives him/herself as being surrounded by a 3D world.6

The surrounding world can be computer-generated or can be the rendering7

of real scenes. In the latter case, specific acquisition devices have to be used.8

The goal is to obtain an omni-directional image, or video, that allows the9

visual information to be seen from any direction with respect to a given10

view-point.11

The imaging system may exploit mechanical or optical devices. In the12

first case, motorized linear or array-based cameras scan the scene resulting in13

very high-resolution images. In this case, the drawback is time consumption14

that can be very long in case of high quality scan. When the application15

scenario does not require very high definition, or when a real time constraint16

is present, optical solutions are employed. Basically, those are based on the17

use of mirrors or of special lenses (i.e., fish eye). Nowadays low-cost devices18

are available for acquiring omni-directional images, i.e. 360° cameras, thus19

pushing this technology and its application to the consumer market.20

The acquired information can be rendered through 2D display, cave, or21

Head-Mounted Display (HMD). In particular HMD enables egocentric scene22

viewing, allowing the user to modify the point of view by simply moving23

his/her head or body, thus increasing the perceived quality of experience. In24

fact, the user is assumed to be placed in the center of a sphere and by moving25

the head, he can observe the omni-directional stimula.26

The increasing use of this technology opens several issues such as the27

design of new rendering systems, new applications for exploiting the infor-28

mation, or new compression systems. One of the first aspects that needs29

to be investigated is the understanding of the modalities in which a human30

subject explores the omni-directional image, thus defining the salient points31

in the image.32

More generally, saliency estimation refers to the localization of the areas33

in an image having particular clue for a human observer. This information34

is generally obtained by exploiting fixation points, that are the points in35

the visual field that are fixated by the two eyes in normal vision, and for36

each eye those are the points directly stimulating the fovea [1, 2]. They37

can be captured by means of eye-trackers, or cameras. The clustering of38

the fixation points, usually obtained by convolving the fixation points map39

with a Gaussian kernel, is used to produce the saliency map. The obtained40

map represents the degree of interest of an observer and can be used in41

many applications such as quality assessment [3], video surveillance [4], tone42
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mapping [5] or defect detection. A classification of possible applications is43

presented in [6].44

In literature, many efforts have been devoted to model the saliency of45

images and videos [7, 8]. Proposed methods can be categorized according46

to the features they rely on: bottom-up approaches are based on low-level47

local features, like color, intensity, contrast, or orientation [9], while top-48

down approaches exploit high-level cues like context, semantic, knowledge,49

expectations or application [10].50

However, to the best of our knowledge, very few methods are specific to51

omni-directional images. An application-based approach is proposed in [11]52

where a method for extracting visual attention-based features from panoramic53

(cylindrical) images is used for robot localization. A similar application-based54

approach is proposed in [12]. In [13] an algorithm exploiting spherical ge-55

ometry for reducing the geometrical distortions, that may be introduced by56

the plane mapping, is proposed. This method is based on the use of low-57

level features as proposed in [14]. In [15], the authors predict salient image58

regions by taking into account the image exposition time. This allows to59

understand the influence of this parameter in the resulting saliency map.60

Performed tests show that duplicating the exposition time does not modify61

significantly the saliency map. In [16], the authors exploit eye-tracking in a62

HMD system for gaze analysis. Results suggest that most eye-gaze fixations63

are rather far away from the center of the viewport. In [17] a method for64

estimating salient objects in panoramic images is presented. A draft of the65

saliency map is computed by background estimation and then is refined by66

computing the contrast only in the surrounding regions. In [15], 2D image67

features are estimated on a lattice of viewports and the overall saliency map68

is computed by considering the contribute of each viewport.69

In this paper a novel model for saliency estimation in omni-directional70

images is proposed. In more details, viewports are first collected from the71

omni-directional content and, then, the visual attention is estimated by an-72

alyzing low-level and semantic features extracted from each viewport. The73

strategy of analyzing the viewports instead of the whole panoramic image74

relies on the fact that, in the exploration of the omni-directional content, the75

user watches only one portion of it at a time [18].76

The rest of the paper is organized as follows: Section 2 details the char-77

acteristics of the proposed saliency model, Section 3 includes the system pa-78

rameters, the details of the adopted image database and a discussion on the79

characteristics of the proposed model. Finally, in Section 4 the conclusions80
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are drawn.81

2. Proposed Method82

The proposed saliency model is shown in Figure 1. Each input image83

(i.e., the equi-rectangular image) undergoes a pre-processing step in which84

the viewport extraction is performed. Then, high-level (i.e., skin color, faces,85

and number of people) and low-level features (i.e., hue, saturation, intensity,86

and contrast) are extracted for each viewport and averaged to obtain a first87

estimation of the saliency map. This map is then refined by using an equator-88

prior weighting and a smoothing operation.89

Figure 1: Proposed saliency model

In the following, each step of the algorithm will be detailed.90

2.1. Pre-processing91

The viewports Vi, with i = 1, ..., n, are extracted from the input equi-92

rectangular image I according to the procedure described in [19], here re-93

ported for sake of clarity.94

A non-uniform angular sampling of the sphere is performed, with ∆φ and95

∆θ being the horizontal and vertical angular sampling rates and Xi(φ, θ) the96

ith sampling point. Since we assume that the user will change location in the97

omni-directional content by moving his head, the center of the viewport Vi98

will correspond to the coordinates of Xi.99

To extract each viewport, the position of each pixel of Vi is back-projected100

into the spherical reference, and then into the equi-rectangular frame. These101

coordinates are used to interpolate over I.102
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Let (x, y) be the coordinates of any point Mv in the viewport Vi, whose103

size is [Vwidth, Vheight]. To represent the inverse gnomonic projection of Vi104

on the sphere, we define a three dimensional Cartesian coordinate system,105

whose origin is surrounded by the spherical frame of unitary radius, and106

place the viewport Vi on the plane tangent to the sampling point Xi (as107

shown in Figure 2). Let us consider the case in which the sampling point Xi108

corresponds to the center of the equi-rectangular image. Then, the position109

of Mv on the aforementioned plane is given by:110

Mp(x, y, z) =

 1
pxl · (x− Vwidth

2
)

pxl · (y − Vheight
2

)


where pxl is the size of a pixel in Vi, obtained as:111

pxl = 2
tan (a

2
· π
180

)

Vwidth

where a is the size of the viewport in degrees.112

The projection of Mp on the sphere, Ms, is:113

Ms(x, y, x) =
Mp(x, y, z)

‖Mp(x, y, z)‖
where ‖Mp(x, y, z)‖ denotes the L2 norm of vector Mp(x, y, x).114

In the case of any other sampling point, Ms needs to be multiplied by the115

rotation matrix Rθ,φ:116

Rθ,φ =

cos(θ) cos(φ) − sin(φ) cos(θ) sin(φ)
sin(θ) cos(φ) cos(θ) sin(θ) sin(φ)
− sin(φ) 0 cos(φ)


where φ and θ are the azimuth and elevation angles of the sampling point Xi117

on the sphere (Figure 2).118

To obtain the corresponding coordinates in the equi-rectangular image,119

Me, the following relation holds:120

Me(x, y) =

[
Ewidth ·

(
ang
2π

)
Eheight ·

(
arcsin (Ms(z))

π+0.5

)]
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where [Ewidth, Eheight] are the sizes of the equi-rectangular image and ang is121

given by:122

ang = tan−1
(
Ms(y),Ms(x)

)
where the four-quadrant inverse tangent function is used.123

x

y

z

θ

φ

Vi

Xi

Figure 2: Viewports extraction for an arbitrary sampling point Xi

2.2. Low-level analysis124

In the low-level analysis (see Figure 3), each viewport Vi is converted from125

the Red, Green, and Blue (RGB) color space to the Hue, Saturation, and126

Value (HSV) one. The latter is characterized by better visual consistency127

than the RGB one as suggested in [20]. For each viewport Vi, only the Hue128

(Hi) and Saturation (Si) components are taken into account. In more details,129

for each Vi, a first map (LLSMapi) is obtained as combination of the result130

of the texture analysis performed on Vi with the weighted sum of Hi, Si131

and the outcome of the Graph-Based Visual Saliency (GBVS) analysis [21]132

of the Hi component. This model allows to estimate the human fixations133

based on the creation of activation maps on specific feature channels that are134

normalized to enhance the importance of the points attracting the human135

attention. Moreover, it has been proven that GBVS supports a center bias,136

by assigning higher saliency values in the center of the image plane. Based137

on this, LLSMapi is computed as:138

LLSMapi = Ti ·Wi (1)
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where:139

• Ti is a binary texture map extracted from Vi by using the multi-channel140

filtering approach described in [22];141

• Wi is obtained as:142

Wi = αSi + βHi + γGi (2)

where α, β and γ are the coefficients of the weighted sum while Gi is143

the output of the GBVS procedure.144

Finally, the overall low-level saliency map, LLSMaptot, is obtained by145

equi-rectangular projection of each LLSMapi.146

Figure 3: Low-level features analysis

2.3. High-level analysis147

The steps performed in the high-level analysis are detailed in Figure 4.148

The input viewport Vi undergoes two parallel processing: skin and face de-149

tection. The former is performed based on the methods presented in [23].150

Based on this approach, only the portions of Vi whose color components are151

inside a pre-defined range are extracted to obtain the map Pi. Face detection152

is achieved by using the Viola-Jones algorithm [24] to retrieve the map Fi.153

It is useful to underline that this step is performed using not only the frontal154

face classification model but also the upper body and profile face classifica-155

tion models. The former detects head and shoulders areas while the latter156

detects upright face profiles. The maps Pi and Fi are computed for each157

viewport and they are combined through an equi-rectangular mapping to158

respectively obtain the maps Ptot and Ftot. In order to more accurately iden-159

tify the presence of human subjects, a weighted combination is performed to160

obtain the fusion map PFtot as:161
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PFtot =
2 · Ftot + Ptot

3
. (3)

After the regions containing persons have been identified, a people count162

is performed in order to estimate the number of persons (nP ) identified in163

PFtot. This value, obtained through a blob analyzer, is then used to define164

the weight wpeople. Finally, the output HLMaptot is obtained as:165

HLMaptot = wpeople · PFtot; (4)

In this work, a more relevant weight will be given to regions containing a166

limited number of subjects rather than a large one. In fact, in the latter case167

the human subjects in the scene are hardly distinguishable, appearing as a168

texture and therefore reducing the impact of that region on the saliency.169

Figure 4: High-level features analysis

2.4. Post-processing170

After the computation of LLSMapi and HLMapi, they are averaged in171

order to account equally for low-level and high-level features. The obtained172

fusion map undergoes a post-processing step before returning the overall173

Saliency Map.174

Several studies [25, 26] show that fixations distribution tends to be strongly175

biased towards the center of the screen when viewing 2D scenes on computer176

monitors, to the point that a saliency map composed of a centered Gaussian177

blob has good performances in predicting fixations [27]. This appears to be178

independent from the distribution of the features in the images [28]. There179

are different explanations for this behavior: first, objects of interest are often180

placed by photographers in the center of photographs by exploiting the rule181

of thirds; second, fixations might be influenced by the setup used to experi-182

mentally record eye-tracking data, where users are usually placed in front of183
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the screen [29].184

In the case of omni-directional images, this assumption does not hold com-185

pletely, since users can explore the whole content by freely moving eyes and186

head. However, even in this case, a bias towards the central area (i.e., the187

equatorial area) of the omni-directional image, holds. This bias can be due188

to the human posture and to the fact that moving the head for looking at a189

different direction requires more intense movements with respect to the ones190

required by the eyes [30, 31]. Therefore it is more likely for a subject to first191

span the visible area with the eyes and then with the head, thus confirming192

the results in [16]. For this reason, in the proposed method, a weighting win-193

dow is applied to the estimated saliency map in the equi-rectangular format.194

As can be noticed in Figure 5, the applied cost function is increasing with195

the distance with respect to the equatorial line. The cost values are in the196

range 1 (in the central region) to 1/4 (in the border regions).197

Finally a low-pass filtering and a normalization step are performed for198

obtaining the smoothed final saliency map.199

Figure 5: Weighting window

3. Evaluation tests200

In the performed tests, the training set has been used for setting up the201

system parameters while the validation set has been exploited for testing the202

performances of the proposed approach. In the following, Subsection 3.1 de-203

tails the procedures used for selecting the system parameters and the adopted204

values, Section 3.2 describes the adopted database, and Section 3.3 presents205

the performed tests and the obtained results.206

3.1. System parameters207

• Viewport extraction: in order to perform the extraction of viewports208

we used a horizontal sampling rate ∆φ = 40◦ and a vertical sampling209
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rate ∆θ = 35◦. Knowing that the HMD used for the test dataset has a210

resolution of 960x1080 pixels per eye and a total Field-Of-View (FOV)211

of 100◦, we extracted 1920x1080 pixels viewports in order to provide212

the same FOV and set the value of the size of the viewport in degrees,213

a, accordingly.214

• Weighting constants: the values of α, β and γ have been empir-215

ically chosen for maximizing the correlation between estimated and216

ground truth saliency maps in the training dataset. In more details,217

the adopted normalization values are: α = 1, β = 0.1 and γ = 0.1.218

LLSMapi and HLMapi are averaged in order to equally account for219

low-level and high-level features.220

The parameter wpeople is set according to:221

wpeople =


0.3 if nP ≥ 10

0.6 if 5 ≤ nP < 10

0.9 if nP < 5.

(5)

During the face detection step, the area of the smallest detectable ob-222

ject is set to 100x100 pixels and during the people count step, the223

minimum blob area detectable by the blob analyzer is set to 6000 pix-224

els.225

• Gabor filters: the adopted approach [22] is based on the use of a226

bank of Gabor filters in order to almost uniformly cover the spatial-227

frequency domain. In this work four orientation values were adopted228

[0◦, 45◦, 90◦, 135◦] and increasing values of radial frequency, raising229

with step 1 octave from
√

2 to the hypotenuse length of the input230

image, have been taken into account.231

3.2. Image database232

The test dataset [32] is composed by three sub datasets (one per model233

type: head only, head+eye, scanpath). In this work, only the head motion-234

based saliency model is considered, and the relevant dataset is composed by235

20 training images (with size from 4000x2000 to 16000x8000 pixels) and 25236

evaluation images (with size from 3000x1500 to 12000x6000 pixels), with the237

corresponding ground truth. The database includes several subjects such238

as vehicles (i.e. cars, public transport), urban environment (i.e. squares,239
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buildings, supermarkets, museums theaters, hotels), landscapes, animals, and240

people. Moreover, for the provided images, different lighting conditions can241

be found.242

3.3. Experimental results243

In order to assess the performances of the proposed method (indicated244

in the following as RM3), the tools provided by the “Salient360! Visual245

attention modeling for 360° Images” Grand Challenge, detailed in [32, 33],246

have been used to compare the estimated saliency map with the available247

ground truth. For evaluating the effectiveness of the proposed method with248

respect to other methods, we computed the Correlation Coefficient (CC) and249

KL Divergence (KLD) between the estimated saliency map and the ground250

truth saliency map of the images in the validation set. In Figures 6-7 the251

estimated saliency maps giving the best and the worst results are shown252

together with the original image and the corresponding ground truth. The253

corresponding CC and KLD values, compared with the ones obtained by the254

best performing algorithms in the challenge, Wuhan University (WU) [34]255

and Zhejiang University (ZU) [35], are reported in Tables 1-2, respectively.256

As can be noticed from Table 1, the CC or KLD values are comparable with257

the best performing ones. In some cases the CC value is closer to the best258

one while in others the KLD value is closer. This difference is due to the259

statistical measures considered by the two similarity functions.260

RM3 WU [34] ZU [35]
Image CC KLD CC KLD CC KLD

P19 0.63 0.57 0.68 0.46 0.75 0.51
P69 0.68 0.71 0.65 0.90 0.73 0.38
P73 0.63 0.51 0.84 0.20 0.86 0.19
P74 0.67 0.78 0.78 0.59 0.73 0.52
P79 0.65 0.67 0.78 0.43 0.72 0.43

Table 1: CC and KLD scores for the proposed method in the best performing cases
compared with the benchmarks.

In order to carry out a more complete analysis of the proposed method,261

we evaluated its performances in terms of strengths and weaknesses on the262

entire dataset. In fact, by considering not only the validation but also the263

training set, it is possible to have a better understanding of the behavior of264

the proposed algorithm for different types of content.265
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(a) P19 (b) Ground truth (c) Estimated saliency map

(d) P69 (e) Ground truth (f) Estimated saliency map

(g) P73 (h) Ground truth (i) Estimated saliency map

(j) P74 (k) Ground truth (l) Estimated saliency map

(m) P79 (n) Ground truth (o) Estimated saliency map

Figure 6: Left column: best performing images in the entire dataset. Center column:
saliency map ground truth. Right column: saliency map estimated by the proposed algo-
rithm

3.3.1. Model strengths266

From the analysis performed on the images in the dataset, it is possible to267

highlight some characteristics of the algorithm that allowed to obtain results268
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(a) P1 (b) Ground truth (c) Estimated saliency map

(d) P71 (e) Ground truth (f) Estimated saliency map

(g) P94 (h) Ground truth (i) Estimated saliency map

(j) P96 (k) Ground truth (l) Estimated saliency map

(m) P98 (n) Ground truth (o) Estimated saliency map

Figure 7: Left column: worst performing images in the entire dataset. Center column:
saliency map ground truth. Right column: saliency map estimated by the proposed algo-
rithm

similar to the best performing algorithms on the dataset:269

• Use of equator-prior based weighting: the advantage of including this270

step in the proposed algorithm can be noticed for stimula P24 and P73,271
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RM3 WU [34] ZU [35]
Image CC KLD CC KLD CC KLD

P1 0.49 0.95 0.71 0.58 0.65 0.52
P71 0.16 1.9 0.63 0.81 0.56 0.47
P94 0.41 1.03 0.76 0.45 0.79 0.34
P96 0.52 1.24 0.68 0.87 0.80 0.40
P98 0.30 0.75 0.41 0.56 0.36 0.77

Table 2: CC and KLD scores for the proposed method in the worst performing cases
compared with the benchmarks.

in Figure 8(b) and (f) respectively. In these images, the horizon line272

corresponds to the equatorial line and thus the proposed model can273

effectively estimate the saliency of the scenes;274

• Good performances in poor lighting conditions: this is achieved by275

including in the salient regions only areas containing mid-level values276

of saturation (S in the range [0.36-0.7]). An example is for stimula277

P10 and P69, respectively shown in Figure 8(a) and (d). As can be278

noticed, the method is able to detect saliency even in darker areas279

without overlaying regions belonging to the border between differently280

illuminated areas;281

• High-level feature extraction: this step increases the weight in the282

saliency map estimation of the areas containing human subjects. This283

can be noted for stimulus P28 (Figure 8(c)) where the people around284

the table are successfully recognized.285

3.3.2. Model weaknesses286

The analysis of the performances of the proposed algorithm on the dataset,287

allowed to highlight some weak points that need a further improvement of288

the system:289

• Indoor scenes with presence of distributed light sources: this is the case290

of Figures 8(a) and (f). A reason for such poor behavior might be the291

fact that, after conversion in the HSV color space, the V component is292

discarded. This operation might hinder the right handling of this type293

of light source;294
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• Difficulty in people detection in crowded environments: this problem295

could be solved by changing the adopted technique for discriminating296

the presence of skin. An example of this problem is in Figure 8(e), in297

which the presence of the crowd hinders the face detection algorithm. In298

this case, the proposed algorithm detects the presence of faces, however299

giving too importance to these areas. A more accurate skin selection300

procedure could reduce the number of false alarm.301

(a) P10 (b) P24 (c) P28

(d) P69 (e) P71 (f) P73

Figure 8: Samples of images in the dataset.

4. Conclusions and comments302

In this contribution, a method for visual saliency estimation for omni-303

directional images is presented. The proposed method relies on the extraction304

of a set of viewports from the equi-rectangular image. From each of them, a305

first estimation of the saliency map is obtained by analyzing the high-level306

(i.e., skin color, faces, and number of people) and low-level features (i.e.,307

hue, saturation, intensity, and contrast). These intermediate maps are then308

fused according to pre-defined weighting coefficients and finally refined by309

using an equator-prior weighting and a smoothing operation. The proposed310

model has been tested in the “Salient360! Visual attention modeling for311

360° Images” Grand Challenge achieving good results especially in images312

containing human subjects and in case of poor light conditions. Future work313

will be devoted to a deeper investigation of the impact of image characteristics314
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(e.g., contrast, illumination) on the performances of the system thanks to the315

use of larger databases.316
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