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Abstract This short paper concerns the existence of curves with low gonality on smooth
hypersurfaces X ⊂ P

n+1.After reviewing a series of results on this topic,we report on a recent
progress we achieved as a product of the Workshop Birational geometry of surfaces, held at
University of Rome “Tor Vergata” on January 11th–15th, 2016. In particular, we obtained
that if X ⊂ P

n+1 is a very general hypersurface of degree d � 2n + 2, the least gonality of

a curve C ⊂ X passing through a general point of X is gon(C) = d −
⌊√

16n+1−1
2

⌋
, apart

from some exceptions we list.
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Introduction

A natural way to investigate a projective variety X is to describe the geometry of its sub-
varieties, both when they are rigid in X , and when they deform in families. Basic questions
concern for instance the existence of subvarieties of given invariants, especially when they
have either dimension or codimension equal to one.

In this paper we are interested in studying the gonality of curves lying on general hyper-
surfaces X ⊂ P

n+1 of sufficiently large degree. In Sects. 1 and 2 we shall briefly review a
series of results on this topic. Then, we shall report on a recent result governing the least
gonality of a curve passing through the general point of X (cf. Theorem 3.3).

Our interest on this subject arose from discussions we had during theWorkshopBirational
geometry of surfaces, held on January 11th–15th, 2016 at University of Rome “Tor Vergata”
among us, and with other participants. So, we are pleased to thank the Organizers for their
invitation, andConcettinaGalati,MargaridaMelo, andDuccio Sacchi for helpful discussions.

Notation We work throughout this paper over the field C of complex numbers. By variety
we mean a complete reduced and irreducible algebraic variety X over C, unless otherwise
stated. By curvewe intend a variety of dimension 1.We say that a property holds for a general
(resp. very general) point x ∈ X if it holds on a Zariski open non-empty subset of X (resp.
outside the union of a countable collection of proper subvarieties of X ).

1 Rational curves on hypersurfaces

The study of rational curves on projective varieties is an important issue in many areas of
algebraic geometry, such as the birational classification of algebraic varieties with its incar-
nation in the minimal model program, and enumerative geometry in its modern manifestation
of Gromov-Witten theory.

We assume throughout the paper that X ⊂ P
n+1 is a smooth hypersurface of degree d ,

so that its canonical bundle satisfies K X ∼= OX (d − n − 2). If d < n + 2, then X is a Fano
variety, and it is uniruled. On the other hand, X is no longer swept out by rational curves as
soon as d � n + 2 because of the nefness of K X , although rational curves may still cover
subvarieties of X having large dimension.

The study of rational curves on hypersurfaces has been carried out also with respect to the
degrees of the curves. In this direction, there are classical results dating back to Morin, B.
Segre and Predonzan regarding the existence of lines on complete intersections Y ⊂ P

n+1

and determining for general Y the dimension of the Fano scheme F1(Y ) in the Grassmannian
G(1, n + 1), which parametrizes lines on Y (see [39,45,47]). Actually, these results concern
the existence of linear subvarieties of arbitrary dimension, and they have been extended in
more recent times in various directions (see e.g. [8,17]). In particular, for hypersurfaces one
has (see [33, Theorem V.4.3])

Theorem 1.1 Let X ⊂ P
n+1 be a smooth hypersurface of degree d � 2n − 1. Then X

contains lines and, if in addition X is assumed to be very general, then the Fano scheme
F1(X) ⊂ G(1, n + 1) is smooth of dimension 2n − 1 − d.

Of course, there exist smooth hypersurfaces of any degree and dimension that contain
lines, so in particular, they contain rational curves. On the other hand, a series of seminal
results by Clemens, Ein, and Voisin ensures that, out of the range of Theorem 1.1, very
general hypersurfaces do not contain rational curves (cf. [42]). Namely,
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Theorem 1.2 Let X ⊂ P
n+1 be a very general smooth hypersurface of degree d � 2n. Then

X does not contain rational curves.

The latter theorem has been proved by Clemens [16] for d � 2n + 1. Then it has been
extended by Ein [19,20] to complete intersections in smooth arbitrary varieties, whereas the
weaker hypothesis d � 2n follows from the work of Voisin [49,50]. In the boundary case
d = 2n − 1, it follows from [49] that if n � 4, there exist finitely many rational curves of
fixed degree in X . Pacienza showed in [42] that for n � 5 the very general hypersurface of
degree 2n −1 does not contain rational curves other than lines (which exist by Theorem 1.1).

The basic, important idea used to prove Theorem 1.2 and its variant for complete intersec-
tions consists in a fine analysis of positivity of suitable vector bundles on universal families
of hypersurfaces, or complete intersections. The proof of the result announced in this paper
also rely on the same ideas and techniques.

2 Irregular curves on algebraic varieties

Apart from rational curves, it is natural to wonder how a curve into a given variety is far from
being rational. In this direction there are two natural invariants measuring the irrationality of
a curve: its geometric genus and its gonality.

The existence of curves with low genus on particular classes of varieties has been inves-
tigated, as for instance, on Kummer [44], Prym [1,41], and Jacobian varieties [36].

Turning to smooth hypersurfaces X ⊂ P
n+1 of degree d , the case of plane curves is trivial,

since the degree and the genus g are related by the well-known formula g = (d−1)(d−2)
2 . The

case of surfaces in P
3 is more subtle. If d � 3, X carries curves of any genera, as it is rational.

For d = 4, X is a K3 surface and again any g can occur (cf. e.g. [13, Corollary 2.2]). The
case of degree d � 5 is covered by the following result due to Xu ([51, Theorem 1]).

Theorem 2.1 Let X ⊂ P
3 be a very general surface of degree d � 5. Then, there is no curve

on X with geometric genus g � d(d−3)
2 − 3. Moreover, curves cut out on X by tri-tangent

planes (and only them, if d � 6) achieve this bound.

A similar result has been obtained by Chiantini and Lopez [9]. Moreover, a detailed study
of the occurrence of the existence of genus g curves on a very general surface in X ⊂ P

3 has
been worked out by Ciliberto, Flamini and Zaidenberg in [13]. They proved that on a very

general X , if the degree is d � 5, no curve of geometric genus d2−3d+4
2 � g � d2 − 2d − 9

can occur. Furthermore, there exists a bound Gd such that X carries a curve of geometric
genus g for any g � Gd . These results have been then extended in [14] to possible values for
geometric genera of subvarieties Y of any smooth projective variety X of arbitrary dimension.

Concerning higher dimensional hypersurfaces X ⊂ P
n+1, it is worth noting that the

results [11,19,20,42,49]mentioned in the previous section on the existence of rational curves
are more general. Indeed, they give sufficient conditions for the canonical bundle of the
desingularization of any irreducible subvariety of X to be effective. As a consequence, they
yield that the geometric genus of these subvarieties turns out to be sufficiently positive. We
would also like to stress that these results are in the same line of the following earlier one by
Clemens in [16], on families of immersed curves.

Theorem 2.2 Let X ⊂ P
n+1 be a very general hypersurface of degree d � 2. Then X does

not admit any irreducible family C of immersed curves (i.e. smooth curves C endowed with
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a finite morphism C
ν−→ X which is everywhere of maximal rank) of (geometric) genus g

which covers a subvariety of codimension less than D, where D := 2−2g
deg ν

+ d − (n + 2).

A notable extension by Pacienza (see [43]) gives sufficient conditions for a k-dimensional
subvariety Y in a very general hypersurface X ⊂ P

n+1 to be contained in the locus covered
by the lines of X . In particular, if n � 5 and d � 2n, it turns out that any subvariety of X is
of general type (cf. [43, Corollary 1.2]).

As we pointed out, another measure for the irrationality of a given curve C is the gonality,
which is defined as

gon(C) := min
{
c ∈ N

∣∣∃ C ��� P
1 dominant of degree c

}
.

It is well known that gonality and genus are related by the inequality gon(C) �
⌊

g+3
2

⌋
,

and there is a stratification of the moduli space Mg of smooth curves of genus g given by
gonality.

In his groundbreaking paper [34], Lazarsfeld proved among other things that smooth
curves C in |OX (1)|, with X a smooth K3 surface of genus p � 3 and Pic(X) = Z [OX (1)],
behave generically from the point of view of Brill–Noether theory (despite the fact that these
curves have general moduli only if p � 11 and p �= 10; cf. e.g. [24] for an overview). Thus,

any such a curve C has geometric genus p and gonality gon(C) =
⌊

p+3
2

⌋
.

In [15,22,23] the authors consider the problemof extendingLazarsfeld’s results to singular
curves in |OX (1)|, computing the gonality of their normalizations. The results in [15] improve
those in [22,23], by giving a necessary condition on p, g and k for the existence of an
irreducible, possibly singular, curve C ∈ |OX (1)| of geometric genus g whose normalization
has a g1k . For all admissible cases, a family of expected dimension of nodal curves in |OX (1)|
with geometric genus g, carrying a g1k on their normalizations, has been exhibited.

Similar problems have been investigated in different settings, for instance on rational and
ruled surfaces [3,10,37,48], Enriques surfaces [31,32], elliptic K3’s [46], toric surfaces [29],
as well as abelian ones [30,44].

Concerning the gonality of curves on hypersurfaces of P
n+1, not much was known till

very recently, except in particular cases. Basili [4] has proven that for a smooth complete
intersection of two surfaces in P

3, the gonality is computed by the linear series cut out on
the curve by a pencil of planes off the intersection with a base line, which is a maximal
multisecant line to the curve. The same result holds for any curve on smooth quadrics in P

3

(see [2,37]), while a result on curves on a certain quartic surface in P
3 is due to Farkas [21].

An extended review on curves whose gonality is computed by multisecant lines can be found
in [28].

In the case of very general hypersurfaces of general type, the most complete result is the
following (cf. [7, Proposition 3.8]):

Theorem 2.3 Let X ⊂ P
n+1 be a very general hypersurface of degree d � 2n.

If C ⊂ X is an irreducible curve, then

gon(C) � d − 2n + 1.

More generally, if X contains an irreducible subvariety S ⊆ X of dimension s > 0 covered
by a family of irreducible curves whose general element has gonality c, then

c � d − 2n + s.
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3 Covering gonality of general hypersurfaces

Given a n-dimensional projective variety X , we are interested in determining the least gonality
of curves passing through a general point x ∈ X . This is a birational invariant introduced in
[7], called the covering gonality of X , and it can be equivalently defined in terms of families
of curves covering X as

cov. gon(X) := min

⎧⎨
⎩k ∈ N

∣∣∣∣∣∣
∃ a family C π−→ T of irreducible curves Ct := π−1(t)
and a dominant morphism f : C −→ X such that
for general t ∈ T, gon(Ct ) = k and f|Ct is birational

⎫⎬
⎭ .

A family of curves as above is said to be a covering family of k-gonal curves.
General results on this invariant have been recently proved (cf. [7]). Furthermore, the

covering gonality of specific classes of varieties has been computed (see e.g. [35] concerning
smooth surfaces in P

3, and [5] on second symmetric products of curves).
In the case of smooth hypersurfaces X ⊂ P

n+1 of large degree, the covering gonality
satisfies the following bound (cf. [7, Theorem A]).

Theorem 3.1 Let X ⊂ P
n+1 be a smooth hypersurface of degree d � n + 2. Then

cov. gon(X) � d − n. (3.1)

When n = 1, X is a plane curve of degree d � 3, hence the gonality and the covering
gonality coincide. By a classical result already known toM. Noether, we have cov. gon(X) =
d − 1, and any map X ��� P

1 of degree d − 1 is the projection from some point x ∈ X (see
[12, Teorema 3.14]; cf. also [27, Theorem 2.1]).

When X ⊂ P
3 is a smooth surface of degree d � 4, the situation is more complicated,

but the problem is still totally understood, i.e. cov. gon(X) = d −2. Indeed, if X is a smooth
quartic inP

3, then X is aK3 surface, andBogomolov-Mumford’s theorem states that any such
a surface contains at most countablymany rational curves and it is covered by singular elliptic
curves (cf. [38, p.351]), thus cov. gon(X) = d − 2 = 2. The case d � 5 has been treated
by Lopez and Pirola in [35], where they proved that cov. gon(X) = d − 2 and classified all
the covering families attaining this value (cf. [35, Corollary 1.7]). In particular, all but one of
the constructions of families computing the covering gonality rely on the existence of some
rational or elliptic curve on X , which do not occur when X is assumed to be a very general
surface in P

3 (cf. Theorem 2.1). Thus the following holds (see [35, Corollary 1.8]).

Theorem 3.2 Let X ⊂ P
3 be a very general surface of degree d � 5. Then

cov. gon(X) = d − 2,

and any covering family C π−→ T of (d −2)-gonal curves consists of tangent plane sections,
i.e. a general fibre Ct := π−1(t) is a plane curve cut out on X by the tangent plane Tx X ⊂ P

3

at some point x ∈ X.

In the above setting, the (d − 2)-gonal map Ct ��� P
1 is the projection of the plane curve

Ct from its singular point x ∈ Ct .
As far as higher dimensional hypersurfaces are concerned, we are able to prove the fol-

lowing:
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Theorem 3.3 Let X ⊂ P
n+1 be a very general hypersurface of degree d � 2n + 2. Then

d −
⌊√

16n + 9 − 1

2

⌋
� cov. gon(X) � d −

⌊√
16n + 1 − 1

2

⌋
, (3.2)

and the equality to the right hand side holds for any n ∈ N�{4α2+3α, 4α2+5α+1 |α ∈ N}.

The second part of the statement simply follows from the fact that
⌊√

16n+9−1
2

⌋
=⌊√

16n+1−1
2

⌋
if and only if n /∈ {

4α2 + 3α, 4α2 + 5α + 1
∣∣ α ∈ N

}
. On the other hand,

if n = 4α2 + 3α or n = 4α2 + 5α + 1 for some α ∈ N, then the two bounds in (3.2) differ
by one.

Note that this is a substantial improvement of Theorem 3.1 when X is assumed to be very
general.

Remark 3.4 Actually, the hypothesis of Theorem 3.1 can be weakened by assuming X ⊂
P

n+1 of degree d � n+2 having only canonical singularities (see [7, Corollary 1.11]). More-
over, under this less restrictive assumption, the inequality (3.1) is sharp for any dimension
n. Indeed, a hypersurface X ⊂ P

n+1 with an ordinary singular point of multiplicity n does
satisfy cov. gon(X) = d − n (cf. [7, Example 1.7 (v)]).

The complete proof of Theorem 3.3 will appear in a forthcoming paper. Here we give a
short sketch of it.We combine various techniques coming from several of the aforementioned
papers, such as [6,7,11,19,20,35,42,49].

A crucial aspect involved in the proof is the description of the geometry of k-gonal curves
C ⊂ X passing through a general point of X . In this direction, we argue as in [5, Section 4]
rephrasing the problem in terms of correspondenceswith null trace on X and usingMumford’s
technique of induced differentials [40]. Then, [6, Theorem 2.5] assures that if k := gon(C) �
d − 2, the fibers of a degree k map φ : C ��� P

1 consist of collinear points. Furthermore, by
combining the approaches of [6] and [7], we prove that there exists a point x ∈ X such that
the curve C lies on the cone T d−k

x X ⊂ Tx X of lines having multiplicity of intersection with
X at x of order at least d − k. In particular, the map φ : C ��� P

1 is obtained by projection
from x ∈ T d−k

x X to some rational curve lying on a general hyperplane section of T d−k
x X .

Vice versa, given an integer h � d − 2, a point x ∈ X , and a rational curve R contained in
a general hyperplane section of T d−h

x X , the cone over R with vertex at x cuts out on X an
irreducible curve C satisfying gon(C) � h.

Recall that the cone T d−h
x X is scheme theoretically defined as the complete intersection of

the polars of degrees 1, . . . , d−h−1of x with respect to X . So,we slightly extendPredonzan’s
result [11, Theorem 2.1] on the existence of linear spaces in complete intersections of P

n+1,

and deduce that, for h � d −
√
16n+1−1

2 , there exists a (n − 1)-dimensional family of cones
T d−h

x X each containing a line �x not belonging to the ruling. Thus, the linear span of x and
�x intersects X along a plane curve C admitting a degree h map C ��� �x ∼= P

1 given by
projection from x . Therefore this construction gives rise to a covering family of curves with

gonality at most h, where we may set h = d −
⌊√

16n+1−1
2

⌋
, so that the upper bound in (3.2)

is achieved.
The lower bound in Theorem 3.3 is in turn obtained by following the argument of Pacienza

[42], which is based on the vector bundle approach developed by Ein and Voisin in [19,20,
49]. We assume k to be the covering gonality of X and, in the universal family over the
GrassmannianG(1, n+1) of lines inP

n+1, we consider the locus �̃d−k ⊂ P
n+1×G(1, n+1)
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A note on gonality of curves 37

of pairs (x, [�]) such that the line � ⊂ P
n+1 is tangent to X at x with intersection multiplicity

at least d − k. By the above discussion, any covering family of k-gonal curves on X induces
a (n − 1)-dimensional subvariety of �̃d−k swept out by rational curves. By studying the
positivity properties of the canonical bundle of �̃d−k , we determine necessary conditions on

k for the existence of such a subvariety. Namely, we obtain k � d −
√
16n+9−1

2 , which leads
to the lower bound.

To conclude, we would like to point out a couple of open problems which nat-
urally arise from the above analysis. The first is to determine the covering gonality
of very general hypersurfaces in P

n+1 for the remaining values of n, that is n ∈{
4α2 + 3α, 4α2 + 5α + 1

∣∣ α ∈ N
}
. In analogy with the cases where the covering gonality

was computed, we conjecture that cov. gon(X) = d −
⌊√

16n+1−1
2

⌋
.

Secondly, there is the problem of characterizing the families of curves for which the
covering gonality bound is achieved. In particular, it would be interesting to understand
whether for n 
 0, these families consist only of planar sections.
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