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Abstract—Inertial Measurement Units (IMUs) have a long-

lasting popularity in a variety of industrial applications, from 
navigation systems, to guidance and robotics. Their use in clinical 
practice is now becoming more common thanks to miniaturization 
and the ability to integrate on-board computational and decision-
support features. IMU-based gait analysis is a paradigm of this 
evolving process, and in this study its use for the assessment of 
Parkinson’s Disease (PD) is comprehensively analyzed. Data 
coming from 25 individuals with different levels of PD symptoms 
severity and an equal number of age-matched healthy individuals 
were included into a set of 6 different machine learning (ML) 
techniques, processing 18 different configurations of gait 
parameters taken from 8 IMU sensors.  Classification accuracy 
was calculated for each configuration and ML technique, adding 
two meta-classifiers based on the results obtained from all 
individual techniques through majority of voting, with two 
different weighting schemes. Average classification accuracy 
ranged between 63% and 80% among classifiers and increased up 
to 96% for one meta-classifier configuration. Configurations 
based on a statistical pre-selection process showed the highest 
average classification accuracy. When reducing the number of 
sensors, features based on the joint range of motion were more 
accurate than those based on spatio-temporal parameters. In 
particular, best results were obtained with the knee range of 
motion, calculated with 4 IMUs, placed bilaterally. The obtained 
findings provide data-driven evidence on which combination of 
sensor configurations and classification methods to be used during 
IMU-based gait analysis to grade the severity level of PD.  
 

Index Terms—Machine learning, wearable sensors, gait 
analysis, body sensor networks, feature extraction, Parkinson’s 
Disease 
 

I. INTRODUCTION 
ARKINSON’s disease (PD) is a long-term 

neurodegenerative disorder of the central nervous system 
that causes motor – tremor at rest, rigidity, bradykinesia and 
postural instability – and non-motor manifestations [1]. The 
disease progresses over time and the symptoms usually grow 
both in severity and in quantity [2], increasing the chance of 
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severe complications, causing a general worsening of the 
patient's quality of life. The number of affected individuals is 
growing [3] and, thus, the associated healthcare costs [4]. 

In the clinical practice, the diagnosis of PD is entirely based 
on neurological examinations, focused on the observation of 
motor signs, and on the completion of rating scales, such as the 
Unified Parkinson’s Disorders Rating Scale (UPDRS), or the 
Hoehn and Yahr (H&Y) [6]. Possible limitations associated 
with this process are the difficulty to capture reliable 
fluctuations over time caused by medical response, or to 
monitor changes that, by definition, appear over longer periods 
of time than those needed for a clinical examination [7], [8]. 
This may lead to omit some important details, with possible late 
diagnosis – mainly in the early stages of the disease. 

The extraction of accurate and unbiased data based on 
quantitative measurements is critical for the understanding of 
the aforementioned pathophysiological phenomenon [9]. The 
ability to provide clinicians with quantitative measures of motor 
performance represents an added value to the analysis of this 
disease, and the association of these measures with those 
already used in the clinical practice may lead to a more accurate 
assessment [7]. The ideal technological platforms must be 
simple to use, applicable for daily clinical practice, unobtrusive, 
and possibly low-cost. Moreover, the provided information 
should be reliable, accurate and easy to interpret [2]. 

In this scenario, Inertial Measurement Units (IMUs) almost 
entirely fit the previous requirements. IMUs have been initially 
introduced in the scientific community of aerospace 
engineering, as means to estimate attitude of flying objects [10], 
and to help guidance in navigation systems [11]. They were 
then integrated into a variety of commercial vehicles, and their 
use is now being even more popular in unmanned systems, 
while miniaturization made it possible to open new application 
fields in consumer electronics, such as fitness tracking systems, 
gaming, and sports technology. 

In clinical practice, IMU technology has been borrowed from 
the previously cited application fields to replace motion capture 
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systems. IMU-based gait analysis is a useful tool for the 
assessment [12], the screening [13] and the diagnosis of PD 
[14], due to its ability to capture a wide spectrum of gait 
characteristics induced by motor impairments [15]. Based on 
instrumented motion analysis, PD gait has been associated with: 
increased double support time [16]; reduced step/stride length 
and gait speed [17], [18], [19]; decreased gait symmetry and 
regularity [14]; reduced range of rotation of thigh, knee [16], 
[20], trunk [17] and foot [18]; reduced knee symmetry [20].  

Based on modifications to walking patterns, machine 
learning (ML) techniques were introduced to identify gait 
patterns of people with PD and discriminate them from those of 
healthy subjects: load sensors [21], also in combination with 
spatio-temporal kinematic features [22]; motion capture 
systems and force plates [23], [24], [25]; sensorized walkways 
[26] were used to this end. Focusing on IMU-based measures, 
Tien et al. [27], identified PD walking patterns by selecting 
features related to the range of motion of the foot, and using a 
support vector machine (SVM); Barth et al. [28] used statistical 
features, together with some step features, using linear 
discriminant analysis (LDA). Klucken et al. [15] included step, 
sequence and frequency-dependent features, combining 
information coming from different tasks in addition to straight 
walking, as inputs to an AdaBoost classifier. The 
aforementioned works used one IMU placed on each foot. 
While simplifying the experimental setup, this approach 
excludes those motor symptoms present in the other parts of the 
body, e.g. proximal lower limb joints, trunk, or arms, which are 
commonly considered in the clinical evaluation of PD. 

In the direction of including motor symptoms of the whole 
body, Cuzzolin et al. [29] used Hidden Markov Models to 
represent gait sequences from lumbar IMUs, in association to a 
k-Nearest Neighbor (k-NN) classifier. Arora et al. [30] used 
only statistical features extracted from a smartphone 
accelerometer during postural sway and gait tests for the 
classification process through a random forest. 

The aim of this work is to identify which of the gait features 
considered in this heterogeneous scenario are able to better 
distinguish the presence of PD from age-matched healthy 
subjects. We propose a concurrent analysis of the effects of 
IMU sensors location on the extraction of these features, and 
compared the classification ability of each configuration by 
applying most of the ML techniques available in the literature. 
The ultimate goal is to verify whether it is possible to integrate 
these techniques directly into a cyber-physical system based on 
IMU technology to monitor the progress of the disease. This 
approach may be used as a complementary tool to the current 
observational methods of gait analysis in PD. 

II. MATERIALS AND METHODS 

A. Participants and procedure 
27 patients with idiopathic PD at different stages of the H&Y 

motor scale (stage I, II and III, age 43-88, 13 males) and 27 
healthy individuals (age range 41-79, 13 males) were recruited 
for the experiments. The neurologist involved in the 
experiments selected the patients from a digital archive of the 

Hospital General Universitario Gregorio Marañon, Movement 
Disorders Unit, Madrid, Spain. Patients were chosen according 
to specific inclusion criteria: stage I, II or III of the H&Y motor 
scale, absence of motor, physical, or mental problems other 
than those caused by PD, ability to walk independently for at 
least 30 meters without any aid, BMI < 30. Two patients were 
discarded because the required conditions of inclusion were not 
fulfilled; consequently, two age-matched healthy adults were 
not considered. This process resulted in the inclusion of 8 
subjects belonging to stage I, 9 to stage II, and 8 to stage III. 
Each participant gave written informed consent prior to the 
experiment, according to the declaration of Helsinki.  

The experiments were performed in an internal hallway of 
the hospital. Participants were asked to walk along a straight 
path of 15 meters, repeating this task three 
times.  Anthropometric measures of foot, shank, thigh and 
trunk length were recorded prior to the experiment. 

B. Instrumentation and data recording 
The measuring instrumentation included the Motion Capture 

System Tech-MCS (Technaid S.L., Spain), consisting of eight 
IMUs, one portable acquisition hardware (Tech-Hub), and a 
dedicated software. Each IMU (36x26x11 mm, 10 gr) is 
composed of a triaxial accelerometer (± 4 g), a gyroscope (± 
2000 °/s), and a magnetometer (± 8.1 gauss). All the sensors are 
connected to the Tech-Hub (156x100x43 mm, 225 gr), placed 
at the waist level on the left side, to synchronize and store data 
(sampling rate 50 samples/s) into a micro-SD card. 

The sensors were located in the lower and upper parts of the 
body (see Fig. 1): one sensor was placed on each foot dorsum, 
one on each shank, one on each thigh, one on the chest and one 
in the back side on the lumbar zone through elastic belts. 

The Tech-MCS software directly calculates the angles 
between body segments, taking the lumbar sensor as the body 
reference system, and stores the data for their post processing. 

C. Feature extraction and grouping 
Two categories of parameters were extracted from raw data: 

range of motions (RoMs) and spatio-temporal parameters. Each 
RoM is defined as the difference between the maximum and 
minimum angle drawn in the sagittal plane between two 
adjacent articular segments within one gait cycle; RoMs are 
calculated for ankle, knee, hip and chest.  

The spatio-temporal parameters are the step length, step time, 
stride time and stride speed. Strides were identified based on 
the heel strike event, calculated as the time when the knee 
reached its maximum extension after its maximum flexion.  

Step length, i.e. the distance between the toes of the two feet 
during the double support phase, was estimated by 
trigonometry, using the relative orientation angles between the 
relevant body joints (ankle, knee, hip) and the anthropometric 
measures of foot, shank and thigh: specifically, in 
correspondence to each foot initial contact, toe position is 
estimated by considering relative orientation angles between 
the relevant body segments; step length was then estimated by 
calculating the distance between the two toe estimated positions 
and normalized by the subject’s height.  
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Step time was defined as the difference in time between two 
consecutive heel strikes of opposite legs. 

Stride speed was calculated as the ratio between stride length 
(i.e. the sum of two consecutive step lengths) and stride time. 

Only the second and third walking trials were considered for 
the data processing. The first trial was used to allow the subject 
to get used to the experimental setup and the task. The first and 
last three steps of each trial were excluded to avoid acceleration 
and deceleration due to start-stop transitions. 

For each parameter we calculated the following three 
features: mean value (µ) across strides; standard deviation (SD) 
across strides; coefficient of variation (CoV), defined as the 
ratio of SD to µ. All features were calculated after 
concatenating both walking trials into one dataset, thus 
obtaining, for each subject, a single value for each feature. All 
features, except those relative to the trunk RoM, were 
calculated for both sides. To represent the symmetry between 
sides, we calculated two additional features, “ratio” and 
“asymmetry”, calculated as the ratio and difference between the 
left and the right-side values. This resulted in a set of 87 
features, which were organized into 18 groups according to the 
following criteria (see Table I): 

• Group I included all 87 features. 
• Groups II to VIII included features derived exclusively 

from RoMs. Of these, three groups (II, III, and IV) were 
joint-specific, two groups (V and VI) considered more 
than one joint, and the remaining two groups (VII and 
VIII) specifically included asymmetry and variability 
features from RoMs. 

• Groups IX to XIV included features derived exclusively 
from spatio-temporal parameters. Of these, one group 
(XII) included all features, three groups (IX, X, and XI) 
included features associated with only one spatio-
temporal parameter, and the remaining two groups (XIII 
and XIV) included asymmetry and variability features 
from all the spatio-temporal parameters. 

• Group XV included features resulting statistically 
different between controls and patients, according to a t-
test (p-value < 0.05). 

• Groups XVI and XVII included a subset of independent 
features resulting from a principal component analysis 
(PCA) [31], using a threshold of 90% on the cumulative 
variance. In group XVI, PCA was applied to the entire 
set of 87 features, while in group XVII it was applied to 
the set of features included in group XV. 

• A last group (XVIII), called random, is introduced for 
statistical comparison against the other groups: it 
included ten vectors, each composed of features 

TABLE I 
GROUPS DEFINITION 

Group Name Group Included parameters Extracted features 
No. of 

gait 
features 

No. of 
sensors Body location 

Overall 
 

I Joint and spatio-temporal 
parameters 

µ, SD, CoV of R&L side, 
asymmetry and ratio 

87 8 R&L ankle, shank, 
thigh; trunk, chest 

Joint-specific RoMs II 
III 
IV 

Ankle RoM 
Knee RoM 
Hip RoM 

µ, SD, CoV of R&L side, 
asymmetry and ratio 

12 
12 
12 

4 
4 
3 

R&L ankle, shank 
R&L shank, thigh 
R&L thigh; trunk 

Multiple joint RoMs V 
 

VI 

RoM: ankle, knee, hip 
 
RoM: ankle, knee, hip, chest 

µ, SD, CoV of R&L side, 
asymmetry and ratio 

36 
 

39 

7 
 
8 

R&L ankle, shank, 
thigh; trunk 
R&L ankle, shank, 
thigh; trunk, chest 

RoMs asymmetry VII RoM: ankle, knee, hip µ, SD, CoV of 
asymmetry 

9 7 R&L ankle, shank, 
thigh 

RoMs variability VIII RoM: ankle, knee, hip CoV of R&L side 6 7 R&L ankle, shank, 
thigh 

Individual spatio-temporal  IX 
 

X 
 

XI 

Step Length 
 
Step Time 
 
Speed 

µ, SD, CoV of R&L side, 
asymmetry and ratio 

12 
 

12 
 

12 

7 
 
5 
 
7 

R&L ankle, shank, 
thigh; trunk 
R&L shank, thigh; 
trunk 
R&L ankle, shank, 
thigh; trunk 

Multiple spatio-temporal  XII Step Length, Step Time, 
Speed & Stride Time 

µ, SD, CoV of R&L side, 
asymmetry and ratio 

48 7 R&L ankle, shank, 
thigh; trunk 

Spatio-temporal asymmetry XIII 
 

Step Length, Step Time, 
Speed & Stride Time 

µ, SD, CoV of 
asymmetry 

12 7 R&L ankle, shank, 
thigh; trunk 

Spatio-temporal variability XIV 
 

Step Length, Step Time, 
Speed & Stride Time 

CoV of R&L side 8 7 R&L ankle, shank, 
thigh; trunk 

Statistically Different (St-D) XV Joint and spatio-temporal 
parameters 

µ, SD, CoV of R&L side, 
asymmetry and ratio 

43 8 R&L ankle, shank, 
thigh; trunk, chest 

PCA on Overall XVI Joint and spatio-temporal 
parameters 

µ, SD, CoV of R&L side, 
asymmetry and ratio 

16 8 R&L ankle, shank, 
thigh; trunk, chest 

PCA on St-D XVII Statistically Different 
parameters 

µ, SD, CoV of R&L side, 
asymmetry and ratio 

13 8 R&L ankle, shank, 
thigh; trunk, chest 

Random XVIII Joint and spatio-temporal 
parameters 

µ, SD, CoV of R&L side, 
asymmetry and ratio 

13* 8 R&L ankle, shank, 
thigh; trunk, chest 

R&L = right and left 
* The number of features in group XVIII corresponded to that of the group that showed the highest value of the average classification accuracy 
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randomly chosen from the entire dataset. The number of 
components corresponded to the number of features of 
the group that showed the highest value of the averaged 
classification accuracy. This dataset was used as 
reference to compare the classification accuracy of each 
feature group with respect to a baseline random dataset 
(see Section E. for details). 

Figure 1 shows the sensors locations and the number of 
sensors that are needed for each group. 

 
Fig.1. Sensor locations and grouping definition. Numbers circled in color 

refer to the number of sensors needed to extract features of that specific group 
(I-XVIII, see text for details), with lines showing the sensors locations. 
 

D. Classification 
Classification was then evaluated in two phases: first, the 

overall samples of healthy and PD groups, regardless of their 
H&Y assigned stage, were included to test the overall ability to 
distinguish between controls and patients; then, the procedure 
was repeated to test the classification accuracy between the 
population sample of each PD stage (8 patients) against an age-
matched sample of healthy individuals. 

To test the classification accuracy in the first phase, six 
different ML techniques were applied to each of the 18 datasets: 
Naive Bayes (NB) [32], LDA [28], k-NN [29], Decision Tree 
(DT) [33], and SVM with both linear [34] and non-linear kernel 
(rbf) bases [27]. For each ML technique, the internal parameter 

configuration was chosen heuristically based on the one that 
provided the best results in terms of classification accuracy in 
the testing process. The classification accuracy was calculated 
by applying a 5-fold cross validation procedure with 100 
repetitions, to obtain reliable performance lowering the bias 
introduced by data splitting [30], [41].  

In the second phase, we selected only one ML technique – 
the SVM with non-linear kernel basis, which obtained the 
highest classification accuracy in the first phase – as 
representative of the overall pool of ML techniques.  

We used the Machine Learning toolbox of Matlab R2017a to 
define and cross-validate all the classifiers. 

A seventh classifier, called Majority of votes, was then 
created as a weighted combination of the six basic classifiers. 
Two types of this classifier (A and B) were created, based on 
two different weighting schemes: in type A, the weights 
associated to each classifier corresponded to the training 
accuracy values obtained in that group, divided by the sum of 
all the classifiers’ accuracies; in type B, equal weights were 
associated to all classifiers. In both cases, the subject was 
finally assigned to the class with the highest weighted sum. In 
type B, if the number of votes was equal, the subject was 
assigned to both classes in equal parts. For both conditions, 
each subject was tested separately with the six trained 
classifiers. Repeating this process for all the subjects allowed 
calculating a classification accuracy for each group.  

E. Evaluation of classification accuracy 
The classification accuracy values obtained for each 

repetition underwent statistical analysis to check for significant 
differences associated with the feature group choice and ML 
technique used. To this end, normality of classification 
accuracy values was checked with the Lilliefors test. If 
normality was granted, then a 2-way ANOVA, with feature 
group and ML technique as factors, was performed (Friedman's 
test was used if normality was rejected at 0.05 level of 
significance). Post-hoc analysis (Fisher's Least Significance 
Difference) was then performed to check for individual 
pairwise differences among the factor items. In particular, all 
the individual pairwise combinations between machine learning 
techniques were checked, while, for the feature groups, 
pairwise post-hoc analysis was performed on each feature 
group against the random one, taken as reference. 

 
 

TABLE II 
MEAN VALUE ± STANDARD DEVIATION OF GAIT FEATURES 

 Values with * asterisk are normalized by height [m]  

 Stage I 
(no.8) 

Age-matched 
healthy (stage I) 

Stage II 
(no.8) 

Age-matched 
healthy (stage II) 

Stage III 
(no.8) 

Age-matched 
healthy (stage III) 

All stages 
(no.25) 

All healthy 
(no.25) 

Step Length * 0.45±0.05 0.51±0.06 0.39±0.07 0.48±0.07 0.34±0.07 0.46±0.07 0.39±0.08 0.48±0.07 

Step Time [s] 0.57±0.02 0.52±0.04 0.54±0.09 0.55±0.05 0.53±0.04 0.54±0.3 0.55±0.17 0.54±0.04 

Stride Time [s] 1.15±0.03 1.04±0.08 1.08±0.17 1.09±0.09 1.06±0.07 1.09±0.07 1.10±0.11 1.07±0.08 

Speed [s-1] * 0.79±0.09 0.98±0.13 0.76±0.21 0.88±0.18 0.65±0.14 0.85±0.17 0.72±0.17 0.90±0.16 

Hip RoM [°] 44.6±6.4 49.0±4.8 41.7±6.7 45.6±6.9 34.3±6.7 43.8±8.4 39.8±8.0 45.2±7.7 

Knee RoM [°] 67.1±6.3 74.0±3.9 59.6±7.6 66.3±6.6 53.1±8.5 65.9±6.6 59.8±9.2 69.2±6.5 

Ankle RoM [°] 37.1±5.8 33.5±5.8 28.2±5.1 32.5±5.1 25.2±2 34.2±6.0 30.1±7.5 34.1±6.0 
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III. RESULTS 
Table II shows the mean values (± standard deviation) of step 

length, step time, stride time and speed values for five datasets, 
i.e. each H&Y stage-specific PD dataset, the entire sample of 
patients, and the overall sample of healthy subjects.  

Classification accuracy of the different feature groups, on the 
overall population sample containing all the controls and PD 
patients, is presented in Table III. These values were obtained 
averaging the accuracies of the six classifiers (individually 
shown in Table IV), grouped with respect to the number of 
sensors necessary to calculate that specific group of features. 

The joint-specific hip RoM group (IV) was the only one 
defined by the use of 3 sensors, and its classification accuracy 
resulted lower, yet not significantly different, than the random 
group, taken as reference (XVIII). For the joint-specific groups, 
4 sensors allowed to assemble the ankle RoM (II) and the knee 
RoM (III). The latter resulted significantly more accurate than 
the random group, while the ankle showed lower accuracies. 
Individual spatio-temporal Step Time (X), which needs 5 
sensors, showed lower accuracy than XVIII. Eight groups 
needed 7 sensors: RoMs variability (VIII) showed the best 
accuracy and a significant increase with respect to reference, 
while spatio-temporal asymmetry (XIII) gave the worst 
classification performance, and significantly worse than XVIII. 

Also, RoMs asymmetry (VII) showed a significantly higher 
accuracy than reference. The application of PCA on St-D 
(XVII) led to the use of 8 sensors and showed classification 
accuracy significantly higher than the reference group. This 
group resulted composed of the following 13 features: knee 
RoM SD, and ankle RoM µ and CoV, both sides; step length 
CoVs and speed µ, taken bilaterally; the ratio of the knee RoM 
CoV, and that of the ankle RoM µ; hip RoM asymmetry CoV. 
PCA on Overall (XVI) returned, conversely, the worst accuracy 
among all in the eight-sensor cluster. In this cluster, PCA on St-
D and the St-D (XV) groups showed significantly higher 
accuracies than that in the reference. Among the multiple joint 
RoMs groups, the one including the chest sensor (VI) showed a 
classification accuracy similar to that obtained without its use 
(V). Multiple joint RoMs revealed higher estimation accuracy 
than multiple spatio-temporal. Similar results were obtained 
comparing the mean values across all groups with joint RoMs 
(II-VIII) with those related to spatio-temporal parameters (IX-
XIV): 74.1% to 70.2%, respectively. 

Regarding the comparison between the basic classifiers, the 
mean accuracy values obtained with each classifier, averaged 
among all groups, were the following: SVM rbf gave the best 
average accuracy (75.6%), then k-NN (73.0%), NB (72.7%), 
LDA (72.5%), SVM linear (72.0%), and DT (68.9%). SVM rbf 
and k-NN were significantly more accurate than the others. 
SVM rbf accuracy resulted also significantly higher than NB. 
The Majority of votes approach produced an average 
classification accuracy up to 85.8% for type A, and to 83.9% 
for type B. The obtained classification performances (see last 
column of Table IV) were always higher than those of the basic 
classifiers, with an average increase in the range 5-20%. In 
particular, Majority of votes type A, applied on the feature 
group VI, achieved a 96% accuracy.  

Table V presents individual accuracies obtained with each 
H&Y stage-specific subset, using SVM rbf. In the stage I, 
accuracies over 80% were obtained with groups I, V, VI, VII, 
IX, XV and XVII. In particular, the last two groups resulted in 
accuracies higher than 90%. Each single feature belonging to 
group XVII – the group with the highest accuracy value – was 
then used to train the SVM rbf classifier. The Ankle µ returned 
value of accuracy of 67.1%, the Ratio Hip SD 71.3%, the Stride 
Time µ 81.3%, the Asymmetry Hip µ 74.9%, the Asymmetry 
Step Length SD 75.4% and the Asymmetry Step Time µ 71.8%.  

For the pair healthy-PD stage II, accuracies higher than 80% 
were obtained with groups III, VII, VIII, and again XV and 
XVII. Stage III showed accuracies higher than 90% for most of 
the parameter groups; IX-XII were lower, while II, VII, XIII 
showed very low accuracies. Subjects belonging to stage II and 
III are older than in stage I (respectively, 64.7 ± 6.9, 73.2 ± 11.5, 
74.6 ± 4.7). 

IV. DISCUSSION 

A. Type of classifiers 
No single classifier analyzed in this study provided a clear 

predominance in terms of classification performance among all 
feature groups. 

TABLE III 
AVERAGE CLASSIFICATION ACCURACY OF THE DIFFERENT FEATURES GROUPS 
CLUSTERED BY THE NUMBER OF SENSORS USED. IN EACH CLUSTER, GROUPS 

ARE SORTED BY DECREASING VALUE 
No. of 
sensors Groups Accuracy across 

classifiers [%] 
   

3 Joint-specific Hip RoM (IV) 65.96±2.73 
   
   

4 Joint-specific Knee RoM (III)* 76.31±3.04 
 Joint- specific Ankle RoM (II) 65.98±5.70 
   
   

5 Individual spatio-temporal Step Time (X) 68.23±2.77 
   
   
 RoMs variability (VIII)* 79.62±2.40 
 
 

7 
 
 
 
 

 

RoMs asymmetry (VII)* 
Multiple joint RoMs (V) 

Spatio-temporal variability (XIV) 
Individual spatio-temporal Step Length (IX) 

Multiple spatio-temporal (XII) 
Individual spatio-temporal Speed (XI) 

Spatio-temporal asymmetry (XIII) 
 

77.82±3.85 
76.75±2.78 
74.14±2.48 
74.05±3.74 
71.02±3.19 
70.88±4.32 
62.99±3.53 

 
 
 

 
PCA on St-D (XVII)* 

Statistically different (XV)* 

 
79.96±4.55 
77.38±4.25 

8 
 

Multiple joint RoMs with chest (VI) 
Overall (I) 

PCA on Overall (XVI) 

76.46±2.60 
75.15±4.55 
64.27±2.33 

 

8 Random (XVIII) 69.94±3.26 

* the asterisk denotes groups with classification accuracy significantly higher 
than the random group.  
The dotted line represents the rank position of the random group if it was in 
that specific sensors cluster. 
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This evidence is in line with the postulation that no algorithm 
can be uniformly accurate over all datasets, due to the cost 
function and sample data characteristics [35]. For this reason, 
we explored the possibility to leverage on the results from the 
individual classifiers, to construct two meta-classifiers based on 
the Majority of votes approach. These provided significantly 
higher performance, overcoming the weaknesses of each 
classifier, through the use of appropriate weights. In particular, 
between the two types, the weighting scheme based on the 
training accuracies (type A) provided the highest performance 
for all the feature groups.  

The observed performance increase coming from the use of 
multiple classifiers uncovers an additional evidence: the 
misclassified samples obtained from the individual classifiers 
are not necessarily the same, and this leaves the door open to 
possible increases in accuracy if more intelligent classification 
schemes are present. To our knowledge, this is the first time that 
the Majority of votes is introduced for a feature-based 
instrumented assessment of PD, and the obtained results seem 
to confirm the promising direction shown by this approach. 

B. Sensors location 
The number and location of sensors has a direct effect on the 

parameters to be extracted. The joint-specific knee RoM group, 
obtained with only 4 sensors, showed an accuracy comparable 
with (and sometimes higher than) the Overall group, which 
required 8 sensors. This is particularly relevant for clinical 
applications, in which a setup composed of half of the sensors 
can considerably lower the costs and time of the clinical 
evaluation. 

The features extracted from the chest sensor, when included 

in the RoMs group, did not significantly improve the 
classification performance (see accuracy for groups V and VI). 
This may be due to the combination of two factors: i) the low 
incremental influence of variations to the trunk movement 
characteristics during gait other than those already captured by 
the other sensors; ii) the noisy nature of the data coming from 
the chest sensor, probably due to its fastening, which varied 
across individuals given the subjects’ anatomy and sex. 
Moreover, from the preliminary feature selection of group XV, 
chest features were not significantly different between the 
populations. Thus, even if the features associated with the chest 
sensor were used to preliminarily define the St-D features 
needed for the definition of group XV and, subsequently, group 
XVII (which showed the highest accuracy), the sensors 
effectively needed to classify with groups XV and XVII 
required just 7 sensors, thus excluding the chest. 

The knee joint appeared to play a major role among the lower 
limb joints in the assessment of the PD gait, as results on group 
III highlighted. This is in line with some studies in the literature, 
where significant differences in the knee kinematics between 
healthy and PD subjects were found [16]. Surprisingly, the 
same did not appear for the ankle, as its classification power 
(group II) resulted among the lowest ones, while a few studies 
in the literature provide ground for ankle sensor use [18], [27], 
[36]. We do not have a clear justification for that, even if we 
need to consider that, for the features extracted in this study, 
only ankle plantarflexion and dorsiflexion was considered, thus 
omitting possible contributions coming from using joint 
kinematics along the other two planes. Finally, for the hip, this 
does not play a significant role in the classification ability, 
confirming previous studies in the literature [8]. 

TABLE IV 
ACCURACY FOR EACH GROUP AND FOR EACH CLASSIFIER [%] 

 I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII XVIII 
LDA 

 
75.26 67.22 77.34 64.28 76.20 75.94 77.36 77.34 73.70 65.72 73.34 72.48 59.86 75.82 77.82 64.78 79.62 71.10±4.32 

NB 
 

77.02 59.74 76.76 63.64 75.38 75.14 76.60 78.12 76.82 68.42 72.46 74.14 65.26 74.68 79.52 65.00 78.02 71.29±5.15 

k-NN 
 

80.14 69.60 78.20 69.04 78.14 78.80 79.94 80.26 73.44 68.52 73.10 73.06 62.04 75.74 79.20 67.24 84.62 73.01±3.50 

SVM 
 

72.30 72.18 70.70 63.66 78.48 77.60 80.98 78.82 72.72 64.30 70.52 70.40 58.90 73.16 76.76 61.00 81.14 68.46±7.01 

SVM rbf 
 

78.52 68.98 79.36 69.70 80.08 79.08 81.08 79.06 79.28 71.86 73.50 70.88 66.72 75.92 81.62 65.58 83.22 71.73±4.21 

DT 
 

67.68 58.14 75.52 65.46 72.22 72.20 70.94 84.10 68.34 69.54 62.34 65.14 66.06 69.54 69.38 62.02 73.12 64.02±6.23 

Majority 
of votes A 

92.00 80.00 84.00 72.00 94.00 96.00 90.00 86.00 86.00 76.00 78.00 84.00 88.00 82.00 92.00 88.00 90.00 84.00±6.53 

Majority 
of votes B 

90.00 79.00 84.00 73.00 92.00 91.00 90.00 85.00 83.00 75.00 78.00 83.00 83.00 81.00 87.00 85.00 88.00 82.00±5.01 

 
TABLE V 

ACCURACY FOR EACH PARAMETERS GROUP AND FOR EACH POPULATION GROUP WITH SVM RBF [%]  
 I II III IV V VI VII VIII IX X XI XII XIII XIV XV XVI XVII 

H&Y I 
 

89.25 69.38 74.38 69.75 80.06 84.00 84.31 69.25 85.31 77.94 65.13 78.69 62.88 65.88 93.88 66.94 94.50 

H&Y II 
 

63.25 70.88 83.69 50.50 69.13 66.31 81.44 80.00 62.00 71.50 56.25 68.63 47.07 76.88 86.00 64.13 87.75 

H&Y III 92.38 75.31 95.63 93.19 97.44 96.88 73.56 93.75 82.63 83.19 80.38 84.44 67.13 93.63 94.94 94.25 93.63 
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The sensor location analysis here provided is motivated by 
the potential of enabling gait assessment in home setting 
environment. Lab-based assessment is often affected by 
alteration of the walking behavior due to formal and non-
familiar environment [42], and restricted to a limited duration 
of data recording. A minimal sensors setup assumes great 
relevance for home-based assessment, in terms of improved 
portability, comfort and usability. Meanwhile, these 
requirements affect the limited number of obtainable gait 
features, resulting in lower accuracy and reliability of the 
estimations. Finding the optimal balance between these 
requirements is one of the great research challenges in wearable 
systems for healthcare. 

C. Type of parameters and features 
RoM parameters appeared as key contributors for the 

classification accuracy. This was not unexpected, since joint 
excursion is directly affected from the presence of PD [37]. 

Regarding the spatio-temporal parameters, the classification 
accuracy of this group is led by the Step Length, whose 
variations as a consequence of the presence of PD are well 
reported in the literature [18], [19]. A reduced value of step 
length is characteristic of walking patterns of subjects with PD 
and thus, an evident relevance of this parameter was expected. 

Due to the variety of data in the two groups, its classification 
power should not be taken for granted. Temporal group 
parameters, on the other hand, determined poor discriminatory 
power. Not all researches agreed in the definition of this 
parameter as discriminating [17], [28]. 

The combination of spatio-temporal and RoMs parameters 
led to higher accuracies than each of the two groups taken 
separately. However, this is more marked if this combination is 
accompanied by a preliminary selection process, which takes 
into account only those features that are more sensitive to the 
presence of the disease symptoms: this is what is behind the 
feature selection process introduced in the Statistically 
Different group and in the PCA on St-D group. It is no surprise 
that, if this process is not included, the obtained results coming 
from the totality of features show limited improvement. The 
same also applies to the unsupervised feature selection process 
used in the PCA on Overall group. 

The asymmetry and variability of RoMs groups (VII and 
VIII) provide very good results in terms of classification 
accuracy. Previous studies showed higher variability and 
reduced left-right symmetry in the lower extremity [20] and 
linked this to a defective load control ability in subjects with 
PD [38]. At stage I of H&Y scale, the involvement is unilateral, 
resulting in an asymmetry between the affected and non-

TABLE VI 
SIZE AND CHARACTERISTICS OF POPULATION SAMPLES IN THE LITERATURE STUDIES, AND ACHIEVED ACCURACY VALUES. 

Studies 
no. of PD 
patients, 
age (yrs) 

PD stage 
no. of healthy 
subjects, 
age (yrs) 

Acc. (%)  no. & type of 
ML techniques  type of features  

no. & 
location of 
sensors  

[21]  
[22] 

93, 
66.3 stage 2-3 H&Y 73, 

no info on age 
60.2-85.3 
52.8-94.4 

4, SVM linear 
1, LDA Sp-T ### 

### 

[23] 
[24] 

12, 
no info on age  no info on stage 20, 

no info on age 
68.8-90.6 
62.5-100 

4, NB 
4, SVM rbf Sp-T & RoMs ### 

### 

[25] 23, 
68.5±6.1 stage 2 H&Y 26, 

age-matched 80.4-92.6 5, RF Sp-T ### 

[26] 40, 
59.8±10.6  

stage 1.16±0.24 
H&Y 

40, 
age-matched 72.0-76.0 1, SVM-rbf Sp-T ### 

[30]* 10, 
65.1±9.8 

UPDRSIII 19.6±6.7 
Quest39score18.5±16.9 

10, 
57.7±14.3 

Se. 98.5 
Sp. 97.5 3, RF Statistical Not 

provided 

[15]* 50, 63.9±10.6 
42, 65.1±9.7  

stage 2.1±0.9 H&Y 
stage 2.2±0.9 H&Y 

42, 60.0±11.2 
39, 60.7±11.8 81-82 4, Adaboost Statistical 2, each foot 

[29]* 
 

156, 
67.2±8.0 

median stage 1 H&Y 
UPDRSIII 17 

424, 
51.9±10.0 85.5±4.7 1, k-NN Gait sequences 1, L4 

[27]* 24, 
no info on age 

11 “great 
disturbance”, 13 “no 
such disturbance” 

16, 
no info on age 

Se. 93.3 
Sp. 96.8 1, SVM rbf RoMs 2, each foot 

[28]* 28, 
63.4±9.3 14 UPDRSIII 9.0±3.6  16, 

64.9±6.9 
Se. 88.0 
Sp. 86.0 5, LDA Sp-T & 

Statistical 2, each foot 

This study* 

25, 
71.1±8.5 

8 stage 1, 9 stage 2, 8 
stage 3 H&Y 

25, 
66.7±9.8 Table III 6 + Majority of 

Votes classifier 

Sp-T & RoMs 

 
3-8, 
each foot, 
each shank, 
each thigh, 
waist, chest 

8, 
64.8±6.9 stage I 8, 

65.4±4.7 

Table IV 1, SVM rbf 
8, 
73.2±11.5 stage II 8, 

69.9±12.8 
8, 
74.6±4.7 
 

stage III 8,  
71.38±4.3 

* asterisk denotes studies where IMUs were used. 
Acc. reports the accuracy range obtained from spatio-temporal (Sp-T) and ranges of motion (RoMs) data only. 
Se. Sensitivity, Sp. Specificity. 
no. & type of ML techniques reports the number of ML techniques used and the name of that one with the best accuracy, where RF refers to Random Forest, 
LDA to Linear Discriminant Analysis, SVM to Support Vector Machine, NB to Naïve Bayes and k-NN to k-Nearest Neighbor)  
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affected side. With the progression of the disease, there is a 
worsening in the symptoms, with bilateral involvement, even if 
the asymmetry remained. The results obtained with asymmetry 
and variability of RoMs may be linked with these 
manifestations, also provided that a non-negligible number of 
individuals with PD participating in this study was assigned to 
H&Y I. We do not have an explanation for the rather low 
accuracy obtained with asymmetry of spatio-temporal 
parameters. It may be speculated that asymmetry in geometry 
(i.e. RoMs) is not necessarily mirrored into asymmetry of the 
spatio-temporal gait characteristics [39], even if decreases in 
temporal harmony of gait have been linked to the manifestation 
of PD motor symptoms [40]. 

D. PD staging of patients 
In the current study, the PD group included individuals 

assigned to the three stages of H&Y scale. This inclusion leads 
to an increase of the inter-subject variability in the entire PD 
group, and to a reduction in gait differences with healthy 
subjects, making the classification process harder. That could 
be the reason of the limited performance of the individual 
classifiers, when compared with the literature data. As indicated 
in Table VI, related works are very heterogeneous in terms of 
kind and level of population included. To our knowledge, none 
of the works using whole body IMUs considered the three H&Y 
stages altogether. Despite that, the results obtained by 
combining the classifiers made it possible to reach values of 
accuracy that are promising, also given the fact that more than 
72% of misclassifications were associated with controls and 
H&Y stage I subjects. 

The additional analyses performed on individual PD groups, 
relating to the specific staging, showed accuracy values close to 
those reported in the literature. We did not observe a marked 
increase of accuracy moving from stage I to stage III. As a 
matter of fact, a number of groups showed lower classification 
accuracy at PD stage I as compared with PD stage II. This does 
not come necessarily unexpected, since each subset was 
composed of age-matched healthy individuals whose ages, for 
stage II and III were pretty higher than those for stage I. This 
evidence might suggest that PD staging from I to II through 
H&Y does not necessarily reflect into major modifications of 
gait parameters, other than those associated with age increase. 
To support this hypothesis, when considering asymmetry 
(group VII), the classification accuracy decreases with 
increasing stage, confirming that the unilateral involvement 
present at stage I is less present in higher stages. When 
considering variability (groups VIII and XIV), instead, a 
uniform trend across stages was observed. This may be linked 
with the ability of variability measures to predict motor severity 
in PD [43]. Regarding the ability of each feature to classify 
between healthy and H&Y at stage I, we obtained satisfactory 
results for the mean value of the stride time, and for some 
parameters of asymmetry (which is in line with the definition 
of stage I), even if the overall accuracy of these features, if taken 
individually, is outperformed by the feature group classifier, 
thus reinforcing the hypothesis that taking into account multiple 
features from gait is necessary for better classification ability.    

E. Study limitations 
In this study, all the feature groups were defined based on 

summary parameters extracted from the angle profiles, thus 
inherently compressing information coming from raw data. 
While the feature set was very ample, excluding raw data from 
the feature set may hide possible effects at the profile level.  

Moreover, the information associated with upper limb 
movements was not analyzed. Future studies might include 
sensors on this location, both on right and left sides, probably 
providing features which improve the classification 
performance, especially for patients at the stage I of the H&Y 
scale with unilateral involvement. The same may appear as the 
consequence of including motor tasks other than gait. 

Referring to the stage-specific classification, we globally 
confirmed the results obtained in literature, even if some of the 
gait parameters groups led to lower accuracies than those 
expected: this might be related to the relatively small sample 
size for these individual subsets (16 subjects in total).  

With a higher sample size, possible confounding factors 
coming from age discrepancies across different stages could be 
minimized.  

Regarding the sensor placement and location, the positioning 
of the sensor at the chest level resulted subject-dependent, i.e. 
associated with anatomy and sex of the subject. This may have 
led to possible confounding effects in terms of classification 
accuracy. Even if this could be seen as a limitation of the study, 
at the same time it reflected the clinical environment conditions. 
With this study protocol, we intended to evaluate the 
classification power of IMUs in an ambulatory environment, 
where no additional requirements in terms of patient set up were 
considered other than those directly associated with IMU use, 
in order to verify the effectiveness of such a solution in an 
uncontrolled ambulatory setting. 

V. CONCLUSION 
The ability of IMU-based gait analysis to discriminate 

patients with PD at different severity stages from age-matched 
healthy individuals has been shown in this study to relevantly 
depend on the number and location of sensors used to extract 
the parameters, and only to a lesser extent from the kind of ML 
technique used. The increase of sensor number in fact does not 
determine a direct increase in classification accuracy, unless 
this is accompanied by a thorough data-driven feature selection 
process from the variety of gait parameters that can be 
extracted. Regarding the choice of the ML technique to be used 
to this end, we were able to confirm that there is no unique 
solution leading to an overall optimum in accuracy; rather, we 
demonstrated that, by combining results coming from different 
ML techniques, a relevant increase in accuracy can be obtained, 
also in the case of samples including individuals with rather 
different staging of PD. 

While the field of Parkinson’s disease encompasses a variety 
of motor and non-motor symptoms that cannot be directly 
captured by the sole use of sensors while walking, with the 
results obtained in this research it will be possible for 
researchers of the relevant community to select which features, 
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and which sensor placements could be more profitably used to 
define those gait-related manifestations that are associated with 
the severity of the pathology. 

The availability of wearable sensor networks that are able to 
capture movement data in unconstrained scenarios has 
represented a big step towards the decentralization of the 
monitoring process in a variety of clinical applications. With 
the integration of computational and classification capabilities, 
such as those analyzed in this study, these devices will move 
the clinical process closer to the decentralization of diagnostic 
decisions as well, including those that, with specific reference 
to PD, are directly related to the adjustments of drug dosage for 
the treatment of motor symptoms. 
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