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Abstract

In this contribution, the virtual element method (VEM) is adopted for perform-
ing homogenization analyses of composites characterized by long fibre inclusions.
The homogenization problem is briefly reviewed. Then, the procedure for con-
structing a virtual element is illustrated. In this context, a new virtual element
is proposed for the micromechanical analysis of long fibre composites. It is a
plane element, which is able to perform 3D analyses, characterized by three degree
of freedoms per node that represent the displacement components in the three-
dimensional space. Numerical examples are developed for assessing the ability of
the VEM in efficiently solving the homogenization problem. Elements character-
ized by different number of edges are used in the numerical applications.

1 Introduction

Composite materials are used in several fields of engineering applications. The de-
velopment of new and innovative composite materials together with the enhancement
of material models and of computational tools promoted the implementation of effec-
tive numerical procedures for the accomplishment of sophisticated and accurate stress
analyses of composite structural elements.

The issue of the multiscale analysis is very actual in structural mechanics. At the
structural level the finite element method is generally adopted. At the material scale
a representative volume element (RVE), containing all the pecularity of the composite
material, is studied in order to recover the overall behavior of the composite. To this
aim classical analytical homogenization procedures, such as Eshelby, self consistent
and Mori Tanaka approach [14], could be adopted. These techniques have also been
extended to take into account the nonlinear behavior of the constituents [9, 11]. On the
other hand also numerical homogenization techniques can be adopted. In particular,
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finite element micromechanical analyses could be developed to study the RVE and to
determine the overall behavior of the composite. In particular, some micromechanical
studies have been proposed in literature to study fibre reinforced composite adopting
finite element analyses and taking into account the nonlinear behavior of the composite
[8, 12, 13].

In the last years, the Virtual Element Method (VEM) has been proposed [1, 6].
It is a new and promising numerical method for solving partial differential equations;
it can be viewed as an extension of Finite Element Methods to general polygonal and
polyhedral elements. The VEM is characterized by strong mathematical foundations; it
is quite simple in implementation and results efficient and accurate in several engineer-
ing problems and, in particular, in the linear elasticity problems [7, 2]. The VEM has
also successfully been applied to solve structural problems characterized by material
non-linearity such as plasticity, viscoelasticity and shape memory response [3].

In this paper, the VEM is adopted for performing homogenization analyses of com-
posites characterized by long fibre inclusions. After formulating the homogenization
problem, the VEM procedure is illustrated for the specific case of linear polynomial ap-
proximation of the displacement fields on the virtual element boundary. A new virtual
element is developed for the 3D analyses of long fibre composites. In particular, it is a
plane element with three degree of freedoms per node that are the displacement compo-
nents in the three-dimensional space. Numerical examples are developed for assessing
the ability of the VEM in efficiently solving the homogenization problem; validation
being provided by comparison with an overkilling finite element solution.

2 Multiscale analysis of viscoplastic composites

The multiscale analysis of composite structures is based on the development of compu-
tations at two different scales, i.e. the scale of the structure (macro-scale) and the scale
of the material (micro-scale). In particular, at the scale of the material a representative
volume element (RVE) is introduced. If the two scales are very far, i.e. the character-
istic length of the macro-scale is much greater than the scale of the RVE, the principle
of the scale separation is invoked. In this case, it is assumed that the kinematics at
macro and micro scale is uncoupled. According to the scale separation, the problem at
the macro-scale is formulated without specifying the constitutive law, which is indeed
determined by solving the micro-mechanical problem on the RVE and performing a
homogenization procedure.

In this framework, let a global coordinate system be introduced at the macro-scale
(X1, X2, X3); the displacement field is defined by the vector U = {U1, U2, U3}T whose
associated compatible strain is denoted by E = {E11, E22, E33, Γ12, Γ23, Γ13}T .

At the micro-scale, the special case of composite material characterized by a regular
distribution of inclusions is considered. In particular, a periodic square array of long
fiber composite is introduced; of course, other type of periodic arrangements can be
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considered. In this case, a unit cell (UC) Ω with volume V can be introduced for deriv-
ing the overall response of the material. Let a local coordinate system be introduced at
the micro-scale (x1, x2, x3); a parallelepipedic unit cell with dimensions 2 a1×2 a2×2 a3

parallel to the three coordinate axes x1, x2, x3 is considered, as illustrated in figure 1.
The x3 axis is positioned to be parallel to the direction of the fiber axis. Note that a3

can assume any positive value, as the material along the x3−direction is homogeneous.

Figure 1: Schematic of a unit cell for a fiber-reinforced composite material with doubly
periodic arrangement of fibers embedded into the matrix.

The strains evaluated at the macro-scale are considered as average strains occurring
in the UC; thus, the displacement field at the micro-scale is represented in the form as:

u1(x1, x2, x3) = E11 x1 + 1
2Γ12 x2 + 1

2Γ13 x3 + u?1(x1, x2, x3)

u2(x1, x2, x3) = 1
2Γ12 x1 + E22 x2 + 1

2Γ23 x3 + u?2(x1, x2, x3) (1)

u3(x1, x2, x3) = 1
2Γ13 x1 + 1

2Γ23 x2 + E33 x3 + u?3(x1, x2, x3) ,

where u? = {u?1, u?2, u?3}
T is the perturbation displacement, resulting the periodic, due

to the heterogeneity of the UC while x = {x1, x2, x3}T is the position vector of the
typical point of Ω.

The perturbation displacement components u?1, u?2 and u?3 have to satisfy the period-
icity conditions along the three coordinate axes. In particular, the periodicity condition
along the fiber direction together with homogeneity of the material along the same di-
rection ensures that the periodic part of the displacements does not depend on x3.
Thus, it results u? = u? (x1, x2) and the in-plane periodic conditions become:

u?(x1, x2, a3) = u?(x1, x2,−a3)
x1 ∈ [−a1, a1]
x2 ∈ [−a2, a2]

∀a3 . (2)
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From the formula (1), the strain at the typical point of Ω is:

ε(x1, x2, x3) = E + ε?(x1, x2, x3) with ε? = Lu? , (3)

where ε? represents the periodic part of the strain associated with the displacement u?

and L the compatibility operator defined as:

L =



·,1 0 0
0 ·,2 0
0 0 0
·,2 ·,1 0
0 0 ·,2
0 0 ·,1


, (4)

as all the derivatives with respect to x3 are zero, because the displacement components
do not depend on x3.

Because of the periodicity conditions (2), the periodic strain ε? is characterized by
null average on the UC.

The local stress field is evaluated accounting for the viscoplastic constitutive law
illustrated in [Fritzen-Covezzi] as:

σ = C (ε− π) , (5)

where C is the elastic matrix that assumes different values in the fiber and in the matrix
and π is the inelastic strain due to the viscoplastic effect.

The evolution of the viscoplastic strain π is assumed to be governed by a Mises
yield domain in a framework of associate plasticity [?]. The yield function defining the
elastic domain is given by

f (σ, r) = q − (σy − r) with q =
√

3
2 ‖σ

′‖2 , r = −Hα , (6)

where q is the equivalent Mises stress, r is the isotropic hardening stress, σy is the yield
stress, σ′ is the second invariant of the deviatoric part of the stress, H is the hardening
parameter and α is the accumulated plastic strain. The dissipation potential governing
the inelastic strain evolution is introduced as:

Φ∗(σ, r) =


√

2
3
ε̇0σD
ε+1

(
f(σ,r)
σD

)ε+1
f(σ, r) > 0

0 f(σ, r) ≤ 0
(7)

with ε̇0 being a reference strain rate, ε ≥ 1 the dimensionless rate sensitivity parameter
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and σD a (constant) drag stress. Then, the evolution laws are:

α̇ = ∂Φ∗(σ, r)
∂r

=
√

2
3 ε̇0

(
f(σ, r)
σD

)ε
(8)

π̇ = ∂Φ∗(σ, r)
∂σ

,=
√

2
3 ε̇0

(
f(σ, r)
σD

)ε ∂f
∂σ

= α̇
∂f

∂σ
. (9)

Note that α̇ in equation (9) can be interpreted as a nonnegative plastic multiplier [?].
Once the local stress is defined into the UC, the average stress is evaluated as:

Σ = 1
V

∫
Ω
σ dV . (10)

3 Virtual element method

The virtual element (VE) formulation is presented in this section. First, a polygonal
discretization of the unit cell Ω is performed, considering non overlapping polygons
ΩE characterized by a number of straight edges. The space of the approximated dis-
placement field is defined element-wise by introducing local degrees of freedom, as in
standard FE method, but differently from FE, the definition of the local displacement
approximation is not fully explicit [7, 2]. Different accuracy can be introduced in the
method, depending on the degree of the approximating functions for the displacement
field.

Next, the fundamental steps describing a procedure for the development of a VE
formulation for the problem described in the previous section, are given below.

1. Initially, the number m of straight edges defining the polygon ΩE is set.

2. The displacements are approximated assuming an explicit representation on the
boundary ∂ΩE of each element ΩE , while they are fully implicit in the interior
of it. The approximated displacement, denoted in the following by u? h, with h
related to the mesh size, admits the following local FEM-like representation:

u? h = Nb Ũ? + Ni q̃? , (11)

where Nb and Ni are approximation functions arrays associated to boundary
and interior degrees of freedom, respectively, whose properties will be specified
in the following. Correspondingly, Ũ? is the vector collecting the local degrees
of freedom associated to nodes lying on the edges of ∂ΩE , while q̃? are interior
degrees of freedom; the latter are not associated to any specific node, and are
defined as suitable area-averaged moments of u? h.

Some comments on the above introduced virtual approximation functions and
degrees of freedom are mandatory. First, ũ? hi , the restriction of the displacement
field to each edge e of the boundary polygonal line, is a polynomial of degree k;
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i.e. it is set ũ? hi ∈ Pk(e). Note that for k = 1, a piecewise linear approximation
function is adopted on ∂ΩE , so that two nodes are introduced on each edge; in
other words, the vertices of the edges are the nodes of the boundary discretization.
For k = 2, a piecewise quadratic approximation function is adopted on ∂ΩE , so
that three nodes are introduced on each edge: the vertices plus the midpoint of
each edge. In general, (k − 1) interior nodes will be selected upon each edge.

For any a given order of accuracy k ≥ 1, the total number of local degrees of
freedom for a polygon with m edges, then amounts to:

n = 3m+ 3m(k − 1) + 3 dim(Pk−1(ΩE)). (12)

being dim(Pk−1(ΩE)) = k(k + 1)/2.

Representation (11) still retains the typical interpolatory character of the ap-
proximated field with respect to its degrees of freedom, in the sense explained
in the following. As in standard FE technology, each Ũ? degree of freedom rep-
resents the evaluation of the displacement field at the corresponding boundary
node. Likewise, boundary shape functions will take unit value at the correspond-
ing node and zero at the remaining ones. Differently, q̃? degrees of freedom are
not attached to a specific spatial location, being area-averaged integral quantities
specified previously.

3. In the spirit of a VEM micromechanical analysis of the unit cell nonlinear behav-
ior, the equilibrium equation, written in the approximated variational form for
the single VE, is expressed as:

0 =
∫

ΩE

[ε(δu? h)]T σ (ε(u? h) + E) dA . (13)

4. As the approximated displacement field u? h is not explicit inside the element, but
only on the boundary ∂ΩE , the gradient cannot be computed and, consequently,
an explicit expression of strain is not available. Thus, a projector operator Π is
introduced to approximate the strain associated to the displacement field. Such an
operator is explicitly computable, and defined on the basis of the two fundamental
requirements.

• First requirement for Π:

Π(u? hi ) ∈ P 6×1
k−1 (ΩE) , (14)

that is a (6× 1) vector-valued polynomial function of degree k − 1 over ΩE

which, in general, can be represented as:

εP = NP ε̂ (15)
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where the matrix NP is a 6× 6 dim(Pk−1) matrix with identity blocks (indi-
cated in the following with I6) premultiplied by the monomials of an ordered
basis of Pk−1 and the vector ε̂ contains the corresponding coefficients; in par-
ticular:

– for k = 1
NP = I6 , (16)

so that the strain components are approximated by a constant function
in each VE; in this case, ε̂ is a vector of 6 components;

– for k = 2
NP =

[
I6

... x1 I6
... x2 I6

]
(17)

so that the strain components are approximated by a linear function in
each VE; in this case, ε̂ is a vector of 18 components.

• Second requirement for Π:∫
ΩE

(εP )TΠ(u? h) =
∫

ΩE

(εP )Tε(u? h) dA ∀εP ∈ P 6×1
k−1 (ΩE) , (18)

i.e., taking into account equation (15),∫
ΩE

ε̂T (NP )T Π(u? h) dA =
∫

ΩE

ε̂T (NP )T ε(u? h) dA ∀ε̂ ∈ R6 dim(Pk−1) ,

(19)

5. Recalling (4) and integrating by parts, the r.h.s. of equation (19) becomes:∫
ΩE

ε̂T (NP )T L u? h dA = ε̂T
[∫
∂ΩE

(NP )T NE ũ? h dA−
∫

ΩE

(BP )T u? h dA
]
(20)

where NE is the matrix containing the components of the outward normal to the
element boundary:

NE =



n1 0 0
0 n2 0
0 0 0
n2 n1 0
0 0 n2

0 0 n1


. (21)

Note that the operator BP = LT NP indeed contains monomials of a basis of
Pk−1(ΩE).

Note that:

• for k = 1, the last term of equation (20) disappears;
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• for k = 2, BP is constant in ΩE .

6. The integral at r.h.s. of equation (20) is written resorting to approximation (11)
and split into a boundary and an interior contribution, respectively.

This is done according to the properties of the approximation functions. In par-
ticular, boundary functions have unit value at corresponding nodes and zero at
the other ones, plus they have zero area moments against any element of the
canonical basis of Pk−1(Ωe). Similarly each of the interior approximation func-
tions is associated with a monomial of the canonical basis of Pk−1(Ωe) and is such
that the area-averaged moment against the corresponding monomial takes unit
value, and zero value against the remaining ones. Furthermore, all the interior
shape functions are identically zero at the polygon boundary nodes, hence null
all over the boundary.

This leads to:

ε̂T
[∫
∂ΩE

(NP )T NE Nb Ũ? dΓ−
∫

ΩE

(BP )T Ni q̃? dA
]

= ε̂T
[
G̃ Ũ? − B̃q̃?

]
,

where
G̃ =

∫
∂ΩE

(NP )T NE Nb dΓ B̃ =
∫

ΩE

(BP )T Ni dA . (22)

It is now understood that the nature of the interior degrees of freedom q̃? is that
of area-averaged moments of u? h against the monomials of the canonical basis of
Pk−1(ΩE).

Introducing the matrix G and the vector U? as:

G =
[
G̃

... − B̃
]

U? =
{

Ũ?

q?

}
(23)

equation (22) becomes:

ε̂T
∫

ΩE

(NP )T Π(u? h) dA = ε̂T G U? ∀ε̂ . (24)

7. Representing the values of the projected strain with respect to the canonical basis
of Pk(ΩE)6×1, i.e. setting Π(u? h) = NPΠm U?, being Πm the matrix operator
associated with projection Π, equation (24) leads to:

ε̂T
∫

ΩE

(NP )T NP Πm U? dA = ε̂T G U? ∀ε̂ . (25)

that gives:

Πm =
[∫

ΩE

(NP )T NP dA

]−1
G (26)
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which is indeed explicitly computable.

8. Given the nonlinear character of the material laws of the fibre/matrix constituents
of the unit cell, the equilibrium equation (13) needs be linearized with respect
to the displacement field and solved via Newton iterations. Integration of the
evolutive equations governing the material response is performed adopting a time
step procedure, so that quantities at the previous time step tn are denoted with the
subscript n while at actual time t have no subscripts. Moreover, for the average
strain E at the typical load step, the iterative counter is indicated by (r). In
what follows, the terms arising from the consistent linearization of equation (13)
are reported, omitting the dependence of the incremental solution on the index
(r) for compactness. The linearization at time step t is composed of two distinct
contributions: the consistent one, plus another one serving as a stabilization term
supplied in order to cure the rank deficiency induced by the definition of the
projector operator Π [6]. One obtains:

0 =
∫

ΩE

[Π(δu? h(r))]
T C(r) [Π(∆u? h(r)) + E] dA

+ [δu? h(r) −Πs(δu? h(r))]
T τ sn [∆u? h(r) −Πs(∆u? h(r))] . (27)

In the above form, the integral term stems from the consistent linearization,
with C(r) the material tangent stiffness operator. The second term is indeed
the stabilizing one, where τ sn and Πs are a suitable parameter and a projection
operator, respectively.

Once the projection operator Πm is evaluated, equation (27) takes the form:

0 =
∫

ΩE

[NPΠm δU?
(r)]

T C(r) [NPΠm ∆U?
(r) + E] dA

+ [(I−Πs) δU?
(r)]

T τ sn [(I−Πs) ∆U?
(r)] . (28)

Hence, the incremental equilibrium equation (13) takes the form:

0 =
(
Kc,(r) + Ks

)
∆U?

(r) + B , (29)

where

Kc,(r) = (Πm)T
∫

ΩE

(NP )TC(r) NPdA Πm (30)

Ks = τ sn (I−Πs) (31)

B = (Πm)T
∫

ΩE

(NP )TdA E (32)

are the consistent stiffness matrix, the stabilizing stiffness matrix, and the nodal
force vector, respectively. The form of Ks, needed to preserve the coercivity of
the system.
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9. According to standard VEM technology [6], the easiest form for Πs is provided
by a standard projector from the space of virtual element displacements degrees
of freedom U? to the corresponding polynomial counterpart of degree k, i.e.
P 3×1
k (ΩE), defined as the unique matrix-valued function satisfying the follow-

ing relation:
< Πs U?,v >=< U?,v > , ∀v ∈ P 3×1

k (ΩE) (33)

where < ·, · > indicates the standard Euclidean scalar product. Explicit com-
putation of the above scalar product and hence of the stabilizing projector Πs

requires representation of the q vector quantities with respect to the approxima-
tion functions of the space of virtual displacements. This is always possible since
such a space contains P 3×1

k (ΩE) [7]. Denoting D as the corresponding change of
basis operator, which can be found in [2, 3], by substitution into (33), it follows:

Πs = D
(
DTD

)−1
DT . (34)

The choice for the stabilizing parameter τ sn is adopted according to what is pro-
posed in [2], namely a third of the trace of the material tangent stiffness evaluated
at the centroid of the element at the previous load step; in this way the stabiliz-
ing parameter is not influential in the linearization of the equilibrium equation at
time step t greatly simplifying the numerical solution.
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4 Numerical results

The present section is devoted to validation and accuracy assessment of the proposed
VEM technology in the nonlinear analysis of elasto-plastic and visco-plastic composites
with respect to established methods, and, more specifically, to proving the VEMmethod
efficiency as a computational cost-effective tool for fast and reliable analysis. The
idea is to investigate modern advanced composite materials with fibre reinforcement
characterized by complex material constitutive behavior as for instance with elastic
fibres and plastic or viscoplastic matrix behavior. In the context of multiscale analysis,
when dealing with components made of this type materials, an efficient and accurate
numerical tool for solving the microscopic level of the problem may be key in terms
of computational efficiency. Is is noted, moreover, that from a technical point of view,
a numerical approach in the aforementioned context is mandatory in the majority of
cases, since analytical or semi-analytical methods [5, 4] are unpractical for the more
complex material setups, as for instance randomly distributed fibres, complex fibre
shapes, generally not not solvable by such approaches [10].

In the following, reference is made to composite arrangements characterized by
square unit cell and different nonlinear material behavior; the main goal being to apply
the previously introduced methodology to compute mechanical response under the ap-
plication of a macroscopic strain through some specified loading history, for the cases
in which material nonlinearity is encountered.

4.1 Accuracy - elastic composites

??? Validation still needs a fair assessment of the exact solution for the overall proper-
ties. ???

Tri Poly Quad
Mesh 1 – 144 201
Mesh 2 – 576 689
Mesh 3 – 2304 2529
Mesh 4 – 9216 9665

Overkilling 149249 – –

Table 1: Meshing discretizations in terms of number of vertices for examined case
vf = 0.4.

4.2 Accuracy - Elasto-plastic composites

This section aims at assessing accuracy of the proposed method for k = 1 and k = 2 by
comparison with standard Lagrange finite element solutions, when, as in the previous
case, a uniform QUAD/POLY unit cell mesh is adopted (see Fig. 2). A composite with
elastic fibres and elasto-plastic matrix is considered, such that material parameters for
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the fibre and for the matrix are Ef = 410 GPa, νf = 0.19, Em = 75 GPa, νm =
0.33, respectively. The matrix material obeys a classical isotropic Von Mises plastic
constitutive law with yield stress σy = 2.37 GPa; no strain hardening is considered.
The volume fraction taken into consideration is vf = 0.2. Monotonic proportional
loading histories for the single overall strain components (cf. Eq. (10)) are considered
stemming from zero to a specified value of 0.1; correspondingly, the homologue effective
stress components are plotted in Fig. 5, respectively, for linear and quadratic elements,
reporting VEM solutions and Lagrangian finite element ones as a reference, with Mesh
3 as per Table 1, i.e. with a uniform discretization of the fibre/matrix domain. For
the sake of compactness the acronyms Q4 and Q9 are here adopted, respectively, for
quadrilateral 4−node and 9−node isoparametric displacement-based Lagrangian finite
elements. The computed solutions seem in optimal agreement and thus validate the
proposed VEM methodology for both QUAD/POLY discretizations of the unit cell
domain, confirming the robustness and appeal of the numerical tool in computing the
overall response of the composite material.

4.3 Accuracy - Visco-plastic composites

This section is designed to prove one of the main feature of the VEM technology as
an efficient asset in reducing computational cost, hence computational time, when a
typical multiscale structural analysis if performed. The feature under consideration is
the generalized concept of polygonal mesh simplicity as opposed to standard confor-
mity in finite element discretization, which, in general, permits to discretize and refine
VEM polygonal meshes with broader versatility with respect to FEM meshes saving
on vertices along the reticulation. In the present application, based on the fact that
for a composite with sufficiently high an η ratio, the displacement field varies slowly
among the fibre subdomain, the possibility of coarsening just locally its discretization,
still retaining sufficiently low fineness of mesh size over the rest of the domain, comes
in handy. This is exactly the idea exploited in this numerical test, which is designed in
the following manner: numerical results pertaining to uniform polygonal Mesh 3 (see
Table 1) are confronted with an ad hoc designed mesh which comprises a single polygon
inside the fibre (so called core region for the fibre), two refined circular crown shaped
regions across fibre/matrix interface (these are mandatory as displacement gradient
components may be high across the aforementioned interface, requiring high resolu-
tion), and a matrix region with reasonably fine size. A pictorial view of such a mesh
is given in Fig. 3 and, in the following, will be denoted as crown. The overall ratio
between uniform and crown mesh number of degrees of freedom is circa 4. The aim is
to prove that, despite its smart coarseness, results pertaining to crown mesh are equally
accurate than those obtained with its uniform (finer) counterpart.

Performed simulations refer to both elasto-plastic and visco-plastic composites. In
particular, in the former case, material parameters adopted in the previous test are
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adopted doubling the fibre Young modulus; in the latter, material parameters as of
constitutive model presented in section 2 are Ef = 410 GPa, νf = 0.19, Em = 7.5
GPa, νm = 0.33, σy = 0.2 GPa. (Gli altri parametri vanno linkati ai simboli del paper
che non corrispondono a quelli del legame costitutivo). Simulations refer to simple
monotonic loading histories and results are performed for k = 1 and k = 2 order of
accuracy. As can be inspected in Figs. 6, 7, respectively, the relative errors in terms
of effective response are practically less than 5% at maximum, a relative threshold
which is indeed acceptable in the light of the previous introductory remarks. It is of
interest observing that the computational times for crown mesh are roughly 8 times
smaller than those needed for the uniform mesh discretization. This impressive results
indeed proves the stated point and indicates the efficiency of the proposed methodology
in exploiting the relaxed mesh conformity requirements dealing with complex domain
shapes.

(a) (b)

Figure 2: Uniform unit cell meshes for examined case vf = 0.2; (a) quadrilaterals
(QUAD); (b) polygons (POLY).

5 Conclusion

• A virtual element method of higher order has been presented for the homogeniza-
tion of fibre-reinforced composite materials with doubly periodic square lattices
and circular fibre inclusions;

• The methodology has been tested and validated on a number of unit cell setups
for quadrilateral and Voronoi tessellations mesh types;

• The strength of the proposed approach relies in the ability to accurately deal with
complex geometries, flexibility in local mesh refinement, and polynomial degree
elevation;
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Figure 3: Crown unit cell mesh for examined case vf = 0.2. Local mesh refinement
across fibre/matrix interface with two circular crown regions with very fine POLY-mesh
and a single polygon with 140 edges for the fibre core.

• Future investigations of this study include treatment of complex material consti-
tutive behavior, general representative unit cells and the case of complex inclusion
shapes.
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Figure 4: Accuracy assessment for various error measures. Square unit cell, vf = 0.4.
Compared methods: VEM with triangles, polygons, quadrilaterals; reference overkilling
solution computed with FEM quadratic quadrilaterals.
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Figure 5: Elastoplastic fibre reinforced composite. vf = 0.2. k = 1 (a-b-c), k = 1
(d-e-f).
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Figure 6: Efficiency of crown vs. uniform polygonal mesh for elastoplastic (a) and
viscoplastic (b) composite. k = 1, vf = 0.2.
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Figure 7: Efficiency of crown vs. uniform polygonal mesh for elastoplastic (a) and
viscoplastic (b) composite. k = 2, vf = 0.2.
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