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Abstract

Aim of the present paper is to develop an e�cient multiscale procedure for studying the

mechanical response of structural elements made of elastoplastic or viscoplastic composite

materials. The micro and the macro scales are considered separated. At the microscale a

PieceWise Uniform Transformation Field Analysis (PWUTFA) homogenization technique is

adopted to derive the overall response of a periodic composite. Thus, a Unit Cell (UC) con-

taining all the properties of the heterogeneous material is analyzed and divided in subsets; in

each one the inelastic strain is considered uniform, i.e. constant, and represents the history

variable of the analysis. Elastoplastic and elasto-viscoplastic models with isotropic hardening

are adopted in order to describe the nonlinear response of the constituents. A new numerical

procedure is developed in order to solve the evolutive problem in all the subsets simultane-

ously adopting a predictor-corrector technique. The corrector phase is solved by means of a

modi�ed Newton-Raphson iterative procedure. Furthermore, the tangent consistent with the

algorithm is computed and adopted in the multiscale computations. Numerical applications

are carried out in order to assess the e�ciency of the proposed multiscale approach.
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1 Introduction

Composite materials often present internally complex microstructures, therefore, they require

speci�c formulations to be developed in order to take into account the mechanical behavior

of each component and its topological distribution. In particular, if the constituents are

characterized by a nonlinear response the study becomes more complex as the nonlinear

e�ect occurring in the material should also be modeled. Lately, the interest around the

modeling of composite materials has increased signi�cantly.

A large class of composite media are made of constituents that exhibit plastic and time-

dependent behavior that requires the use of nonlinear elastoplastic and elasto-viscoplastic

material models. Recently, innovative composite characterized by plastic and viscoplastic

response of the constituents have been presented, among the other, in [42, 2, 13, 27].

One possibility to evaluate the overall mechanical response of these composite materials,

which have complex microstructures and viscoplastic e�ects in its constituents, is to adopt

micromechanical procedures, that study a representative volume element (RVE), determin-

ing the behavior of the homogenized equivalent material. Very recently, micromechanical

numerical investigation have been presented, for example, in 2D plasticity [26] or in 3D

viscoplasticity [7, 39] framework for composites materials.

In order to perform analyses of structural elements, made of composite materials, a multiscale

approach can be adopted considering the complex nonlinear response of these composites

directly derived from a micromechanical analysis. The multiscale technique consists in the

modeling of the structure taking into account two di�erent scales: the macro-scale, i.e. the

scale at the structural level, and the micro-scale, i.e. the scale at the material level, where

the single heterogeneity can be distinguished in the material. If the heterogeneity size is

signi�cantly smaller than the structural size, the two scales can be considered separated and

it is possible to solve the micromechanical problem at each point of the structure and to

adopt the obtained results for deriving the constitutive response to be used for the structural

analysis.

A major problem in the multiscale analysis is the development of an e�ective, i.e. simple and

accurate, solution of the micromechanical problem. In fact, the multiscale problem can be

solved using nonlinear �nite element (FE) analyses both at the material and at the structural

level, i.e. the FE2 multiscale scheme [17]. The FE2 is developed inducing a large number

of history variables that can lead to very high computational burden and time. In order to

improve the multiscale approach and to reduce the number of history variables, the nonlinear

overall response of the composite can be derived adopting simpli�ed homogenization tech-
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niques. In literature, several techniques have been presented for solving the homogenization

problem of plastic and viscoplastic composites. Among the others, recently, Caporale et al.

[4, 3] proposed a technique based on eigenstrain and Fourier series for the homogenization of

elastic and viscoelastic periodic composites. Czarnota et al. [11] proposed a homogenization

approach based on an additive tangent Mori�Tanaka scheme in order to study two-phase

composites with spherical inclusion and nonlinear elasto�viscoplastic behavior. Mareau and

Berbenni [28] presented a homogenization technique based on the self-consistent approxima-

tion for heterogeneous viscoplastic materials. Agoras et al. [1] presented a homogenization

technique modeling the nonlinearity and the heterogeneity of the properties in the phases

with the variational procedure proposed in [37].

An e�cient homogenization approach for nonlinear material is the Transformation Field

Analysis (TFA), originally proposed by Dvorak [14], that determines the behavior of the

composite taking into account the nonlinear phenomena considering the presence of inelastic

strain �elds. Lately, the TFA approach has been adopted to derive the response of several

nonlinear composites considering a uniform [30], piecewise uniform [15, 6, 40] or nonuniform

[33, 18, 19, 38, 20, 41, 23, 32, 9, 10, 24] distribution of the inelastic strain. The proposed

TFA approaches di�er mainly for the approximation adopted for the inelastic strain and for

the procedure used to evaluate the evolution of the history variables [25]. Some of these

approaches, in particular the ones based on the nonuniform TFA, are very accurate but, at

the same time, they could become computationally expensive.

Some multiscale analyses have been performed developing the TFA homogenization technique

at the microlevel. Michel and Suquet [34] proposed a multiscale approach for studying

structural elements made of viscoplastic composites and considering at the microlevel the TFA

procedure proposed in [33]; they compared the response of the homogenized structure with

the response of the actual heterogeneous structure computed with a very �ne discretization.

Mar�a and Sacco [31] studied the behavior of SMA composite laminates adopting at the

material level the TFA technique presented in [29]. Fritzen et al. [22, 21] developed a

multiscale approach considering at the microlevel the TFA technique proposed in [23] to

derive the mechanical behavior of viscoplastic composites. Zhang and Oskay [43] proposed

a multiscale approach extending the eigenstrain-based reduced order modeling approach to

solve problems characterized by non separable scales.

A high computational e�ciency is required for these multiscale approaches in order to be

able to perform structural analyses of composite materials without having too long time

of computation and too high number of history variables. For this reason, a compromise

between accuracy and computational e�ort should be ful�lled. Hence, the research is very
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active in this �eld, aimed at developing e�cient multiscale algorithms.

Starting from these considerations, the present paper has the scope of proposing a new and

e�cient multiscale procedure for studying the response of structural elements made of com-

posite materials whose constituents present plastic or viscoplastic behavior. In particular,

periodic composite are studied, thus a repetitive Unit Cell (UC) containing all the properties

of the heterogeneous material is analyzed by means of a PieceWise Uniform TFA (PWUTFA)

homogenization technique. This choice is made with the aim to obtain a satisfactorily accu-

rate homogenization technique, resulting particularly e�cient from the computational point

of view for the multiscale analysis. The UC is divided in subsets and in each one the inelas-

tic strain is considered uniform, i.e. constant. Elastoplastic and elasto-viscoplastic models

with isotropic hardening are introduced in order to describe the nonlinear response of the

constituents.

A new numerical procedure is proposed solving the evolutive problem in all the subsets

simultaneously, adopting a predictor-corrector technique. The corrector phase is solved by

means of a modi�ed Newton-Raphson iterative procedure. In order to obtain an e�cient

numerical tool, the tangent consistent with the algorithm is evaluated and adopted in the

computations.

Numerical applications are developed in order to assess the e�ciency of the proposed multi-

scale approach. In particular, the proposed procedure is implemented in a two-dimensional

framework, considering the plane stress condition. The homogenization is performed at the

Gauss point level of the 3 node optimum membrane triangular (OPT) element proposed in

[16] and recently extended to corotational and material nonlinear behavior in [5, 35]. A com-

parison between the proposed multiscale technique and a micromechanical structural analysis

is carried out.

The remaining part of the paper is organized as follows. In Section 2, the multiscale approach

is described; in Section 3, the PWUTFA homogenization technique is illustrated; in Section

4, the numerical procedure is presented; in Section 5, the numerical applications are reported

and, �nally, Section 6 contains some concluding remarks.

In the following the Voigt notation is adopted, so that second-order tensors are represented

as vectors, while fourth-order tensors as matrices.
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2 Multiscale approach

2.1 Macroscale

A heterogeneous body B, subjected to volume forces b is considered. The boundary ∂B is

split in two parts ∂uB, where the displacement conditions Û are prescribed, and ∂fB, where
the surface forces p are applied, with ∂B = ∂uB∪∂fB and ∂uB ∩ ∂fB = ∅ . The global

Cartesian coordinate system (X1, X2, X3) is introduced at the macroscale. The displacement

�eld is denoted by the vector U (X) = {U1 U2 U2}T with X = {X1 X2 X3}T the position

vector of a typical point of B. The strain �eld E = {E11 E22 E33 Γ12 Γ23 Γ13}T is obtained as:

E11 =
∂U1

∂X1

E22 =
∂U2

∂X2

E33 =
∂U3

∂X3

. (1)

Γ12=
∂U1

∂X2

+
∂U2

∂X1

Γ23 =
∂U2

∂X3

+
∂U3

∂X2

Γ13 =
∂U1

∂X3

+
∂U3

∂X1

The stress �eld, denoted by Σ = {Σ11 Σ22 Σ33 Σ12 Σ23 Σ13}T , has to satisfy the classical

equilibrium equations.

It is assumed that the body is made of a composite material, whose microstructural size is

signi�cantly smaller than the characteristic dimension of the body; thus, the macro and

microscale can be considered separated. In this case, the constitutive equations of the

macroscale can be recovered by performing a homogenization of the composite at the mi-

cro level as described in the following. For this reason, the constitutive equations are not

speci�ed at this level.

2.2 Microscale

A periodic microstructure is assumed for the composite material. Because of the periodicity,

a unit cell (UC) can be considered for studying the response of the composite. In particular,

the UC is chosen as a parallelepipedal solid, de�ning the heterogeneous body Ω containing
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all the geometrical and material information of the composite. Introducing a local coordinate

reference system (x1, x2, x3) at the microscale, the UC has dimensions 2 a1 × 2 a2 × 2 a3 and

volume V .

2.2.1 Kinematics

The kinematics of the UC is characterized by the following representation form of the dis-

placement �eld:

u (x) = A E + u∗ (x) , (2)

where:

• E is the macroscopic deformation, introduced above by equations (1), evaluated at the

material point of the equivalent macroscopic medium linked to the considered UC, and

it is considered as the overall strain, i.e. the average strain in the UC;

• A is the matrix de�ning the kinematical map, given by:

A =

 x1 0 0 1
2
x2 0 1

2
x3

0 x2 0 1
2
x1

1
2
x3 0

0 0 x3 0 1
2
x2

1
2
x1

 ; (3)

• u∗ (x) is the periodic part of the displacement �eld, satisfying the periodicity conditions:

u∗ (−a1, x2, x3) = u∗ (a1, x2, x3)

u∗ ( x1,−a2, x3) = u∗ (x1, a2, x3) .

u∗ ( x1, x2,−a3) = u∗ (x1, x2, a3)

(4)

Taking into account equations (2) and (3), the strain �eld in the UC, ε = {ε11 ε22 ε33 γ12 γ23 γ13}T ,
is obtained as:

ε (x) = E + ε∗ (x) with

ε∗11 = u∗1,1

ε∗22 = u∗2,2

ε∗33 = u∗3,3

γ∗12 = u∗1,2 + u∗2,1

γ∗23 = u∗2,3 + u∗3,2

γ∗13 = u∗1,3 + u∗3,1

, (5)
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where the pedex , i indicates the partial derivative with respect to xi. As the periodic part of

the displacement u∗ (x) satis�es the boundary conditions (4), the average of the strain �eld

ε∗ (x) is null, so that the average of the strain �eld in the UC is equal to E.

2.2.2 Plasticity and viscoplasticity constitutive models

It is assumed that the materials which constitute the composite exhibit a plastic or viscoplas-

tic behavior. Plasticity models take into account the inelastic strains while viscoplasticity

models are able to account for both rheologic and plastic e�ects occurring in the material.

It is assumed that the strain can be divided into an elastic and inelastic part due only to

plastic e�ects for the plasticity model and to viscous and plastic e�ects for the viscoplastic

model. In both cases, the constitutive law is written as:

σ = C (ε− π) , (6)

where σ = {σ11 σ22 σ33 τ12 τ23 τ13}T represents the stress vector at the point x, C is the 6× 6

matrix containing the material elasticities and π is the inelastic strain due to the plastic or

viscous response.

The viscoplasticity problem is both time and loading history dependent, thus, the stress

and strain �elds are time dependent and the plastic properties are loading path dependent.

According to Perzyna [36], elasto-viscoplastic materials show viscous properties in the plastic

region; thus, a dissipation potential is introduced and the assumption of the existence of an

elastic domain, where there are no viscous e�ects, is considered. Two constitutive models,

one based on plasticity (P) and the other one on viscoplasticity (VP) are presented in this

Section. Since the material does not show viscous properties in the elastic region, the classical

Mises yield function is considered in the framework of associated plasticity [12], with isotropic

hardening; thus, for both the models the limit function is introduced:

f = q − σy −Hκ with q =

√
3

2
σTMσ , (7)

where H is the isotropic hardening parameter, κ is the accumulated plastic strain:

κ =

ˆ t

0

‖π̇‖ dt , (8)
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and M is the matrix de�ned as:

M =
1

3



2 −1 −1 0 0 0

−1 2 −1 0 0 0

−1 −1 2 0 0 0

0 0 0 6 0 0

0 0 0 0 6 0

0 0 0 0 0 6


. (9)

The evolutive associate laws result:

π̇ = λ̇
∂f

∂σ
= λ̇N (σ) (10)

κ̇ = λ̇

where λ̇ is the plastic multiplier and N (σ) is the normal vector resulting:

N (σ) =
3

2 q
Mσ . (11)

For the plasticity model the multiplier λ̇ is evaluated considering the Kuhn-Tucker and the

consistency conditions:

λ̇ ≥ 0 f ≤ 0 λ̇f = 0 λ̇ḟ = 0 . (12)

For the viscoplastic model (VP) proposed by Perzyna [36], the plastic multiplier results:

λ̇ =


1

µ

[
q

σy −Hκ
− 1

]1/ε

if f (σ) ≥ 0

0 if f (σ) < 0

, (13)

where µ is a viscosity-related parameter and ε is the non-dimensional rate sensitivity param-

eter ε ∈ (0, 1). Both parameters are strictly positive and temperature dependent. The set of

history variables for the plastic and viscoplastic material is denoted by χ = (π, κ).

3 PWUTFA homogenization technique

Assigned the macroscopic strain E in the UC, the micromechanical problem consists in:
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• �nding

� the displacement �eld u (x),

� the total strain �eld ε (x),

� the set of internal variables χ,

� the stress �eld σ (x) ,

• which satisfy the classical governing equations of the Continuum Mechanics, i.e. com-

patibility, equilibrium and constitutive relationships with suitable boundary conditions.

The micromechanical problem can be solved making use of a suitable numerical procedure.

In particular, the �nite element method is classically adopted to derive the micromechanical

response of the UC. Once the micromechanical problem is solved, the overall response of the

UC is determined; in particular, the average stress, representing the stress at the macroscopic

level, can be computed as:

Σ =
1

V

ˆ
Ω

σ dV , (14)

when no voids or fracture are present in the UC.

Because of the complexity and of the computational cost of the micromechanical nonlin-

ear �nite element approach, simpli�ed and approximated techniques can be developed. In

particular, the TFA (Transformation Field Analysis) technique is herein adopted [14, 41].

The UC is split in n homogeneous subsets, with the s−th subset Ωs characterized by a volume

Vs. The subsets satisfy the relationships
⋃n
s=1 Ωs = Ω and

⋂n
s=1 Ωs = ∅. The TFA procedure

can be regarded as an application of the coaction theory [8] and it can be performed according

to the steps reported in the following.

1. The constitutive equation (6) is written in the s−th subset Ωs:

σs = Cs (εs − πs) , (15)

where Cs is the matrix of the elasticities of the material of subset Ωs and πs is assumed

to be constant (uniform) in Ωs.

2. The uniform inelastic strain πs is considered as a coaction, i.e. an eigenstrain, in the

subset Ωs.

3. The e�ects of the prescribed macroscopic deformation E arising in each subset Ωj

(j = 1, .., n) is determined through the introduction of n localization 6 × 6 matrices
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Lj
E (x) able to evaluate the local strain and, hence, the local stress at x ∈ Ωj due to E

by the relationships:

ej (x) = Lj
E (x) E , (16)

σje (x) = Cjej (x)

4. The e�ects of the uniform inelastic strain πs arising in each subset Ωj (j = 1, .., n)

is determined introducing the n2 localization matrices Lj
πs (x), with dimensions 6× 6,

able to give the local total pjs and elastic ηjs strain and the local stress σjπs at x ∈ Ωj

due to πs as:

pjs (x) = Lj
πs (x) πs

ηjs (x) = pjs (x)− δjsπs , (17)

σjπs (x) = Cjηjs (x)

where δjs is the Kroneker index (δjs = 1 if j 6= s, δjs = 0 otherwise)

5. The set of all the inelastic strains de�ned in the subsets Ωs (s = 1, .., n) are arranged

in a unique vector Π = {π1 π2 ... πn}T , so that the local total pj and elastic ηj strain

and the local stress σjΠ at x ∈ Ωj due to Π results:

pj (x) = Lj
Π (x) Π .

ηj (x) = pj (x)−∆j Π (18)

σjΠ (x) = Cjηj (x)

where the 6 × 6n localization matrix Lj
Π (x) is obtained assembling the n matrices

Lj
πs (x) (s = 1, .., n) and ∆j is 6 × 6 n matrix whose components are ∆j

hm = δhk with

m = 6 (j − 1) + k.

6. The solution is determined superimposing the e�ects of the prescribed macroscopic

deformation E with the ones due to inelastic strains arranged in Π. In particular,

the total strain in the subset Ωj is obtained as the sum of the contributions given by

equations (16) and (18):

εj (x) = ej (x) + pj (x) = Lj
E (x) E + Lj

Π (x) Π . (19)

In order to evaluate the inelastic strain, it is necessary to compute the average strain in
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each subset of the UC; taking into account equations (16) and (18), the average strains in

the typical subset Ωj due to the prescribed macroscopic deformations E and to the inelastic

strain Π are obtained as as:

ej = L
j

E E (20)

pj = L
j

Π Π , (21)

where the average in each subset of the localization matrices Lj
e (x) and Lj

Π (x) are computed

as:

L
j

E =
1

Vj

ˆ
Ωj

Lj
E (x) dV L

j

Π =
1

Vj

ˆ
Ωj

Lj
Π (x) dV . (22)

Thus, the average total strain εj in the j−th subset is evaluated as:

εj = ej + pj = L
j

E E + L
j

ΠΠ . (23)

The procedure for the determination of the micromechanical response of the UC consists in

the following steps. Initially, 6 + 6n micromechanical problems of the UC have to be solved:

• 6 problems corresponding to the UC subjected to the prescribed unit value of only one

component of the macroscopic deformation E; in such a way, it is possible to evaluate

the 6 columns of the localization matrix L
j

E for all the subsets Ωj (j = 1, .., n);

• 6 n problems prescribing a unit value of only one component of the inelastic strains

collected in the vector Π under the condition of null average strain in the UC; this

allows to determine the 6 n columns of the localization matrix L
j

Π for all the subsets

Ωj (j = 1, .., n).

Accounting for equations (18)1, (18)2 and (21), the average elastic strain ηj in the j−th
subset due to the eigenstrain Π is obtained as:

ηj = pj − πj =
(
L
j

Π −∆j
)

Π . (24)

Once the localization rectangular matrices L
j

E (with j = 1, .., n) are determined, using the

Hill-Mandel equation, the overall macroscopic stress ΣE due to the macroscopic deformation
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E is evaluated as:

δETΣE =
1

V

ˆ
V

δeTσe dV

=
1

V

n∑
j=1

(
δej
)T

CjejV j , (25)

where Cj is the elastic matrix of the subset Ωj. Setting ρj = Vj/V and taking into account

equation (20), it results:

δETΣE =
n∑
j=1

ρj

(
L
j

E δE
)T

CjL
j

E E , (26)

which gives:

ΣE = C E (27)

C being the overall elastic matrix of the UC obtained as:

C =
n∑
j=1

ρj

(
L
j

E

)T
CjL

j

E . (28)

Analogously, the overall macroscopic stress ΣΠ in the whole UC due to the presence of Π is

computed as:

δETΣΠ =
1

V

ˆ
V

δeTσΠ dV

=
n∑
j=1

ρj

(
L
j

E δE
)T

Cj
(
L
j

Π −∆j
)

Π , (29)

which gives:

ΣΠ =
n∑
j=1

ρj

(
L
j

E

)T
Cj
(
L
j

Π −∆j
)

Π . (30)

Finally, the overall macroscopic deformation in the UC is equal to E, while the overall

macroscopic stress is equal to the sum of ΣE and ΣΠ, given by equations (27) and (30),

respectively, leading to:

Σ = C E +
n∑
j=1

ρj

(
L
j

E

)T
Cj
(
L
j

Π −∆j
)

Π , (31)
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where formula (30) is taken into account.

The average plastic strain p is de�ned from equation (31) as:

p = C
−1

[
n∑
j=1

ρj

(
L
j

E

)T
Cj
(
L
j

Π −∆j
)

Π

]
. (32)

In the following plastic and viscoplastic constitutive models are introduced to detail com-

pletely the procedure.

4 Numerical procedure

At the typical Gauss point of the structural �nite element discretization, the homogenization

procedure is implemented. In the following, the numerical procedure is described in detail

for the case of plastic and viscoplastic material constitutive laws.

4.1 Time step solution

In order to perform the time integration of the evolutive equations (10), a backward Euler

technique is used. Once the solution at the time tn is known, the solution at time t is

computed by solving a �nite time step. In the following the quantities at time tn are denoted

with the index n while the quantities at the actual time t are denoted with no index. The

�nite step is solved adopting a predictor corrector procedure. The history variables of the

problem are the uniform inelastic strain Π and the vector κ containing the accumulated

inelastic strain κs in each subset. Note that the material properties of the constituents of the

composites can vary from subset to subset but they are assumed uniform in each subset.

A trial state is de�ned in each subset considering the history variables frozen and equal to

the one at the previous step:

Π = Πn

κ = κn

εs = L
s

E E + L
s

ΠΠ

σs,TR = Cs (εs − πs) . (33)

qs,TR =

√
3

2
(σs,TR)T Mσs,TR

f s,TR = qs,TR − σsy −Hsκs
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If f s,TR < 0 in all the subsets the step is elastic and the trial state given by equation (33)

is the solution. If f s,TR ≥ 0 at least in one subset, the correction phase, concerning all

the subsets has to be performed. The equations governing the time step are written in the

residual form for each subset Ωs:

Rs
∆π = ∆πs −∆λs

∂f s

∂σs
= 0

Rs
ε = εs − L

s

E E− L
s

ΠΠ = 0

Rs
g = gs = 0

, (34)

where the �rst of (34) is obtained from equation (10); the second of (34) is the residual form

of equation (23) and in the third of (34) the quantity gs is de�ned as:

gs = ∆λs if f s,TR < 0

gs = qs − σy −Hκs if f s,TR ≥ 0 Plasticity

gs = 4λs − 1
µ

(
qs

σy−Hκs − 1
)1/ε

if f s,TR ≥ 0 Viscoplasticity

. (35)

Writing the system of equation (34) for the all the n subsets, it results:

Rπ = ∆Π−



∆λ1 ∂f
1

∂σ1

∆λ2 ∂f
2

∂σ2

...

∆λn
∂fn

∂σn


Rε =


ε1

ε2

...

εn

−


L
1

E

L
2

E

...

L
n

E

 E−


L

1

Π

L
2

Π

...

L
n

Π

 (∆Π + Πn) .

Rg =


g1

g2

...

gn



(36)

Equations (36) represent a system of 6n+ 6n+n nonlinear equations in the set of unknowns

{∆Π ,Γ ,Λ}, where Γ =
{
ε1 ε2 ... εn

}T
and Λ =

{
∆λ1 ∆λ2 ... ∆λn

}T
. In order

to solve the algebraic system of nonlinear equations the modi�ed Newton-Raphson algorithm

is adopted; at the typical p + 1−th iteration, the following linearized problem has to be
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solved: 
0

0

0

 =


Rπ

Rε

Rg


p

+


∂Rπ

∂Π

∂Rπ

∂Γ

∂Rπ

∂Λ
∂Rε

∂Π

∂Rε

∂Γ

∂Rε

∂Λ
∂Rg

∂Π

∂Rg

∂Γ

∂Rg

∂Λ


p


dΠ

dΓ

dΛ

 , (37)

where the derivatives are explicitly reported in the Appendix.

The variation of the unknowns at the p + 1−th iteration is evaluated solving the system of

equation (37):


dΠ

dΓ

dΛ

 = −


∂Rπ

∂Π

∂Rπ

∂Γ

∂Rπ

∂Λ
∂Rε

∂Π

∂Rε

∂Γ

∂Rε

∂Λ
∂Rg

∂Π

∂Rg

∂Γ

∂Rg

∂Λ


−1

p


Rπ

Rε

Rg


p

. (38)

At the end of the p+ 1−th iteration the residuals, given in equations (34), and the function

gs given in equations (35) should be reevaluated. In particular, the function f s should be

reevaluated with the internal value computed at the p+ 1−th iteration:

εs = L
s

E E + L
s

ΠΠ

σs = Cs (εs − πs)

qs =

√
3

2
(σs)T Mσs , (39)

f s = qs − σy −Hκs

and then the function gs, de�ned in equations (35), is determined as:

gs = ∆λs if f s < 0

gs = qs − σy −Hκs if f s ≥ 0 Plasticity

gs = 4λs − 1

µ

(
qs

σy −Hκs
− 1

)1/ε

if f s ≥ 0 Viscoplasticity

. (40)

The iterations will stop when the norm of the residual vector is lower than a pre�xed tolerance.
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4.2 Consistent tangent matrix

From formula (31), the overall stress is rewritten as:

Σ = C E +
n∑
j=1

ρj

(
L
j

E

)T
Cj
(
L
j

Π −∆j
)

(∆Π + Πn) . (41)

The overall tangent operator is obtained di�erentiating the overall stress given by formula

(41) with respect to the overall strain:

∂Σ

∂E
= C +

n∑
j=1

ρj

(
L
j

E

)T
Cj
(
L
j

Π −∆j
) ∂Π

∂E
. (42)

In order to evaluate the derivative ∂Π/∂E, the vector V = {Rπ Rε Rg} containing the

residuals is introduced and its variation results:

dV (∆Π , , Γ ,Λ ,E) =
∂V

∂Π
dΠ +

∂V

∂Γ
dΓ +

∂V

∂Λ
dΛ+

∂V

∂E
dE = 0 , (43)

which allows to obtain:

{
∂V

∂Π

∂V

∂Γ

∂V

∂Λ

}
dΠ

dE
dΓ

dE
dΛ

dE

+
∂V

∂E
= 0 . (44)

Then, substituting V = {Rπ Rε Rg} in equation (44) and solving, it results:
dΠ

dE
dΓ

dE
dΛ

dE

 = −


∂Rπ

∂Π

∂Rπ

∂Γ

∂Rπ

∂Λ
∂Rε

∂Π

∂Rε

∂Γ

∂Rε

∂Λ
∂Rg

∂Π

∂Rg

∂Γ

∂Rg

∂Λ


−1

∂Rπ

∂E
∂Rε

∂E
∂Rg

∂E

 , (45)
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with
∂Rπ

∂E
= 0

∂Rε

∂E
= −


L

1

E

L
2

E

..

L
n

E


∂Rg

∂E
= 0

. (46)

The �rst 6n rows of the vector computed from equation (45) give the derivative ∂Π/∂E.

5 Numerical Applications

In the following, some numerical applications are presented concerning the multiscale analysis

of structural elements made of composite materials. Two dimensional analyses are performed

considering the plane stress condition. In particular, composite materials made of a periodic

distribution of elastic inclusion in a plastic or viscoplastic matrix, are considered.

Two numerical applications are presented:

• multiscale analysis of a structure with a hole,

• comparison between multiscale and micromechanical structural analyses.

In both the multiscale analyses the ratio between the radius of the inclusion and the dimension

of the structure is about 0.02, thus the assumption of scale separation can be considered

ful�lled and the homogenization theory can be safely applied.

In developed the numerical applications, the UC is initially analyzed adopting the PWUTFA

and the results of the homogenization procedure are compared with the ones recovered per-

forming nonlinear micromechanical �nite element analyses (FEM). Then, the analyses of the

considered structural elements made of the composite material are developed adopting the

multiscale approach, i.e. performing at each Gauss point the PWUTFA homogenization to

determine the overall behavior of the composite material. For the �nite element analyses

the performing OPT three nodes triangular �nite elements, proposed in [16] and recently

modi�ed in [5], are adopted. In particular, the multiscale scheme has been implemented in

the MATLAB code developed in [5, 35].
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5.1 Multiscale analysis of a structure with a hole

5.1.1 UC analysis

A UC, characterized by a circular inclusion with volume fraction equal to 25%, is studied. A

local coordinate system (x1, x2) is introduced with the origin in the center of the UC. The UC

has dimension 2a1 × 2a2. Because of the double symmetry, only half of the UC, represented

in Figure 1, is studied prescribing the following boundary conditions:

u(−a1, x2) = u(a1, x2) 0 ≤ x2 ≤ a2

u(x1, 0) = u(x1 + a1, a2) −a1 ≤ x1 ≤ 0

u(x1 + a1, 0) = u(x1, a2) −a1 ≤ x1 ≤ 0

(47)

These boundary conditions applied to half of the UC allows to study all the loading conditions

due to normal and shear strains recovering the same results that would be obtained studying

the whole cell. The study of only a quarter of the UC with symmetric boundary conditions

leads to correct results only when normal strain components are applied but not in the case

of shear deformation. The nonlinear �nite element micromechanical analysis is performed

considering 2624 triangular elements with 4 Gauss points per element, so that the history

variables is obtained as the product of the number of elements times the number of Gauss

points times the number history variables for each Gauss point, resulting 2624×4×4 = 41984.

For the PWUTFA approach, the UC is discretized in 27 subsets, reported in Figure 1. In par-

ticular, 26 subsets are adopted to model the plastic or viscoplastic matrix and in each subset

the plastic strain is considered uniform, according to the PWUTFA technique described in

the previous sections, and one elastic subset is used to model all the elastic inclusions, present

in the studied UC. The number of history variables in each subset is equal to 4, i.e. 3 compo-

nents of the inelastic strain and the accumulated inelastic strain; thus, for the half UC, the

number of history variables for the homogenization analysis results to be 26×4 = 104. It can

be remarked a drastic reduction of the number of history variables from the FEM approach to

the PWUTFA technique, which is very important in the framework of the multiscale analysis.

The material properties adopted for the computations are reported in table 1. Four di�erent

composite materials are studied: three composites characterized by a viscoplastic matrix

taking into account three di�erent values of the non-dimensional rate sensitivity parameter

ε = 0.1, 0.5, 1; the fourth composite is made of a plastic matrix with the same yield stress

and hardening parameter of the viscoplastic material.

Two di�erent loading histories are studied. Firstly, the UC is considered subjected to a

monotonic loading history in terms of the average strain E11, until the value of 0.015 is
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Constituent E [GPa] ν σy [GPa] h[GPa] µ [s] ε dt [s]

Inclusion (elastic material) 400 0.2 - - - - -
Matrix (viscoplastic material) 180 0.3 0.075 0.416 500 0.1/0.5/1 0.01
Matrix (plastic material) 180 0.3 0.075 0.416 - - -

Table 1: Test 1 - Material properties of the constituents.

Figure 1: Division of the UC in 27 subsets.

reached. In Figures 2 and 3 the mechanical response of the UC in terms of Σ11 and Σ22 versus

E11 is plotted for the PWUTFA homogenization and for the FEM analysis, respectively. It

can be noted that the results of PWUTFA and FEM are in very good accordance for both

the stresses and for all the composite materials studied so the proposed PWUTFA is able to

describe the nonlinear response of the UC due to the plastic and viscoplastic e�ects occurring

in the matrix.

Then, the UC is considered subjected to a monotonic loading history in terms of the average

shear strain E12 until the value of 0.015 is reached.

In Figure 4, the shear response of the UC is reported plotting the overall stress Σ11 versus the

average strain E11. Also in this case the PWUTFA is able to describe the overall response

of the cell, achieving results in good accordance with the FEM analysis. Decreasing the rate

sensitivity parameter, the response of the UC becomes less ductile and it tends to a plateau

achieved for a lower value of the load.
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Figure 2: Mechanical response in terms of Σ11 versus E11

Figure 3: Mechanical response in terms of Σ22 versus E11
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Figure 4: Mechanical response in terms of Σ12 versus E12

5.1.2 Multiscale analysis

The structure, represented in Figure 5, made of the composite material with viscoplastic

matrix and elastic inclusions, studied in the previous subsection with material properties

reported in table 1, is analyzed. The structure is characterized by dimension L1 =20 mm,

L2 =10 mm, thickness equal to 1 mm and by a hole with radius R = 2 mm. The double

symmetry of the structure allows to study only a quarter of it, prescribing symmetry boundary

conditions. The boundary and the loading conditions with the adopted discretization are

represented in Figure 6. A displacement U along the X1 direction is prescribed monotonically

until the value 0.08 mm is reached while no body forces are applied. An unstructured mesh

made of 548 three node triangular elements is adopted.

In Figure 7 the value of the resultant force F , obtained as of the sum of the reactions the

constraints placed along the edge at X1 = 0, versus the displacement U is plotted for the

two di�erent values of the parameter ε = 0.1 and ε = 1. It can be noted how the value of

the parameter ε signi�cantly in�uences the mechanical response of the structure. For a lower

value of the non-dimensional rate sensitivity parameter, the response tends to have a lower

maximum load and a lower ductility.

In Figure 8 the stress-strain response in terms of Σ11 versus E11 at the central Gauss point of

three di�erent �nite elements, highlighted in the mesh represented in Figure 6, is plotted for

the di�erent values of ε. In Figures 9 the map distribution of three components of the average
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Figure 5: Geometry of the structure with a hole.

Figure 6: Adopted mesh, prescribed loading and boundary conditions.
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Figure 7: Mechanical response of the structure with the hole.

plastic strain p, given by equation (32), are plotted at the end of the analysis, respectively

for ε = 0.1 and ε = 1. In these �gures, it can be noted that plasticity e�ects occur in an area

close to the hole and in a diagonal band starting from the hole, as expected. The highest

value of the stress and of the strain is obtained in the �nite element 17 close to the hole,

while in the other two �nite elements that belong to the diagonal band the values of stress

and strain are of the same order of magnitude. In Figure 9 it can be noted that for ε = 1

the plasticity e�ects are more signi�cant and the area where they develop is larger than for

ε = 0.1. This e�ect can be noted also in Figure 8 where the stresses and the strains are

higher in all the considered �nite elements for the analysis with ε = 1.

5.2 Comparison between multiscale and micromechanichal analysis

5.2.1 UC analysis

The same UC considered in the previous application, but characterized by the material

properties of the constituents, reported in Table 2 is studied.

The analysis is developed considering the same discretization for the FEM analysis and the

same subset distribution for the PWUTFA approach.

Two di�erent loading histories are considered. First, the UC is considered subjected to

a monotonic loading history in terms of horizontal average strain E11, until the value of
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Figure 8: Stress and strain response of some �nite elements of the structure.

Constituent E [GPa] ν σy [GPa] µ [s] ε h[GPa]

Inclusion (elastic material) 180 0.3 - - - -

Matrix (viscoplastic material) 100 0.3 0.250 0.00025 1 10

Table 2: Test 2 - Material properties of the constituents.

0.015 is reached. In Figures 10 and 11 the mechanical response of the UC in terms of Σ11

and Σ22 versus E11 is plotted for the PWUTFA homogenization and for the FEM analysis,

respectively. It can be noted that the results of PWUTFA and FEM are in very good

accordance for both the stresses so the proposed PWUTFA is able to describe the nonlinear

response of the UC due to the viscoplastic e�ects occurring in the matrix.

Then, the UC is considered subjected to a monotonic loading history in terms of the average

shear strain E12 until the value of 0.015 is reached. In Figure 12 the mechanical response

of the UC in terms of Σ12 versus E12 is plotted, comparing the PWUTFA homogenization

and the FEM analysis results. Also in this case the PWUTFA is able to describe the overall

response of the cell, achieving results in good accordance with the FEM analysis.

5.2.2 Multiscale analysis

The structure, represented in Figure 13, made of the composite material with a viscoplastic

matrix and elastic inclusions, studied in the previous section, is analyzed. The structure is
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Figure 9: Distribution of the average plastic strain at the end of the analysis (a) axial in x1

direction; (b) axial in x2 direction; (c) shear.
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Figure 10: Mechanical response in terms of Σ11 versus E11

Figure 11: Mechanical response in terms of Σ22 versus E11
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Figure 12: Mechanical response in terms of Σ12 versus E12

characterized by the dimensions L1 =10 mm, L2 =20 mm and thickness equal to 1 mm. A

coordinate system is introduced in Figure 13.

Two di�erent approaches are developed.

• Amultiscale analysis considering at each Gauss point of the triangular �nite element the

PWUTFA procedure, in order to derive the overall behavior of the composite material

taking into account the nonlinear e�ects, is performed. For the multiscale analysis a

mesh of 400 triangular element with 231 nodes is considered. At each Gauss point, the

history variables of half of the UC should be stored, thus, the total number of history

variables is 104× 4× 400 = 166400.

• A micromechanical approach is also carried out. The discretization is obtained as-

sembling ten UC in the horizontal direction and twenty UC in the vertical one. A

mesh of 65600 triangular �nite elements with 33221 nodes is adopted. Considering 4

history variables in each Gauss point, the total number of history variables results:

65600× 4× 4 = 1049600.

It can be remarked that the multiscale approach reduces the number of history variables of

one order of magnitude with respect to the micromechanical analysis. Moreover the number of

equations depending of number of nodes, which de�nes the computation e�ort, is signi�cantly

lower in the multiscale approach.
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Figure 13: Geometry of the composite structure.

Figure 14: Mechanical response of the structure.

28



Figure 15: Deformation of the structure.

Figure 16: Distribution of the average plastic axial strain in X1 direction at the end of the
analysis.
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Figure 17: Distribution of the average plastic axial strain in X2 direction at the end of the
analysis.

Figure 18: Distribution of the average plastic shear strain at the end of the analysis..
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The structure is subjected to a loading history in terms of the displacement U prescribed in

the X1 direction at the nodes placed at the top of the structures. These nodes are constrained

in the X2 direction. The displacement U is increased until the value 0.2 mm is reached. In

Figure 14 the mechanical response of the structure is plotted in terms of the total base

reaction F versus the prescribed displacement U . In this �gure the results of the multiscale

(MS) analysis are compared with the micromechanical ones. It can be noted that there is

a very good agreement during the whole loading history, thus the MS approach is able to

lead to accurate results adopting a number of nodes, �nite elements and history variables,

signi�cative reduced respect to the micromechanical analysis. In �gure 15 the deformation

con�guration of the structure, obtained by the MS approach at the end of the loading history,

is reported. In Figures 16, 17 and 18 the distribution of the average normal plastic strain

in X1 and X2 direction and the average shear plastic strain are plotted at the end of the

analysis, respectively.

It can be noted that the normal plasticity strains are concentrated in the corners of the

structure and the shear plastic strain occurs mainly on the top and on the bottom of the

structure.

6 Conclusions

An e�cient multiscale procedure for studying the response of structural elements made of

composite materials, whose constituents present plastic or viscoplastic response, is presented.

The structural and the material scales are considered separated, thus a piecewise uniform

TFA technique is proposed at the microlevel to model the behavior of periodic composites

with a plastic or viscoplastic behavior of its constituents. The UC is divided in subsets and

in each one the inelastic strain is considered uniform, i.e. constant. All the subset inelastic

strains represent the history variables of the problem. A new e�cient numerical procedure

is proposed solving the evolutive problem in all the subsets, simultaneously. The tangent

consistent with the algorithm is evaluated and adopted in the multiscale computations.

From the numerical applications, the PWUTFA procedure turns out to be able to give re-

sults in good accordance with the one obtained by a micromechanical nonlinear �nite element

analysis, considering a reasonable number of subsets and, consequently, drastically reducing

the number of history variables. Composites with plastic and viscoplastic constituents, sub-

jected to di�erent loading history, are studied. All the presented applications con�rm the

e�ciency of the proposed PWUTFA technique. Then, a structure with a hole is examined

for di�erent value of the non-dimensional rate sensitivity parameter. For higher value of ε
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the area, where the inelastic strain occurs, becomes larger and higher values of the stress are

reached close to the hole, as expected. The multiscale approach results to be a fundamental

tool for designing the composite material as it allows to study the in�uence of each material

properties of the constituents on the response of the structural element.

Furthermore, the response of a homogenized structure, obtained by the proposed multiscale

approach, is compared with the response of the actual heterogeneous structure computed

performing a micromechanical nonlinear structural �nite element analysis with a very �ne

discretization. The results are in very good accordance. In fact, this comparison con�rms the

e�ciency of the proposed multiscale approach that is able to reduced the history variables of

one order of magnitude and the time of computation of one order of magnitude with respect

to the nonlinear �nite element structural micromechanical analysis.

The main innovation of the presented multiscale approach, with respect to the ones, already

available in literature, is the e�ciency of the numerical procedure developed to solve the

micromechanical problem. In fact, it is based on an e�cient modi�ed Newton Raphson

method and on the evaluation of the sti�ness tangent consistent with the algorithm that

contribute signi�cantly to reduce the computational burden of the multiscale analysis.

Finally, the presented multiscale procedure can be extended to the study of composite ma-

terials characterized by other nonlinear behavior, as for instance shape memory e�ect, and

also damage and fracture.
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Appendix

In the following the derivatives appearing in equation (38) are calculated:
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∂Rπ

∂Π
= I− ∂

∂Π


∆λ1 ∂f1

∂σ1

∆λ2 ∂f2

∂σ2

...

∆λn ∂f
n

∂σn

 = I−


∆λ1 ∂2f1

∂π1∂σ1 0 ... 0

0 ∆λ2 ∂2f2

∂π2∂σ2 ... 0

... ... ... ...

0 0 ... ∆λn ∂2fn

∂πn∂σn



∂Rπ

∂Γ
= − ∂

∂Γ


∆λ1 ∂f1

∂σ1

∆λ2 ∂f2

∂σ2

...

∆λn ∂f
n

∂σn

 = −


∆λ1 ∂2f1

∂ε1∂σ1 0 ... 0

0 ∆λ2 ∂2f2

∂ε2∂σ2 ... 0

... ... ... ...

0 0 ... ∆λn ∂2fn

∂εn∂σn



∂Rπ

∂Λ
= − ∂

∂Λ


∆λ1 ∂f1

∂σ1

∆λ2 ∂f2

∂σ2

...

∆λn ∂f
n

∂σn

 = −


∂f1

∂σ1 0 ... 0

0 ∂f2

∂σ2 ... 0

... ... ... ...

0 0 ... ∂fn

∂σn



∂Rε

∂Π
= −


R

1

Π

R
2

Π

...

R
n

Π


∂Rε

∂Γ
= I

∂Rε

∂Λ
= 0

∂Rg

∂Π
=


∂g1

∂π1 0 ... 0

0 ∂g2

∂π2 ... 0

... ... ... ...

0 0 ... ∂gn

∂πn



∂Rg

∂Γ
=


∂g1

∂ε1
0 ... 0

0 ∂g2

∂ε2
... 0

... ... ... ...

0 0 ... ∂gn

∂



∂Rg

∂Λ
=


∂g1

∂λ1
0 ... 0

0 ∂g2

∂λ2
... 0

... ... ... ...

0 0 ... ∂gn

∂λn
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In the above formulas, the derivatives in the subset s (with s = 1..n) result:

∂2f s

∂πs∂σs
= −∂

2f s

∂σ2
Cs

∂2f s

∂εs∂σs
=

∂2f s

∂ (σs)2 Cs

∂gs

∂πs
=


0 if f s,TR < 0

−Cs Ns if f s,TR ≥ 0 Plasticity

Cs Nsdt
µε(σy−Hκs)

(
qs

σy−Hκs − 1
) 1
ε
−1

if f s,TR ≥ 0 Viscoplasticity

∂gs

∂εs
=


0 if f s,TR < 0

Cs Ns if f s,TR ≥ 0 Plasticity

− Cs Nsdt
µε(σy−Hκs)

(
qs

σy−Hκs − 1
) 1
ε
−1

if f s,TR ≥ 0 Viscoplasticity

∂gs

∂λs
=


1 if f s,TR < 0

−H if f s,TR ≥ 0 Plasticity

1 + qs H dt

µε(σy−Hκs)2

(
qs

σy−Hκs − 1
) 1
ε
−1

if f s,TR ≥ 0 Viscoplasticity

with
∂2f s

∂ (σs)2 =
3

2 qs

[
M− 3

2 (qs)2 Mσs (Mσs)

]
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