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Abstract

In this paper we study long time stability of a class of nontrivial, quasi-periodic solutions de-

pending on one spacial variable of the cubic defocusing non-linear Schrédinger equation on the two
dimensional torus. We prove that these quasi-periodic solutions are orbitally stable for finite but
long times, provided that their Fourier support and their frequency vector satisfy some complicated
but explicit condition, which we show holds true for most solutions.
The proof is based on a normal form result. More precisely we expand the Hamiltonian in a neigh-
borhood of a quasi-periodic solution, we reduce its quadratic part to diagonal constant coefficients
through a KAM scheme, and finally we remove its cubic terms with a step of nonlinear Birkhoff
normal form. The main difficulty is to impose second and third order Melnikov conditions; this is
done by combining the techniques of reduction in order of pseudo-differential operators with the
algebraic analysis of resonant quadratic Hamiltonians.
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1 Introduction and main result

1.1 The stability problem

In this paper we study long time stability of a class of nontrivial, quasi-periodic solutions depending on
one spacial variable of the cubic defocusing non-linear Schrodinger equation (NLS) on the two dimensional
torus T2:

0,0 = —Av + |v[*v (z,y) e T?. (1.1)

In particular we prove that there exists a family of such solutions which are orbitally stable in HP(T?)
for finite but long times, for any p > 1. This means, essentially, that if we take an initial datum close
enough in H?(T?) to one of these solutions, then we stay in a neighborhood of the orbit of the solution
for long time, in the H?(T?) topology.
Solutions of depending on only one-variable are completely characterized; indeed the restriction of
to the subspace of functions depending only on one-variable, say z, is the 1-dimensional defocusing
NLS (dNLS)

10,g = —0peq + |q|%q zeT, (1.2)

which is a well known integrable system [ZST1l,[ZM74]. The dynamics of dNLS is completely understood:
the phase space is foliated in invariant tori of finite and infinite dimensions and the dynamics on each
torus is either quasiperiodic (namely it is a combination of periodic motions with a finite number of
different frequencies) or almost periodic (a superimposition of periodic motions with infinitely many
different frequencies).
Actually even more is true: Grébert and Kappeler showed that there exists a globally defined map
®: L2(T) — 02 x 12, ¢ — (2m), Zm )mez, the Birkhoff map, which introduces Birkhoff coordinates, namely
complex conjugates canonical coordinates (2., Zm )mez, with the property that the dNLS Hamiltonian,
once expressed in such coordinates, is a real analytic function depending only on the actions I,,, := |z, |?.
As a consequence, in Birkhoff coordinates the flow is conjugated to an infinite chain of nonlinearly
coupled oscillators:

2 = (12, VmeZ, (1.3)

where the ad2!5(]) are frequencies depending only on the actions (I, )mez.-

Then, having fixed an arbitrary number d € N, an ordered set Sp := (mj,...,mq) € Z of modes and a
vector Iy = (In;)1<i<a S R%, the set

T¢ =TS0, In) = {(zm)mez: |2m, > =1In, for 1<i<d, 2,=0ifm¢S} (1.4)

is an invariant torus of (1.2)) of dimension d which is supported on the set Sy. We say that ¢(t) is a
finite gap solution of it is supported (in Birkhoff coordinates) on a finite dimensional torus, i.e.
vt ®(q(t)) € TSy, I), for some set Sy of cardinality d < co and vector I,. Any finite gap solution is
quasiperiodic in time, ¢(t) = g(wt), with a frequency vector w € R? which is specified by the values of
the actions I, and thus it is associated to the torus itself. In particular, if w is nonresonant, than the
orbit of the finite gap solution is dense on the torus.

Clearly any finite gap solution of is also a solution of . Of course if we take an initial
datum of that is close to the initial datum of a finite gap solution but not y-independent we expect
the dynamics to be very complicated, but to stay close to the one of the integrable subspace T¢ for long
times.

The purpose of this work is to prove, roughly speaking, that “many” tori T¢(Sy, I,) are orbitally stable



for long times: if one chooses an initial datum which is d-close to one of these tori, then the solution of
stays close to the torus for times of order 62. In order to make this statement precise we need to
introduce some notations. For any p > 1 we denote HP(T") the usual Sobolev space of functions whose
Fourier coefficients have finite norm

1/2
2
vl e (rny = <Z @ |Uf|2> ;

JEZ™

where (7) := 4/1 + |7]?2. From now on we shall systematically identify H?(T) with the closed subspace
of HP(T?) of functions depending only on the z variable. Consequently ®~*(T¢) is a closed torus of
HP(T) < HP(T?).

We define now the notion of closeness to a torus T¢ which we will use in the following:

Definition 1.1. We say that v € HP(T?) is §-close to the torus T¢ = T4(Sy, I) if
dist(v,(I)_l(Td))H,,(Tg) <0 and ||zm|? — I <6 VYme Sy, (1.5)

where
= (Zmazm)mez = (P(U(J?,O)) .

Namely we ask that the distance between v and the preimage ®~1(T) is of order §, and furthermore
that the Birkhoff actions of v(-,0) with indexes in Sy are §2-close to the corresponding actions I, of the
torus.

With this definition of §-closeness, we can now define d-orbital stability:

Definition 1.2. A torus T%(So, I,) is said to be (8,K)-orbitally stable for |t| < T if for any initial datum
vo € HP(T?) which is §-close to T4(Sy, I), then the solution v(t,x) of (1.1) stays Ké- close to T4(Sy, In)
forany |t| < T.

We state now our main theorem. Up to our knowledge, it is the first result of stability for quasi-
periodic solutions in higher dimensional setting.

Theorem 1.3. Fix p > 1. For any generic choice of support sites Sy there exist ey, Ty, kx,Ky > 0 and
for any 0 < € < &,, there exists a positive measure Cantor-like set T € (0,¢)¢ such that the following
holds true. For any I, € Z, any § < k.+/2, the torus T4(So, I) is (3, K, )-orbitally stable for |t| < T,/52.

In order to make the theorem precise, we need to specify what we mean by generic set Sy. The point

is that we cannot prove Theorem for any arbitrary torus, but we need to impose some restrictions
both on the Birkhoff support Sy of the torus, and on the values of the Birkhoff actions I,. Concerning the
Birkhoff support Sy, we need to select it in a complicated but explicit way, see Definition 2:3H2.4l These
sets are generic in the following sense (see Lemma : given any R » 1 if we choose the elements of S
randomly in [—R, R], then the probability of choosing a “good” set (i.e. one for which we can prove our
Theorem) goes to one as R goes to infinity. It is possible that the conditions we give on the support can
be weakened, but this produces serious technical difficulties. In any case we suspect that some selection
of the support of the torus is necessary for our stability result.
Once we choose the support, we need also to select the Birkhoff actions I, of the torus. This selection
is inevitable, since we can produce a positive measure set of actions I, such that the torus T%(Sy, I,) is
linearly hyperbolic, hence linearly unstable in HP(T?) (see Remark . Clearly we want to rule out
such a behavior. Thus we also impose conditions on the actions which are quite explicit and give rise to
a Cantor-like set of positive measure.

Theorem [I.3] is essentially a result on the HP-orbital stability of many small finite gap solutions.
Indeed, consider a finite gap solution ¢(t) with ®(q(t)) € T%(So, I,), and Sy, I, satisfying the conditions
of the theorem. The fact that the actions belong to (0,£)? implies that any finite gap ¢ supported on
T¢(So, In) is small in size, and more precisely one has the bound |q|r2(r) < dy/ (see formula (£.4)).
Then Theorem says essentially that for any initial datum vy € HP(T?) sufficiently close to ¢(0), the
solution v(t) stays close to the torus supporting the orbit of ¢(¢) for long times (remark that we cannot
hope to control directly the quantity [[v(t) — q(t)] gr(r2) for long times).

Our work should be compared with the results of Faou, Gauckler, Lubich [FGLI13| and Procesi, Pro-
cesi [PP15], which both deal with stability issues of nontrivial solutions of (L.I). In [FGLI13], the authors
consider only 1-gap solutions, but are able to prove orbital stability for times of order =V for arbitrary
N > 0. On the other hand, in [PP15] the authors prove only linear stability, namely that the torus is



stable for times of order 6!, but for a much larger class of tori which depend on both variables = and y.
Note however that the class of solutions considered in [PP15] does not contain d-gap solutions for d > 1.
For a more detailed comparison, see Remark and Remark below.

The proof of Theorem [I.3] is based on a Birkhoff normal form result. To develop such a normal
form, first we introduce adapted coordinates, which are canonical coordinates (), 6, a,a) which describe
a neighborhood of the invariant torus T¢(Sp, I,) and such that ) = 0, a = a = 0 is the torus itself. In
the classical Hamiltonian language, the ) are the variables tangential to the torus, while the a,a are the
normal ones. In such variables the NLS Hamiltonian takes the form

w- Y+ Y Pl + HEO(V,6,a,0) (1.6)
7

where w are the frequencies associated to the torus, and H(>?) is a perturbation term of size ¢ (recall
that ¢ is the size of the actions) and with a zero of order 2 in the variables (), a,a). Then the stability
of the torus T¢ is equivalent to the stability of the zero solution for the Hamiltonian equations of .
The classical methods used in this problem consist in developing a normal form theory in which one
reduces to diagonal, f-independent form the terms of degree two in (a,a), and removes iteratively the
nonresonant terms of higher and higher degree in (), a,a). Here we do this up to order three; namely
after reducing to constant coefficients the quadratic part of the Hamiltonian, we eliminate also the cubic
terms, and we are left with an Hamiltonian (see ) in which the coupling term has a vector field
whose Sobolev norm is ~ §%; this leads to the time of stability of Theorem [1.3

Before closing this introduction, we want to put our work in some historical context. It is well known
since the work of Bourgain [Bou93| that is globally in time well posed in the Sobolev space H?(T%)
for any p > 0 and d = 1,2. Since then, the problem of describing qualitatively the dynamics of NLS
solutions has been widely studied, and the results obtained so far can be essentially divided into three
groups: in the first group of papers, the authors study stability of periodic or quasiperiodic solutions of
NLS on T or T? for long but finite time [Zhi01, Bam99} Bou00, [FGL13| [GHO7a, [GHO7D, [GP15] [Will5].
In the second group, the authors study instability phenomena, showing that (on a possibly very large
time scale) the solution goes arbitrary distant from the initial datum |[CKS*10, [Han14l [Gual4l, [HP15]
GK15, [GHP16]. Finally, the third group of papers concerns with the existence of quasi-periodic solutions
of for any time [EK10, [GXY], Wan16l, [PX13, [PP15, [PP16].

We start with the results in the first group. In dimension d = 1, it is known since the work of Zhidkov
[Zhi01l, Sect. 3.3] that plane waves solution of (namely solutions of the form v(t,z) = Aellm»—«t)
with w = m? 4+ A?%) are H' orbitally stable for any time. Remark that plane waves solutions are exactly
1-gap solutions of (see e.g. [GK02, Lemma 3.5]), thus their orbit is an invariant torus of dimension
d = 1. Orbital stability of d-finite gap solutions with d > 1 was studied by Bambusi [Bam99|, who
proved H'-orbital stability for exponentially long times, namely times of order ~ T8 Furthermore
the author does not impose any condition on the choice of the Birkhoff support; this is due to the fact
that resonances in dimension 1 have a much simpler structure.

In [Bou00], Bourgain proved H* orbital stability of small finite-gap solutions (with s sufficiently large) for
times of order 6%, with an arbitrary N. Finally Cong, Liu and Yuan [CLY16] prove a similar stability
result but for the KAM tori of a 1-d NLS with external parameters.

In dimension d = 2, much less is known. Faou, Gauckler and Lubich [FGL13|] proved that plane waves
solutions (i.e. 1-gap solutions) of are H*® orbitally stable for s large enough and for times of order
5~ for arbitrary N. Note that [FGLI3] consider large 1-gap solutions and control the distance from the
torus for times much longer than ours. The reason is that for such solutions the authors know the exact
formula for the tangential and normal frequencies and therefore they can impose Melnikov conditions at
any order and perform arbitrary many steps of normal form (see Remark for more details).

We now describe the results of the second group, concerning instability phenomena for . While
the integrability of prevents any phenomena of growth of Sobolev norms in dimension 1, the
situation in dimension d > 1 is much more complicated. Bourgain [Bou96| gives upper bounds on the
solutions of of the form

lo@®)rs(rzy < 270 (0) oy, ¢>0, (L.7)

for s sufficiently large (see also [Sta97], [Soh11l [CKO12], [PTV17| for more recent results on upper bounds of
the form (1.7) for nonlinear Schrédinger equations and [Bou99, [Dell10, MR17, BGMRD, [Mon17] for linear



time-dependent Schrédinger equations). Estimate leaves open the question whether it is possible to
construct a solution whose Sobolev norm is unbounded. In the last few years many efforts have been done
in this direction. Colliander et al. [CKST10| proved, for any €, K > 0 and s > 1, the existence of a initial
datum u(0) € H*(T?) and a time 7' > 0 s.t. |lug| g=(r2) < € and ||u(T)| gr«(2y = K. This result was later
refined by Guardia and Kaloshin [GK15|, Carles and Faou [CF12] and extended to different Schrédinger
equations [HP15, [Gualdl (GHP16]. All these results deal with the instability of the zero solution. Hani
[Han14] studied instability of 1-gap solutions, and proved that for any 0 < s < 1, § « 1, K » 1, there
exists a solution of with [v(0) — Ae"™ | ga(r2y < & and ||o(T)| gs(r2y = K for some later T > 0.
Note that the instability happens in a topology different from the one of [FGL13].

The important question of the existence of solutions of with unbounded Sobolev norms, i.e. s.t.

Jim (o) | e (r2) = +0

is still an open problem, and it has been solved only in the product space R x T? [HPTVTH].

Finally, we describe the results of the third group, concerning existence of quasi-periodic solution
for NLS. While in dimension d = 1 the existence of KAM quasi-periodic solution is nowadays well
understood in several perturbed dNLS (we mention just the latest contributions [FP15, BKMI16]; see
reference therein), in dimension d > 1 the situation is much more complicated and it has been addressed
only recently by Eliasson and Kuksin [EK10], Geng, Xu and You [GXY], Wang [Wanl6] and Procesi
with collaborators [PX13, [PP15, [PP16]. In particular in these last papers the authors proved that, for
most choices of tangential sites, there exist families of small quasi-periodic solutions of (depending
on both z and y) supported essentially on the tangential sites. Such families of solutions give rise to
both linearly stable and unstable KAM tori, but the question of nonlinear stability (or instability!) of
such tori is still open (see Remark for more comments).

1.2 Scheme of the Proof

It is worth to add some words about our strategy. The proof consists in three main steps.

The first step is to introduce canonical adapted coordinates in a neighborhood of a finite dimensional
invariant torus.

The second step consists in a reducibility argument. We consider the part of H
(a,a), call it #(9, and we reduce it to a diagonal form with constant coefficients.
The final step consists in applying one step of non linear Birkhoff Normal Form.

(>0) which is quadratic in

Step one: adapted coordinates. The question of introducing canonical coordinates in a neighborhood of a
solution has been addressed in several papers, see e.g. [Kuk88|,[BB15,[BM16]. Here however the difficulty
is that we need to keep track of how such change of variables affects the constants of motion (namely the
mass and momentum). Here we take advantage of the fact that mass and momentum are left unchanged
by the Birkhoff map of dNLS, thus first we introduce Birkhoff coordinates on the invariant subspace
of y-independent functions, and then pass to action-angle coordinates the sites where the finite gap is
supported. Finally we extend this transformation as the identity to all the phase space. Actually for
later development, it is necessary to know that the Birkhoff coordinates are majorant analytic; this was
proved in [MasI7]. In such coordinates the Hamiltonian of NLS has the form (L.6).

Step two: reducibility. This is the most technical part of our argument. It is known that reducibility
requires (i) to impose the so called second order Melnikov conditions and (ii) to perform a convergent
KAM scheme. Both these procedures are particularly delicate in higher spacial dimensions, and they
have been achieved for Schrodinger equations only in some special cases [EK09, [PX13l [CHP15, [PP16,
GP16, BGMRa.

Imposing second order Melnikov conditions means requiring lower bounds for expression such as

o €+ |7 + 1P - (1.8)

Here there are two problems. First, since w is an integer valued vector up to corrections of order ¢, the
quantity can be of order ¢ and hence comparable with the size of the perturbation. Since these
expressions appear as denominators in any diagonalization scheme our problem is not perturbative.
Moreover, since we are working in dimension higher than one, it is well known that in order to perform
a reduction one needs to know the asymptotics of the eigenvalues associated to the Hamiltonian vector
field of 3 |712]az]? + H(®.

In order to solve these problems we combine the techniques of reduction in order of pseudo-differential
operators with the algebraic analysis of resonant quadratic Hamiltonians. More precisely, we construct



a change of variables which is not close to identity and which conjugates (1.6)) to the form

w-Y+ Z ﬁ;|aj~|2 +H9(0,a,a) + h.o.t. (1.9)
T

Here Qj— |712 is of size e, while H() (6, a,a) is a perturbation of size £2 and smoothing in the following
sense: the linear operator associated to its Hamiltonian vector field is the sum of a 2-smoothing term plus
a term which gains 2-derivatives only in the x direction and is independent of y. This information allows
us to extract the asymptotics of the frequencies required for the reduction, just as the T6plitz-Lipschtiz
matrices in [EK10].

In order to pass from to we first exploit the fact that the Hamiltonian vector field of
is of the form

2qwt, ) 2 alz,y) + ¢ (wt, 7) ala, )

up to a finite rank remainder. Due to this special form we can extend to the two dimensional setting the
techniques of reduction in orders developed in the one dimensional setting [PT01, TPT05, [BBM14].
After this procedure the perturbation is still of size €, but it is now smoothing. At this point we apply
the strategy of [PP12], namely we explicitly construct a not close to identity change of variables which
diagonalizes the resonant non-perturbative terms of the Hamiltonian (these changes of variables are
similar to those used in the problems of almost reducibility, see [ELi01]). This construction requires that
we select the sites Sp.

After this procedure, the Hamiltonian is transformed into the Hamiltonian , and the relevant
quantity to bound from below is now

‘w-uﬁﬁ + Q| (1.10)

where the normal frequencies have been corrected by some algebraic functions of the actions of size €.
Here the main difficulty is to prove that the terms of order ¢ in such expressions are not identically
zero; to show this we use the algebraic techniques of irreducible polynomials, following [PPN]; here it is
fundamental to exploit the fact that the mass and momentum are preserved.

At this point we perform a KAM reducibility scheme which puts the quadratic part of to constant
coefficients, conjugating it to the Hamiltonian

w-Y+ ZQﬂaﬂQ +HY(0,a,a) + h.ot. (1.11)
T

where H) is cubic in (a,a).
Step three: Birkhoff normal form. Finally we perform one step of nonlinear Birkhoff normal form to

remove H) from (T.11)). This is nowadays quite standard (see e.g. [BGO6]), provided that (i) one is
able to impose third order Melnikov conditions, i.e. to give lower bounds to expressions of the form

|w~€+Qﬁ inQ inS R (1.12)

and (ii) one proves that the Hamiltonian is majorant analytic.

Concerning the estimate of , we again use algebraic techniques to prove that the terms of order
€ in such expressions are not identically zero, and the asymptotics of the eigenvalues in order to get
quantitative bounds. Concerning the majorant analyticity of the Hamiltonian, we prove that each change
of variables performed so far preserves this property; it is here that one needs the majorant analyticity
of the Birkhoff map.

In conclusion we construct a nonlinear change of variables which conjugates (1.11) to

w-Y+ ZQf|af|2 +RED(Y,6,a,a) , (1.13)
T

where R(>2) contains only terms which are at least of order four in (a,a), or linear in ) and quadratic
in (a,a), or quadratic in ). As a consequence, its Hamiltonian vector field is of size ~ §, which implies
the stability of zero for times of order 62, thus proving our main theorem.

A final comment: It is a natural question whether it is possible to perform more steps of nonlinear Birkhoff
normal form, removing from ([1.13) monomials of higher and higher order, and obtaining a longer time



of stability. Performing these steps requires to be able to impose nt" order Melnikov conditions of the
form
|OJ'€+Q]-*1J_F...J_FQ]-;L . (1.14)

As before, one should verify that these expressions do not vanish identically except in resonant cases; this
is what we are not able to prove so far. Indeed, the only information that we have is on the corrections of
order € to {15, and one can produce examples where some linear combinations of them vanish identically
already at order 4.

Structure of the paper: Section 2 contains some preparation in order to state precisely our result on
normal form; furthermore we precise the notion of genericity of Sy. In Section 3 we define the class of
smoothing Hamiltonians and study their properties. In Section 4 we construct the adapted coordinates
(),0,a,a) and show that in these coordinates the Hamiltonian has the form (1.6). In Section 5 we
begin the step of reducibility, and construct the change of coordinates not close to the identity which
conjugates (1.6) to . In Section 6 we prove that the terms of order € in expressions of the form
and (1.12)) are not identically zero. Quantitative lower bounds for these expressions are proved in
Appendix [C] In Section 7 we conclude the reducibility step by performing a KAM scheme, conjugating
(11.9) to . In Section 8 we perform the step of nonlinear Birkhoff normal form, conjugating
to (L.13)). Finally in Section 9 we study the dynamics of and prove the stability of zero for long
times.
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people; in particular we wish to thank Dario Bambusi, Benoit Grébert, Marcel Guardia, Zaher Hani,
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2 A Birkhoff normal form result

In this section we state our results on the Birkhoff normal form (see Theorem and Theorem [2.10)
and describe the genericity conditions that we need to impose on Sy. In order to do this, we need some
preparation.

Constants of motion. NLS on T? has three constants of motion that we will constantly use. They
are the Hamiltonian

1
Hyis(0)i= [ Vola)dedy+ 5 | o)l dody. (21)
T2 T2

the mass
M(v) := f lu(z,y)|* dady , (2.2)
T

and the (vector valued) momentum
P(v) := if (z,y) - Vo(z,y)dedy . (2.3)
T2

Mass shift. Since the mass is a constant of motion, we make a trivial phase shift and consider the
equivalent Hamiltonian

1
H(u) := f \Vu(z,y)|* dzdy + ij lu(z,y)|* dedy — M (u)? (2.4)
T2 T2
corresponding to the Hamilton equations

i0pu = —Au + |ul?u — 2M (u)u (z,y) e T?. (2.5)



Clearly the solutions of (2.5)) differ from the solutions of (|1.1) only by a phase shiftﬂ If we pass u to the

Fourier coefficients ‘
u(z,y,t) = Z uj(t) eme+ny)
7=(m,n)ez?

the Hamiltonian (2.4) takes the form

*

1 1 -
H(uw)= > P’ - 5 D lugd* + B D uplpugig, (2.6)
J=(m,n)eL? 7 Fier2

J1—J2+73—74=0

where the >)* means the sum over the quadruples J; such that {71, 73} # {72, 71}, and it is a consequence
of having removed the mass in (2.4).
The Hamiltonian ({2.6]) is analytic in the phase space

WP(Z2) o= {u= (upmezz : D, lud” (D™ = |ulpn < 0} .

JEZ?
which we endow with the standard symplectic form

i) duy A dig . (2.7)

JEZ2

Finite gap solutions of NLS. As we already pointed out in the introduction, the subspace of functions
depending only on the variable z is an invariant subspace. In Fourier coordinates, such subspace is
identified by having Fourier coefficients u(,, ) = 0 if n # 0. and it is clear by the structure of
that such a subspace is invariant for the dynamics. Actually, the Hamiltonian restricted on such
a subspace is nothing else that the Hamiltonian of the 1-dimensional defocusing NLS (dNLS) with the
mass shift, namely

1
Han0) = Hanala) = M(0)* = | [Va(a)? do+ 5 | Jo(o)l* do = M(? (28)
T T
whose equations of motion are

10,g = —0u2q + |q°¢ —2M(q)q, z€eT. (2.9)

Since ANLS is integrable and the mass M is an integral of motion for ANLS, the Birkhoff map conjugates
to a system of equations of the form (1.3), where the (ad™(I)),,cz’s are replaced by new frequencies
(m (I))mez, see subsec. for more details and references.

A consequence of this fact is that any torus T4(Sp, I,) of the form is also an invariant torus for the
massless dNLS equation , and the dynamics which is induced on it is quasi-periodic with frequency
vector om(In) = (o, (In), -+, oy (In)). Since the map I, — on(ly) is highly nonlinear, for technical
reasons it is more convenient to parametrize the vector w := ay(I,) in a linear way; therefore we define

w® = (m?,... m?) (2.10)
and for ¢ sufficiently small and \ € [, 1]¢, we set
() =w@ —eX = w()) . (2.11)

As discusses in subsec. Se Oy ¢ [1/2,1]¢ lo toglierei dovunque.... senno there exists a positive
measure compact domain Oy where the action-to-frequency map can be inverted, obtaining a map
A— (Im7 ()\,E))lgigd s.t.

L, (M, €) = e\ + O(?) 1<i<d. (2.12)

In the following we will use w = w(\) as the vector of frequencies of the finite gap solution. Such vector
is chosen to be non-resonant so that the orbit of the finite gap solution is dense on T¢(Sy, I,).

n order to show the equivalence we consider any solution u(x,t) of (2.5) and consider the invertible map

—2iM (u)t 2iM (v)t

ur—v=ue with inverse v+—u=ve
then

iy = iuge 2 MO L oM (w)ue” MW — (—Aw + |ul?u — 2M (w)u)e = HM W L oM (u)ue MW = _ Ay + |v|?0.



Adapted coordinates around a finite gap solution. We now introduce local coordinates in h?(Z?)
adapted to the finite dimensional tori (1.4)). Remark that, while in Birkhoff coordinates such tori have a
very simple form, in the original coordinates the representation is not so trivial, and they have the form

d
q(\;0,x) = e <Z VAT e, g 0,33)) (2.13)
i—1

for some real analytic function p(\,¢;0,x).

To introduce coordinates around such tori we first apply the Birkhoff map ® on (u(y,,0))mez leaving
the remaining (uy)zz2\z unchanged, and we set (2m)mez := @((U(m,0))mez). Next we pass the z,, with
m € Sy to symplectic action-angle variables defined close to the torus, setting

Zm; =/ In; N+ el , 1<e1<d, Zm = Q(m,0), M€ Z\Sp , U(m,n) = A(mn) > N7 0. (2.14)

In such a way we introduce coordinates Y = (J1,...,Ya) € RY, 0 = (01,...,0a) € T, a = (aj)5z2\s,
such that Y = 0, a = 0 describe torus T%(Sp, I(A)). Clearly here Z*\Sy = Z2\(Sp x {0}). We will use
systematically such a notation.

We denote by A : (V,6,a) — (u5)sez2 the map

U(mn) = Q(mpn), N #0, (U(m,0))mez = O (W In;(N) + Vi €%)ich g, (A(m,0))men\s,). (2.15)
Since the Birkhoff map ® is symplectic, the symplectic form (2.7)) in the variables (), 0, a) is given by
4
DdY;ado;+i > day A dag . (2.16)
i=1 FeZ2\So

Next we describe the phase space and its topology. We fix once and for all a real p > 1 and define the
phase space C¢ x T¢ x hP where

b = b7(So) = {a = (a5, @p)ez2\s, € WP (Z°\So),  al = laln» < o0} .
Finally we define the complex domain
D(s,r) :=T? x D(r)

where

i=1

T¢:={0cC?:Re(d) € T?, |Im(d)| < s}.

d
D(r) := {yecd; V=D V| <r?, aep’: |a|<r},

We will show in Sec. {4 that for r < 4/¢ the map (2.14)) is well defined and analytic from D(s,r) to a
neighborhood of the torus T¢(Sy, In())).

Norm on vector fields. We describe now how to measure the norm of Hamiltonian vector fields.
Recall that a Hamiltonian is a real valued function C* x T¢ x h? — R. Given a Hamiltonian function
F(Y,0,a) we associate to it its Hamiltonian vector field

Xp:=(0gF, —0yF, —105F, 10, F). (2.17)
More in general consider vector fields which are functions from
CIxTexh? > CEx CixpP : (V,0,a) - (X, xO x@ x()

which are analytic in D(s,r). On the vector field we use as norm

X [x@) | x@)]
e + :

1X1, = 1X O o0 +
r r

(2.18)

Next we introduce the notion of majorant analytic Hamiltonians and vector fields. We write a real valued
Hamiltonian A in Taylor-Fourier series which is well defined and pointwise absolutely convergent:

h(Y,0,a) = > hapee® V'a®a”,  hapie=hpai-t. (2.19)
«,BeNLA\S0 pe74 [eNd



Correspondingly we expand vector fields in Taylor Fourier series (again well defined and pointwise abso-
lutely convergent):

X(’w)(y’ 9’ a) — Z X( [3 Lt elé -0 yl a® (7/8 ,
«,BeNZ*\So pe74 leNd

where w denotes the components ¢;,Y; or ay ay. To a vector field we associate its majorant
X[y, a]:= > X e ylaal . (2.20)
€72 1eN4 o, BeN7*\So
Then we have the following

Definition 2.1. A vector field X : D(s,r) — C% x C x h? will be said to be majorant analytic in D(s,7)
if X, defines an analytic vector field D(r) — C% x C% x pP.

Since Hamiltonian functions are defined modulo constants, we give the following definition of majorant
analytic Hamiltonian and its norm:

Definition 2.2. A real valued Hamiltonian H will be said to be majorant analytic in D(s,r) if its
Hamiltonian vector field X is majorant analytic in D(s,r). We define its norm by

[Hl|sr = sup [(Xu) (V,a)] - (2.21)
(V.a)eD(r)

Note that the norm |- |5, controls the norm of the vector field Xy defined in (2.17)) in the domain
T4 x D(r') for all 8’ < s, 1" <r.
By convention we define the scaling degree of a monomial e'“? V! a® @a? as

deg(l, v, B) := 2|l + |af + [B] = 2, (2.22)
and define the projection on the homogeneous components of scaling degree d as

H(d) = Z Ha,ﬁ,l,[ eiM)}lao‘ dﬁ 5

e24 1N, o, BeNE2\S0
20U+ || +|B|=d+2

similarly for H(S% and H>,
Lipschitz families of Hamiltonians. In the following we will consider Hamiltonians h(\; ), 0,a) =

h(A) depending on an external parameter A € O, where O is some compact set. Thus we define the
weighted Lipschitz norm:

IS, = sup hn o+ sup ALYl (2.23)
€

AL £AED |A1 — A2

It will be convenient to define the Lipschitz norm also for maps f : O — FE with values in a Banach
space F, whose norm we denote simply by | - |g. We pose

71 = sup )]+ sup TRVl (224)
A€O M#EAEO AL — Ao

The Hamiltonian and the constants of motion in the adapted coordinates. When expressed
in the coordinates (), 6, a) defined in (2.14)), the Hamiltonian H of (2.6) takes the form

H(YV.0,a) =w- Y+ > 1712]a;% + HEO(D,0,a) (2.25)

J=(m,n)eL\So

where H(>9 has scaling degree greater than or equal to zero and !7—[ !s o < Ce for some sg,r9 > 0,
see Section Ml for the details. In these coordinates the mass M and the momentum P become

M, 0,a) = 23’1 S Jag?, 7>(y79,a)=[77§ﬂ=2[“g]yi+ S Flag?. (2.26)

JEZA\So i JEZA\So
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Genericity condition. As we mentioned in the introduction, we need to impose some restrictions
on the (Birkhoff) support Sy of the finite gap solutions. Indeed, we ask Sy to fulfill some arithmetic
conditions which we now describe.

Definition 2.3. Order Sy so thatmy <mg < --- <mg. For everyn € Z let
Son i={(m;,n) : 1<i<ad}.
Foranyl<i<j<dlet
Cﬁl’i] ={(m,n)eZ*: (m—m)(m—m;)+n*=0, +n>0}. (2.27)

Finally denote
S = U Son € = U Cij, Cji= “r uE .

i, i,
neZ\{0} i<j
Definition 2.4 (Arithmetic genericity). We say that Sy is generic if
SOC=-F, GynGy =@, Vi) ) (2.28)
Given L € N, we say that Sy is L-generic if it is generic and moreover
Dilmi#£0  VO<|] <L (2.29)
The following lemma explains in which sense the “good” sets are generic:

Lemma 2.5. Fiz any L € N. There are infinitely many choices of L-generic sets. More precisely for
R » 1 let Br be the set of all ordered sets S = (my,...,mq) such that max(|m;|) < R. Then denoting by
G R the L-generic sets in Br (i.e. those which satisfy Definition ) we have

G
lim —' Rl =

=1
R— |BR|

The proof of the lemma is postponed in Appendix [A]

Let us motivate the genericity conditions. One of the main problems in developing perturbation theory
for NLS on T2 is the presence of rectangle-resonances, namely quadruple of integers 71, 72, 73, 74 € Z2 such
that

Ji—R+ht+ia=0, (AP —[RP+IBP 1A =0. (2.30)
It is easy to check that 71, 75, 73, 74 fulfill if and only if they form the vertex of a rectangle in Z2,
hence the name rectangle-resonance. In principle we would like to avoid all the resonances of the form
when two 7;’s are chosen in Sy and two are chosen outside Sp. One realizes immediately that this
is not possible: indeed any two 7;’s chosen in Spy, n # 0, will form a horizontal rectangle with two sites
in Sp. Similarly, any two 7;’s chosen in €;, 1 < i < j < d, will form a rotated rectangle with two sites in
Sp (from the very definition of Sy, and €).
Then the genericity condition states that there are no intersection at integer points outside Sy between
an horizontal rectangle and a rotated rectangle or between two rotated rectangles.

Remark 2.6. If d > 2, then there are always rotated rectangles. The reason is the following: if m; — my
is an even number, then the point (“%, REoRL) has integer coordinates and it forms a right angle with
(m;,0), (mg,0), i.e. it belongs to Ci.. Clearly if the cardinality of S is at least 3, there are at least two
points whose distance is an even number.

Admissible monomials. We set

A“/i::ZyiJr Z \aj\Q

(m,n)eZ2\(FLVEUSy)

Py = Zmiyi + Z M |agm,ny > + Z (m = m3) (|agm,m|* = |ag@+n;—m,—n)|?)
i (m,n)eZ2\(F USoUF) B (2.31)
m,n)e ik

Py = Z n|a(m)n)\2

(m,n)ez?

and give the following

11



Figure 1: The dots on the circles are the %; ;, the ones on the straight lines are Sp,,. The arithmetic
genericity condition requires that all the intersection points of two dotted curves are non-integer.

Definition 2.7 (admissible). Givenj = (71,...,7) € (Z*\So)?, £ € Z% and o = (04, ...,04) € {—1,0,1}°,

we say that (j,¢,o) is admissible, and denote (j,¢, o) € Ay, if the monomial m = €l a;fll .. a;fbb Poisson

commutes with M, Py, P,. Here we use the convention that a,}' =aya; = ay a;l = 1.

Definition 2.8 (action preserving). Given j = (7i,...,7) € (Z2\S&)®, £ € Z% and o = (04,...,03) €
{—1,0,1}", we say that (j,¢,o) is action preserving and denote (j,¢, ) € Ry, if £ = 0 and the monomial
m = aZ' ...az" Poisson commutes with the actions laz? for all 7€ Z*\Sy.

Birkhoff normal form around a finite gap solution. We are finally ready to state our result on
Birkhoff normal form:

Theorem 2.9. There exists L > 0 (depending only on d), such that for a L-generic choice of the set Sy
(in the sense of Deﬁm'tion there exists a v, > 0 such that the following holds true. Given arbitrary
so >0, and 0 < v < 7, , there exists £, = c,(y) > 0 and for any 0 < € < &,, rg < /€, there exist
a compact domain O1 € Oy < [1/2,1]%, Lipschitz functions (Q)5ez2\s, defined on Oy and real number
7> 0 s.t. the set

Ci= {)\ €O w- L+ 015 (A e) + 0205 (N £) + 0305 (N, 2)| = g& V(. o) € 913\1{3} (2.32)

has positive measure. Moreover, for each A € C, there exists a symplectic change of variables T, majorant
analytic together with its inverse, s.t. T and T—! map D(s/32,007) — D(s,r) for all v < rq, $0/64 <
s < 89 (here po > 0 is a parameter depending on so, max(|mg|?) ). Moreover

(HoT)V,0,a,a) =w-YV+ >, Qfaz’> + RED(Y,6,a,a) (2.33)
JEZ\So
where R>2) contains just monomials of scaling degree at least 2 and fulfills

)R@?) < Crr? (2.34)

s/32,001

for some positive constant Cr independent of €.

The mass M and the momentum P (defined in (2.26)) fulfill
MoT =M, PoT =P,
where M and P are defined in (12.31)).
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We are able to describe quite precisely the asymptotics of the frequencies €27 of Theorem As
happens often in higher dimensional settings, such asymptotics depend on the fact that 7€ Z2\(¥ U € U
Sp) or to the sets .7, €.

Theorem 2.10. Under the same assumptions as Theorem for any € < e,, A € O1 the frequencies

Q5= Q3N €), 7= (m,n) € Z)\Sy, have the following asymptotics:

@i (A, €)
(my

(N €) Omn(A€)

Q7N e) =m? + n=0, (2.35)

QN e) = Q5N e) + + ., n#0 2.36
) = A my*  (m)? +(n)? (2:30)
where
m? 4+ n?, 7=(mn)¢ S VE,
~ epi(N) +n? J= (mi;n) ,
O\ ) = 9.37
i) m2+n2—m?+€,u:k(/\), J=(m,n) ey ,n>0 (237)
m? +n? —mi —ep; (A, J=(m,n)e Gk ,n<0

Here the (pi(X))1<i<a are the roots of the polynomial

P(t,)\) := ﬁ(tui) 42&» [T+, (2.38)

i=1 i=1 ki
while for any 1 <1 < k < 4 fized, the uik()\),u;k()\) are the roots of the polynomial
Q(t, N, M) =12 — (Ng — M)t + 3Xidg . (2.39)

Finally pi, .“;_fk; (@m (A €))mez, (Om(A, €))mez and (®m,n(>\,€))(m,n)e22\so Julfill

D O+ Y k(1

1<i<d 1<i<k<d

) * (2.40)
+ sup —Q(sup | (-, €) P+ sup [©,, (-, )| +  sup \@m7n(~,6)|01) < Mgy
e<es €7 “mez meZ (m,n)eZ2\So
for some positive constant M.

We conclude this section with a list of remarks:

Remark 2.11. The (u;(\))1<i<a and the (ﬂfk (A\)1<i<k<a are distinct nonzero algebraic functions which
are homogeneous of degree 1. They depend only on the number d of tangential sites, hence not on the
single sites (m;)1<i<a-

Remark 2.12. The asymptotic expansion of the normal frequencies does not contain any con-
stant term. The reason is that we canceled such term when we subtracted the quantity M(u)? from the
Hamiltonian, see . Of course if we had not removed M (u)?, we would have had a constant correction
to the frequencies, equal to ||q(wt, )| 2. Since q(wt, ) is a solution of , it enjoys mass conservation,
thus |q(wt, )|z = ||q(0, )| L2 is independent of time.

Remark 2.13. In [FGLI13] the authors prove that plane waves solutions of are HP-orbital stable
for times of order 6N, with N arbitrary chosen, provided p is large enough. The reason is the following:
plane waves solution have a very specific expression, given by Ael(™*=w)  This simple formula allows
to compute exactly the expressions for the tangential frequency w and the normal frequencies Q5 as a
function of A, indeed one has

w=m?+ A%, Q7= /|71* +2[71242 .

Such formulas are much more explicit than the mere asymptotic expansions that we find in (2.36), and
allow the authors of [FGL13] to impose Melnikov conditions of the form

01925 + -+ 0kl | 2
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at any order n (here ps(71,...,7n) is the third largest integer among |71l ..., |7n|). As a consequence
they can perform an arbitrary number of steps of Birkhoff normal form.

On the contrary we have a weaker control on the asymptotics of the frequencies, since we know their exact
expression only at order € and not at higher orders in ¢; this allows us to impose Melnikov conditions up

to order three, see ([2.32)).

Remark 2.14. In [PP15,[PP16] the authors show that for a generic choice of tangential sites Sf = 7.2, it
is possible to construct families of small quasi-periodic solutions of which are (essentially) supported
on 8. Such solutions give rise to finite dimensional KAM tori which depend on both variables x and y
and which are linearly orbitally stable (namely stable for times |t| ~ §=1). While we borrow ideas and
techniques from such papers, the construction that we perform requires extra-care. Indeed the condition
of genericity for S used in [PP15, [PP16] does not allow to choose S < Z x {0}, as we do here.
Furthermore in [PP15,[PP16] the asymptotics of the normal frequencies Q3 are less explicit than formula
, therefore it is not clear if it is possible, in the setup of [PP13, [PP16], to impose the third order
Melnikov conditions and obtain nonlinear stability of the KAM tori.

3 Functional setting

In this section we introduce the technical apparatus that we will use in the following.
Given o, B € NZ\%_ to the monomial ¢'? Y a*a? we associate various numbers. First we denote by

n(a,B) = > (az—B7), () =>4 . (3.1)

JEZ2\So i=1

The second quantity that we associate to e?Y'a®a” are the momentum n(«, ) = (7., m,) and 7(¢)
defined by

O o] B W K SRR w(@-i_ilmiei. (32

7=(m,n)eZ?\Sy
Given a monomial €?¢Y'a*a? we have the commutation rules
{M, e Vaal} = i(n(a, B) + n(£)e* V'a“a”
{Py, 90’} = i(m,(a, B) + 7(0)*Va"a®, (P, Va*a’} = in,(a,B) e V'a"a”

Remark 3.1. A function F commutes with the mass M and the momentum P defined in (2.26) if and
only if the following selection rules on its coefficients hold:

{(FMy =0 = Fapenlep)+nl) =0
{(FiPa} =0 o Fape(mla,f)+n(0) =0, {F,P}=0 < Fape(myla,p)) =0

where n(a, B),n(¢) are defined in (3.1) and (o, B),7(¢) are defined in (3.2)).

From now on we shall always assume that our Hamiltonians commute with M, P, so the selection
rules of Remark [3.1] hold.

Definition 3.2. We will denote by A, the subspace of real valued functions in the closure of the
monomials (e*°Y'a®a” ) which Poisson commute with M and P, with respect to the norm |- |5, (defined
in (2.21)). Such Hamiltonians will be called regular. Given a compact set O < R?, we denote by AST

the Banach space of Lipschitz maps O — A, with finite norm | - ST (defined in (2.23)) ).

In the next proposition we describe some basic properties of the norm | - |5, which will be used
repeatedly in the paper.

Proposition 3.3. For every s,r > 0 the following holds true:

(i) Degree decomposition: given a Hamiltonian h € ASR which is homogeneous of degree d, then
he AS, for all v > 0 and one has

g < () 1hZn (33)

The same estimate holds also if d is the minimal degree and r < R.
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(#i) Changes of variables: Let h, f € Agr, Forany0 <s <sand0 <71’ <r,letd := min (1 - ’7'/73 - s/),

If 5*1|f|g,, < o sufficiently small then the Hamiltonian vector field Xy defines a close to identity
canonical change of variables Ty such that

|hO’Tf|qr/\(1+C'g)|h|w, Vo<s' <s, O0<r'<r.

(iii) Remainder estimates: Let f,g € A9
the function

s Of minimal scaling degree respectively dy and d, and define

E (—adf)!
-2 = h g (3.4)
=i ’
Then G (f;g) is of minimal scaling degree dsi + d, and we have the bound
GRS, <CE (A1) 1910, . Vo<s <s, 0<r <r.

Note that the same holds if we substitute in (3.4) the sequence {3} with any sequence {b;} such that
b < VL.

The proof of the proposition, being quite technical, is postponed in Appendix [B]

3.1 Quadratic Hamiltonians

Inside Ay, are the polynomial subspaces, i.e. spaces of fixed scaling degree which we shall denote by
AW, By (3.3), the polynomials in such spaces are analytic for all r > 0.
Here we want to study a special subspace of A&O) defined as follows:

Definition 3.4. We denote by QY the subspace of .Ago) which contains Hamiltonians quadratic in a.

In particular Q9 is the subspace of real valued quadratic functions in the closure of the monomials
of the form ¢ O“aﬁ with |a| 4 |8] = 2. Now we study some properties of Q. For such Hamiltonians,
by (3.3)), the norm |- |5, is independent from the domain D(r), hence we always suppose that r = 1 and
we shall drop it:

o
RIS, = RISy = |

We decompose any quadratic Hamiltonian H € Q9. s > 0, in three components:
H(X; 0,a,a) = H™()\; 0,a,a) + HU8(X; 0,a,a) + H*(\; 0,a,a) . (3.5)

Each component contains monomials supported in different regions of Z2, which now we describe in more
details.

(i) H'™me(); 6, a,a) contains only monomials with |a| + |8 = 2 and supp | Jsupp 8 < Z x {0}:

H''™e(X; 0,a,a) = Z Hy o (A5 0) @y 0)8(may,0) + 2Re(HE 0 (A3 0) Gy 0)0(ma,0))

mq, szZ

with Hm1 ma H;LQ,ml 3 H';Lzl me H’lez,n’bl
(ii) HY%8(); 0,a,a) contains monomials with |a| = |3] = 1 and suppa|Jsupp 8 € Z*\Z (namely is
the diagonal part of the representative matrix):

Hdlag()‘ 9 a, a Z H;zl,mz, ()‘ 9) ml,n)d(mg,n)v H,, H;LQ,ml,n

mi,mz,n
m1,mo€Z
neZ\{0}

(iii) H°"(X; 6, a,a) contains monomials with || = 2 or |3| = 2 and supp | Jsupp 8 < Z?\Z (namely
is the out-diagonal part of the representative matrix):

HOUt(A 6 a, a - 2Re Z m1 ma, n )‘ 9) a(mhn)a(mz,fn))

my,mo€Z
n>0
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Note that the sum is over only one index 7, this is due to the conservation of P,. Furthermore the
condition n > 0 is used in order to avoid repetitions. It is easy to see that H'ne fdiae fout are in QY
(see Proposition i)). We will denote Q9-412¢ (respectively Q9-°ut, Q@:lin¢) the relative subspaces.

Remark 3.5. The following commutation rules hold:
(Z) {}Idiag7 Kdiag} e Q?,diag , {Hdiag7Kout} e Q?,out , {Hout7 Kout} e Q?,diag
(”) {‘E[diag7 Kline} _ {Hout,Kline} = 0.

Consider a quadratic Hamiltonian H(6,a,a) as above and expand its coefficients in Fourier series

+ +,0 i0-¢
Hiy a3 0) = 2 Hol g (M) €7 (3.6)
LeZd
In such a way, to any Hamiltonian H € Q4 we can associate a sequence {H,‘Zlf ma.n) @ above. On the

contrary, a sequence {H;‘n’f’mz,n} corresponds to a Hamiltonian only if it fulfills the constraints which
arise from the fact that the corresponding Hamiltonian should be real.
Given a sequence {Hﬁif,m%n}, we define the norm

w5+, _
HT s == sup ({3 €CIHE Ll aGmm) + €T, iyl Gms -} - (3.7)

lal<t e

Then |H|, = |{H% .. ,}|s- The same for the corresponding Lipschitz norm.

mi,m2,n

Remark 3.6. By mass and momentum conservation

HZ (AN #0  onlyif w)+mi+oma=0,n{) +14+0=0, (3.8)

mi,mz,n
where o is either +1 or —1.
i0-¢

Remark 3.7. In particular, for a monomial €% a(m, n,)0(my ny) Mass and momentum are

n) =0, 7)+my—ma=0, ni—ny=0,
while for e U(my 1) 0(mans) they are
nl)—2=0, 7(l)—m1—ma=0, ny+n2=0.
Remark 3.8. A quadratic Hamiltonian in Agr can be canonically identified with a magjorant bounded
0 -1

matriz M(0) by setting H = 1(a,J"'M(0)a), where J~' = 1 0 > It is easily seen that |H|s

is equivalent to the operator norm on L(§P,bP) of the matriz Y, M(£)e!’l*, hence we have the algebra

property
{H,K}|s < ColH|,|K]|s. (3.9)

Next we introduce the concept of order of a quadratic Hamiltonian.

Definition 3.9 (Order of a Hamiltonian). Given N = (N1, No) € Z?, we say that a quadratic Hamil-

tonian with coeﬁficients {HE !, )} has order N iff there exists s > 0 s.t. the sequence {((m)™™

)y M HE HEL .} has a finite | - |9 norm. We will denote

[H]On = {(m) ™ + oy ™) HE Y, )

We denote by QSN the subset of Hamiltonians in Q¥ of order N. In the same way given a linear map

a—La, (La)mn = 2 (Lo s 0 ) + Ly (5 0, )

my
we set
Ny —N2 _
Yi= Y (m)y ™+ () )(Lmhmz, (A 0)a(my ) + L, m2n(A;o)a(ml,,n))a%w)+C,C,
mi,ma2,N
and define
[Llsn:= sup Y] . (3.10)

(Y,a)eD(r)
Same for the Lipschitz norm.
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Remark 3.10. Note that in the previous definition we could have used the index mo instead of m1 or we
could have used a symmetric weight (say (myy+{ms) ) in the definition of order. In fact such definitions
are equivalent due to momentum conservation. Our definition is constructed so that, if N = (N, N),
then a linear operator L with [L|s N < o0 maps hP+N — pP.

Remark 3.11. Let N € N2, then clearly
[H|On < [HI? < [H]) x -

Remark 3.12. For any N € N2 with non negative components we have

o 1] o o o

[Als —(nvi,0)0 [Als—0,nz) < TAls -~ < TAlS _(wvy0) + TALS—0,30) (3.11)
Lemma 3.13 (Bony decomposition). Set ¢~! := 2maxi<;<a(|m;|) and write
H=H"+H0"%,
B ._ 0,8 i6-¢ o
H™ = Z Hmhmzﬂl()‘) € O(my,n)q(my,—on) 1
uEi,ZeZd.ml,nLZ,n:

mq+omg+m(£)=0
le<émy>

R . ol i6-¢ o
H™:= Z Hml,mg,n()‘) € A(my,n)q(my,—on)

oe+,Lezd ,my,mg,n:
my+omg+m(£)=0
le]>emy )

For any 0 < s < s set
§i=s—45". (3.12)

We have that for all k > 0
[HS _(vovkng < KESFA+™MHIT (n ny) (3.13)

namely the part HT is infinitely smoothing in the x direction.

The proof of the Lemma is postponed in Appendix [B] We now discuss some algebra properties of the
norm ||y

Lemma 3.14. Fiz N,M e N2, Let Fe QS_N, Ge Qg_M. The following holds true:
(i) For any 0 < s < s one has {F,G} € Q?’,foM with the quantitative estimate
(G2 x < Ol [FIZ N [GIS, aa + 075 FI21GIO) . (3.14)
Here C = Cnym > 0 does not depend on s',s and § is defined as in (3.12).
(i) Let G € QF and let F fulfill
F|® = 3.15
[ Js,fN <n OO ’ ( )
where here (and everywhere below) Cy is the algebra constant of formula (3.9). Then the Hamilto-

nian flow Tg is a smoothing perturbation of the identity and V 0 < s’ < s
GI9 ([F)9 _x + 0 M[F|T)
L—ntF[Q

[GoTr — G| _n <Cn (3.16)

(iii) Let G € Q9. Then Vi € N the operator G(F;G) is of order —iN and Y0 < s’ < s one has
GI (5" MFI_n)”

S,—

1L—n~HF[Q

[G(F;G)9 in < Cin
Note that the same holds if we substitute in (3.4) the sequence {3} with any sequence {b;} such that
VI one has |by] < 7.
The proof of the lemma is postponed in Appendix [B]

Remark 3.15. Consider the Poisson bracket {F,G} of two quadratic Hamiltonians F € Qs _n, G €
Qs,—m-. Then
{FaG} = {FB7GB}+{F,GR} +{FR3GB}

and the last two terms {F,GR}, {F® GB} are infinitely smoothing.
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3.2 Quasi-Toplitz structure

Consider the term H>% in and denote by #(? its component of scaling degree 0, which is given
explicitly in . It turns out that #(9 is quadratic in a and its coefficients are independent of n, for
n # 0. We would like to preserve such property, but during the process of normal form that we perform,
we cannot avoid generating coefficients which are depending on n. In turns out that at each step of
the normal form procedure (and later on during the KAM iteration), we will have Hamiltonians whose
coefficients have this specific form:

Hml,mg,n _ Hhor + Hmix

miy,ma my,mz,n

where {H}}", 1} is independent of n, while {H3, 1 depends on n but has order (—2, —2). In the rest
of the section we will show that the transformations which we will perform preserve such structure. To

do so, we need some more notations:

Definition 3.16. We say that a quadratic Hamiltonian H € QF is horizontal if its coefficients {HX:* 1. ¢

my,ma2,

are independent of n, i.e. H}[Lfm%n = H,%me for allm # 0. We will denote by Q};C}\r/[ the subspace of QF

of horizontal Hamiltonians of order (M,0). We will denote the corresponding norm as [-|sa. If M =0
we will write just QB°T.

Note that Q1% depends on O. If we need to evidence such dependence we will write QS}\}/‘[M.

However, in most of our algorithms O is fixed, hence we avoid to write it explicitly. Note that the
condition H € Q91" does not impose any restriction on the component H'".

Remark 3.17. Q];"J@ is closed under Poisson bracket and composition with flows: if F,G € Q1% then
for any 0 < &' < s,
(F,G}e Q%" , T(F;G)e Q%" , GoTreQ¥r.

In the following we want to study the flow generated by an Hamiltonian of the form F' = Fhor 4 pmix,
where F"°" € Q1" or F'°r € Q" while F™* € Q_ _5 is of order —2 := (—2,-2).

Lemma 3.18. For a = 1,2, consider ' = FPr 4 F™X yjth Fhor ¢ Q?f’_‘"a, Fmix g Q?_ﬁ, and G =
Ghor  Gmix | Ghor ¢ ghor - Gmix ¢ ngi' Se 7 = min(Cy*, C’;l), and assume that n=! |F|? < 3. The
following holds:

(i) For every i € N the Hamiltonian G (F;G) equals & (F; G)" + T (F; G)™* with T (F; G)hor =
T (FhorGhor) € QL and T (F3G)™* € QF o for all 0 < 8" < s. Furthermore one has the

s’,—ia

quantitative estimate

|Ghor|Q (57a[FhorJ(.9_ )i
biFéGhorS_ia<Cai - e
P OPIE < Cos—— o

for i =0, here 0 is defined in (3.12). Similarly for i = 1 we have

i—1
2520 (o1 1719)
N

S,

[G(F; )™ |9 _5 < (1G™]0_4IFI? +|GICTF™™]0_y+|GIS |FI?)
Note that the same holds if we substitute in (3.4) the sequence {3;} with any sequence {b;} such that
VI one has |by| < 7.

(i1) The Hamiltonian vector field X generates a well defined flow ®%. for T < 1. Moreover

sup  |(DF —1d)(a, Y, 0), <y |F|C .
(Y,0,a)eD(s,r)

The lemma is proved in Appendix [B}
Lemma 3.19. Consider F' = FP'+F™Xgnd G = GP" +G™ such that FPor, Ghor ¢ Qbor,  pmix Gmix ¢

s,—27

ngi' Seﬂ n = min(C;?, C’;l), and assume that n=! |F|? < 1. The following holds:

2here Cy is the algebra constant in (3.9)
3.9

3here Cy is the algebra constant in
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(i) For every i € N the Hamiltonian & (F;G) equals T (F; G)" + T (F; G)™* with T (F; G)hor =
Ty (Fhor; GMor) € Q% and Ty (F; G)™> € Qo . Furthermore one has the quantitative estimates

Ghor (?_ —1 Fhor B i
r&;(F, G)horJg_z < | s, ( |V Js, 2) ,

1— ,,7—1 ‘Fhor's 9

for i = 0. Similarly for i = 1 we have

(G| o (7 FIO )" @O [Fmix| s (n [FIO,)
(@) + (@)
- 1(|FI°_,) 1 1(|FI°_,)

[G(F; ™10 ;<

Note that the same holds if we substitute in (3.4) the sequence {3} with any sequence {b;} such that
VI one has |by| < 7.

The lemma is proved in Appendix [B]
Note that the difference between Lemma [3.18 and Lemma [3:19]is that in this last one the quantitative
estimates do not lose regularity in s and do not gain in order.

4 Preparation of the Hamiltonian

The aim of this section is to write the Hamiltonian (2.4)), the mass M (2.2) and the momentum P ([2.3)
in the adapted variables (2.14)) around the tori (1.4).

4.1 The Birkhoff map for the one dimensional cubic NLS

First we gather some properties of the Birkhoff map for the dNLS (1.2). The main references for this
subsection are the book [GK14] and the paper [MaslT].
We introduce the Fourier-Lebesgue spaces for p, s = 0:

2oim X ey g, < oo} (4.1)

hP® = hP3(Z) = {(qm,qm)mez € (*(Z) x *(Z):
meZ
We shall denote by BP*(p) the ball of radius p and center 0 in the topology of h?>*.

Theorem 4.1. There exists p, > 0 and a real analytic, symplectic, majorant analytic map ® : B%°(py) —
02 x 02 with d®(0,0) =1 s.t. Vp,s = 0 the following is true.

(i) The restriction of ® to BP*(py) gives rise to a real analytic map © : BP*(py) — hP°. Moreover
there exists C' > 0 s.t. for all 0 < p < py

sup (2~ 1)(¢,@)]ps < Cp* . (4.2)

lallp,s<p
The same estimate holds for @~ — 1, with a different constant.

(i) For p = 1, ® introduces local Birkhoff coordinates for dNLS. More precisely the integrals of motion

of ANLS are real cmalytic functions of the actions I; = \zj 2. In partz’cular, the Hamiltonian Hans,
the mass M(q) := §; |q(x )|? dz and the momentum P(q) := = §; @(x)i0zq(x)dx have the form
(Hdnls o (I)71) (Z; 2) = hdnls ((|Zm‘ )mEZ) (43)
(Mo®™')(2,2) = ) |zml*, (4.4)
meZ
(Pod™ ") (2,2) = ), mlzm/|* . (4.5)
meZ

(iii) Forp = 2, define the dNLS action-to-frequency map I — a9"(I), where ad2s(1) := ahd’“s ,Vm e Z.
Then, in a neighborhood of I = 0, one has the asymptotic expansion

odnts( m+2ZI I <m(>1), me7 (4.6)

where w,,(I) is at least quadratic in I and sup,, |wm,(I)] < .
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Proof. Ttem (i) is the main content of [MaslT|, where it is proved that the Birkhoff map is majorant
analytic between some Fourier Lebesgue-spaces. Item (ii) is proved in [GK14, [KP96]. Item (ii) in
[KL12, [KSTTH]. 0

Consider now the mass shift Hamiltonian Hgy, defined in (2.8)). By Theorem 4.1} Hygy, is integrable
and one has

m

(Hdm od™ 1) (Z Z) = hdnls((lzm| meZ (2 ‘Zm| > = hdm((|zm‘2)mez> .
We define the frequencies o, (I) := aa}}% which by (4.4)) are given by
am(I) := ad15(1) — 2 Z I, (4.7)

and by (4.6) one has the following expansion in a neighborhood of I = 0:
@m (1)

am(l) =m? — I, + ) meZ. (4.8)
(my
Now with Sy = (my,...,mq) we consider the map
L= (Luy, -y Iny) = (o (TIn)s - ooy oy (In)) = aw(Iy) ; (4.9)
by Theorem (7i1) this map is generically a diffeomorphisnﬂ As we have already mentioned, we prefer
to parametrize the frequencies with a vector of parameters A = (A1,...,\q) € Op = [1/2,1]?, using the

fact that, by a standard application of the implicit function theorem, for e sufficiently small there exists
an analytic map Op 3 A — I,(\, €) € RS, of the form (2.12)) such that

am(In(X €) = 0@ —eX =1 w(N) ,

where w(® is defined in [2.10). We will call w(\) = an(la(\ €)) the tangential frequencies, while

(U (A))mez\s,» Where
Qi (A) == an(In(X€)) , m ¢ Sy (4.10)

the normal frequencies; by (4.8]) the normal frequencies have the following asymptotic expansion as

|m| — co:

Qn(\) = m? + Fmlla(X ) , with  sup sup |@m, (In(\€))| + [Or@m(In(\,€))| < Ce? . (4.11)
<m> AeOgy mEeZ

4.2 Adapted variables

In this section we introduce adapted local variables in a neighborhood of the torus T4(Sy, ) = T4(Sy, In(), €))
defined in (T.4). We parametrize the torus T¢(Sp, \) as 2%8(\;0) = (258(\;0))mez with

ZE(A;H) =/I,(\) €% | for1<i<a, 28 =0, form¢Sy; (4.12)
we denote by ¢'8()\;6) its preimage through the Birkhoff ma :
¢ (X;0) = (45 (X 0))mez = 7' (B (X;6)) . (4.13)

The explicit expression of ¢'8();#) in the x variable was given in (2.13). We study now the analytic
properties of the map A : (),6,a) — (uy)jez2 defined in (2.15). First remark that by (4.13)) the set
&1 (T4(Sp, \)) is described in the (), 6, a) coordinates by Y = 0, a = 0, i.e.

! (T%Sp, A)) = {A(0,0,0): 6 € T} .

We show also that A maps D(s,r) into the set Vs of functions which are é-close to the torus T¢, which
we recall is
Vs 1= {v & HP(T2): dist 7o (r2) (v, &1 (T4(So, A)) ) <4,

@, (W 0)me2)|” = (V)| < 8% for 1 << a}

Note that we are constantly identifying a function with its Fourier coefficients.

(4.14)

4generically in the sense outside a set of measure 0
5 Abusing notation, from now on we will often write ¢ = ®~1(2) in place of (¢,q) = ®~1(z, 2).
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Proposition 4.2. Fiz an arbitrary p > 1 and the set Sy. For any s > 0, there exist g9(s) >
0, cx(8),cx(8) > 0 such that for any 0 < & < eo(s) the following is true.

(i) There exists 0 < ry < 4/e/4 s.t. for any 0 < r < ry the change of coordinates A: D(s,r) —
A(D(s,r)), (V,0,a) — (uy)sezz is majorant analytic, and the symplectic form in the variables

(7,6,a) is given by (210).
(it) For 0 <1 <71y, Ve,r € A(D(5,7)) S Veyr-
(ii) The Hamiltonian (2.4) in the variables (¥, 0,a) takes the form

H(A Y, 0,a) =N @ + HO (X 0,a) + HO(X;0,a) + HP (X;0,),a) (4.15)
where
NO =\ Y+D, (4.16)
D= N Y 09 (4.17)
i=1 J=(m,n)ez2\So

and the normal frequencies Qéo) are defined by

o _ [ 172 ify=(m,n) withn #0
o '_{ Qn(N) if7= (m,0) ; (4.18)

where Q,,(N) is defined in [E10). Moreover H(® e Qtr, HM) and HZ?) belong to Agr* with the
quantitative bounds

19 < Ce, |H(1)|gr < Cyfer, |H(>2)|ST <Cr?, VO<r<ryg, (4.19)
where C' is independent of €, 7.

(iv) The mass M and the momentum P (defined in (2.2) and (2.3))) in the variables (Y,0,a) take the
form ([Z325).

We split the proof of Proposition in several steps. First we prove item (¢) and (i7).
Proof of Proposition[4. (i) and (ii). (i) The map A is the identity on Z?\Z (see (2.175)), thus we need
only to study the analytic properties of the map ()), 0, (a(m,o))mez\so) — (U(m,0))mez- Such a map is

the composition of the Birkhoff map ®~! and the map Y which passes the special sites Sy to action-angle
coordinates:

‘1)71

(i, 05)1<i<ds (@(m.0))menr s, ) 5 ((Zmys -5 Zna) s (Bm)mennso) — (U(m,0))mez (4.20)
Zmy = A/ Li(N) + V) €, m; € Sy (4.21)
Zm = G(m,0), m e Z\Sp. (4.22)

By Theorem the Birkhoff map ® and its inverse ® ' are majorant analytic canonical diffeomorphism
from a small ball around the origin in h?(Z) to h?(Z) for any p = 0. In particular there exists 0 < R < p
(where p, is the domain on majorant analyticity of ®, see Theorem such that ®~': B(R) x B(R) —
B(2R) x B(2R), B(R) being a ball of center 0 and radius R in the topology of h?(Z).

For a given s > 0, fix &, 74 so that

1672 < e < Cye 2R? | C; ' = 48d max |m|*. (4.23)

Consider now the map Y. It is proved in [BBP13l Lemma 7.6] that the first condition in implies
that T is majorant analytic and Y : D(s,+/e/4) — B(C+/e) x B(Cy/e), where C > 0 can be chosen
uniformly in e for & < €, while the second condition in ensures that the image of T falls in the
domain of majorant analyticity of 1. As a consequence the map ®~! o T is majorant analytic. Recall
now that A is simply obtained by extending ®~! o T as the identity on Z?\Z, therefore it is majorant
analytic as a map D(s,+/e/4) — B(C/e) x B(C+/¢), where now we denoted by B(R) the ball in the
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topology of h?(Z?). The fact that A transforms the standard symplectic form into is a direct
computation, using the symplecticity of the Birkhoff map ®.

(1) First we show that there exists a constant ¢y, > 0 s.t. A(D(s,7)) € Ve,r. Thus let v = A(Y,0,a)
with (),6,a) € D(s,r). Recall that ¢8()\;0) = ®~1(1(0,6,0)). One has that

dist grp (72) (U»‘Ifl (Td(So,)\))) < Ju— B\ 0) o (z2) = lullhe@azy + v — a2 (0) 1oz
= l(apm,ny)nzolle@2zy + |27 (XY, 0,a)) — 27" (Y(0,6,0)) |4e(z)

Thm A 1]
< 7‘+C\|T(3}79,a) —T(07970)th(z)

q 9 1/2
< 7+ Cl(a(m,0))mezlnr@\so) + C (Z m2? |/ T, (A) + Vi — /I, ()\)‘ )
im1

, r2 (@-23)
<C'(r+ NG < cur
€

which proves one condition. Then, since

(u(m,O))mEZ = (D_l( (\/ Im,i (A) + yieiei) 1<i<d’ (a'(m,O))mEZ\So> (424)

one has ®p, ((U(,0))mez) = A/ In;(A) + Vi el%  which clearly implies that

2

M‘I’mi((u(mp))mez)} = Imi()\)’ <2

Thus A(D(s,7)) S Veyr-
Now we show the converse, namely that 3¢, > 0 s.t. V. . € A(D(s,7)). Then take § = c,r, u € Vs, and
we show that u = A(Y,0,a) for some (V,0,a) € D(s,c;*8). First we put (a(m,n))nz0 = (U(m,n))n0;

the condition dist (u, o1 (T4(S,, /\))) < ¢ implies immediately that ||(a(m,n))nzollne@z2\z) < 9.
Consider now (t(y,,0))mez, Which are the Fourier coefficients of u(-,0). Denote 6, := argming|u —
q8(\; 04)|; such minimum exists since T¢ is compact and 6 — ¢'8(\; #) is continuous. Then

| (tm,0))mezllne @) < [ (tgm,0))mez — @B (X; 05 lne(z) + 1148 (Xs 05) [ ne(z) < 6+ CvE < R < py

where py is the size of the domain of majorant analyticity of the Birkhoff map ®, see Theorem
Hence the vector z = (2m)mez := P((U(m,0))mez) is well defined; we pose a(p, ) := 2, for any m ¢ So.
By the analyticity of @1 and the fact that d®~1(0) = I, we bound

6= u~— qu(A;G*)th(m = H‘I’_l(z) - ‘I’_l(zfg(A;G*))HhP(z) > cillz — ng(/\Qa)*”hP(Z)
= Cillz — ng(N 0s)| e (so) + cxllzllne(z\s0) -

Hence we obtain that [ (a(m,0))mes, [nr2s0) < ¢x 0. Finally write zm, = /In,(A) + V€' for some Y
and 0. Then the second condition in (4.14) implies 62 > ||zq,|? — In,(A)| = |Vi|. Therefore we have shown
that u = A(Y,6,a) for some (¥, 0,a) € D(s,c;19). O

We begin now the proof of item (ii4). Thus we consider expression ([2.4]) and apply in two steps the
change of coordinates @~ and YT of (4.20). To begin with, we start from the Hamiltonian in Fourier
coordinates (2.6), and set

Gm = Um0y if meZ, aj:=u; if 7= (m,n)eZ* , n#0.
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We rewrite the Hamiltonian accordingly in increasing degree in a, obtaining

*

1
2 2 4 — ~
H(g,a) = Y. m®|gm|® — Z lam|” + 5 > Gy Gy Qs Gy (4.25)
meZ mEZ mgEL
m1—mo+mgz—myg=0
2 2
+ > 17Plag]
JEZ2\Z
*
_ _ 1 _ _ _ _
+2 Z qm1 Gm, 357, + 9 Z (@, a7, 9ms 7y + Gmy @5 Gmsg aﬁ;)
Fi=(mg,n;) ,i=3,4, n;#0 Jj=(mg,ny),i=2,4, n;#0
my—mg+mg—my=0 my—mg+mg—my=0
n3—ng=0 ng+ng=0
+ 2 Gm,a7,03507, + 2 7,07, 0759m,
Ti=(mg,n;),i=2,3,4, n;#0 Fi=(mj,n;),i=1,2,3, n;#0
m1—mg+mgz—my=0 m1—mg+mg—my=0
—ngtng—ng=0 ny—ng+ng=0
*
1 _ _ 1
+ = a3 85,0505, — = laz|*
2 J170J277)3 )4 2 J
Ti=(m;,n;),i=1,2,3,4, n;#0 FeZ2\Z

71 Jz+Jg, Ja= 0

Step 1: First we introduce Birkhoff coordinates on the line Z x {0}: We set

((Zm)mEZa (af)fEZ2\Z) = ((qm)m627 (af)er2\Z) ) (Qm)mEZ = ©_1 ((Zm)meZ) . (426)

Since the first line of (4.25]) is the dNLS with mass shift, when we apply ®~! we obtain

/ _ 2 2, |2
H'(2,0) =haw((|2m[*Jmez) + Y 171l (4.27)
JEZ2\Z
: 1
+2 Z GmyQm, 033z, + 5 2 (Gm, @7, Gms @7, + Gy @7, Qs A7)
Ti=(m;,n;),i=3,4, n;#0 Ti=(m;,m;),i=2,4, n; #0
m1—mg+mgz—my=0 m1—mo+mgz—myg=0
n3—ng=0 ny+ng=0
+ Z dm, 07, 05,a5, + Z A7, Q75 Q55 Gmy
Ji=(mi,n;),i=2,3,4, n; #0 Ti=(m;,n;),i=1,2,3, n;#0
my—mo+mg—my=0 mq—mg+mg—my=0
—ng+ng—nyg=0 ni1—ng+ng=0
*
1 _ _ 1 4
t3 >, a5 5,050, — 5 > lagl
Fi=(mj,m;),i=1,2,3,4, n; #0 FeZ2\Z

J1—J2+73—74=0

where in the last three lines we think (¢, )mez = @71 ((2m)mez) as a function of the Birkhoff variables z.

Step 2: We go to action-angle coordinates only on the set Sg = (my,...,mgq) € Z and rename z,, for

m & Sp as a(m,0), see (4.21) and (4.22). We think each g, as a function
dm = Qm()\E Y, 9, a) = ‘I’;@l(( Iml()\) +; eiei)izl,...,da (a(m,O))mGZ\SO) .

Next we Taylor expand the Hamiltonian (4.27)) around the finite-gap torus corresponding to (¥, 0,a) =
(0,6,0). First one has (up to an irrelevant constant)

hdm((‘zm|2)m€Z) = Ndm ( Ly (A) + Y1, Lny(A) + D, (|a(m 0)‘ )meZ\So)
VY Qe+ O02, Vial lalt)
meZ\So

where the Q,,()\) are defined in (4.10). Now we consider the terms which contain g,,. Expanding ¢, in
Taylor series we have

0qm dq
m(X;0,0,0) (A;0,60,0)); —(A;0,0,0)a(,
Gm =qm( +Z 3 )Y, +m1§\so -~ (mho)( )@(my,0)

+ Y I (00,6,0)a(m, 0) + O(V2, Va,a?)

mleZ\So (ml’o)
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Remark that .

4m(X:0,0,0) = @, (VIn, (V) €7)iz1,..0,0) = g5 (A 6) -
Inserting such formula in the Hamiltonian (4.27)) and collecting the terms in increasing scaling degree we
obtain the new Hamiltonian

HN Y, 0,a) = NO + 7O\ 0,a) + HO (X 0,a) + HP (X 60,),a)

where V(¥ is defined in (&16)). Correspondingly H(®) is the second and third line of (&15)), namely all
the remaining terms of degree two in a:
HO =2 > 015, (X 0)755, (X 0)az,ay, (4.28)
Ti=(m;,n;),i=3,4, n; #0

mi—mg+mg—my=0
ng—mnyg=0

1 - — —] —
t3 2 (4%, (X 0) @z, ¢%, (X 0) @z, + @5, (A;0) ag, 3,5, (A;0) ag,) -
Ti=(m;,n;),i=2,4, n;#0
mi—mg+mz—my=0
ng+nyg=0

H™) are the terms with scaling degree 1:

HD = > Heo g0\ e~ a? (4.29)

tezd o, Ben??\S0
|al+]8]=3

in particular such Hamiltonian is cubic in a and it does not contain any monomial of the form l?*Y!a®a”
with |I] = |a+ 8| = 1.
Finally H(>?) contains all the rest i.e. all the terms with scaling degree > 2.

In the next lemma we estimate the norms of the Hamiltonians (9, () and H(>2):

Lemma 4.3. Fiz s > 0. There exists eg > 0 and for any € < e¢, there exists ry < \//4 s.t. HO) € Qbhor
while H and HZ?) belong to AC,. . Finally the following bounds hold:

S,
IHO|9 < Ce, |/H(1)|gr < Cy/fer, |/H(>2)|gr <or?, VO <7 <y, (4.30)
where C' is independent of €,r.

Proof. We start from the Hamiltonian (2.6). The terms of order four in (2.6) belong to A, , for alﬂ
s,7 = 0. Indeed we have that

Hy:= ) upupipiy, = (Xg,)p= (uruxt)y = (Xp,)y = (uxur@); = [(Xp,)sl < (veox0);
J1+72=73+7
with v; = |uz]. Then we repeat the same argument for M(u) = §, |u[* (see the definition of the

Hamiltonian (2.4])) and the result follows by the algebra property of our space. This shows that the
starting Hamiltonian (2.6 is majorant analytic. Moreover one has

sup | X, (u, @) < p? (4.31)
|“|h,p(z2><f7 ?
Next consider the map A of (2.15). By Proposition[4.2(i), A is majorant analytic and maps D(s,/g/4) —
B(Cy+4/e) x B(C14/€). Thus the pullback of X, through A, which we denote Y, is a majorant analytic
vector field D(s,r) — C x C¢ x h?, VO < r < 7. Hence H(>?) := H, o A is majorant analytic and
@E31)

1 vE X< 016. (432)

’H<>o>

< suwp Y (V.a)] ey < sup | Xp,(u)]
5,VE/d (V,a)eD(/E/4) VE/A |l (z2) <C1v/E :

As a consequence each homogeneous component of H(>% is a majorant analytic Hamiltonian; in partic-
ular let #(? the homogeneous component of H(>? of scaling degree d; then

d = d d
< ﬂ ‘H(d) ﬁ ‘7_[(20) ﬂ Cic .
s \WE NG VE

The estimate for the Lipschtitz norm |7—l(d) |fr is analogous, and the lemma follows. [

Proof of Proposition (iii) and (iv). Item (i) follows from (4.15) and Lemmal4.3] Item (iv) is proved
similarly by performing Step 1 and Step 2 on the mass M and momentum P, we skip the details. [J

‘Hw)

ERVEE s,W/e/4

6note that there is in fact NO dependence on s since there are no angle variables at this point. Furthermore, there is
NO dependence on A € O
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5 Normal form of the quadratic terms
In this section we consider only the quadratic part of the Hamiltonian (4.15)), namely
NO 37O = Yy +D+HO | (5.1)

where D is defined in and H(© in . Our aim is to reduce such Hamiltonian to a diagonal
form by a convergent KAM procedure by requiring some (potentially rather complicated but relatively
explicit) Diophantine condition on A. The problem of the KAM algorithm is that it requires to impose
the so called second Melnikov conditions on the frequencies, which do not hold for N(®).

Thus, first we must put in a normal form which is suitable in order to start a KAM algorithm
to obtain the reducibility result. Following ideas of [PP12], we perform a finite number of normal form
transformations whose effect is to put the Hamiltonian in a form suitable to the application of a
KAM scheme.

In this section we will constantly use the notation a < b with the meaning a < Cb for some positive
constant C independent of € and r.

The aim of the section is to prove the following result:

Theorem 5.1. Fiz p > 1 and so > 0. For a generic choice of the set Sy (in the sense of Definition
, there exists €9 > 0 such that for all 0 < & < gg, Irg K +/€ s.t. the following holds true. There exists
a compact domain 01 € O < [1/2,1]% such that for any A € Oy there exists an invertible symplectic
change of variables T(©):

am Le0)a, Vo YV+i@ Qe fa), 00

well defined and majorant analytic together with its inverse, such that T (TO)=1: D(s/8, or) —
D(s,r) for all0 <7 < rg, so/64 < s < sg (here p > 0 depends on sg, max(jmg|P)) and

(W Y+D+HD)oTO(Y,0,0,a) =w-V+ > Oplaf?+ > QulageoP+HO+HO+HED | (5.2)
JEZA\Z meZ\So

Here the frequencies ﬁj are defined in (2.37)), and Q,, in (4.10). Furthermore HO) has scaling degree 0
and has the form

() — 77(0hor) HN(O,miX)’ [ﬁ(O,hor)JS/1&72 + [ﬁ(O,mix)Jf/ls < &2

Similarly HD has scaling degree 1 and does not depend on ), HE2) has scaling degree 2, and
‘7—7(1) D er , ‘7-7(22) D
s/8,or s/8,0r

The mass M and the momentum P of (2.26)) in the new coordinates are given by
MoTO =M, PoT® =P
defined in (2.31]).

Remark 5.2. In the new variables, the selection rules of Remark[3.1] become

(H My =0 < Hape (i, B)+n(0) =0
(H, P} =0 <  Hops(Fala, ) +7(£) =0
(H, P} =0 <  Haps(my(e,8) =0

where n(€) is defined in (3.1), w(€) in (3.2)), while
e,B)i= > (=B,

JEL2\ (L VEUSy)
Folo, B) i= D mloaz— B+ Y, (m-—m)(a;—B) + Y. (m—mp)(az— By .
F=(m,n) i<k i=r
FEL2\(F USHUE) _7=(m,n)e<€;:k T=(m,n)eE;
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As far as it concerns the structure of the transformation 7(%), we have the following result:

Theorem 5.3. We have that L, Q are block diagonal in the y-Fourier modes. More precisely the matriz
L = diag,cn(Ln), with each Ly, acting on the sequence (G(mn), A(m,—n))mez- The Ly satisfy the following

properties: Lo = 1d , while L,, with n # 0 is the composition of four maps: L, = L%D) o L%B) oR,oU,
where

e Setting L(P) = diagneN(L%D)), we have L) —Id = LD:bor) ¢ pOmix) iz [P 4 gependent
of n, for alln # 0, and

[L(D’hor)J?/i_zﬂ [L(D,mix)JsO/(l’_i <e

see formula (3.10)).

o Setting L(B) = diagneN(Lle)), we have LB) —Id = LB:hor) 4 [Bmix) yiyp 1B 4 gonendent
of n, for allm # 0, and
[L(B,hor)JS%v_z’ [L(B,mix)f/g_5 “c.
e R, is a finite dimensional phase shift given explicitly by formula , moreover if
¢ n{(m,n), (m, —n)}tmez = & (5.3)
then R, is independent of n.

e U, acts non trivially only on (L VE€)n{(m,n), (m, —n)}mez it is invertible and depends analytically
on X € O1 together with its inverse. Moreover if (5.3)) holds then U, is independent of n and
orthogonal.

The matriz Q has the same structure of L.

The rest of the section is devoted to the proof of Theorem and Theorem

5.1 Proof of Theorems 5.1 and 5.3

We prove our statement in three steps, where we construct one by one the changes of variables in Theorem
[6-3] justifying their role in the diagonalization process.

Step 1. The change of coordinates £(P) puts (5.1)) into the form
w- Y+ D+ HOr
so that HPor e QS?;}IQOI and H™X e ngfi' Furthermore we isolate the terms of order .
Step 2. The change of coordinates £() removes from the terms at order e in HP** + 7™ all the monomials
which are Birkhoff non-resonant, in the sense of Definition [5.5] below.

Step 3. The changes of coordinates R,U are not close to the identity and are used to put the Birkhoff
resonant terms at order ¢ in diagonal form.

We start by decomposing D and H(?) in their line, diagonal and out-diagonal components as defined
in Section Note that D = D'"¢ + D¢ (it does not have an out-diagonal component), while

HO(N; 0,a,a) = HIE(); 0,a,a) + HOM(N; 0,a,a) ,

where
Hdiag(A; 97 a, C_L) = Z H77—11,m2 ()\’ a)a(ml »”)d(m%”) (54)
mi,mo,NEL
-2 ) 0t (N OG5, (s )8y 1) B )

mi—mg+mz—my=0
mq#Emg, n#0

HOM(N; 0,0,a) =2 >0 Re(Hyf oy (N 0)@(my ) O(ma,—n) ) (5.5)

mi,ma,n>0

= Z (qu%g (A; 9)%%4(/\; 9)&(m1,n)@(m2,fn) + gfil (A; 9)@%2 (A; e)a(ml,n)a(mz,fn)) ;

mj+mo=mg+my
n>0

here (¢2(\;0))mez = @71(2%();0)). Note that in (5.5) we are summing only on n > 0, and not on all
n as in ([4.28)), hence the coefficient is changed accordingly. Furthermore note that #(?) does not have a
line component.
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5.1.1 Step 1: descent method.

From now on we will constantly write a < b with the meaning a < Cb, with a constant C' independent
of e,r.
We prove the following:

Lemma 5.4. There exists an invertible symplectic transformation TP) : D(s/4,7/2) — D(s,7) Vs¢/64 <
s < 80,0 < 1 < 1o, which transforms the Hamiltonian (5.1) in the following form:

(- V+D+HNoTP) =w.Y+D+Hy +Hs, (5.6)
where
(i) the map TP) is the time-1 flow of a quadratic Hamiltonian x1 = X"+ X such that [X}f"rjg% Lt
D™, 5 <<
(i) My =Mo"+ Hp e QO + Q% 5 and [Hhorj?/j1 2 [Hmjo/g1 . <e. Explicitly
( 69) mi,m (>‘39)
HIT (X0, a,a) = 2¢ o Ay ) G (5.7)
! D T et
[my|#|mal
+ 2¢ Z Qr_nl ()\, 9) a(ml7n)d(_7,L17n) (58)
m1,n#0
mix ~ w(© . 09@m1 mo ()‘7 9)
Hl (>‘a 0,a, a) =2 Z Re m2 + m2 + 2n2 A(my,n)(ma,—n) ) (59)
my,mg,n>0 1 2
where
my,meo ()‘ 9) Z LY )\i)\j ei(ai_gj) R (5.10)
1#g: m; —m; =m2—m1
Qi (X 0) := > VA el (5.11)
i#£j:m—mj=—2m
oy (N 0) = > VA e 100 (5.12)
4,71 mj+m; =ma+my
Note that Qg,, ., (A;0) = 0 if there exists no couple m;,m; € So such that m; + om; = my + oms.
(iti) My = HE" + HE™ e Q05" + QU 5 and [HE|f _, + [HE™|0) 5 <™.

(iv) One has Mo TP) = M and P o TP) = P.

Proof. Decompose H(®) = Hd128 31Ut where #4128 and HO" defined in (5.4)) respectively (5.5) are both
horizontal. We recall that H() does not have a line component. We use the method of the Lie series,
constructing the symplectic map 7(P) as the time-1 flow of a Hamiltonian y; of the form

X1 = X1 X
di — — — =
Xllag Z Xml,mz,n(/\; o)a(ml,n)a(mz,n) y Xmi,ma,n = Xma2,mi,n
my,ma,n#0 (513)

X(l)ut =2 Z Re(x;;,l,mg,n<)‘; G)G(ml,n)a(mz,—n)) .

my,mo,n>0

By construction xi"¢ = 0, so that y; Poisson commutes with any Hamiltonian F'"¢. This implies that

T(P) preserves the line component D" . Using formula (5.1) we have that
W Y+D+HN)oT®P) =w.Y+D
DU X} + HEE S H o Yoad G (514)
diag 1 diag 1 out . diag
+{H 7X1}+§{{D +W'y,X1}7X1}+§{H » X1 } (515)
RO XY T (xas YU+ HOM) 4T (xa; w - YV + DY) (5.16)
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Our aim is to reduce the order of H(9), to this purpose we set
i i 1 lag
{DUE xa} + HIE 4+ H 4 {w - Vo) + S, X1 =Z+R (5.17)

where Z is in the kernel of ad(D%#8) while R € Q?/%’hor + QOO _5 Note that x1, 2, R are all to be

determined. Writing (5.17) in Fourier-Taylor components, expllcltly we obtain for the diagonal part

l(m? - m%)x:nl,mg,n + HT?L1,m2 +w- aex;u,mg,n = 5(|m1" ‘m2|)z7711,m2 + R;u,mg

and for the out-diagonal part

({Hout dlag})ml,mg = R+

mi,mz,n

i(m3 +m3 4 20°)Xh, o + Hoos g + @ 00Xoh, mpm +

w\)—*

note that the last summand in the left hand side depends only on x~. A simple computation using the
fact that the diagonal coefficients of the matrix H42 are zero, i.e. Hy, ., = 0, shows that a solution is
given by

H_ w-0gH_
X = lQO_”;"jZ (m?2 _::277)7;2 s mal # [ma
my,mz,n ° 1 2 1 2 )
0, [m1| = [ma|
di
+ — HTtl mao ({Hout lag})mhmz
Xem mayn (m1 +m3 + 2n?) ’
Z=0,
H;llﬁmﬂ myp = —Ma
— (UJ : 69) H_
Ronvma =\ =z —mzyp -+ Il # Imal R man = 00X man - (5:18)
1 2
0 otherwise
diag

By construction x;'*® and R%22 are horizontal since their coefficients do not depend on n. We show now
that

{M,x1} =0, {P,xa}=0.

This follows immediately by remarking that H4#& and H°" commute with M and P and hence they
satisfy the selection rules of Remark 3.1l By the explicit formula for x; it follows that the same selection
rules hold for x;. This shows that item (iv) holds.

We pass now to the quantitative estimates. We define

X}for = (Xl)diag , Xxlnix = (Xl)out )

' we split it in two components by writing

In order to estimate y}°*,

hor hor hor

X1 T Xi1,-1 T X1,—2

LH, 0o H,
(Xlllorl) L {1"% ) |m1‘ a |m2| ( hor ) o {W 5 |m1| a |m2|
—1/mi1,ma - 9 my,m2 -

1,-2
0, |mq| = |ma| 0, [ma| # [ma| .

)

h h
We prove that X?,Oil c Q?o_,lor 510£2 c QOO7 or m1x QOD

, 351,20 X 39/4,3 with quantitative estimates

or or mix |O ia, ou
D100 1+ XA 0l o + X150, 5 < (HEEQ0 + [HO|T0) < . (5.19)

We begin with x}°";. By definition [kaoiljoo 1 is the |- |  norm of the Hamiltonian with Fourier-Taylor

—0
coefficients {<m1> Lmzz } Such coefficients are estimated by
mp
hor \—¢ |90 (m1) -t 190 -t 190
|<m1> Xloil)ml,mg c = m‘ m1,7'l2|(c < m17’”2 C
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since % 1 for |mq| # |mg|. Thus, by Proposmon 1y (iii), [Xllﬂojljoﬂ < |Hdiag| O,
1

s,—1

Consider now x}°",. By construction

o <m > 4] o
2 - 1
<m1> (X}11012)m16,77u c * | 2|2| ml,mg C |£|| ml,mg CO s
which implies that [}, JZ(5980/4,—2 < |Hdieg]| o

Finally consider . By definition, [XIf“XJS * 5 is the |~|OO norm of the Hamiltonian with Fourier-

Taylor coefficients {((m1)* + (n)°) IXHE |} We denote GEE = L({HOm, yding}) Bl and get

_ ()’ +<n> ) o
(<m1> +<7’L> )Xml,mg, |m +m + 2ﬂ2| ({ mlng C + |Gm1’m2 C )
Oo
< ([H e + 1G5 )

mi+mZ+2n2

since w < 1. Once again we get by Proposition (iil) that

fXT‘XJ§j4 5 < OO (L 2P E90,) < (OO0 (L + (1 00)

We have thus proven

We show now that hne 5.14]) belongs to Q?/%’hozr Q o2, 27 i.e. it is either horizontal and of order

—2 or of order —2. By the homological equation ([5.17] , line 4) equals
R = Rdiag + Rout _ Rflliag + Rgiag + Rout )
Rdlag {5 mi, _m2)H;L1,—m1} ) Rdlag =w:- a@X?,OiQ )

Rout =w- a@Xle {OJ . anTJ'?_’Ll,m27TL}

. . di . . .
First we estimate R{'*®. By momentum conservation, see Remark its coefficients are not-zero only

if 2my = —7(£) so [RY"8]50, , < |[HUee| Do,
Consider now R$€. One has [Rdlagjf/% _ [leofgj?i% < [Hding| o,
Finally consider R°“*. One has
out |O mix | O, ou
[R tJS/(; [Xl J3SO/4 5 < |H t|(9O .
Collecting all the estimates we have that
(R[9S, + [R% < [HOI <. (5.20)

Thus we proved that line (5.14]) belongs to Qf/;{j Qf/%

Let us now prove the same for (5.15)). The first term to con51der is
{Hdiag,Xl} _ {Hdiag7X}11,oil} + {/Hdiag,)(}foi } + {Hdiagaxrlnix} ; (5_21)

where we used that x1 = X}, +x}°, +x "™, We will prove that {H328, yhor 14 {#diag yhor } e 90l

$/2,—2
while {Hd1as \mix} ¢ QS 12,3 with quantitative estimates

2,—2
(R XA G o + HHIE AT o+ (R Y0y 5 < (M0 < (5.22)

First note that since both 728 and x'*® are horizontal, {Hdi8 X5om )+ {HYE xhor, ) is horizontal as
well. We pass to quantitative estimates. By Lemma we have

[{%diag hor2}Js/2 2 < |X}11,Oi2|3s/4 2 ‘Hdiagﬁ% <é. (5.23)
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Now {Hdldg xhor } is apparently only of order —1; however a direct computation shows that it is in fact
of order —

—, 41 —,l2 — — 0
({Hdine yhor We 3 Hoi g P ing 3 Honsina il my
) X1, mi,ma (m2 _ m2) (m2 — m2)
m3,01,€2 3 2 my, Ly ,Lo 1 4
£y +ba=L, mi—mg=m(ly) G 4lo=t, My ma=m (L)
mg—ma=m(L2) my—mg=mn(£L1)
fmg|#lms| [y | #lmy|
61 @2 - 22 — 21
_ Z Hml msHm's ma Hml my— m3+m2Hm1 ms+mao,ma
o 2 2 2
ms3.ty .o (m3 —m3) (m7 — (m1 —msz 4+ ma)?)
€1+£2 £, my—mg=n(ly)

3—mo=m(ly
\M3I#\m'z\ \M1\¢Im1 m3+ma|

= > H,:b H, b ( ! - : )
mi,ms3- T ms,ma 2 2 2 _ _ E 2
it : ' (m3 —m3)  (mi — (m1 —mg+mz)?)
L1+Lp=L, my—mg=m(L1)
mg—mo=m(ls)
Img|#|mal, |my|#|m1—mz+ma|

- _ 2 -t -2 ( 2(my —m3)

MMM (Mg — mg)(mg + ma)(2my — ms + ms))

mg,L1,40
@1+@2 =t, my—mg=m(ly)
—'m,2—7r(2 )
\m.3|7$\7n2\ [mq|#|mq —mg+mo|

Note that the conditions |ms| # |ms| and |my| 7é |my4| come from the definition of y{*8. By Remark

3.15| we may assume |£|,|¢;| < e{m1) (where ¢7 =2 max (|m;]) ) since otherwise we have an infinitely

smoothing term. We have
ms + mg = 2my +m3 —mq +mg —my = 2my —7(ly) — w({)

thus using also that |7(¢1) + 7(¢€)| < |m1| and |7 (£3)| < |m1| one deduce the estimate

2 — 2|m (¢ 2
<m1>2 |m1 m3| < ‘7‘—( 1)|<m1> < 2|’/T(€1)| )
|ms — mallms + ma||2my — ms +ma| — |w(l2)||2m1 — 7w(€1) — w(£)||2m1 — 7(€2)]
This implies that {#d28, X?ligl} € Qi"/fog with quantitative estimate
[ XA 1M gy < (IHT#8]00)? < &2 (5.24)

Finally consider {H%2¢ xP*}. By Lemma [B.20{7) one has

[{HY8 y mu‘}JS/2 5< |><’i‘"“"|35/4 L Mg 00 < 22 (5.25)
Thus estimate - ) follows from ({5.23 , 1
Consider now the last two terms of hne Substltutlng into

1 i 1 ia, ia, 1 ou ia, 1 ou mix
5{{Ddlag+w'y7xl}axl}+§{HOUt7X(1i g} :i{in gii{H tvxcli g}+R7X1}7§{H t7X1 }
1 . 1 ia ou
=*{X1,Hd‘ag}+*{{x‘f ©H xa (5.26)
+ = {R x1}+ (X, HOe Y (5.27)

The first term of (5.26) is the same as (5.21)), thus it is estimated by (5.22)).
Consider now the second term in (5.26). Using that H°"* is horizontal one decompose

di di di di Op,h
(O, MO X} = (O, O X (G 1O X e QO + 09

with quantitative estimates
diay u diay dia, u u
{OA™ A b A o + DA™ H P, 5 < (HIT)? <&° (5.28)

Next consider the term {R,x1}. By construction R = R428 4 Rout | — (198 L yout it} Rdiag \diag
horizontal. So

{RaX1} _ {Rdiag’xcliiag} + {Rdiag,xgut} + {Rout’xcliiag} + {Rout7x?ut}
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and the first term belongs to Q?/Z”hor while the last three belong to Q©° T and (5.19)), (5.20]) give the

quantitative estimates
[R5+ TRY X1+ TR W19 TR G HT _y= < - (529)
Finally we study {H°"*, x¥*}, which is easily seen to belong to QS /1’75 with quantitative estimate
[{HO“,;@“IX}J& s < 2. (5.30)
Altogether we have proved that (5.15) = (5.15 hor B 15)™* e Q?/‘i:}lo; + Q?/l, 5 With estimates

(EID)" 155, o + IBID™ ] 5 << (5.31)

In order to study line ([5.16]) we apply Lemma to By (X1§ Hdiag 1 ’HO‘“). We have

. hor : mix
r@ (Xl;Hdlag + rHout) Jf/%,_Q < 52, r@ (Xl;Hdlag + /Hout) JOo L < 82 )

s/2,—2

Now consider T3 (x1;w - Y + DU8). Write it as

—~ ia ad k w- Y+ Ddiag ad k—1 w-Y+ Ddiag’
G (x15w - Y+ DIo8) = 3 Ol - 1 _ D )"l . x1}]
k=3 ' k>3 :
_ Z ad(Xl)k—l[_fHdiag _ J{out + %{X(lfliag7 ,Hout} L Z4 R]
- Rl :

k=3

Again we apply Lemma to obtain
— i hor f— i mix
[(Txsw- Y+ D) 1% 4 [(Blusw- Y+ D59))™ % L <e?,
So far we have proved that
(- Y+ DYes 4 HO) o TP — .y 4 pliss 4 R 4 H

with 7 = F{hor + F{mx e QUL + QSZ 5 fulfilling

[Hhorjs/4 . I‘Hmlxjo/i 2<€2 )

The next step is to extract from the so obtained Hamiltonian the terms which are exactly of order e.
Obviously such terms can be contained only in R, so we extract from R the monomials of order exactly
€, which we denote by H;:

Hl = 8572\8:0 .

By formula (2.13)), it follows that

- i0; 3/2 o
qf%(@) _ \éfz\/xe +e& pm(a) ) m m; € SO , (532)
€ pm(e) ) m ¢ SO
thus
HypyN0) =2 >0 g% (0)3%,(0) (5.33)
ma3—mg4=mo—m7
=2 2 VAN €0 L 0(£2) (5.34)
iF£j: m—mj =ma—m1
and
HY oy (X60) = > a5, (0)32, (0)
mg+mg=ma+mi
—¢ > VAN e 00 L 0(e2), (5.35)

©,J: mi+m; =ma+my

Now we substitute such kernels into the expression of R (5.18]) and separate the terms of order ¢ which
define Hi. All the other terms define Hs. O
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5.1.2 Step 2: removal of Birkhoff non resonant monomials at order ¢

We begin with the following definition:

Definition 5.5. A monomial of the form €%“a®a’, |a| + |B| = 2 will be said to be Birkhoff resonant iff
w400 (a-p)=0.

In the next lemma we describe the monomials in the Hamiltonian #; (defined in (5.6)) which are
Birkhoff resonant.

Lemma 5.6. The following holds true:

(i) Consider a monomial €% a(m, n)amyn), Imi| # |mal, [€| = 2. Then the monomial is Birkhoff
resonant iff there exist 1 <i,j < d such that

mip =m;, M2 =M; , ﬁzei—ej. (536)

Such monomials have support in |, ., Son. Thus, the support of such monomials forms a horizontal

rectangle with two points in .

nez

(i) Consider a monomial eie'ea(mhn)d(,mhn), |¢| = 2. Then the monomial is Birkhoff resonant iff
there exist 1 < 1,7 <d, © # Jj, such that m; = —m;.
j

(i) Consider a monomial eie'ea(m17n)&(m27_n), |¢| = 2. Then the monomial is Birkhoff resonant iff

there exist 1 < 1,5 < d such that
mg =m; +mj —my , (mlfmi)(ml—mj)+n2=(), €=ei+ej. (537)

Such monomials have support in | J
point in Sg.

i<j Cij. Thus, their support form a rotated rectangle with two

Proof. (i) Obviously if holds, then the monomial is Birkhoff resonant. Assume now that the
monomial is Birkhoff resonant. We will use the conservation of mass and momentum as described in
Remark By conservation of mass ), ¢; = 0, which together with [¢| = 2 implies £ = e; — e;, i # j.
Now by conservation of momentum 7(¢) + m; — my = 0, which shows that m; — m; +my —mg = 0. Thus

0=w® 14+00 . (a-8)=w®. (e —ej) + m? —m? =n? m; + mj —mj

2
= 2(m; — my)(m; —mq) .
If mj = m;, then by momentum conservation m; = mg, which contradicts |mq| # |mq|. Thus m; = m;,

mo = m;.
(#7) By conservation of mass and momentum ¢ = e; — e;, i # j, m; —m; + 2my = 0. Then

O:w(0)~€+Q(O)-(a—ﬁ):mf—m? = (m; —m;)(m; +m;) .

Since ¢ # j, it follows that m; +m; = 0.

(744) Once again if holds, than the monomial is Birkhoff resonant. Assume now to have a
Birkhoff resonant monomial. By conservation of mass ), ¢; = 2, which together with |¢| = 2 implies ¢ =
e;+e;. Now the conservation of momentum reads 7(¢) —ms —mgo = 0, hence one has m;+m; —mq —mgy = 0.
Thus

0=w® £4+00 . (a—-8)=w® . (e +ej) —m? —m2 - 2n? =m +m; —m] —m3 — 2n>

= =2[(m1 —m;)(m1 —mj) + n2] ,
which shows the claimed condition. O

Remark 5.7. By the condition of arithmetic genericity of So (see Definition , one has m; # —m;
Vi, 7. Thus the monomials described in Lemma (i) are always Birkhoff non resonant.

In the next lemma we perform a canonical transformation which removes all the Birkhoff non resonant
monomials.
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Lemma 5.8. There exists an invertible symplectic transformation TB) . D(s/8,r/4) — D(s/4,7/2)
Vs0/64 < s < 89,0 < r < 1o which transforms the Hamiltonian (5.6) in the following form:

(W-Y+D+H +Ha)o TP =w- Y+ D+ 21 +Hy, (5.38)

where

mix Oo

(i) the map T B) is the time-1 flow of a quadratic Hamiltonian xa = x5 + x5 such that [Xgorjs/4 ot
1O
n™|% 5 <e.
(ii) Z is the Birkhof resonant part of Hy and has the following form: Z; = ZPor 4 ZMX where

Z?Or = Zihag = 2¢ Z Z \/)\i)\j ei(a'i_gj) a(mhn)(l(m“n)

n£0i%j
Zinix _ Zi)ut — Ae Z Z /)\i)\j Re(ei(9i+9j) a/(m,77,)a/(m7;+mj—m,—n)) ;

1<j (m’n)e(g;rj

where ‘5;; is defined in ([2.27). Note that Z0° is both horizontal and diagonal while ZI™ is
out-diagonal and supported only on the finite set €; ;.

) 47 — 44h 7/mi Oo;hor o 77hor |O 77mix | O 2
(iii) Ha = Ha™ + Hy™ € Q 8" + Qs/%,fi and [Hy* |5 o + [7—[5““‘]8/;’75 < e,

(i) One has Mo T®B) = M and P o TE) = P.

Proof. Once again we use the method of the Lie series. Thus we look for TB) as the time-1 flow map of
an Hamiltonian ys = Y38 + X3 to be determined. As in the previous step y2 Poisson commutes with
D'"¢. Then one has

W Y+D+H1+H)oTH =w- Y+ D

+{w- Y+ DY yo)l +H, (5.39)
+To(x2; w- Y + DIE) 1T (x2; Ha) (5.40)
+Hs o T(B) (5.41)

This time we fix x2 in order to remove the Birkhoff non resonant terms of 41, so we solve the homological
equation with w - Y + D418 (on the contrary of (5.17))). The homological equation is

{w- Y+ DY o} +Hy = 24

for some 2, Z; to be determined. We claim that we may divide y2 = x5°" + x¥* so that we can solve

the horizontal part of the equation and the not-horizontal separately, i.e.
{w . y + «Ddiag,xgor} + Hlllor _ Z{IOI‘ , {w . y + Ddiag’xgnix} + Hlinix _ Zinix ; (542)
with
hor |O ix|O
[X20rJ5/Z,_2 + [XIQmXJS/i_i <¢&.

In the first equation of (5.42)), remarking that H2°" is also a diagonal Hamiltonian, we make the ansatz
that Z°" and y4°" are diagonal as well. Passing to Taylor-Fourier expansion we get for the coefficients
{X;{f,m2,n} of x4°r the equation

i(w - €4+ mi = MmN man + (HE )i ms = (B1%) i s - (5.43)

mi,ma mi,msa

Now by the explicit expression of ! given in (5.7) we have that the Taylor-Fourier support of H" is
the set

supp(Hior) = {((ml,n),(mg,n),é) cA1<d,j<d,i#jst. me—mi=m—mj, {=¢e fej} .
By Lemma [5.6{¢) — (4), all the monomials with m; # m; are Birkhoff non resonant, thus using also that

4] =2
w- L+ m?2—m2 = w® 4+ m?—m2|-0®)>1/2, (5.44)
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and moreover such divisor does not depend on n. We obtain

(Z{lor)—,g _ {28«/)\1')\]‘ , M =m;, My =Mm;, ! = e; — ej (545)

e 0 otherwise
and h, l h, 4
or\—, _ or\)—,
-0 (Zl )ml,mg (Hl )ml,mg

Xmyman = i(w- €+ m?—m3)

It is clear that x5° e QS‘;’h_Og is horizontal and using also the estimate (5.44)) one gets
hor |O
[X20rJS/?1,,2 <e.

Consider now the second equation in (5.42)). By Lemma (#4i) the resonant monomials are those
fulfilling (5.37). Thus, using also the rectangle condition |(mj, 0)|2—|(m1,n)|?+|(m;, 0)|*—|(ma, —n)|? = 0,
we define for n > 0

(Zmixy .4 _ {26\/ Aidj,  (m1—m)(my —my) +n® =0, L=—e; —e,

mi,m2,n .
i 0 otherwise

and ) ) ) ,
(Z1")m — (M)

ma,ma,n my,m2,n

i(w - £+ m?+m3+ 2n?)

+,£
thmz,n

As in (5.44), we have the estimate of the small divisors

N | =

|w-£+m§+m§+2n2}2

: 3 faq mix Op
which implies that x5 € Qs/4,7§ and
[ IniXJOQ

= <€
X2 s/4,—2 <

Now remark that #; commutes with M and P and hence it satisfies the selection rules of Remark
By the explicit formula for y2 it follows that the same selection rules hold for xs, hence {M, x2} =0
and {P, x2} = 0 and item (iv) follows.

Now we analyze line . First one has that, since x2 = x4°" + X3, we can apply Lemma to

get ,
B O )™ I8 o< B G Ha)™ %5 <<

5/8,—2

Using that {x2,w Y + D88} = H; — Z;, one obtains

3 (X2;w Y+ Ddiag) _ Z ad(x2)*'[{x,w - ¥ + DI} _ Z ad(x2)*[H1 — Z1]

= k! = (k+ 1)
Since H1 — Z1 = (H1 — Z1)"" + (H1 — 21)™* we apply Lemma to get
e ia hor are ia mix
[(Ts(xs3;w - Y + DY28)) J?/%7—2 +[(B(xs3w - Y + DY) J?/[é,—i <.

Now consider line (5.41)). Using again Lemma (with i = 0) we get Hy := Hy o TB) = F{hor 4 Fymix
with the claimed estimates. O

5.1.3 Step 3: diagonalization of the Birkhoff resonant terms

In the final step we consider the resonant Hamiltonian in normal form w-) + D + Z; and we diagonalize
it through a transformation which is not close to the identity.

Remark 5.9. Due to our genericity condition we have that (m,n) € U; <16, implies that m ¢ Sy.
Moreover given (m,n) withn > 0 there exists at most one couple (i,k), i < k, such that (m,n) € €. In

the same way given (m,n) with n < 0 there exists at most one couple (i,k), i < k, such that (m,n) € ik
and consequently (m; + my, —m, —n) € ..
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We now perform a phase shift which removes the dependence on the angles in Z;.

Lemma 5.10. Consider the Hamiltonian (5.38). For all s0/2 < s < 80,0 < r < rq, there exists an
invertible symplectic change of variables R : D(s/8,e~*°r/4) — D(s/8,r/4): (Y+),0,b) — (I,0,a) s.t.

(W- V4D + Z)oR=w- Y + D+ Z (5.46)
where
A 0
D= 2 Qo lomm (5.47)
(m,n)eZ2\(Sou.LUE)
Zi= ), —witn?) Paaml® 2 3 VA b (5.48)
s iy
+ Z ( (m2 +n? - wi) |b(mm)|2 + ((mi +my, —m)? +n?— wk) |b(mi+mk,m7,n)\2 (5.49)
i<k, (m,n)e%”;rk
+ de/ A A Re(b(m’n)b(mierk,m’,n))) (5.50)

Furthermore the following is true:
(i) R is the identity on the variables in Z*\(.% U €), and on . U € is a phase shift.
(i1) MoR = M, PoR="P, where M and P are defined in [2:31).

Proof. We define the symplectic ['| transformation R : (Y(+),6,b) > (), 0, a) as

Vi = yi(+) - Z |b(m7¢,n)|2 - Z Z |bf|2 - Z Z ‘bJ_‘|2 )

n#0 i<k je(g;rk k<if€(€;;i

elfi b(mhn) m=m;, n#*0

elfi b(m,n) (m,n) € ngﬁc 1<k (5.51)

A(m,n) = : _ .
(m.n) el b(m.n) (m,n)e%ﬂi’k, i<k

b(m,n) otherwise

It’s a simple computation to show that R conjugates w-)Y + D + Z;, the mass M and the momentum
‘P to the claimed functions. O

Note that after this change of variables the dynamics of the action-angles (6,)), of D and of 21 is
decoupled.

Lemma 5.11. There exists o > 0 depending on so, max |m;|P and an open set Oy such that for all
80/64 < s < 80,0 < r <1 and for any A € Oy there exists a linear invertible symplectic transformation
U : D(s/8,0r) — D(s/8,e%or/4) of the (a,Y,0) — (Ua,),0) which depends analytically on \ and
transforms the Hamiltonian in the following form (we are calling the variables Y, a again):

(W-YPD 4D+ Z)old =w-Y+D+Z 10U =w-Y+D(\e) (5.52)
where

(i) U = diag(U,) where Uy, acts non trivially only on (% v €) n {(m,n),(m,—n)}tmez and is the
identity elsewhere. The U, depend analytically on X and satisfy bounds of the form

[P, [ (Un) 7P < 1.

a simple computation shows that the symplectic form in the new variables is given by

7

Ay ado+i Y dbimny A dbm,n)
(m,n)eZ2\Sy
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(ii) D(\€) is the diagonal Hamiltonian

Dhe)i= > GA)lad> + ) Qn(Nam,o)) (5.53)

JEZA\Z meZ\So

where the normal frequencies ﬁj()\,s) are defined in (2.37) and Q.. () in (4.10).

(iii) Hy := HyoRold = HET+HE™ e QUL +Qf/18 5 with the bounds [Hy| % 2+[7—Lh°fjf/18 L < e,

(iv) One has Mol =M and Pold =P.

Before proving the Lemma, we discuss some basic fact on normal forms for quadratic Hamiltonians.
Let z = (z, ) be a finite dimensional phase space -say of dimension 2k- with respect to the Poisson form
idz A dzZ. Let z = iAz be a linear Hamiltonian system corresponding to the real Hamiltonian

1 _
Q= 5(z, JtAz)eR, ATJ=—JA, EAE=-A, (5.54)

0 I 0 Id
J:(Id 0)’ E:(Id o)

and (+,-) is the real scalar product. Assume that the eigenvalues of the matrix A are distinct, real and
different from zero, say +aq,...,+ar. Then by the standard theory of quadratic normal forms there
exists a symplectic matrix U which diagonalizes A and preserves the real structure:

where

U AU = D = diag(ay, ...,ax, —ay,...,—ay), UTJU=J, EUE=U.

Consequently U : w — Uw = z is canonical with w = (w, @) and

k
Qo = ajlwi|*.
i=1

Finally, since the eigenvalues of A are distinct, U depends analytically on the matrix elements of A.
We now specialize this normal form result to block diagonal Hamiltonians. Recall that a Lagrangian

subspace is a subspace which coincides with its symplectic orthogonal, i.e. W = W<, In particular it

has dimension k.

Let z = (2(M, 2(?) with

(1) _ o1 o2 Ok (2) _ —0o1 ) —O0k\ __ —(1) + _ . - _ .
z —(zjl,zj2,...,zjk), z —(zj1 TR )=12Z where 27 = z;, 2; = %;
be a Lagrangian decomposition, namely with Span(z"lz;”, ceey zj:) a Lagrangian subspace. We write

all our matrices in terms of this decomposition; so for example setting ¥ = diag(o;1) we have

0o X 0 Id
J_(—z o)’ E_(Id 0)'
Assume that A = diag(A™M), 7/17(1)) is block diagonal w.r.t the decomposition. Then U is block diagonal
as well, namely U = diag(U(l), U(l)). Now the fact that U is symplectic reads in the block decomposition

that UM is orthogonal w.r.t. ¥ i.e. (U(l))TEU(l) = Y. We are interested in a simple consequence of
this fact. Define

1 (1d 0 W
Qo = i(Z’J (O —Id> z) = Re(zV, 2 zV) (5.55)
Then using the orthogonality condition (UM)TLUM) = 3 we have
Qy = Re(2(1)7 (U(l))Tzﬁ(l) 5(1)) = Re(U(l)z(l), ) U(l)g(l)) =Qyold

i.e. for any block diagonal symplectic i we have Qg ol = Q.

We wish to apply this theory to Z,. We shall show that Z; is the sum of non-interacting quadratic
Hamiltonians of two types.
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(Type I) The first type has dimension 2d with Hamiltonian

d
Q1 =K ) |ai|* + (2, M2) (5.56)
i=1

with K some real number and M () := (M;;(N));,; given for any 1 <4,j <d by
Ai s i=]
20/NNj, i#EG

It is easily seen that this Hamiltonian is block diagonal w.r.t the Lagrangian decomposition with
21 = 2 moreover the first summand in (5.56) is the invariant Hamiltonian Qg while the second
summand corresponds to a Hamiltonian as in ((5.54) with matrix A = diag(M, M).

(Type IT) The second type of Hamiltonian has dimension 4 and is block diagonal w.r.t the Lagrangian de-
composition z() = (21, Z3), with Hamiltonian

N 0

1
Q2 = K(|a1f* — [22?) + 5 (2,7 Ba), B=<0 o

> . NeGLy(R) (5.58)

As in the previous case, the first summand in ([5.58)) is the invariant Hamiltonian Qyq -recall that now
¥ = diag(1, —1)- while the second summand corresponds to a Hamiltonian as in ([5.54)) with matrix
A = diag(N, N). We shall show that this type of Hamiltonian appears for each 7= (m,n) € €.,

by identifying 21 = 23,22 = 27 where 7= (m; + mp — m, —n). In this case K = m? — m? + n? while

AN 2N
N =N, A i= (NW o k) (5.59)

Lemma 5.12. (i) The characteristic polynomial of M (X), P(t,\) = det(tI— M (\)) coincides with (2.38))
and is irreducible over Z[t, A1, ..., \q]. Consequently the eigenvalues of M, which we denote by p;(\) are
distinct algebraic functions of X homogeneous of degree one.

(i) Consider any open domain contained in a single connected component where all the eigenvalues pi;(\)
are distinct. In any of such domain there exists an orthogonal matriz Uy € O4(R), depending analytically
on X, such that

Uz — (Up2,U12) = (w, )

is symplectic and for any K we have

d d d

Qiolh = YK+ mW)|wil*, Qoolh = Y |zl oth = Y Jwil* .

=1 i=1 i=1

(iii) The characteristic polynomial of N (i, Ax), Q(t, Ai, Ax) = det(tl — N(A;, M) coincides with ([2.39))
and is irreducible over Z[t, A1, ..., Aa]. Consequently the eigenvalues of N, which we denote by ;. (A)
are distinct algebraic functions of A\, A\, homogeneous of degree one.

(iv) There exist open connected domains in which u:fk()\) are real and distinct. In any of such domain
there exists a matriz Uy € O4(R) such that

Z/{2 L Z = (Z(l),z(l)) i (UQZ(l),ng(l)) = (wl,’lf)g,lbl,’LUQ)
is symplectic and for any K we have
QyolUy = (K + pf (M) wr | = (K + pi e (W) |wal?,  Qoolhy = (|21]* — |22]?) o Us = Jwn |* — [wy .

Proof. (i) The fact that det(tI — M ())) coincides with is a direct computation. In order to prove
that P(t,A) is irreducible over Z[t, A1, ..., Aa] < Q(A1, ..., Aq)[t] we proceed by induction on d. If d = 1
the statement is trivial. Now let us suppose that it is true up to d = N and prove it for N + 1. We
consider the polynomial

N+1 N+1
Py, N) = [Tt+x) =2 > x [Jt+x)
i=1 i=1 ki
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and specify to Ayy1 = 0. We obtain

N N
Prnit(t M.y AN, 0) = t( (t+ ) -2 n [+ )\k)) =t Pxn(tA1s- s AN)
=1

% i=1 k#i

and by the inductive hypothesis the second factor is irreducible. Assume by contradiction that Py is
not irreducible: then it must factorize a linear term of the form (¢ — cAy41). Note that ¢ is a number,
this is due to the fact that Py, is homogeneous of degree N + 1 in (¢,\) and Py is homogeneous of
degree N. We repeat the same argument specifying to \; = 0 and obtain a contradiction. Indeed we
would have R R

PN+1(t, A) = (t - ClAN+1)P1(t, A) = (t - CQAl)PQ(t’ )\)

with ]31, ]32 irreducible. Now this equality can hold only if (¢t — ¢c;Any1) divides ]32 which is impossible
by the irreducibility.

Now remark that for a polynomial with coeflicients in a field with characteristic 0, a sufficient condition
to have distinct roots is the polynomial to be irreducible. Indeed if there were a double root then f(t)
and f’(t) would have a common divisor, thus contradicting the irreducibility. Hence the eigenvalues
of the symmetric matrix M are distinct (and obviously real for positive \) outside a finite number of
algebraic surfaces. Since M is homogeneous of degree one then so are the p;(\).
(ii) In order to conclude our proof we restrict to a connected component which does not cross any surface
where two eigenvalues coincide. Then we apply the theory of quadratic Hamiltonians as described above.
(iii) The irreducibility can be verified immediately by computing the roots of Q(t, A;, A\x), which are given
by

X = A — A2+ A — 1A\, X = A+ A2+ A — 1A N,

HE) = . O ; (560

(iv) We restrict A;, A\ to a region where we have 2 distinct, real eigenvalues. To this purpose we impose
the condition Tr* N(\;, \) > 4det N (\;, ), which is equivalent to

Ak — M)k —eXi) >0, ¢ = (5++/21)/2.

This selects two conic regions of parameters \;, A\x. In each such region we may apply the theory of
quadratic Hamiltonians in order to obtain our result. O

Proof of Lemma [5.11. We first notice that 13, ZAl depend on different variables and hence do not interact;
in the same way, due to our genericity condition, the first line in 2, see , does not interact with
the second and third one, see (5.49))-(5.50). Finally (5.48)) is the infinite sum over n # 0 of the finite

dimensional Hamiltonian:

Z (Inl2 —w; + n2) |b(m71,n) ‘2 + 2¢ Z V2. b(mi,n) B(mk’n)

1<i<d 1<i,k<d, i#k
nez\{0}

supported on the Fourier indices

S = U&m )

Since m? — w; + n? = e)\; + n? the Hamiltonian above is of type I, see (5.56), we just identify 2 =
(b(ar,n)» O(ma,n)s - -+ 5 Omek,my) for all n # 0 and fix K = n?. Regarding (5.49)-(5.50) we have Hamiltonians
of type II, see (5.58). Indeed for each J = (m,n) € 4, we identify 21 = 2320 = z; where J =
2

(m; +mp —m, —n). In this case the coefficient K = m? —m? + n?. In conclusion D+ ZAl is block diagonal
with respect to the blocks

{ZQ\(y U U SO)} Un>0 yn Ui<k %,k-

We consider an open connected region in Oy where the eigenvalues p;(\) are distinct and for each i # k,
the eigenvalues u;fk(A) are real and distinct. Such a region exists and is the intersection between Oy and
a cone due to Lemma[5.12] Now we may choose a compact domain O strictly contained in a connected
component of the open cone and define

7 < distance between O; and the border of the cone, (5.61)
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so that

/{Telgll (\MZk(A) — 1% N (N = 1 V] s () = Mi’()‘>|) > (5.62)

for any choice of the distinct eigenvalues.

In O; the changes of variables U; (A) and (Ua(N;, Ag))i<k of Lemma are well defined, analytic and
we may estimate U;, O\U; by Cauchy estimates (recall that U; and ¥ are e independent). We are ready
to define U, which is a block diagonal matrix with respect to the blocks

(Z\(F U E U S)) Unzo In Vick G-

On the first block U is the identity, on each block .¥, it is the matrix U; of Lemma on each 4x4
block 7= (m,n) € %fk, J = (m; + mp —m, —n), the matrix U coincides with the matrix Uz(X;, Ax). We
have proved items (i) and (ii). Regarding item (iii) we only need to bound the norm of R and U together
with their A derivatives. The bound on R is trivial, as for the one on U it follows by our definition of
01.

Finally we prove item (iv). Clearly M olU = M since this functions does not depend on the vari-
ables (by)e.»~%, as one sees inspecting formulas . Regarding P, and 75,/ we notice that they are
decomposed in the same blocks as ZAl:

ﬁz = Zmiyi + Z m |b(m,n)|2 + Z (m - mi) ( |b(m,n)|2 - |b(mi+mjfm,fn)|2) 5
i (m,n)eZ2\(F S0 UB) i<k (o),

Py = Z n|b(m,n)|2 + Z n Z |b(m7n)|2 + Z n( |b(m,n)|2 - |b(mi+mjfm,fn)|2) :
(m,n)eZ?\(F uSou?) n#0  (m,n)eSn i<k,(m,n)6(g:k

On the first block U acts as the identity. On each block ., U acts as U; and moreover 7530 is null on
this block while P, is proportional to the invariant Hamiltonian Qg = ijl |b(n;,ny 2. Finally on the last

blocks U acts as Us and 751, 75y are both proportional to the invariant Hamiltonian Qg (recall that these
blocks are of type I and hence Qy = |b(.n)|* — 1D (m; +m;—m,—n) |2, see formula (5.58))). Finally we rename
the canonical variables (), 6, a). O

Remark 5.13. The fact that the eigenvalues of N(\;, Ai) might in principle be imaginary shows that the
tori containing the family of the finite gap solutions might be linearly hyperbolic, hence linearly unstable.
Here we want to rule out such behavior.

Proof of Theorems[5.1] and[5.3. We just apply Lemmata [5.4] 5.8 [5.10] and [5.11] O

6 Non-degeneracy of the Hamiltonian D(), ¢)

By Theorem the quadratic Hamiltonian w - Y + D + H(® is now reduced to a O(e?) perturbation of
the diagonal Hamiltonian w - J + D(A, €), where 75(/\, g) is defined in (5.53).

In this section we prove that we can impose second and third order Melnikov conditions on the frequencies
Q5(\, ) of the operator D(A,e). Now we have the following lemma:

Lemma 6.1. Let ﬁj(k,s) be defined as in (2.37)). For a generic choice of Sy the following holds: for
each admissible (j,0,0) # ((7,7),0, (01, —01)) in the sense of Definition[2.7 one has

w- €+ 0195 (N €) + a8y, (N, e) 0, (6.1)
in the set Oy of Theorem [5.1]

Proof. Without loss of generality we may assume that o1 = 1 and set 0o = ¢ and J; = (m;,n;) for
i =1,2. In the expression (6.1]) we separate the terms of order " and &:

w- L+ Q5 (N e) + 0y (N e) =K, + eFT,(N) (6.2)

where we denote by Ky, the part of (6.2)) which is of order €° and by F}TZ(A) the part of order €. Explicitly
K.?:f =w® .2 + Qfl (>‘7 0) to ﬁﬁ (/\7 0) (6.3)

7o) 1= 0. (w) - £+ G5, (0 2) + 05,0 9))

= AL+ 05(N) + 005 () (6.4)

e=0
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where K{, is an integer while the functions ¥J;(\) belong to the finite list of functions

50 € {(iizar (E(A)1sicnsal.

Clearly in order for the resonance (6.1)) to hold identically, we must have Ky, = F{,(A) = 0.
Remark that 7; and 75 can belong to either Z2\(So U . U %), or ., or € and all the possible com-
binations are possible. Thus we perform a case analysis and show that, however one chooses admissible

(31, 72), ¢4, (01,02)) # ((7:7),0, (61, —01)), the function (6.1) cannot be identically 0.

1. 71,72 € Z\(Sop v ¥ U €). In this case F7,(A) = —A - £, which is identically zero iff £ = 0. The
conservation of mass and momentum reads

n)+1+0c=0, 7l)+mi+ome=0, ni+ony=0. (6.5)

Since ¢ = 0, the first equation above fixes ¢ = —1 and the other two imply 71 = 75, which is the
trivial case we excluded.

2. heS Joel\(Sou S UE). We have
To(A) ==X L+ pi(A) forsomel <i<d.

This expression may be identically zero only if for some 1 < i < d and some ¢ € Z2 one has
1i(A) = X - L. Since by definition 4;()\) is a root of P(t,A) (defined in (2:38)), we would have
that (£t — A - £) € Z[t, A1, ..., Aq] would be a divisor of P(t, ). However by Lemma [5.12] P(t, \) is
irreducible in Z[t, A1, ..., Aq], and we have obtained a contradiction.

3. 1€ ‘Klik for some i < k, 7o € Z?\(Sp u & U €). We have
Te(N) =—A-€+u;fk(A) for some 1 <i<k<d.

This expression may be zero only if for some 1 < i < k < d, s = + and some ¢ € Z¢ one has
i x(A) = A - £. But in this case the polynomial (¢ — A - £) € Z[t, A1, ..., Aq] would be a divisor of
Q(t, i, Ag) defined in (2.39)), which is irreducible by Lemma We have obtained a contradiction.

4. 1,7 € <. W.lo.g. we may assume that m; = m; and ms = mg. By conservation of mass and
momentum of Remark

77(@ = 07 7(([) = Oa niy + ong = 0. (66)
Then we have K{, = w©® . ¢ 4 (1 + 0)n? and finally
ToA) = =X+ pi(N) + ope(N)

As usual assume that is identically 0. If £ = 0 then XY, = O implies 0 = —1. Then
F7y(A) = 0 iff p1;(A) = px(A). By the irreducibility of P(, A) this may hold only if i = k and hence
mi1 = me = m;. Since ni = no this implies 71 = 75, which contradicts the assumptions.

Now suppose £ # 0. Then F{,(\) = 0 iff p;(A) = —opuk(A) + A £. This means that p(A) is a root
both of P(t,\) and P(—ot + A - £, A), so the two polynomials have a common divisor. We claim
that P(—at + X - ¢, \) is irreducible over Z[t, A1, ..., Aq]. Indeed, suppose that

P(—ot+ A-£,\) = Pi(t,\)Pa(t, A)
then setting 7 = —ot + A - £ we would have
P(1,A) = Pi(—om + oA - L, \)Pa(—oT + oA - L, N)
but this contradicts the irreducibility of P since Py(—o7 + oA - €, A) € Z[t, A1, ..., Al

Now in order for P(t,A) and P(—ot + A- £, A) to have a common divisor they have to be equal (or
opposite). Since ¢ # 0 and n(¢) = 0 then X - £ depends on at least two variables, say A1, Ao. We
specialize the equality P(t,\) = sP(—ot+ A-{,\), s ==+, to A\; =0 for all i # 1,2 and get

(—ot+ A0 2[(—at + AL+ M) (=0t + AL Ag) — 2X1 (—0t + A~ L+ Ag) — 2hp(—at + AL+ \;)] =
St + M) (E+ A2) — 201 (E+ A2) — 2Xa(t + A1) -

Equating the leading terms we get (—o)® = s, then from the subsequent degree
()TN L= (M + X)) = —(—0) A+ Xo) = 20N-L=(1+0) A+ X)),
which is not compatible with n(¢) = 0, £ # 0.
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5. 1€% ,jpe. Wlog. assume that 1 € ¢ for some 1 <i <k <d, s ==, and my =my, for
some 1 < h < d. In this case

To(A) = =Xl pi p(A) +opn(A)
Assume that F{,(A\) = 0. Then we would have
1o (N) = —on(N) + A £

which means that P(¢,A) would have p,(\) as a common root with Q(—ot + X - £, A;, Ag). Since
both polynomials are irreducible (one can prove the irreducibility of Q(—ot + X - £, \;, i) as we
did in 4.), then they must coincide up to a scale factor. This is absurd unless d = 2. In this last
case we can verify directly that the two polynomials never coincide.

6. 71,72 € €. W.l.o.g. assume that j;, € ‘K.S:kr forr=1,2and 1<, <k, <d, s, = +. We have

TeA) = =Xl ! (N) + ol (A)

i1,k1

so that F{,(\) = 0 would require

“fll,kl AN=A-L—- auf;b (A).
This is trivially false if (i1, k1) # (i2, k2) (one just remarks that the square roots in formula ({5.60))

cannot cancel out). If (i1, k1) = (i2, k2) we divide two cases. If £ =0, p5 , (\) = —op;? () can
happen only if ¢ = —1 and so = s;. By conservation of ﬁy we have n; = ng and by conservation
of P, we get (mq —m;) — (ma —m;) = 0, which implies m1 = my. Hence 7i = 75, which is a
contradiction.

If £ # 0, for the square root to cancels identically we must have 0 = 1, s; = —sy and A- £ =
—(Ai; = Ak ). Then 71, 7> are on the same circle %, x, and by conservation of P, we have n; = —ns.

Since both 71 and 2 are on a circle, this implies that either m; = mz or they are on the opposite
sides of a diameter, i.e. m; +mg = m;, +m;,. But by conservation of P, we get

0= (-my, +mg, )+ (m1 —my,) + (M2 —mg,) = my +mg — 2m;,

and in both cases we get contradictions.

We pass to third order Melnikov conditions.

Lemma 6.2. There exists L € N such that for a L-generic choice of Sg the following holds: for any
(§, ¢, o) € As\R3, i.e. admissible and non action preserving in the sense of Deﬁm'tz'ons we have

W) L+ 0105, (N €) + 02Q5, (N, €) + 0385, (A, ) £ 0 (6.7)
in the set O1 of Lemmal5.11]

Proof. As in the previous proof we set

wA) L+ 018, (N ) + 0205, (N, €) + 0305, (A, ) = KT, + eFF () (6.8)
where K, is the term of order 1 and F{,()) is the term of order e. Explicitly
K7, i= w0+ 0195 (X, 0) + 02 Q3 (X, 0) + 0395 (A, 0) (6.9)
7o) = 2 (W) - £+ 018 () + 028, (0, 0) + 03l (0,9))| (6.10)
==X L+ 0195 (N) + 0295, (N) + 0395, (N) (6.11)

As before K{, is an integer while the functions ¥7(A) belong to the finite list of functions

90 € {i)iiza, (15, N)1<ickealf
Clearly in order for the resonance to not hold identically, we need to ensure that
K/, =0 and F{,(\)=0 (6.12)
cannot occur for (j, ¢, o) admissible. As before we study all the possible combinations, each time we

assume that (6.12)) holds and we deduce a contradiction.

41



Do

3.

4.

(¥

T ey 13 € ZP\(So U U €). Then F{,(A) = —\- £ is identically 0 iff £ = 0. However by mass

conservation 7(¢) is odd hence ¢ 5 0.

T eZ\(Sou S UE), T3 € L. Then F7)(A) = —A-L+ 03 pi(A) for some 1 <d. IfF{,(\) =0
then u;(\) = o3\-£is a root in Z[\] of the polynomial P(¢, A) defined in , Wthh is 1rreduc1ble
over Z[t, A1, ..., Aq] (see Lemma E, thus leading to a contradiction.

T €Z\(Sou .S UE), 73 € €. Wlo.g. assume that J3 € ), for some 1 <i <k <d,s=+.
Then
37:[()\) = —)\ . £ + g3 Mf,k()‘) .

If F" (A) =0, leo\) = o3\ - £ is a root in Z[t, \;, \] of the polynomial Q(t, \;, A\r) defined in
, which is irreducible over Z[t, \i, M) (see Lemma[5.12)), thus leading to a contradiction.

T, €S, Bel\(Syu S uE). Wlog. let 71 = (m,n1), 7o = (mg,ng) for some 1 < i,k <d
Then
;'g()\) =-\-{+ 01 ‘LL1(>\) + UQ[JJ]C(A) .

By conservation of mass 7(f) = £1, thus £ # 0. Assume F{,(A) = 0. Then ux()\) = —o1020;(A) +
o2 A-£. This means that P(t, A) has p;, (A) as a common d1v1sor with P(—oy0at+02A-£). Proceeding
as in case 4. of the previous proof one gets a contradiction.

LT, eE, 37\ (Sou.S UE). W.lo.g. let 7, € ‘ffk for some 1 < i, <k, <d,s.==+,r=1,2.

Then
;’[<>\) = —>\ . f + O'LLL::,kl ()\) + 0'2/[;227162 ()\)

By mass conservation 7n(¢) = £1, hence £ # 0. Then F{,(\) = 0 would require
Hit gy (A) = 01A L —oro2p157 1 (A)

This is trivially false if (i1, k1) # (i2, k2) (one just remarks that the square roots in formula (5.60)
cannot cancel out). If (i1, k1) = (i, k2) then by the explicit formula (5.60) we obtain

)‘h — )\kl

=-\-L+ (01 +09) 5

\/)\2 + 02— 14h M,
0'1 S1 + 0'282 .
2
If 0151 + 0282 # 0 then we get a contradiction since the root cannot be canceled identically by a
linear function. If o151 + 0952 = 0 and o7 + 05 = 0, we also get a contradiction as £ # 0. Thus we
are left with the case o1 + 0o = +2, which implies 0 = —\ - (¢ £+ (e;, — €;,)). This can hold only if
¢ = F(e;, — e;,). But for such £ one has n(¢) = 0, contradicting the mass conservation.

.316Z2\(80u5’u(5) e S 3 e €. Wlog let 5 = (m,,ns) for some 1 < iy < d,

73 = (mg,n3) € Cg’bg,?:k:g for some 1 < i3 < k3 <d, s3 = +. Then
ToA) = =X L+ oapiy (N) +o3pg? (A)

Assume that F{,(A) = 0. Then p;,(N) = —oa03;% , (A) + 02X - £. Thus 77, (A) is a root of
Q(t, Mg, Aicy) and of P(—oq03t+a9X-£,\) € Z[t, M1, ..., \¢]. But both polynomials are irreducible,
thus they must coincide up to a sign. This is absurd unless d # 2. In the last case we can verify
directly that the two polynomials never coincide.

T3 €. Wlog. let 1 = (mi,,n1), 72 = (mi,,n2), 75 = (mi,, ng) for some 1 < iy,i9,i3 < d

and ni,ng,n3 # 0. Then
:Z(A) =—-A-Ll+ 01 iy ()‘> + O2f4i, <>‘) + O3y ()‘) :

Assume FEZ(A) = 0. This fix £(:9) € Z¢ uniquely, i := (i1,i2,43). By conservation of P, we have

Dk mkél(;’a) = 0. If ¢(:9) =« 0, such expression defines a hyperplane v(:?) = C¢, which depends
just on the functions p;(A). By taking all the possible (i,o) (there are only a finite number
of possibilities!) we get a finite number of hyperplanes. Then it is enough to choose the sites
(mk)1<k<a outside the set | J; .. v(:9) (remark that the z;(\) do not depend on the sites (my);<p<a,
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see Remark [2.11). In order to impose such condition we only have to choose in the L-genericity

condition 2.28}

L > max [£{"7)].
kio

Now assume £(9) — 0. In this case we are not able to prove that Fj'r,e()‘) #£ 0, however we show

that in such case K{, # 0. Assume the contrary. By conservation of 75y we have 22:1 oxng =0
and furthermore 0 = Ky = o1n? + oan3 + o3n3. Exploring all the possible choices of a1, 03,03,

one deduces that at least one among ni,ns, n3 must equal 0. But this is impossible.

8. 71,72,13€%. W.lLo.g. let 7. € (ffr for some 1 < i, <k, <d,s.==4,r=1,2,3. Then

A A _81\/)\2_,_)\2 140, e, _ —32\/)\24—)\2 14X, Ak,

+(72

TN =—-A-l+ o

he — 33\/)\?3 + A2, — 14 A,

+03

Assume F{,(\) = 0. Assume first that (i1, k1) = (i2, k2) = (i3, k3). Then there is an odd number
of roots 1n ‘the expression for Fy +(A) and thus they cannot cancel identically.
Otherwise there is a couple of 1ndexes which appears just once. Assume it is (i1, k1). Then specify

to A\i; = Ak, = 1 and all the rest at 0. Then the first root, namely \/)\?1 + AL, — 14N Ay, is

complex, while all the others terms are real. Hence F{,(A) cannot vanish identically.

9. 1,10 € S, 75 € €. W.lo.g. let 1 = (mjy,n1), Jo = (my,, n2) for some 1 < iq1,io < d and J3 € %Z;kd
for some 1 < i3 < k3 < d and s3 = +. Then

ToA) = =Xl + orpi (A) + 0apiiy (N) + 353, (A)

Assume F{,(A) = 0. Specify all the A-depending functions to E := {\ € Cd: X\ = 0 for any i #
iz, k3}. Then p;, (M| g, wi,(N)| g are roots of

Pt Mg =P(t,0,. .., Xy, 0,0, Apgy -0, 0) = 772 (2 — (Niy + Mg )t — 3hig Aky)

and thus belong to the set

N+ Mk 402, X2, + 14N A,
2

0,

Thus we get three cases:
o piy(N)|E = pir(A)|p = 0, thus
Y (NI E = =ANiglis — kg Uiy + 03152, (A)
Then one proceeds as in 3. to get a contradiction.

e uiy(N|e =0, pi,(N)|p =3 (Ai3 + Ay £ \/)‘1‘23 + AL+ 14)\i3)\k3). In such a case

N+ Mo + 24X, + A2, + 140 g
)

)\ia - )‘kg - 53\/)\123 + )\%3 - 14)‘13)\k‘5
)

But the roots cannot vanish identically, since they are different, hence we exclude such a case.

o 1 (Mlp = 1 (Nle = 5 (N + g £4/2%, + 22, + 1405, A, ). Thus

;Z()‘)lE = _)‘iaé’is - )‘k3£k3 + o2

+ 03

A7 AR, LA A
2
Nia = Mg = say /N + A2, — 14N M,
)

/\1‘3 + /\1€3
2

.:e()\”E = —/\1‘3&3 — /\k3£k3 + (0’1 + 0'2) + (0'181 + 0'252)

+ 03
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One checks directly that however one chooses o1, 02,03, s1, S2, 83 the roots cannot vanish
identically.

10. 71,2 €€, 73 € . W.lo.g. letj;ecfsfkr for some 1 < i, < k. <d, s, =+, r = 1,2, and
75 = (mj;,m3) for some 1 < i3 < d. Then

TN ==Xl opgly, (N) + oapgy, (A) + osp (A)
Assume F{,(A) = 0. We study different cases separately:
o if (il,kl) = (’ig,kg), then

37,130\) =—-X-L+ (Ul + UZ)T 0'151 + 0'282

. \/v + 02, — 14A A,
2 + O3y (A)

Now if 01581 + 0989 = 0, we are reduced to case 3., thus we have a contradiction.

If 0181 + 0282 # 0, we specify to A\j; = A\, = 1, Ay = 0if ¢ # i1,k1. We obtain that

ImF{ +(A) # 0, hence it does not vanish identically. Indeed p;, () for A > 0 is an eigenvalue

of a belf-adjomt matrix, and thus it is real.

o if i9 =141, ko # k1, then as before we put A;, = A\x, = 1, all the other \; = 0. We obtain that
ImF{,(A) # 0, hence F{,(A) does not vanish identically.

o if iy, ko are both different from i1, k1, then once again we we put A;; = Ag, = 1, all the other
A; = 0 and proceed as before.

O
Remark 6.3. For any 71,7 with |mi| > |ma|, YA€ Oy, Ve < &
o 5 lma| , if |my| > maxi<r<a [my
|Q(m1,n)()‘7 5) - Q(mg,n)(/\7 5)‘ = - . (613)
ey, if |m| < maxi<r<a [mk]
(see formulas (5.61)), (5.62) ) while
m? +n? if |my| > max;<p<q [m]
1m0,y (A ) + Qg —my (A )| = { ) . (6.14)
n if |m1| < maxi<p<a Mk
We conclude the section with the following lemma; first let us fix My = Mo(O1, ) as
Mo := Z ()]t + Z |Uzk
1<i<d 1<i<k<d
) * (6.15)
+ sup —2(sup | (-, €)|Cr + 2[ﬁ(0’hor)J 9+ 2[7-[(0 mix JO1 5) )
e<eo €7 \mez 8=
We have the following
Lemma 6.4. There exists v1 > 0 (independent of €) and a compact domain C. < Oy s.t.
min inf |F{,(A\)] =7 >0. (6.16)

|€‘<4M0, jo AEC:N O,

Proof. For each j,{,o the function Fy ,(A) is a Z-linear combination of algebraic functions, thus it is
algebraic. Furthermore F{,()) is homogeneous of degree 1 (see Lemma , its zeroes set is a union of
a finite numbers of algebraic surfaces of codimension 1. By homogenelty, such surfaces are in fact cones.
Note that outside these surfaces, the eigenvalues p;(\) and p;- k()\) are distinct . As in the construction
of Oy, each equation F;g()\) = 0 divides Oy and O; in a finite number of distinct open cones in which
F7,(A) # 0.

Since we consider just a finite number of distinct, non zero, analytle functions F;’ (M), any compact
domain C, strictly contained in O; satisfies an estimate of type (6 with some 9 > 0. We just need

to fix v1 < Jo,7 (see formula (5.61)). O
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7 KAM algorithm for the reducibility

In the previous section we have reduced the original Hamiltonian to the normal form

He=w Y+ Y Qlaf2+HO + HO + HED (7.1)
_TEZQ\SO

as described in Theorem The aim of this section is to put the Hamiltonian H® to diagonal form
with a KAM algorithm. We prove the following result:

Theorem 7.1. Assume that Sy is L-generic (in the sense of Deﬁm’tion with L fized in Lemma .
There exists a v, > 0 such that For all 0 < vy < 7, there exist 0 < e1(y9) < €g s.t that the following
holds true for all 0 < & < e1(0). There exist functions (A, €))zez2\s, defined and Lipschitz in X on
the set Oy of Theorem[5.1], such that:
(i) The functions QH\,e) satisfy ([2.35), [2.36), (2.40) with My as in (6.15). For vo/2 < v < 7 and 7
sufficiently large, the set

C .= {)\ € 01 : |w -4+ (719.7*1 ()\,5) + O'Qij(A,g) + 0'39.73()\,5” = €<2;T s V(j,E,U) € 9(3\1{3} (72)

has positive measure.

(i) For each A € C there exists a symplectic change of variables T well defined and majorant analytic
D(s/16, 0r/2) — D(s/8,pr) for all 0 < r < 19, 50/64 < s < s¢ (S0,70 and ¢ are defined in Theorem
(5.1) ) and such that

(HoT),6,0,0) =K =w-Y+ Y Qo>+ K0 + K2 (73)
fEZz\So

where KW contains just monomials of scaling degree 1, while K>2) of scaling degree at least 2 and

c
<r?, VO<r<rg. (7.4)

‘ ROl
s/16,0r/2

s/16,0r/2

<er, ‘IC(>2)

(#i) Finally one has MoT =M andPoT =P.

In the course of the proof, for notational convenience we shall rename s/8 v~ s, or v r. We first
describe the KAM step, namely a standard change of variables which we shall apply recursively in order
to diagonalize the Hamiltonian (5.2). The smallness constant 1 () is fixed so that ;Mg/72 « 1.

KAM step. Fix an 0 < g1 « g¢ and let 7; be defined in Lemma . For all € < &1 consider a
Hamiltonian of the form

HN\e)i=w-Y+D+2, 2:= > Qapere)e’aa’ (7.5)
¢, ol +]B]=2

where D(), ¢) := diag(Dy(A, €)) jez2\s,- Assume that the functions
Di(\,e) = Qi(\, &) + DI (N, €) + DP¥(), ¢)

are defined and Lipschitz for A € O; and fulfill the estimates

1 mix 1 or 1
omOE + ] |,uii;c(~)g1+sup—2([7) 191+ [D" JS_2><M, (7.6)

s—
1<i<d 1<i<k<d e<e1 ’
+

with €1M « 1. Note that for a diagonal matrix

[,DhorJgL2 = Sug <m>2 |Dv};§)r('7 5) gl ) (77)
me

same for the mix part.
Assume moreover that 2 is a quadratic Hamiltonian, defined for A in a compact set C = O1, which

commutes with M and P, and admits the decomposition
9= ghor + Qmix Qhor c QC,hOT Qmix c QC

o2 . 3> for some s > 0 .
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Fix 7>d+1,0<7v <71, N>» max(1,M) and assume that for ¢ < e
N3‘r+2 (725)—1 ([Qmixjg’,é‘ + [QhorJC_2) <1. (78)

For € < e; define C¥¥ = C¥¥(y, 1,¢, D, N) < C as the set of A € C fulfilling

lw - €+ Di\ ) + oDyN, €)| = E%N—T . V(@D Lo) e A\Rs, || <N (7.9)

Note that at this point the set C¥® might be empty.
In the next lemma we will write ¢ < b meaning a < Cb with a constant C' independent of v, e, N.

Proposition 7.2 (Homological equation). The following holds true:

cler hor

(i) For \ € CN¥, there exists x = x"" + x™X, commuting with M and 73 with xP°" € Qs _ and
XX e QSN,g 5 which satisfies the bounds
New New _ .
T e P N S GO ( L N 22
(7.10)

and such that

{w-Y+Dx} =TIw([2] - 2), [2](\55a) = > Qepeso(Xi ) |az’ (7.11)

JEZ?

(ii) For X\ € C"¥, the time I-flow Ty of x defines a symplectic analytic change of variables which
transforms the Hamiltonian w-Y + D + 2 into the new Hamiltonian

(w-y+D+£2)o7;<:w~y+DNe“+QNe” (7.12)
with

h New
DNeW = Z DNew A E)|CL |2 e@New e@hor clex cQhor Qb _20r 9@1\111(1;;( QS/ 5

New New New
JEZ?

for all 0 < s’ < s. The new frequencies Dgle"’()\7£) are defined for all X € O1 and are given by
DI(\,e) = Q5N e) + DI (N, e) + D (N e) | (7.13)

and satisfy the estimates

[Dmixm _ Dmixjfii + [Dhor N DhorJO1 Y < [lexjs - [QhorJ§772 (714)
Finally we have
er;l;( CNe" Qheo; e <e~ (s—s' clex °@hor
(RIS 5+ | ]S ) <o M2y [ 277 ) -

+ N37+1 (")/26) 1([°@leJS,,§ + [QhorJ§7_2)2

In order to prove Proposition [7.2] we need a preliminary result regarding the asymptotics of the
frequencies Dj. For Je Z*\Sy we define Q (A €) as

-~ 2 2 g B
(e =1 N , (m,m) ¢ 7, (7.16)
6#Z(>‘)+n ) .]:(mun)’n;ﬁo
and the frequencies D]f as
0 hor
Df = Q7 + D" .
Lemma 7.3. For any X € C¥" and Ve < €1, we have
lw- £+ DE(Ae) — DE(N, )| >IN, W@ (L 1)) € AU\Ro, [€] <N (7.17)

4
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: . i iti 9). > ,
Proof. We deduce ([7.17) from the Melnikov conditions (7.9). To do so, recall that for |7] Clrél;?i(d |my |

one has SNZJ’E = (NZj. Moreover it is easily seen that D} — D;f is independent of n for all compatible
(%1, 4, (1,-1)) € Ay. Thus defining 1 =7+ (0, K) , 71 = 7+ (0, K) with a sufliciently large K, we have

* * * * * O * hor hor
Df —Df =D} —Di =QF — QF + DI — Dk
O h. h ix mix
= O — Qj + DR — DT = D, — Dj, — DR 4 D

If we take K = N™/2 we bound (recall that eM « 1)

- ; , 1 1\ @9 B
[Dmix| + [pmix| L [pmix) W*w) £

Then (|7.17) follows easily from (7.9). O

Proof of Proposition[7.24 (i) As usual we represent the quadratic Hamiltonians as

F= )  Fagecaa’.
4ol +]81=2
In Taylor-Fourier components, the equation reads
i(w-£+DNe) (a—B) Xape = Qape, (a,B,0)# (a,0,0), [{|<N. (7.18)
The solution of this equation is given by

1

Xa,B,6 = 1(w iy D(A,é‘) ; (Oé — 6))QO¢,B,Z , aF ﬁv |£| <N (719)

provided A € C¥¥ thanks to the estimate ((7.9). Indeed we have that for all admissible choices of £, «, 3

(recall N » M):
1 CNew

27’+15 2—1- -
iw-L+DNe) (@—B))|e <SNTT(eY) (7.20)

We show now that such y can be written as xy = x** + x™*, and we bound the two components. To do
so, consider first the out-diagonal part x°". In this case we set 7= (m1,n), 7= (ma, —n), so that (7.19)

reads 1
+ = + /l<N. 7.21
Xmwman = 1005 Dy(v 2) + Dy e)) oo @F B0 1 (720

Such term is clearly mixing, and we define y™*? the Hamiltonian with coefficients (7.21)). To estimate
it we need first to control the small divisor. By Remark

min(|71%,[71?) = min(m3, m3) + n? = 4N mliix|mk|2 = |w- L+ Dy +Dj| = (mi +n?)/2,

thus for A € C¥¥ there exists C = C(d, maxy, |my|) such that

2 2 2 2
NT+1
)t |, . )+t |
w-{+ Dy + Dy min(|712,712) <4N maxy, [y |2 | W - £ + Dy + Dy e
(,7),4,(1,1))eA2
|e]<N
Its Lipschitz norm is then
CNew
<m1>2 + <n>2 CN2T+2 (7 22)
w~€+'Df+DjC €72 '
which implies that
mix New T — c
[C0[E < 1T (e92) 7 | IC (7.23)
We pass to x41#8. In this case we set 2= (m1,n), 7= (msa,n), so (7.19) reads
1
- a#fB, [[|<N. (7.24)

mman = S0 DA e) — Dyfhe)) e
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To analyze it we divide the small divisor and Q%28 in their horizontal and mixing parts. Recalling
Dy = Q7+ D]E‘” + D}nix and D;l‘ = Q}". + D]}lor, write

~ ~ ~ ~

1 1 Q;—Q;-I—Qj—ﬂ;-‘rpgnix—p?ix
: - +
(w-€+Dy=Dyp) i(w-L+DF=DF)  j(y.0+D;— Dy (w-£+D;‘—D;E>
=: Aml,mg,é()\ﬂ?) + BT,j,Z(A78) M (725)

We prove that Ap,, m,.e(A, €) is independent of n, while By ;,(\, €) is decreasing in n.
It is easy to see that D} — D7 is independent of n for all ((2.]),¢, (1, —1)) € ™A and by (7.17), as in ([7.20)

CNGW
<C

1 N27’+1

w~€+D§‘—DJf

7.26
— (7.26)

C

Consider now By ;,(A,€). First we study its numerator. Note that ﬁ;_’i = KN); if 7’¢ €, so it is convenient
to separate the case |n| > maxy |mg| and |n| < maxy [mg|. One has in the former case

~

0 - )

O._ OF mix __ ymix O 4Me?
+ Qj‘ Q]—* + DT Dj‘ g . 2 P] 2
¢ min((m1)”,{m2)") + ()

for |n| > m§x|mk| . (7.27)

e

Then (7.20)), (7.26) and (7.27]) give

N3T+1
<C——,
72 ()

while using the definition By j, := (w- ¢+ Dy — Dj)_l — Ay ms.e and the estimates (7.20), (7.26]) one
has

for |n| > max |ms| , (7.28)

New _ N2T+1
Brje(o)le <|(w-L+Dy—Dy) 1|+|Am1,m27g|<CW, v . (7.29)

We are ready to estimate x41#8 defined in (7.24). Divide 2918 into its horizontal and mixing components,
Qdiag _ gdiag,hor + Qdiag,mix so that

- —h —mi
Xml,mg,n = (Aml,mQ,Z + BTJJ) ( ml,(:;LQ,Z + Qi‘,j,rzux> (730)

1 .

—,hor —,hor —,mix

= Am17m27€ le,mg,é + BTJJ le,mz,é + i(w A+ Do D-‘) QT,]",@ : (731)
7 7

We estimate the three terms separately. Note that the first one is horizontal, while the last two are
mixing, so we define
hor = A —,hor
Xmi,ma,l = Amy,ma,l le,mg,é .
To estimate it, use the assumption 28" € QS”E%Y and (|7.26)); one obtains immediately the first of (7.10).

mix,1

Define now the Hamiltonian y with coefficients

mix,1 L —,hor
Xml,mz,é T BZ,],E le,mg,f ’

using 2h°r e QS”E(; and (7.29) one has

S < e, (732
while by one has

T < 2 (7.33)
Then implies that

[Xmix,ljgj“i"i - I\Ij;? [Qhorﬁ_z ) (7.34)

48



Finally define x™*?2 to be the Hamiltonian with coefficients

mix,2 . 1 —,mix

Xm17m2)‘€ T i(w 0+ Dy — Dj‘) 7.5.¢

Using that 2™ ¢ QC inix and (7.20) one has

N2T+1

mix, 2JC"ew [e@mixJC

< ¢ 5 (7.35)

[x

Define now x™* := ymix0  ymixl 4 \mix2 - Fetimates (7.23), (7.34) and (7.35) imply the second of
(7.10). This concludes the proof of item ().

(#i) Now by Lemma and estimate (7.8), the change of variables 7, is well defined. We have

(W YV+D+2) 0Ty =w-YV+D+2+{w-Y+D, x}+”52(x;w-y+7?)+’51(x;2)

d]
=w-Y+D+[2]+ 1oy 2+ T (x; 2 Za 9] — Ny 2)

We recall that [2](A, g;a) = >1-Qe;e70(N, £)]az|? is defined for A € C and by construction
[2] = [2"]+ [2™], Qejeso = Qut + Q7™

with
sup<m2>|Qh°r|C + sup <D2|le;<|c L@mlxj 2 [e@horJS,_Q.
meZ JEZ2\So
By Kirszbraun theorem we may extend the Qb°r, Qm”‘ to functions Qhor Q}nix defined on the whole

O; and with the same Lipschitz norm. This in turn defines a diagonal Hamiltonian [QN] We set, for
A€ Oy, D" := D + [2], while for all X € C¥e¥:

[e¢]
D" = Ty 2 + Ty (x; 2 2 ~ Tl 2).

The bounds ([7.14)) follow. The bounds follow by applying Lemma and Proposition (if). O

We now apply the KAM step recursively starting from
Hy=w-Y+Dy(\e)+ 2 :=w-Y+De)+HO

which is well defined for all A\ € Cy := O;. More precisely we construct a sequence of sets C,, < Cy and
on such sets we define a sequence of canonical transformations 7, such that we may recursively set for
v=0

I, 0Ty1 =1 =w-Y+Dypi(Ne)+ 2o

with D, diagonal and defined on the whole Oy, and 2,11 « 2, (in appropriate norms, see Proposition

(iv) below).

Given s,19 > 0 we fix for all v > 1 the following sequences of parameters
CxS 1 3/2)7
Sy = Spy—1 — = Z 72 ’ Ny = 77(() /2 i NU = (SV - SU+1)_1 lOgn;l

Proposition 7.4 (Iterative scheme). There exist £1,1, > 0, such that Ve < &1 and Vy < 7y, setting for
$0/16 < s < s09/8
[H(O,mix)Jol 5 + [H(O,hor)ng_2

= S,— <., 7.36
70 o n (7.36)

one has that Yv = 0 we may define a set C, 11, a map T,+1 and Hamiltonians Dy, = diag(Dj(fH)),
2,41 s.t. the following holds true:
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(i) Setting Co = O1, we have recursively:

v v Y7 o
Cpiti= {w eC,: )w.z + DY (A e) + oDV (N, e)| = oW V(@) 4o) e MW\Ry, 6] < Nl,} .
(7.37)
(ii) T,+1 is a canonical transformation defined for all A € C,41 and s.t.
(W'y+Du+=@u)o7:/+1 :w'y+Du+1 +°@V+1
and c .
[T = 12, + [Ty < 2
(i4i) Dyy1 = diag(Dj(fH)) is a diagonal Hamiltonian
,Z)J(:/Jrl)()\7 E) _ Qj‘(/\; E) + D]Q/Jrl,hor) ()\7 E) + D}V+1,mix) ()\7 6).
The functions D§U+1’h°r)7D;U+l’mix) are defined for A € Oy and fulfill the estimates
[D(y+1,mix) _ D(%miX)JSii + [D(u+1,}10r) _ D(y,hor)Jg’)71_2 < 7257% (738)

(v) 2,11 = 25 + 225 and

[ 2l o+ T2RAI ) 5 <APemn
Proof. Step v = 0: We fix 1 sufficiently small so that 1My « 1. We apply the KAM step with D := Dy,
2 = 9y, C =Cy:= O, N = Ng. The smallness condition follows from provided that 7,
is appropriately small depending only on 7, sy. Then we apply the KAM step procedure, getting items
(i)-(iil). As for item (iv) it follows from the bound by setting o = g = s — 81 = 5¢9/24.

Step v v~ v + 1: we just have to show that we may apply the KAM step with D := D,, 2 := 2,,
C =C,, N =N,. The smallness condition follows by noting that

NET"’Q?]V < Ng”'QnO < 1.

We may estimate M = M®*) in by using (7.38), obtaining M) < M® + 3% n; < 2MO < M.
Hence again one has €;My « 1. Then we note that C¥" = C,, 1, we apply the KAM step procedure and
define D41 := DY 2,,, := D" We get items (i)-(iii) directly. As for item (iv) it follows from
the bound by setting ¢ = 0, = s, — S,4+1, provided 7, is appropriately small depending only on
T, 80- O]

The iterative KAM scheme above can be applied to diagonalize HO) provided that

17(0,mix) |O v r) |O
AR 4 [FORN0

o ~evP<ey i<, eMy<1. (7.39)
More precisely the following holds:
Corollary 7.5. Assume that
E;ZIO <1, (7.40)

. . o W) .
with My as in (6.15)). For all A € Oy and for any 7€ Z*\Sy we have that Dj is a Cauchy sequence. We
denote by Qy its limit. We have that

) Qbor () Qi () 7 0
2 )_{ 7€) + T 2) + () T# (m,0)

m? + Z2lE 5= (m,0)
where 0,.(0.2) 60 n(08)
hor L m(A, € mix L m,n\"\y 3
Qj \eg)i=—]———"~ | Qj (\e): (7.41)

(my? C(m)’ + ()
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are defined for A € Oy and fulfill the estimates
SO+ Y uh ()0

1<i<d 1<i<k<d
) * (7.42)
+ sup 7<Sup | (-, €)|C1+ sup [O,n (-, )| +  sup |@m,n(',6)|01> <M
e<e1 €7 \meZ meZ (m,n)eZ2\Z
For all A € n,C, the sequence R
To=TioTsoT,

is a Cauchy sequence of changes of variables, converging to a %, which satisfies the bounds:

7h Cy Fmix |Cv

[T —Tg0+y + [7'““"J8w*_15 <e, Vv=0.
Proof. This is a standard KAM convergence argument, see for instance [P6s96]. O

It turns out that the set on which we can diagonalize can be described in terms of the final frequencies.
Indeed we have the following

Lemma 7.6. Consider the set
ctin .= {)\ €01 1 |w-l+ QN e)+ QN e)|=ey &), V((%,7),4,0) € As\Ro } . (7.43)
We have that C** < n,C,,.

Proof. By definition Cfi* € ;. By induction, we assume it is contained in N, <,C, = C,. Recall that by
definition

Cooir = {)\ecn : ‘w-e+D§”>(A,g)+UDJ£">(A,E)] >5%N,—;, V(7 7), 0, ) € A\Ro , |¢] <Nn} .

First recall that

%(h,e) = Do) < N DIV () — DI (o) <69 ) e < 209 < JeN, T

k=n vzn

Thus for |¢| <N,

)w L+ DM (N e) + oD (), 5)‘ > w0+ QA 2) + 0\ )] — 2sup| (A, e) — DIV (N, €)

>ey )" — E%N;T > s%NfLT .

O
Finally we prove that the set of A in which our diagonalization scheme holds has positive measure:

Proposition 7.7. There exists 79 > 0 s.t. for all 0 < v < 9, € < &1 fulfilling (7.40), the set C defined
in (7.2) has measure meas(C) > meas(C.)/2 (where C, is defined in Lemma [6.4)).

The proposition, being quite technical, it is proved in Appendix [C}

Proof of Theorem[71] Fix ~o as in Proposition and e, s.t. 4€*M0’)/0_2 « 1, so that (|7.40) holds for
g1 < &, and 79/2 < v < 7. This ensures that (7.39) holds, so we apply Corollary The change of

variables 7 and the final frequencies 27 are the ones defined in Corollary so all the desired bounds
follow. The measure of the set C is studied in Proposition O
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8 Birkhoff normal form for the cubic terms

After Theorem [T.1] we have the Hamiltonian
Ki=w-Y+ Y Q\e)laf® + £V + £ (8.1)
fEZ2\SO

We now perform a Birkhoff change of variables which cancels out X(!). In order to define such a change
of variables we use third order Melnikov conditions, which hold true in the set C of Proposition [7.7] The
main result of this section is the following theorem:

Theorem 8.1. For all € < &4, there exists 7o < /€ such that, for all A € C there exists a symplectic
change of variables T well defined and majorant analytic: D(s/32,0r/4) — D(s/16, 0r/2) for all
r <1, So/64 < s < sg and such that

KoTW:=w.y+ Z QN €)]az)? + R |
JEZ2\So
where

(i) the map T is the time-1 flow of a cubic Hamiltonian xV) such that |x |

(i) R(Z2) contains just monomials of scaling degree at least 2 and

RE 2

<r
s er
327 4

(i) One has MoT® = M and PoT® =

Proof. As usual we look for 7(!) as the time one flow of an Hamiltonian x(). With N := w - Y +
2z s, (A, ¢)|az|?, we have

KoTW =N+ {N,xP} + kW (8.2)
+ B M) + T (W5 £0)
LG o T (8.4)
We choose x(!) to solve the homological equation {N,x1} + K1) = 0. Thus
setting K — Z K“(/\ £)e i6- Zajlla;; ;Z:’ - X(l) — Z (/\ e)e i0-¢ j11a;22a;33
(j.£,0)e A3 (.¢,0)€ ‘213
o, =%1 o;j==+1
with K7 (A )
o —i Z. ,E
Xz,j()\a5) = !

w0+ 0’19]-‘1 (/\,5) + O'QQJ-‘2 ()\,E) + 0'39]*3 (/\,6) '
Since A € C, the third order Melnikov conditions of Theorem hold, thus we have
"

_ T
%7%<C(S,T)6 1|IC(1)| %<7E

=
16

Thus choosing
0<r<rg<cqe (8.5)

with ¢ sufficiently small, Proposition (i) guarantees that x(!) generates a flow. We come to the terms
of line (8.3)). First we use the homological equation {N, x"} + K1) =0 to get that

s (X(l);N) = ad(x W) XM A 3 ad(xW)F W]

= M iz (kD!

and Proposition [3.3(iii) implies that T(x™; N), T (x; HD) and K@ o T have scaling degree at
least 2 and fulfill the quantitative estimates

B )|

To conclude the proof we show that {M,X(l)} = {P,xM} = 0. This follows since KXV commutes with

M and P, hence its monomials fulfill the selection rules of Remark By the explicit formula for x (")
it follows that the same selection rules hold for x(*). This conclude the proof. O

<r?.
er
4

C<r?, ‘(,1 ). ’H(l))

er
>4

< K@ 70|

or
4

S S
327 327

-
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Proof of Theorems|[2.9 and[2.10. Given s > 0, we fix L, &, as in Theorem , and 7o to fulfill ( -
and ( . Then Theorem [2 . follows by applying the sequence of transformatlons T, T T©) defined

in Theorems [8.1] [7.1} [5.1] and setting 0y = o/4.
The asymptotics of the frequencies claimed in Theorem is proved in Theorem [7.1] more precisely

in Corollary [7.5] O

9 Proof of Theorem [1.3

In this last section we show how Theorem [2.9] implies Theorem [I.3] We start by fixing so > 0, p > 1, a
L-generic support set Sp, 0 < € < &, (e, is given by Theorem [2.9)) and )\ € C of - This fixes the
torus T%(Sp, A) = T4(So, In())). Note that the actions I, are ﬁxed by (2

First we study the dynamics of the Hamiltonian (4.15]) showing that y = 0, a = 0 is orbitally stable.
More precisely we prove that there exist K, Ty > 0, independent of 7, ¢ s.t.

(¥(0),6(0),a(0)) € D(—%=, 00Kor) = (V(t),0(t),a(t)) € D(so,7) VY|t| < Tp/r*. (9.1

64 - 32

To prove [9.1] we apply the change of coordinates 7 of Theorem [2.9] Recall that both 7 and its inverse
T~ map D(s/32, 0or) — D(s,r) for any 0 < r < rg and 22 < s < 5. Denoting (,6,a) = T()',0,a’),
the Hamiltonian in the variables (), 0, a’) is given by (2.33]), and its equations of motion are

y —0gR >2)(y/ 9 CLI —/)
0=w+oyRED(V,0,d,d) (9.2)
il = Qpal+ 02 RED(V',0,d,a')

Then we prove the following bootstrap lemma:

Lemma 9.1. Let Ky < go and consider the system (9.2)) with initial datum (Y'(0),0(0),a’(0)) €
Ly

D(s0/64, Kor). Assume that exists Ty > 0 s.t. the quantities J(t) := |a'(t)|? + |V'(t)], and O(t) :=
Im|6(¢)| fulfill
sup  J(t) < oir? sup  O(t) < % (9.3)
[t|<Tor—2 [t|<Tor—2 32
Then, provided Ko, Ty are small enough (independently from r) one has
Q%T2 S0
sup J(t) < ——, sup O(t) < — . (9.4)
[t|<Tor—2 2 |t|<Tor—2 40

Proof. In the course of the proof we drop the superscript ’ from the variables. Consider first the dynamics
of Y. By the very definition of ||, , (see (2.21)) and (2.18)) we have

&z
x CR Qg T4 .

sup
(¥,0,a)eD(s0/32,007)

R (Y,0,8) < ofr?Rly,

or
Thus for any [t| < Tor—?2 one estimates

VOl < [VO)], + [t sup

RED V() 0(t), alt), a(t))

[t|<To/r? 1
2.2 Co 0212 Q(% r?
< K{r® 4+ ToCr o5r° < I (9.5)

provided K2 < 03/8 and Ty < 1/8Cx. Similarly, using the equations of motion for a and the estimate

(5-20)
3
0 gor Q07 < CrOOT

0aREY(Y,0,a)  <IRly

sup
(¥,0,a)eD(s0/32,007)

)

for any |t| < Tor—2 one gets

la@)] < la(0)] + [t sup

0aRED(V(t),0(t),a(t), d(t))’ < Kor + TyCr 0o < % (9.6)
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provided Ky < 0o/4 and Ty as above.

Finally the equation for 6 and the estimate sup
(¥,0,a)eD(s0/32,007)

63;72(22)(31,9,11)‘ < Cr r? give
Qo

m 6(#)| < [Im 8(0)| + ToCr < % (9.7)
provided Ty < s9/Cr10? as above. Estimates ({9.5]), and imply (9.4)). O

2
This bootstrap lemma and the properties of 7 and 7! imply that, taking Ky < min (%, %) and

To < min (%7 ﬁ), one has

(3(0),6(0),a(0)) € D(Z—5 (0),6(0),a'(0)) ED( 1 Kor)

t),0(t),a'(t)) € D(So/32 oor) = (Y(t),0(t), a(t)) € D(so,7)

S0
= (V'(
which is valid for all |¢t| < Tp/r?; this proves

Finally we show how the stability result (| mphes Theorem [1.3] Thus fix dg > 0 so that

0:150 < Koooro (9.8)

where ¢, is defined in Proposition Take 0 < 6 < dp and u € V5. Then by Proposition |4.2((ii),
u(0) € Vs implies that (Y(0),6(0),a(0)) € D(52%, ¢; *d). Choose now r = ¢; ! (Kygo) '0 (note that (9.8)
guarantees that r < rq is fulfilled) and apply to get that (V(t),0(t),a(t)) € D(so,r) for |t| < Tp/r?.
Applying again Proposition one gets u(t) € V,, (s0)r = Vcs-

A Proof of Lemma 2.5

First we consider (2.28). Let us consider Sy as a point © = (my,...,mg) € C¢. With this identification
Bp is the set of integer vectors in the cube [—R, R]® with ordered components. An intersection . N €
is a point

vi (@) = (z,y)eC*: z=m, y= \/(mz —m;)(m; —my)

for some triple of indexes 4, 5,1 € {1,...,d}. So fix such indexes and consider the map
I: (Cd i (Cd+2, m— (Iﬁ, Ui,jJ(Iﬁ)).

Now we restrict our attention to & € Z* and we wish to avoid to choose i so that v; ;; (&) € Z?. Our first
remark is that if il € Bg then we have that |v; ;;(@)| < 3R. In the square sup7 Im;| < R there are (2R)?
integer points and we claim that once we remove all points with v; ;; (&) € 72, we still have many integer
points left. So in C4*2 let us count the integer valued points (i, v) such that supz |m;| < R, |v] < 3R and
v = v; j (). We can fix all the my with s # [ in any way we want (we get (2R)%! points) then for each
such choice, m; is the z-coordinate of one of the integer points on the circle with diameter (m;,0), (m;,0).
But on a circumference of radius R the number of integer points are of the order R® with § arbitrarily
small, so the bad points in C3*2 are of order R¥~'*%. Then the pre-image through I' of these points is
composed at most of R¥~1*% points. Since the total amount of points is of order R¢ we have lots of good
points, i.e. points @ € Z% such that the intersection v; ; (&) is not an integer. When we play this game
for all the triples of indexes (i, j,1) we still get many points. Regarding the intersection €; ; N €75 the
reasoning is the same. An intersection is a point v = v; j; (i) which solves the equation

(z—m)(r—mj)+y* =0, (z—m)(r—m)+y*=0.
So we consider the map N
I: Cd i Cd+2, ﬁ i (ﬁ, Ui,j,l,s(ﬁ))-

As before we make the ansatz that sup, |m;| < R. Then we have that |v; ;; s(if)] < 3R. Now we can fix
all the points m, for ¢ # s (R*~! points) and for each such choice, fix v as one of the R’ integer points
on the circle with diameter (m;,0), (mj,0). Then m, is fixed by the last equation (which is linear for my).
In conclusion we have again R¥~'*% bad points. Here we have to play such game for all the quadruples

(7:7].7[’ 5)'
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Finally we consider condition (2.29). Fix ¢ with |[¢| < L. Then the equation Y} ¢;z; = 0 defines an
hyperplane in C%, and in the hypercube of size R there are ~ R%linteger bad points to exclude. Taking
the union over all the possible hyperplanes gives ~ LYR3~! bad points to exclude. In conclusion the
number of bad points in Bp is < C(d)R*¥1+%, so

d—1+6
lim GRS g gy CORTTT

=1.
R—® |BR| R—0 ‘BRl

B Proof from Section 3l

We begin by defining projections of Hamiltonians. More precisely we define projections on any subspace
defined as the closure in A, of the monomials e*? Y!a®a” satisfying some rule £,1,a, 3 € 1 with

T 7% x N¢ x NZ"\So » NZ*\So.
IIth := Z haﬁ’lyg el yl a®a” . (B].)
te7d 1N, o, BeN22\S0

2,1, 0, Bel

In particular we denote by Il the projection on trigonometric polynomials of degree < N, i.e.

Oyhi= > hapie e V'a%a” . (B.2)

Cezd, [¢|<N
la,B

Proposition B.1. For every s,r > 0 the following holds true:
(i) Continuity: all projections Ilj are continuous, namely
@) O
|HHh|s,r < ‘h|s,7’ :

(#) Smoothing: for any 0 < s’ < s one has

|HNh|?,r < es/N|h|O |(]I - HN)h|?,r < 675/N|h|?+s/,r

s—s',ro
(i4i) Partial ordering: if we have
|fapatl€ < lhaprel€, Vo, B,0

and {ha, g1} are the coefficients of the Taylor-Fourier expansion of a function h € A | then there

s,17

exists a unique function f € A?’r whose Fourier expansion has coefficients {fa .1} and such that

|fIS < RIS,

(iv) Graded Poisson algebra: Given f,ge AS,., for any 0 < s’ < s and 0 <1’ <r one has
1,939 0 < 5T IFISN 19lS

where § := min (1 — %7 1-— %/ . Moreover if f and g are monomials of the form €% V' a®a® one
has that deg({f, g}) = deg(f) + deg(g) and w({f,g}) = n(f) + 7(g).

The proposition can be proved by adapting the methods of [BBP13].

B.1 Proof of Proposition [3.13
In order to prove ((3.13]) we have to control

Ni+k N.
{(m)™ ™+ )V Y e e |9

ED Nt N
< {m) T HE L s eimo| S+ () | HEE

my, mi,ma,n

He (B.3)

s’

In the first summand since [¢| > ¢{m1) we have

Ni+k Y O — N ¢ (@]
{m) ™ T H G v s emo s < ¢ M mo) ™ 1R 1 H Ly n S

mi, mi,
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Now we note that |
eFe—t=lt < M sk
T (s—s)k ’

so that

€D
1© < ke FoRH|O

{ma)™ T HE s e €< RS {ma)™ | HS 5—(Ny,No)

s i ma,nl}

In the second summand of (B.3)) we just have

(™ [

mi,mz,n

HE < [HJ?,f(Nl,Nz) < [HJg),f(Nl,Nz) :

B.2 Proof of Lemma [3.14]
Proof of Lemma (). By [B.11] we have
[{FvG}JL?’,foM < HF7G}JS,—(N1+M1,O) + HF’G}JS,—(O,N2+M2) . (B.4)

We start by discussing the first term. Following Lemma we divide F = FB+ FF and G = GB +GE,
so that
{F,G} = {FP,G"} + {F,G"} + {FF,G"} .

We claim that
HEZ GPYS —vivany o) S 4PN [FBI0 G IGPI0 oy (B.5)
{F,GD —vysan o) + ™ GPHE (vivan0) < Onpn 87 [FI2GID (B.6)
Let us start by proving : we divide
(FB GB} = (FB GB)disg 4 (pB GByout | (pB B )line
= (P G} + (PR G + (F™, G} + (P, Gy + (Fie, Gl

where we put

diag . a) = -4 i0-¢ _
FB (/\’ 6’ a, a) - 2 le,mz,n(/\) € Q(mq,n)Ama,n) >
my,mg,L,n#0
[el<e(my)
out/y. P +.,4 i0-£
Fg''(X\;0,a,a) = 2 E s nN) €75, n)@(my,—n) + C.Co
m1,mo,€,n>0
[el<e{mq)
and similarly for G. Then
diag diagy _ 0 i0-0 _
{F™,GE™ =1 D A V) € a0, ),y
ma,ma,€,n#0
£ = =L =0 -0 —0
Aml,mzm()‘) T Z le,;ng,n()‘)GmS?mz,n()‘) - Gm1,1m37n(/\)Fm3,$n27n()‘)

m3, Ly +Llo =10
[e1]<e{my),|e2]<c{mg)

and by momentum conservation m; —mg + w(¢1) = 0, m3 — mg + w(¢3) = 0, thus my; —mqy + 7(¢) = 0.

By definition of Hg_N, we need to compute

™ a0

mi1,m2,n

/ (B.7)

We note that

M,y

1 1 1 m —, 41 1 — 42

(mpyM AL < Y (zmli) ol ([ |Gtz ()] (B8)
[€1]<edmy)

miy\ ™
o) )™ |G;’f,1m37n(A)}<<m;>> ()™ [ (V)

m3
Ly +Eo=t
[e1]<edmy)
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Now we remark that since m; —mgs = —m(¢1), one has
(m) — [ (6)] < {ms) < {may + |w(4)] (B.9)

Moreover since |[¢1| < ¢{m1) with ¢™! = 2max(|m;|) this implies 2|7 (¢1)| < {m1) so that

_(my
< s < (B.10)

In conclusion we may bound

B7) <2 ¢ > m)™ |Eh, ) ][ma)™ G, V],

m3
04 +b5=t
[y ]<edmyy
M — N- —
2V Y ma) M (G ()| ()™ [F, (DY
1=
|[21]<edmy)

<CM1,N1 [FBJS,—(Nl,O) [GBJO —(M1,0) = CMI Ny [FBJS,fN [GBJS,fMa

by using the algebra property (3.9) and Remark The term {Fg", G%"} is treated exactly in the
same way. Now we analyze {Fglag, G9"'}. An explicit computation shows that

di ou . Ny 51 —,L i0-
{FB ag7 GB t} =—1 Z Z F, 1 G+’e2 G+ F_"2 e 0 Za(mlyn)a(m%,n)

mi,m3,n " ms,ma,n —ms3,n" Mmz,—Mms3,—n

my,m2,£,n>0 m3,L1+La=1
[€1]<c{my), [€a|<c{ma)

Let us consider the equivalent of (B.8]), namely

(my YN > E4 (NG (A + G0 (A\)F )| (B.11)

mi,ms,n msa,mz,n mi,—ms,n mz,—m3,—n
mg, £ +Ly=1
[L1]<c{my), [La|<c{ma)

<m1> Ny 7€1 m M, .05
- m ’;% ¢ (<m3>> (ma) ml’m3’ )’< 3) ’Gms,mg,n(A”

[€1]<edmy), [ea]<clma)

N
(mip\ ™ M
S () e
mg, £y +Lo=t m2
[€11<c{my), [La]<e{ma)

L N
G’:’Ll,l ms3,n )’ <m !

Foi g a )|

m2,—
The first line is treated as in (B.8)). For the second we note that {(maq) — |7(f2)| < (ms3) < {ma) + |7 (L2)]
so that since

(my) _ (ma) (ms)

(ma) — (mg) (ma)

c Smy
<m2>

The term {Fg", G%iag} can be estimated in an analogous way, we skip the details. This proves (B.5).
Regarding let us suppose first that in (B.8]) we have |¢1] > ¢{m), then

we have

N+ M
)M M N Rl (NG, (V) = G (VEE () (B.12)
21232’:2
[21]>ec{mq)
< MM G MEN (F )G V] + G g ] [Fri s (V)])
mg
L1 +Lo=L
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We have proved that

o
N M - - L1 )
o™ N (B s NGl n) = Gl e Vi, s W)Y (B.13)
msg,l1+Lo=~ S
[£1]>c{m1)
1 Ni+M; a—,0 © -0 ©
< m {le| R () » Gy tnanN) } »
1)
Ni+M; ~— 0 )
+ N1+M1 {|€ | o le1,1m3n }’ ){Fma fngn )} o
Now we remark that )
sup M|M1+Nle—($—3 )12 < CMl,N1 6—M1—N1
¢
so that
N1+ DMy © M;—N1 ©
‘{Ml‘ le,m3 n(A)} o <Co~ { m1 mg, (A)}L )
and (B.5) follows.
Consider finally the case |(1| < c¢{m1), |l2| = c¢{ms). Then (B.10) holds and
Ny +M
<m1> o ! Z lee’}”ﬂ,g n( )GmfzﬂlQ n( ) Gmflm.g H(A)Fmgézmg n()‘) (B'14)
oy 4ey=t
[£2]>elm3)
< MMM R TN ([ ]G ]+ G g V] [E 5, (V)
m3
£y +e=t

and we proceed as in the previous case. We are left with the second summand in (B.4). We claim

H{F, G}JS,—(O,N2+M2) < Q[FJS,—(O,Ng) [GJ?’,—(O,MQ) (B.15)

indeed

O
(M (3 Bty aNGam ) = Gy N F 0, () )

S/
m3, Ly +Lo =L
[il<c{my)

(B.16)

< (™ Py O | (0™ G Y

s/

)

and the result follows.

Proof of Lemma (ii). The proof is standard, we repeat it here for completeness. We need to
estimate

T(F;G) = )] 2d(1)*(G) . (B.17)

|
k=1 .
By the algebra property (3.9) we have

ad(F)*(G)| < (ColFID)*IGIT .
Then by using (3.14]) we have

[ad(F)*(G)]S N = [{F.ad(F)" (G)}HF n < On ([FIF _x ad(F)*H(G)[ + 67N [FI2 [ad(F)*H(G)[T)

< On(ColFIQ)MHIFIS - + 0N FID)IGI (B.18)
Proof of Lemma[3.14) (iii). Let us prove inductively that
[ad(F)*(G)[9 _jn < Cen(6~M[F|9_n)FEIGIO (B.19)
We use (3.14); writing ad(F)*(G) = {ad(F)*~1(Q), F} we get
[ad(F)*(@))S _ine < Cine ([ad(F)* M@ iy FIS_n + 07 ad ()1 (G)LIFL)  (B20)

< Cinv (IFI_wCra NV FIS_N) " (k= 1)[GIS + 5V CHIGLIFIE) -
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The result follows provided
one (C‘k_LN(k: —1)5~ k=DM 4 5=kM c{;) < Cpn kM
which in turn follows by setting
Cin (Ciman(k=1) + CF) < kCin,
Now setting s; = s — (s — s’)/2 we have
[O3(F; G)|9 —in < [(adF) G o Tr]9 _in < 3(Cin(FIS _n)*(20) (G o TelS)

and the result follows.

B.3 Proof of Lemma [3.1§]

First note that 0;(F; G) is linear in the second argument. Thus
(F G) ( Ghor) "'(F’ Gmix) :E(Fhor;Ghor) +’G;(F;Gmix) + (T?;(F, Ghor) _E(Fhor;Ghor» .

By Remark- G; (Fhor; GPor) is horizontal. We define T (F; G)hor := B (Fhor; GP°r), which by Lemma
111) belongs to Q};f’jm and fulfills the claimed estimate.

Now consider O; (F'; G™*). We prove that 0; (F; G™*) € QS 5 V0 < s <'s. We proceed as in the
proof of Lemma iii). We prove inductively

[ad(F)H(G™)[9 5 < (G4l FIO)F (6|9 5+ ki2G0) . (B.21)
Indeed:
[ad(F)H(G™)]9_5 < [{F,ad(F)* 1 (G™)}19
5 O3 (1F1S Tad(F) 1 (G™)|0 5 + 672 FIO [ad(F)*4(G)[9)
1

A k—1 .
C3|FI9 (max(Co, C)IFIS) (1G™]9_5+ (k= 1)52|GIC +57%GI?)

and the desired bound follows by taking éi = n~' = max(Cp, C5), where Cj is the constant in (3.9).
Then substituting we get

G (- 1F10)

F;G™)|9 < C5672 B.22
[T )G _5<Cs e (B.22)
Finally consider T; (F; GP%) — G (F"°r; Gh°T). Since the series are summable
d(F k hory __ d Fhor k hor
( Ghor)i (Fhor Ghor) _ Z & ( ) (G ) a ( ) (G ) )
k!
k=i
Now remark that F' = For 4 Fmix go ad(Fhor + fmix)k(Ghor) — ad(Fhor)k(Gher) equals
Z ad le)c) ad(Fhor)k h— 1(Ghor) (B23)
Now by (3.14)
|'ad(‘l;smix)ad(];vhor)kfhfl(tho1r)JSI7_i < C*([FmixjS,’_§|ad(Fh0r)k7h71(Ghor)|S/ + 572|F|S|ad(Fhor)k7h71(Ghor)‘s)
< C”({Fmixjs',—i + 5_2|F|S)(C()|F|S)k_h_1‘Gls : (B~24)
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Now we use (B.21)) with k v h and G v GMiX .= ad(FmiX)ad(Fhor)k—h—1(Ghor) We get

[ad(F)F G|, 5 < (7Y F|)" ([émist’_i n k6_2|@mix|s)

B29 - mix — —h— or
< 7 UEL)" (C5F™™), g+ 572F L) (Col Pl 6

+ k6~2(Col FI,)* "G,
< (7P (ColF™ ), g+ (k+ 1)072(F, ) 1GM],

Then it follows easily that

r~( Ghor) _ (Fhor Ghor)J 5 < 2(C [lexJ ’7§+672‘F‘5) |Ghor‘g (__|—1||)F'| . (B25)

We define B (F; G)™* := T (F; G™X) + (T (F; GPY) — T (For; Ghor)). Estimates (B.22)), (B.25) show
that & (F; G)™* € QO 5

B.4 Proof of Lemma [3.19]

The lemma follows using the same strategy of the proof of Lemma but replacing the estimate of
the Poisson bracket {F,G} by the following one: let N = (Ny, No),M = (M, M,) € N*, F e QE_N
G e QY - Then {F,G} € QS_O, where O = (min(Ny, M), min(Ny, M,)) with the quantitative
estimate

{F,GHS o < ColFIS N IGIT - (B.26)

Such an estimate follows easily by exploiting the algebra property of the norm, see also Remark [3.8 and
Remark [3.10

C Proof of Proposition [7.7]

Recall that, by Theorem the frequencies Q3(), €) of Hamiltonian (8.1) have the form (2.35), (2.36).
Expanding Q3(), €) in Taylor series in powers of ¢ we get that

w(A) - £+ 0195 (A, €) + 0295, (A, €) + 0305, (A, €) = K, + € F{(A) + €% GJp(N,e) , (C.1)

where Ky, is defined in (6.9) and F;’E()\) is defined in . Recall that given any O <7 < m, the
functions above are well defined provided that (7.39) holds From NOW On We assume which clearly

implies (|7

We wish to prove that the set of A € O; such that

lw - £+ 0195 (N €) + 0205, (N, e) + 0305, (N, e)| = e—r V(j, 4, 0) e A\Rs (C.2)

<£>T b
has positive measure. To do this, we will show that the set of A € C. such that (C.2) holds has positive
measure; this clearly implies that also C has positive measure.
We discuss two cases separately, recall that My is defined in (6.15]).
Case [/| < 4My. Then sup, [F{,(A)| < 8Mo. Assume first that K§, € Z\{0}, then for ¢ sufficiently small
one has 1

(CIDI > |7 | — 8o —%3Mp > 5

hence, for such s, (C.2) is trivially fulfilled YA € O5.
If instead K{, = 0, we use Lemma and ((7.40) to estimate for any A € C,.

5
|.| ey — e23Mg = ;1 .

Thus so far we have proved that for all |¢] < 4My and for any A € C., (C.2) hold.
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Case |{| > 4M;. For 1 <i < d, 0 < k < d define the functions

~ € A) ifl<i<k<d
Fik(A) = Mﬁﬁ( ) . . (C.3)
epip(A) ifl<k<i<d
0 fl<i=k<d
Consider an expression of the form
w\) A+ K
+ 1 Fiy ke (V) + 1Fi 1y (A) + 03F iy ks ()
Om, (N €) Om, (A €) Oy (N, €)
tNi——=— Tt N2 5 T M3 3
(ma) (m2) (m3) (C.4)
Omyny (N €) Oy na (A €) Omyg,ns (A €)
+ n22 5 5 723 D) 3
m)? + () (mg)” + (n2y (m3)” + (n3)
@i,y (A, €) Dy (A, €) Ding (A, €)

+ + +
B )y T gy T )
where K € Z, m; € Z,n; € Z\{0} while 7., ., € {—1,0,1}. First we have the following
Lemma C.1. If |K| > 4|€|1n<1a<xd(mf) then for any m; € Z,n; € Z\{0}, 0w, Nr,r, € {—1,0,1}, one has

[(C.A)[ =M

Proof. We have

[(CA] = K|~ lwN)]]e] - ES|FM,
r=1

|, (5 e)lc"
Z <m,«>

> 4 max (n?) [¢] — max (m?) [£] — ]| — 3eMg — 3e*My = My .
I<i<d

01 |@mT e ) (@
e C.5
Z <mr> + <nr> ( )

3
O1
WS-
r=1

i<i<d
O
Next we have the following result:
Lemma C.2. Fiz arbitrary K € Z, m; € Z,n; € Z\{0}, 0y, ryry, € {—1,0,1}. For any o > 0 then
meas({\ € Oy : |([CA)| < ea}) < 16ale|™" (C.6)
Proof. Let ¢ := £/|¢| and let us denote the expression in as f()\) We have
1
A—p=Ir—nll
-3 b
<"w>
£ 10] — 3eMy — 3e2Mp > % 14]. (C.7)

In order to prove our claim we first perform an orthogonal change of variables so that 7 becomes the first
basis vector. Formula (C.7) amounts to

€
[f(x, e,y An) — [y, Ay An)| = §|x—y|

for all x # y such that (z,Aa,..., \n), (¥, A2, ..., Ap) € O1.

We consider the map F : A — X = (f(A\), Aa,..., \,) which maps O bijectively to some set B. F
is a lipeomorphism and its inverse has Lipschitz constant < 8¢71|¢|71. In the X\’ variables the volume
of the set of u € B such that |u1| < ea can be estimated by 2ea hence on Oy it can be estimated by
16a|¢| 1. O
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We will employ such lemma to prove the following result:

Lemma C.3. There exist vo,7 > 0 such that for 0 <y < 72, the set

Co = Culy,e) = {/\6(91: I(CA)| >E<Z>T . el >4M0} (C.8)

has positive measure. More precisely
meas(O1\Cy) < Cyy

for some positive C, independent of e.

Proof. We prove such a claim by finite induction on the number of 7,, ,, different from 0. More precisely
for every 0 < n < 9 we shall show that for v small enough, there exist a positive increasing sequence 7,
and a sequence of nested sets C"™ = C" (v, 7,) such that provided

1]+ -+ nssl =n,

then
meas(O0;\C%) < Cvy, meas(C"\C") < Cy (C.9)

with some C' > 0 independent of e. Moreover for A € C", |£| = 4Mg, one has

=R

Then Lemma follows by taking C, := C”, 7 = 79 and C, = 10C. o < v; is fixed in order to ensure
that 10Cy < meas(O;), so that the measure of C, is positive.

(C.10)

Case n = 0. Given K € Z, i= (il,ig,ig) € {1,(1}3, k = (k’l,kg,kg) S {0,...,(.'1}3, ¢ e 72 with
|€| = 4M0a n= (77177’27773) € {_LO, 1}37 we define the set

g
G?{,i,k,’r],f(’777-0) = {)\ € Ol : “ < <£>’7)'/0 and n’l‘17‘2 = O vrlar2} .

we have G%’i,k,nj('y,m) = (¢, provided that My > e7/2.
with a = 7)™ we have

If | K| > 4 max (m?) |¢| then by Lemma
I<i<d

If | K| < 4 max (n?) || , then by Lemma

1<i<d

16~
meas (G(;(,i,k,n,é(’%TO)) < W .

Taking the union over all the possible values of K, 1i,k,n, ¢ one gets that

1
0
meas U Grixne(v:70) [ < C(d)y Z oW <Cvy,
[e|=4ng, ik,n |€]=4M¢
|K|<4 max;(@?) [£]

which is finite provided 79 = d + 1. Letting

co = 01\ U G?{,i,k,n,z(% To)

[e|=4mg, ik,n
| K|<4 max; (n2) |¢|

one has clearly that meas(0;\C°) < Cy and for X € C° we have
gy

e (C.11)

|w(>‘) A+ K+ 7711?i1,k1 (>‘) + 7721?1'2,@ (>‘) + n3§i37k3 ()‘)| =
for any choice of ¢, K,1i,k,7n. This proves the inductive step for n = 0.

Case n ~» n + 1. Assume that (C.10) holds for any possible choice of 911, ..., 933 s.t. |n11|+---+|n33] <
n for some (7,)"_,. We prove now the step n + 1. Suppose first that
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W.lo.g. assume it is mg. Then

Mo 82

RO%

Wins (A, €)

(m3)

(m3)? (m3)? + (n3)*

and by the inductive assumption and (7.40)), for any A € C"

‘@m(m) Oy s (A, €)

(@D > [0 - £+ K +mFiy () + oo () + 1B (V)
@m )‘7 @TI’LQ >‘7 ®m1 ny >\v ®m2 n2 >‘7
e | (o) me) s (0,2)

+ M 12 721 722
(my)? (my)? (m1)? + (n1)? (ma)? + (na)?
Wi, (A, €) Wiy (A, €) Mo €2
+ 1 ) + 2 bl _ —
731 <m1> 732 <m2> <€> —
ey Mye? gy €y

= Tn Tn = Tn = Trntl
@GO™ O™ 2K0™ L

provided 7,41 = 7, + 1.
If (C.12)) is not fulfilled, assume that

I st ng]? = O™ and |ny| #0 . (C.13)

W.l.o.g. assume it is ng. Then
Mo 52

RO%

O ,ns (A, €)
(ms)® + (ng)”
and again by the inductive assumption and ([7.40)

‘) 2’("]()‘) A+ K+ nlﬁil,kl ()‘) + 772§i2,/€2 ()‘) + 773§i3,/€3 ()‘)
@m >\5 GMQ A? GM3 A?
9, 0D | B

+ M1 M2 ms
(my)? (ma)? (m3)?
+ ,'7 (_)mhnl (A,E) + 77 emzﬂlz ()‘7‘5)
21— 5 3 20— 5 35
(ma)? + (np)” (ma)? + (na)”
Wm, (N, €) @iy (N, €) Wma (N €)| Mpe?
+ - - -
731 <m1> 132 <m2> 133 {ma) e
€y €

> >
2™ O™

provided 7,41 = 7, + 1. If and (C.13) are not fulfilled, then one has |m;|,|n;|*> < (¢)™ for all the
m;,n; that appear non-trivially in (C.4). Furthermore, we can safely assume that |K| < 4 max;m? |¢],
otherwise Lemma ensures that (C.10)) is met for any A € O;. Thus we are left with a finite number
of cases and we can impose a finite number of Melnikov conditions.

For K € Z, i= (il,ig,’ig) S {1, .,d}3, k = (kl,kg,kg) (S {0, .. ,d}g, ¢ e 7% with |€| = 4M0,
n = (n1,m2,m3) € {—1,0,1}3, m = (my, ma, m3), n = (n1,n2,n3) define the set

n e
G (D) 1= {A " @< g+ Il +e k] =0 1} .
By Lemma with o = v/ {€)™*" we have

16y
. 1
meas <G"K1k,me7m’n(%7n+1)) < W )

and taking the union over the possible values of K,1i,k,7n, ¢, m, n one gets that

<£>1+9'rn/2
meas( U U GK,i,k,n,e,m,n(%TnH)) <C(d)y T
|Z.\>4M0 [m;l, |n;|2<>™ ‘e|;4]v[0 < >
Ll K|<4 max; (2) |¢]
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which converges provided 7,41 = d + 1 + 97,/2. Thus we define the set

el = cm\ U U G}?ﬁ}km%m’n(mmﬂ)

=40 g, Ings|2<¢0>™n
Lln K |<4 max; (@2) ||

O

which fulfills (C.9) and (C.10).

We conclude the section with the proof of Proposition [7.7]

Proof of Proposition[7.7 Fix 7 as in Lemma By definition for v < 75, any X € C. n C, fulfills (C.2)
for any admissible (j, ¢, o). By taking 7 sufficiently small, we can ensure that meas(C.NC,) > meas(C.)/2.
This fixes ~q. O

D A crash course on polynomial rings and algebraic extensions

The aim of this section is to recall the reader |§| some basic algebraic properties of polynomial rings and
algebraic extensions which are used repeatedly in the paper.

Basic properties of polynomial rings. Let R be a commutative ring with unit element. We denote
by R[A] the polynomial ring in A over R, which is the set of formal polynomials in A with coefficients in
R. Tts elements are of the form ' j ajM. R[A] is a commutative ring with unit element. Similarly one
defines the ring of polynomials in the n-variables A1,..., A, over R, denoted by R[Ai,...,\,], whose
elements are of the form > a; i, i, A\T'AF ... Ain.

The following result is very well known:
Lemma D.1. If R is an integral domaivﬂ then so is R[A1,..., \n].

Let R be an integral domain. The characteristic of R is the smallest positive integer such that n-1 = 0,
where n - 1 stands for 1+ 1+ ...+ 1 n — times. In case n - 1 is never 0, then R has characteristic 0.

If R is an integral domain it is possible to construct its field of quotients F' and R has characteristic
0 if and only if F' contains the field Q of rational numbers.

In as integral domain we can speak about irreducible elements. More precisely an element a € R,
a # 1 will be called irreducible if a = be with b, c € R implies that one of b or ¢ must be invertible in R,
that is a unit. Two elements b, ¢ are associated if b = uc with u invertible.

Definition D.2. An integral domain R is a unique factorization domain (UFD) if

(a) Every nonzero element in R is either a unit or can be written as the product of a finite number of
irreducible elements of R.

(b) The decomposition in part (a) is unique up to the order and associates of the irreducible elements.
The ring Z is the simplest UFD. A main theorem is that if R is a UFD so is R[] thus:

Example D.3. The ring Z[A1,- -, Aa] of polynomials in the variables Ay, - -, Aq with coefficients in Z
is a UFD (its units are £1).

Given a UFD R let F be its field of quotients We can then consider R[A] to be a sub-ring of F[A]. In
particular given any polynomial f(A) € F[A], then f(A) = (fo(A)/a), where fo()\) € R[A] and a € R. Tt is
natural to ask if a polynomial irreducible in R[] is still irreducible when it is considered as a polynomial
in the larger ring F'[A].

Lemma D.4. If f()\) € R[] is irreducible as an element of R[\], then it is irreducible as an element
of F[A]. Conversely, if f(\) € R[] is both primitivﬂ and irreducible as an element of F[\], it is also
irreducible as an element of R[A].

8and the authors!

9An integral domain is a commutative ring with an identity 1 # 0 with no zero-divisors. That is ab = 0 = a = 0 or
b = 0. The ring Z is an integral domain.

10£(X\) € R[] is said to be primitive if the GCD of its coefficients is 1. Every polynomial f()\) € R[A] can be decomposed
as the product of a primitive polynomial and the GCD of its coefficients, such decomposition being unique.
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We want to apply this to R = Z[Aq, - - - , Aq] with field of quotients Q(\y, - - - , Aq) the rational functions
with rational coefficients.

Remark D.5. We identify Z[t, A1, - , Aa| with the ring Z[A1,- -+ , Aa][t], namely with the ring of poly-
nomial in the variable t with coefficients in the ring Z[A1, - , Aa).

Next we recall some basic facts about extension fields that is F' < E two fields. We begin with the
following definition:

Definition D.6. If E is a field extension of F, then an element a of E is called an algebraic element
over F if there exists some non-zero polynomial f(t) € F[t] such that f(a) = 0.

The set of elements of E which are algebraic over F' form also a field that is are closed under sum
difference multiplication and inverse. There is also an extension F algebraic over F and algebraically
closed that is the only irreducible polynomials are the linear ones, thus every polynomial f(¢) € F[t] of
degree n factors in F' through its n roots (with possible multiplicities). So when we speak of the roots
of a polynomial f(t) € F[t] we think of elements of F'.

Given a € E an algebraic element over F', we define the set

I, :={f(t) e F[t]: f(a) =0} .
This is an ideal of F[¢].

Lemma D.7. F[t] is a principal ideal domain, namely every ideal of F[t] is generated by a unique
monic polynomial p, € F[t], which is called the minimal polynomial of a:

Lo = {f(t) pa(t): f(t) € F[t]} .

Clearly the minimal polynomial is the monic polynomial of least degree in I, and it is irreducible over
F.

Let f(t) € F[t] be irreducible, then the lemma above implies that f is the minimal polynomial of
every root of f in F.

Lemma D.8. Let F be a field with characteristic 0. An irreducible polynomial f(t) € F[t] has no
multiple roots.

Proof. Recall that to any polynomial f(t) = X;-, a;jt!, we can associate its formal derivative f(t) =
Y sojajt’~ ' If deg f = 1, the statement is trivial, thus let deg f > 1. Assume that f(¢) has multiple

roots. Then f and f’ have a common root a € F. Since f is the minimal polynomial of a, then f/f’.
But since deg f’ < deg f, then f’ = 0, hence deg f = 1, contradiction. O

Lemma D.9. Let f(t) € F[t] be irreducible. For any a€ F, f(t+ a) is irreducible.

Proof. Assume that f(t+a) = g1(t)g2(t) with g1, g2 not trivial polynomials. Then f(¢) = g1 (t—a)g2(t—a),
and ¢1(t — a), g2(t — a) € F[t], getting a contradiction. O
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