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Abstract

We consider the semiclassical Schrödinger equation on Rd given by

i~∂tψ =

(
−~2

2
∆ +Wl(x)

)
ψ + V (t, x)ψ,

where Wl is an anharmonic trapping of the form Wl(x) = 1
2l

∑d
j=1 x

2l
j , l ≥ 2 is an integer and

~ is a semiclassical small parameter. We construct a smooth potential V (t, x), bounded in
time with its derivatives, and an initial datum such that the Sobolev norms of the solution

grow at a logarithmic speed for all times of order log
1
2 (~−1). The proof relies on two

ingredients: first we construct an unbounded solution to a forced mechanical anharmonic
oscillator, then we exploit semiclassical approximation with coherent states to obtain growth
of Sobolev norms for the quantum system which are valid for semiclassical time scales.

1 Introduction and statement

In this paper we consider the semiclassical Schrödinger equation on Rd, d ≥ 1, given by

i~∂tψ =

(
−~2

2
∆ +Wl(x)

)
ψ + V (t, x)ψ , x ∈ Rd , (1.1)

where Wl(x) is the anharmonic trapping potential

Wl(x) :=
1

2l

d∑
j=1

x2lj , l ∈ N, l ≥ 2,

and ~ ∈ (0, 1] is a semiclassical parameter. We construct a time dependent perturbation

V (t, x) := β(t)x1, (1.2)

with β : R → R smooth and bounded with its derivatives, so that (1.1) has a solution whose

Sobolev-like norms grow at a logarithmic speed for all times of order log
1
2 (K~−1), which is a

scale slightly shorter that the Ehrenfest time.

∗Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo, 00146,
Roma, Italy
Email: ehaus@mat.uniroma3.it
†International School for Advanced Studies (SISSA), Via Bonomea 265, 34136, Trieste, Italy

Email: alberto.maspero@sissa.it

1



The norms we use to measure the solution are the spectral ones associated with the anhar-
monic quantum oscillator

Hl := 1− ~2∆ +Wl(x) . (1.3)

More precisely we define the scale of Hilbert spaces Hr ≡ Hr(Rd) := D(H
r/2
l ) (domain of H

r/2
l )

for r ≥ 0, which we equip with the Sobolev norms1

‖u‖r := ‖Hr/2
l u‖L2(Rd) <∞, ∀r ≥ 0. (1.4)

The negative spaces H−r are defined by duality with the L2(Rd) scalar product. We also denote
H∞ := ∩rHr.

Our main result is the following one:

Theorem 1.1. There exist ψ0 ∈ H∞ and a function β ∈ C∞(R,R) fulfilling

sup
t∈R

∣∣∂`tβ(t)
∣∣ < +∞, ∀` ∈ N0, (1.5)

such that the following is true. Denote by ψ(t) the solution of equation (1.1) with V (t, x) = β(t)x1
and initial datum ψ0. Fix an arbitrary r ∈ N. Then there exist ~0,K1,K2,K3 > 0 such that
∀~ ∈ (0, ~0] one has

‖ψ(t)‖r ≥ K1

[
log(2 + t)

]r
(1.6)

for all times

2 ≤ t ≤ K2

[
log

(
K3

~

)] 1
2

. (1.7)

While in the last few years there has been lot of activity aiming to obtain upper bounds on
the growth of Sobolev norms [34, 8, 12, 31, 4, 32, 6], there are only few results [13, 3, 30] which
give lower bounds: Theorem 1.1 goes in this direction, by exhibiting a solution of (1.1) whose
norms increase for long but finite time.

The main difficulty in dealing with equation (1.1) is that very few is known on the spectrum

of the unperturbed operator −~2

2 ∆ + Wl(x). In particular we are not aware of any asymptotic
expansion of its eigenvalues (a property that plays an important role in [3, 30]).

In order to circumvent this problem, the idea is to exploit semiclassical approximation in a
way that now we briefly describe. Equation (1.1) with V (t, x) = β(t)x1 is the quantization of
the classical Hamiltonian

H(t, q, p) =
|p|2

2
+Wl(q) + β(t)q1, q, p ∈ Rd, (1.8)

whose equations of motion are given by

q̈1 + q2l−11 = −β(t), q̈j + q2l−1j = 0, ∀ 2 ≤ j ≤ d. (1.9)

We show, modyfing a construction of Levi and Zehnder [27], that it is possible to construct
β ∈ C∞(R,R) bounded with all its derivatives and an initial datum (q0, p0) ∈ R2d such that the
solution of (1.9) with such an initial datum is unbounded; actually we show that the energy

E(q, p) :=
|p|2

2
+Wl(q) (1.10)

1It turns out that such a space is equivalent to the space of functions{
u ∈ L2(Rn) : ‖(1− ~∆)r/2u‖L2(Rd) + ‖(1 + |x|)rlu‖L2(Rd) < +∞

}
,

see e.g. [37].
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along such a solution grows at a logarithmic speed as t→∞.
The next step is to use the theory of semiclassical approximation with coherent states to convert
dynamical information on the mechanical system (1.9) to the quantum system (1.1). This is
done in two steps. First we construct an approximate solution of (1.1) using coherent states. A
coherent state is a Gaussian packet which stays localized in the phase space along the trajectory
of the mechanical system (1.9) till the Ehrenfest time (see e.g. [20, 11, 2, 9, 7]). As a consequence
of the dynamics of (1.1), we are able to construct a coherent state which oscillates on longer and
longer distances, provoking a growth of its Sobolev norms.
The second step is to show that there exists a solution of (1.1) which stays close, in the Hr
topology, to such coherent state for all times in (1.7). This is done by extending classical results
of semiclassical approximation [20, 11] to the Hr topology, a result which we think might be
interesting in its own.

Theorem 1.1 extends partially to anharmonic oscillators a result of [3], which, in case of
the quantum harmonic oscillators on Rd, constructs solutions with unbounded path in Sobolev
spaces. More precisely, in [3] it is proved that all the solutions of equation (1.1) with l = 1
(namely harmonic oscillators) and with

V (t, x) :=
a

2
sin(t)x1, a 6= 0 (1.11)

have Sobolev norms growing at a polynomial speed:

‖ψ(t)‖r ≥ Cr(1 + t)2r, ∀t� 1. (1.12)

Remark that, in this case, the growth of Sobolev norms happens for all initial data, for all times
and at a polynomial speed. The reason is that for system (1.1) with l = 1 and V as in (1.11) the
classical–semiclassical correspondence is exact and valid for all times, a property first exploited
by Enss and Veselić [15]. This is also the mechanism exploited in [3], which ultimately is based
on the fact that (1.9) with l = 1 and β(t) = sin t is a resonant system, whose solutions are
unbounded (see also [13, 30] for different examples of perturbations provoking growth of Sobolev
norms).

In case l ≥ 2, the classical-semiclassical correspondence is valid only for finite times, and
the speed of growth of Sobolev norms is logarithmic and not polynomial in time. This is in
accordance with the known upper bounds; in particular, in dimension d = 1, it is proved in [4]
that each solution of (1.1) grows at most subpolynomially in time, in the sense that ∀ε, r > 0,
there exists a constant Cr,ε > 0 such that each solution of (1.1) fufills

‖ψ(t)‖r ≤ Cr,ε (1 + |t|)ε, ∀|t| ≥ 1. (1.13)

If the map t 7→ β(t) is real analytic in time, the subpolynomial bound (1.13) can be improved
into a logarithmic one [31]:

‖ψ(t)‖r ≤ Cr [log(1 + |t|)]
rl
l−2 , ∀|t| ≥ 1. (1.14)

Remark that Theorem 1.1 almost saturates the upper bound, at least for finite but long time
intervals. We are not aware of any results in which Sobolev norm explosion is achieved for all
times.

In our opinion, our approach raises an interesting question: to which extent can dynamical
properties of mechanical systems be converted into quantum analogous? Remark that mechanical
systems of the form q̈1 + q2l−11 = β(t) or similar have been widely studied in the literature, and
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conditions on β(t) are known to guarantee either the boundedness of all solutions, or the existence
of unbounded ones, see e.g. [28, 27, 1, 24, 33, 14, 25, 26, 38, 36] and reference therein. For example
if t 7→ β(t) is periodic or quasi-periodic in time with a Diophantine frequency vector and d = 1,
then each orbit of (1.9) in bounded [38].

Before closing this introduction let us mention that the construction of unbounded orbits
in nonlinear Schrödinger equations is an extremely difficult and challeging problem. A first
breakthrough was achieved in [10], which constructs solutions of the cubic nonlinear Schrödinger
equation on T2 whose Sobolev norms become arbitrary large (see also [21, 17, 23, 19, 18] for
generalizations of this result). At the moment, existence of unbounded orbits has only been
proved by Gérard and Grellier [16] for the cubic Szegő equation on T, and by Hani, Pausader,
Tzvetkov and Visciglia [22] for the cubic NLS on R× T2.

Acknowledgments. The authors thank D. Robert for many stimulating discussions and D.
Bambusi for suggesting some references. During the preparation of this work we were partially
supported by Progetto GNAMPA - INdAM 2018 “Moti stabili ed instabili in equazioni di tipo
Schrödinger”.

2 Semiclassical pseudodifferential operators

We recall the definition and main properties of a class of semiclassical pseudodifferential operators
adapted to study equation (1.1); the main reference for this part is [35]. We start by denoting

k0(x, ξ) := (1 + |x|2l + |ξ|2)
l+1
2l , ∀x, ξ ∈ Rd. (2.1)

The function k0 is a good weight, in the sense that there exists Cl > 0 such that

k0(z + w) ≤ Cl k0(z) k0(w), ∀z, w ∈ R2d, (2.2)

and moreover
c̃l(1 + E(x, ξ))

l+1
2l ≤ k0(x, ξ) ≤ C̃l(1 + E(x, ξ))

l+1
2l , (2.3)

for some constants c̃l, C̃l > 0. We begin with the following definition.

Definition 2.1. A smooth function a(x, ξ) will be called a symbol in the class Σm ≡ Σm(R2d)
if ∀α, β ∈ Nd there exists Cαβ > 0 such that∣∣∣∂αx ∂βξ a(x, ξ)

∣∣∣ ≤ Cαβ k0(x, ξ)m .

Remark that we do not ask the derivatives of symbols to gain decay. With this definition of
symbols, one has

xj ∈ Σ
1
l+1 , ξj ∈ Σ

l
l+1 , |ξ|2 +Wl(x) ∈ Σ

2l
l+1 , k0(x, ξ) ∈ Σ1.

We endow Σm with the family of semi-norms defined for any M ∈ N0 by

℘mM (a) :=
∑

|α|+|β|≤M

sup
x,ξ∈Rd

∣∣∣∂αx ∂βξ a(x, ξ)
∣∣∣

km0 (x, ξ)
. (2.4)

As we already mentioned, we work with semiclassical operators, thus we consider also symbols
depending on the semiclassical parameter ~ ∈ (0, 1].
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Definition 2.2. Let a~ be a family of symbols depending smoothly on ~ ∈]0, 1]. We say that
a~ ∈ Σmu if a~ ∈ Σm for every ~ ∈ (0, 1] and if

sup
~∈]0,1]

℘mM (a~) < +∞, ∀M ∈ Nd0.

Abusing notation, for a symbol a~ ∈ Σmu we will denote by ℘mM (a~) the seminorm (2.4) where
the supremum is taken also on ~ ∈ (0, 1]. To any symbol function a~ ∈ Σmu we associate its
~-Weyl quantization Opw~

(
a~
)

by the rule

Opw~
(
a~
)

[ψ](x) :=
1

(2π~)d

∫∫
R2d

e
i
~ (x−y)·ξ a~

(
x+ y

2
, ξ

)
ψ(y) dydξ . (2.5)

Sometimes we will write a(x, ~Dx) to denote the operator Opw~ (a).
A classical result regards composition of pseudodifferential operators.

Theorem 2.3 (Symbolic calculus). Let a~ ∈ Σmu , b~ ∈ Σm
′

u be symbols. Then there exists a
symbol c~ ∈ Σm+m′

u such that Opw~
(
a~
)
◦Opw~

(
b~
)

= Opw~
(
c~
)
. For every j ∈ N, there exists a

positive constant C and an integer M ≥ 1 (both independent of a~ and b~) such that

℘m+m′

j (c~) ≤ C ℘mM (a~)℘m
′

M (b~) .

The second result concerns the boundedness of pseudodifferential operators.

Theorem 2.4 (Calderon-Vaillancourt). Let a~ ∈ Σ0
u be a symbol. Then Opw~

(
a~
)

extends to a
linear bounded operator from L2(Rd) to itself. Moreover there exist constants C,N > 0 such that

sup
~∈(0,1]

‖Opw~
(
a~
)
‖L(L2) ≤ C ℘0

N (a~) . (2.6)

Finally we recall a result about functional calculus.

Theorem 2.5 (Functional calculus). Let a~ ∈ Σρu, ρ ≥ 0, be real and positively bounded from
below, i.e. ah(x, ξ) ≥ γ0 > 0 ∀x, ξ ∈ Rd, ∀h ∈ [0, ~0).
Let f ∈ C∞(R,R), supported in [0,∞), fulfill: ∃r ∈ R such that ∀k ∈ N, ∃Ck > 0 such that∣∣∣∣ dkdtk f(t)

∣∣∣∣ ≤ Ck(1 + |t|)r−k, ∀t ∈ R.

Then f(Opw~
(
a~
)
), defined by functional calculus, is a pseudodifferential operator with symbol

ahf ∈ Σrρu .

As Hl is the Weyl quantization of the symbol 1 + |ξ|2 + Wl(x) ∈ Σ
2l
l+1 , functional calculus

implies that, ∀r ∈ R, the operator Hr
l is a pseudodifferential operator with symbol in Σ

2lr
l+1 .

Using this fact, Calderon-Vaillancourt theorem and symbolic calculus, one obtains that if a~ ∈
Σmu , m ∈ R, then Opw~

(
a~
)

maps Hr+
m(l+1)

l to Hr ∀r ∈ R with the quantitative bound

sup
~∈(0,1]

‖Opw~
(
a~
)
‖
L
(
Hr+

m(l+1)
l ,Hr

) ≤ C ′ ℘mN ′(a~), (2.7)

where C ′, N ′ are positive constants.
The next result is the exact Egorov theorem.
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Proposition 2.6 (Exact Egorov). Let χ(t, x, ξ) be a polynomial function in x, ξ of degree at
most two with smooth t-dependent coefficients. Let U~

χ(t, s) be the propagator of the Schrödinger

equation i~ψ̇ = χ(t, x, ~Dx)ψ. Then for every a~ ∈ Σmu , one has

U~
χ(t, 0)∗Opw~

(
ah
)
U~
χ(t, 0) = Opw~

(
a~t
)
, a~t := a~ ◦ φtχ,

where φtχ(x, ξ) is classical Hamiltonian flow at time t of χ(t, x, ξ) with initial datum (x, ξ) at
time 0.

We denote by T~(z) the Weyl operator

[T~(z)ψ] (x) :=

[
exp

(
− i

~
(−p · x+ q · ~Dx)

)
ψ

]
(x) (2.8)

remark that T~(z) is the time 1 flow of the Schrödinger equation i~ψ̇ = χ(z;x, ~Dx)ψ, where
z := (p, q) ∈ Rd× and χ(z;x, ξ) := −p · x+ q · ξ is a linear Hamiltonian. By Proposition 2.6 one
gets

T~(z)∗Opw~ (a) T~(z) = Opw~ (az) , az(x, ξ) := a(x+ q, ξ + p). (2.9)

We will also use the dilation operator

[Λ~ψ] (x) :=
1

~d/4
ψ

(
x√
~

)
, for ψ ∈ L2(Rd);

it is unitary on L2(Rd) and conjugates pseudodifferential operators in the following way:

Λ−1~ Opw~ (a) Λ~ = Opw1 (b) , b(x, ξ) := a
(√

~x,
√
~ξ
)
. (2.10)

3 Semiclassical approximation and coherent states

Consider the semiclassical Schrödinger equation

i~∂tψ = H(t, x, ~Dx)ψ, (3.1)

where H(t, x, ~Dx) is the ~-Weyl quantization of a real valued Hamiltonian H(t, x, ξ) with x, ξ ∈
Rd. Through all the section we will make the following assumptions on both the classical symbol
H(t, x, ξ) and its Weyl quantization H(t, x, ~Dx).

(Hcl) H(t, x, ξ) is a C∞–function in every variable. There exists m > 0 such that ∀t ∈ [0, T ] the
function H(t, ·) ∈ Σm. Its Hamiltonian flow, namely the solution (x(t), ξ(t)) of

ẋ =
∂H

∂ξ
(t, x, ξ)

ξ̇ = −∂H
∂x

(t, x, ξ)
, x(0) = x0, ξ(0) = ξ0 (3.2)

exists for all t ∈ [0, T ] and any initial datum (x0, ξ0) ∈ R2d.

(Hqu) The Schrödinger equation (3.1) has a unique propagator U~(t, s), unitary in L2(Rd) and
fulfilling the group property U~(t, s)U~(s, τ) = U~(t, τ). The propagator U~(t, s) is bounded
as a map from Hr to itself ∀r; moreover there exists µ > 0 and, for every r > 0, a constant
Cr > 0 such that

sup
~∈(0,1]

‖U~(t, s)‖L(Hr) ≤ Cr(1 + |t− s|)rµ. (3.3)
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Remark that, in the case of equation (1.1), assumption (Hcl) is easily checked, while assump-
tion (Hqu) follows by Theorem A.1, which is a semiclassical version of the abstract theorem of
growth proved in [31].

We will construct an approximate solution of (3.1) using coherent states. Roughly speaking,
a coherent state is a Gaussian packet concentrated in the phase space around a point z = (q, p) ∈
R2d. The theory of semiclassical approximation states that, if the initial datum of equation (3.1)
is a coherent state concentrated near z0 = (q0, p0), then the true solution of (1.1) stays close, up
to the Ehrenfest time, to a coherent state concentrated near the solution zt = (q(t), p(t)) of the
Hamiltonian equations of H(t, q, p) with initial datum z0.

To state rigorously this result we need to introduce some notation. Define for z = (q, p) ∈ R2d

the functions

ϕ0(x) :=
1

(π~)d/4
e−
|x|2
2~ , x ∈ Rd, (3.4)

ϕz := T~(z)ϕ0. (3.5)

The function ϕz is called a coherent state; it is a Gaussian packet localized in the phase space
around the point z ∈ R2d. It is normalized so that ‖ϕz‖L2(Rd) = 1.

Denote by zt = (q(t), p(t)) ∈ R2d the solution of the Hamiltonian equations of H(t, q, p) with
initial datum z0 ∈ R2d; let Mt be the 2d × 2d Hessian of the Hamiltonian computed at the
solution zt, namely

Mt :=

(
∂2H

∂z2

)∣∣∣∣
z=zt

. (3.6)

We use zt and Mt to define the quadratic Hamiltonian

H2(t, x, ξ) := H(t, zt) +

〈
x− q(t), ∂H

∂q
(t, zt)

〉
Rd

+

〈
ξ − p(t), ∂H

∂p
(t, zt)

〉
Rd

+
1

2

〈
Mt

(
x− q(t)
ξ − p(t)

)
,

(
x− q(t)
ξ − p(t)

)〉
R2d

,

(3.7)

which is nothing but the Taylor expansion of order 2 of the Hamiltonian H(t, q, p) around zt. Its
~-quantization H2(t, x, ~Dx) generates a unitary propagator U~

2 (t, s) in L2(Rd).
We denote by Ft the solution of

Ḟt = JMtFt , F0 = 1, (3.8)

where J :=

(
0 1

−1 0

)
is the standard Poisson tensor.

Lemma 3.1. Let a~ ∈ Σmu , m ∈ R. Then U~
2 (t, 0)∗Opw~

(
a~
)
U~
2 (t, 0) is a pseudodifferential

operator with symbol a~t given by

a~t (ζ) = a~ (zt + Ft[ζ − z0]) , ζ = (x, ξ) ∈ R2d.

Proof. Since H2(t, x, ξ) is a quadratic polynomial in x, ξ, we can apply Proposition 2.6 and get
U~
2 (t, 0)∗Opw~

(
a~
)
U~
2 (t, 0) = Opw~

(
a~ ◦ φtH2

)
, where φtH2

is the Hamiltonian flow of H2(t, x, ξ).
We compute explicitly such a flow. Thus let ζ(t) := φtH2

(ζ) be the solution of

ζ̇ = JMtζ + J∇H(t, zt)− JMtzt, ζ(0) = ζ ∈ R2d.
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By Duhamel’s formula we get

ζ(t) = Ftζ + Ft

∫ t

0

F−sJ∇H(s, zs) ds− Ft
∫ t

0

F−sJMszs ds. (3.9)

Now use that zs is a solution of the Hamiltonian equations of H(s, z) to write J∇H(s, zs) = d
dszs;

integrating by parts we obtain

Ft

∫ t

0

F−sJ∇H(s, zs) ds = zt − Ftz0 − Ft
∫ t

0

(
d

ds
F−s

)
zs ds

= zt − Ftz0 + Ft

∫ t

0

F−sJMszs ds, (3.10)

where in the last inequality we used that

d

ds
F−s =

d

ds
F−1s = −F−1s

(
d

ds
Fs

)
F−1s = −F−sJMs.

Inserting (3.10) into (3.9) gives the result.

Now fix z0 ∈ R2d and consider the solution of (3.1) with initial datum the coherent state
ϕz0 defined in (3.5). The main result of the section is that the quantum evolution U~(t, 0)ϕz0 is
well approximated by the dynamics of U~

2 (t, 0)ϕz0 in the topology of Hr, ∀r ≥ 0. This extend
to higher Sobolev spaces the results of [11]. To state the theorem precisely, let us introduce for
any T ≥ 0 the quantities

|F |T := sup
0≤t≤T

|Ft|, ET := sup
0≤t≤T

E(zt),

where E(z) ≡ E(q, p) is the anharmonic energy defined in (1.10).

Theorem 3.2. Assume (Hcl) and (Hqu). Fix z0 ∈ R2d, r ≥ 0 and κ ∈ (0, 1]. Then there exists
a constant Γ > 0 such that for any ~, T > 0 fulfilling

√
~|F |T ≤ κ, (3.11)

one has

‖U~(t, 0)ϕz0 − U~
2 (t, 0)ϕz0‖r ≤ Γ ~1/2 |F |3T (1 + T )µr+1 (1 + ET )

r
2 , ∀0 ≤ t ≤ T, (3.12)

where r := r + 3 +m(l + 1)/l .

Proof. One starts with Duhamel’s formula

U~(t, 0)ϕz0−U~
2 (t, 0)ϕz0 =

1

i~

∫ t

0

U~(t, τ) [H(τ, x, ~Dx)−H2(τ, x, ~Dx)] U~
2 (τ, 0)ϕz0 dτ. (3.13)

Recall that H2(t, x, ξ) is the Taylor expansion at order two of H(t, x, ξ) around the path zt, thus

H(t, z)−H2(t, z) = R(t, z − zt), z = (x, ξ) ∈ R2d (3.14)

where

R(t, ζ) =
∑
ν∈N2d

0

|ν|=3

Rν(t, ζ) · ζν , Rν(t, ζ) :=
1

(ν − 1)!

∫ 1

0

H(ν) (t, zt + θζ) (1− θ)2 dθ.
(3.15)
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Since H(t, ·) ∈ Σm, one has R(t, ζ) ∈ Σm+3l/(l+1). Quantizing (3.14) we obtain

H(τ, x, ~Dx)−H2(τ, x, ~Dx) = Opw~ (R(τ, ζ − zt)) . (3.16)

Inserting (3.16) into (3.13) and taking the Hr norm, we have that

‖U~(t, 0)ϕz0 − U~
2 (t, 0)ϕz0‖r ≤

1

~

∫ t

0

‖U~(t, τ)‖L(Hr)‖Opw~ (R(τ, ζ − zτ ))U~
2 (τ, 0)ϕz0‖r dτ

(3.3)

≤ Cr
(1 + |t|)1+rµ

~
sup

0≤τ≤t
‖Opw~ (R(τ, ζ − zτ ))U~

2 (τ, 0)ϕz0‖r

To control the last term we proceed as following. First remark that U~
2 (τ, 0) and T~(z0) are

isometry in L2(Rd), so is
U~(t) := U~

2 (τ, 0)T~(z0). (3.17)

Then, exploiting (3.5) and the identity

U~(t)∗Opw~ (a)U~(t) = Opw~ (b) , b(t, ζ) := a(zt + Ftζ), (3.18)

which follows by (2.9) and Lemma 3.1, we obtain

‖Opw~ (R(τ, ζ − zτ ))U~
2 (τ, 0)ϕz0‖r = ‖Hr/2

l Opw~ (R(τ, ζ − zτ ))U~(τ)ϕ0‖0

= ‖
(
U~(τ)∗H

r/2
l U~(τ)

)(
U~(τ)∗Opw~ (R(τ, ζ − zτ ))U~(τ)

)
ϕ0‖0

= ‖Opw~ (hr(zτ + Fτζ)) Opw~ (R(τ, Fτζ))ϕ0‖0. (3.19)

In the last line we denoted by hr ∈ Σ
lr
l+1 the symbol of H

r/2
l , i.e. H

r/2
l = Opw~ (hr). We are left

with estimating (3.19). Let hr(zt; ζ) := hr(ζ + zt). By (2.10)

Λ−1~ Opw~ (hr(zτ ;Fτζ)) Opw~ (R(τ, Fτζ)) Λ~ = Opw1

(
hr(zτ ;

√
~Fτζ)

)
Opw1 R(τ,

√
~Fτζ).

Thus, using that Λ~ is unitary in L2(Rd) and writing ϕ0 = Λ~ϕ, where ϕ(x) := 1
πd/4

e−|x|
2

, we
get

(3.19) = ‖Opw1

(
hr(zτ ;

√
~Fτζ)

)
Opw1

(
R(τ,

√
~Fτζ)

)
ϕ‖0.

Now remark that ϕ is a Schwartz function, so by Calderon-Vaillancourt theorem there exist
C,N > 0 such that

(3.19) ≤ C ℘lr/(l+1)
N

(
hr(zt;

√
~Ftζ)

)
℘
m+3l/(l+1)
N

(
R(τ,

√
~Ftζ)

)
‖ϕ‖r.

We are left with estimating the seminorms of the symbols. By assumption (3.11) we have

√
~|Ft| ≤ κ ≤ 1, ∀ 0 ≤ t ≤ T,

therefore the seminorm of hr is controlled by

℘
lr/(l+1)
N

(
hr(zt;

√
~Ftζ)

)
≤ ℘lr/(l+1)

N (hr) sup
ζ∈R2d

∣∣∣∣k0(ζ + zt)

k0(ζ)

∣∣∣∣lr/(l+1)

.
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By (2.2) and (2.3), for any t ∈ [0, T ] we bound

sup
ζ∈R2d

∣∣∣∣k0(ζ + zt)

k0(ζ)

∣∣∣∣lr/(l+1)

≤ C ′lk0(zt)
lr/(l+1) ≤ C ′lC̃ ′l(1 + E(zt))

r
2 ≤ C(1 + ET )

r
2 .

Thus we proved

℘
lr/(l+1)
N

(
hr(zt;

√
~Ftζ)

)
≤ C(1 + ET )

r
2 , ∀ 0 ≤ t ≤ T. (3.20)

Consider now the seminorm of R(τ,
√
hFtζ). Proceeding as above and using the definition of R

in (3.15) we obtain

℘
m+3l/(l+1)
N

(
R(τ,

√
~Ftζ)

)
≤ C(

√
~|F |T )3(1 + ET )

m(l+1)
2l + 3

2 , ∀ 0 ≤ t ≤ T. (3.21)

Combining all estimates we have

‖U~(t, 0)ϕz0 − U~
2 (t, 0)ϕz0‖r ≤ Γ

(1 + T )1+rµ

~
(
√
~|F |T )3(1 + ET )

r
2 , ∀ 0 ≤ t ≤ T

which proves (3.12).

Theorem 3.2 tells that it is possible to approximate, in the Hr topology, the quantum dy-
namics of a coherent state with the approximate flow generated by a quadratic Hamiltonian.
In the next proposition we show that it is easy to compute the values of observables along the
approximate flow.

Proposition 3.3. Assume (Hcl) and (Hqu). Fix z0 ∈ R2d and κ ∈ (0, 1]. Furthermore assume
that a ∈ Σρ, ρ ≥ 0, fulfills the condition∣∣∣∂αx ∂βξ a(x, ξ)

∣∣∣ ≤ Cαβ k0(x, ξ)ρ−
lβ+α
l+1 , ∀|α|+ |β| ≤ 1. (3.22)

Then there exist a constant Γ1 > 0 and for any ~0, T > 0 fulfilling

√
~0 |F |T ≤ κ, (3.23)

a smooth function b : (0, ~0]× [0, T ]→ R such that

〈Opw~ (a) U~
2 (t, 0)ϕz0 , U~

2 (t, 0)ϕz0〉 = a(zt) + b(~, t), (3.24)

and moreover

|b(~, t)| ≤ Γ1 ~
1
2 |Ft| (1 + Et)

(l+1)ρ−1
2l , ∀0 ≤ t ≤ T, ∀~ ∈ (0, ~0]. (3.25)

Proof. With U~(t) defined in (3.17) and exploiting (3.18) we get〈
Opw~ (a)U~

2 (t, 0)ϕz0 ,U~
2 (t, 0)ϕz0

〉
=
〈
U~(t)∗Opw~ (a)U~(t)ϕ0, ϕ0

〉
= 〈Opw~ (a(Ftζ + zt))ϕ0, ϕ0〉

To compute the last scalar product we proceed as following. Denote by Ψ the orthogonal projector
on ϕ0, Ψu := 〈u, ϕ0〉ϕ0; it is a pseudodifferential operator with ~-Weyl symbol given by the
Wigner function

Wϕ0
(x, ξ) = 2d e−

|x|2+|ξ|2
~ ,

10



see e.g. [11]. Now remark that for any operator A one has

〈Aϕ0, ϕ0〉 = 〈AΨϕ0, ϕ0〉 =
∑
j≥0

〈AΨϕj , ϕj〉 = tr(AΨ),

where {ϕj}j≥0 is any orthonormal basis of L2(Rd) that completes ϕ0.
If A = Opw~ (a) is a pseudodifferential operator, trace formula (see [35, Proposition II–56]) assures
that

tr(AΨ) = (2π~)−d
∫
R2d

a(ζ)Wϕ0(ζ) dζ.

In our case we obtain

〈Opw~ (a(Ftζ + zt))ϕ0, ϕ0〉 =
1

(π~)d

∫
R2d

a(Ftζ + zt) e
− |ζ|

2

~ dζ

= π−d
∫
R2d

a(
√
~Ftζ + zt) e

−|ζ|2dζ (3.26)

Now we write

a
(√

~Ftζ + zt

)
= a(zt) + b(~, t, ζ) , b(~, t, ζ) := a

(√
~Ftζ + zt

)
− a(zt). (3.27)

Inserting (3.27) in (3.26) gives formula (3.24) with b(~, t) := π−d
∫
b(~, t, ζ)e−|ζ|

2

dζ. We prove
now (3.25). By Lagrange mean value theorem and assumption (3.22) we get

|b(~, t, ζ)| ≤ C~ 1
2 |Ft| ‖ζ‖ sup

0≤s≤1
k0

(
~

1
2Ftζ + szt

)ρ− 1
l+1

≤ C ′~ 1
2 |Ft| ‖ζ‖ k0

(
~

1
2Ftζ

)ρ− 1
l+1

k0(zt)
ρ− 1

l+1

Now insert the last estimate in (3.26), and use (3.23) and the inequality (2.3) to obtain the
claimed result.

4 Application to anharmonic oscillators

In this section we apply Theorem 3.2 to construct a solution of equation (1.1) whose Sobolev
norms grow for long but finite time.

4.1 Unbounded orbits for classical anharmonic oscillator

The first step is to consider the mechanical system (1.9) and construct a forcing term β(t),
smooth and bounded with its derivatives, so that there exists at least one unbounded solution.

This is the content of the next result.

Proposition 4.1. There exists a smooth function β ∈ C∞(R,R) fulfilling (1.5), such that equa-
tion (1.9) possesses an unbounded solution q(t). Moreover there exist C1, C2 > 0 s.t.

C1 [log(2 + t)]
2 ≤ E (q(t), p(t)) ≤ C2 [log(2 + t)]

2 ∀t ≥ 0. (4.1)

To prove the result we follow the strategy of [27]. First remark that the dynamic of (1.9) is
decoupled into one dimensional systems. Since qj = pj = 0 ∀j ≥ 2 is an invariant subspace, we
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take an initial datum with qj(0) = pj(0) = 0 ∀j ≥ 2. Then the dynamics of (1.9) becomes one
dimensional and restricted to the variables (q1, p1).

The idea is to create β(t) by giving a particular solution q(t) of (1.9) a “helping kick” to
the right direction each time the solution passes through the interval −1 ≤ q1 ≤ 1 from left to
right, and make β(t) = 0 at all other times. With such a β(t) the energy along the solution will
increase at each passage from −1 to 1 while remaining constant between consecutive passages.

Furthermore it is important to weaken the “kicks” at every passage, otherwise the external
force β(t) will have some derivatives which are unbounded in t.

In order to construct β(t) we use an auxiliary nonlinear equation. First define g1 and g2 to
be positive cut-off functions on R s.t.

g1(y) :=

{
1 , |y| ≤ 1/2

0 , |y| ≥ 1
, g2(y) :=

{
0 , y ≤ 0

1 , y ≥ 1
, y ∈ R.

Then consider the nonlinear equation

ÿ + y2l−1 = f(y, ẏ), y, ẏ, ÿ ∈ R (4.2)

with
f(y, ẏ) := g1(y) g2(ẏ) e−ẏ . (4.3)

Abusing notation, we denote again by E(y, ẏ) the mechanical energy

E(y, ẏ) :=
ẏ2

2
+
y2l

2l
.

Proposition 4.2. Consider equation (4.2). The solution with initial datum y(0) = ẏ(0) = 1 is
globally defined and unbounded. More precisely there exist C1, C2 > 0 s.t.

C1 log(1 + t)2 ≤ E(y(t), ẏ(t)) ≤ C2 log(1 + t)2 , ∀t ≥ 1 . (4.4)

Proof. Along a solution of (4.2) the function E(t) ≡ E(y(t), ẏ(t)) fulfills

d

dt
E(t) = ẏ f(y, ẏ) ≥ 0 . (4.5)

More precisely d
dtE(t) > 0 when |y(t)| < 1 and ẏ(t) > 0, otherwise d

dtE(t) = 0.
Set t0 = 0, define the increasing sequence of all times 0 < t1 < t2 < . . . such that y(tn) = ±1,

ẏ(tn) > 0 for n ≥ 1, and denote En := E(t2n) ∀n ≥ 0. It is easy to verify that such a sequence
is well defined and that y(tn) = −1 for n odd and y(tn) = 1 for n even (see Figure 1 for a sketch
of the phase portrait).

By (4.5) and the definition of f(y, ẏ) we have that En is monotone increasing and furthermore

E(t) = En , ∀t2n ≤ t ≤ t2n+1, ∀n ≥ 0 . (4.6)

We shall now prove, with a quantitative bound from below, that E(t) increases when t ∈
[t2n+1, t2n+2]. Observe that En >

1
2l for all n ≥ 0. Using that

En ≤ E(t) ≤ En+1 , ∀ t2n+1 ≤ t ≤ t2n+2,

and |y| ≤ 1 one obtains the bound√
2En −

1

l
≤ ẏ(t) ≤

√
2En+1 , ∀ t2n+1 ≤ t ≤ t2n+2. (4.7)
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Figure 1: A sketch of the phase portrait: the oscillator follows the conservative dynamics from
t2n to t2n+1, then the “helping kick” pushes the trajectory to a higher energy level between t2n+1

and t2n+2.

Next write

En+1 − En =

∫ t2n+2

t2n

ẏ(t) f(y(t), ẏ(t)) dt =

∫ t2n+2

t2n+1

ẏ(t) f(y(t), ẏ(t)) dt =

∫ 1

−1
g1(y)g2(ẏ)e−ẏ dy,

where the last integral is obtained via the change of variable t  y(t) and ẏ has to be thought
of as a function of y (this can be done since, when t ∈ [t2n+1, t2n+2], the function t 7→ y(t) is
strictly increasing, see (4.7)). This integral can be estimated by (4.7) obtaining

ce−
√

2En+1 ≤ En+1 − En ≤ 2e−
√

2En− 1
l ≤ 2e

√
1
l e−
√
2En , ∀n ≥ 0 , (4.8)

for some constant c > 0 depending only on the choice of the cutoff functions g1, g2. We claim
that

lim
n→∞

En = +∞ .

Indeed, the limit exists since {En}n≥1 is an increasing sequence. Assuming that lim
n→∞

En =

E∞ <∞, one gets a contradiction when passing to the limit in (4.8) (recall that En >
1
2l ).

Now use (4.8) and the fact that En ≥ 1
2l ∀n, to get that 1 ≤ En+1/En ≤ K := 1 + 4l, which

implies that

ce−
√
2KEn ≤ En+1 − En ≤ 2e

√
1
l e−
√
2En , ∀n ≥ 0 . (4.9)

To estimate En we define the interpolating function

η(θ) = (θ − n)En+1 + (1 + n− θ)En , n ≤ θ ≤ n+ 1,
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so that the right derivative D+ of η fulfills

ce−
√

2Kη(θ) ≤ D+η(θ) ≤ 2e
√

1
l e−
√

2η(θ)/K , ∀θ ≥ 0 . (4.10)

To estimate η we will use the method of the super and sub solutions. In particular, for any

K ′ > 2K = 2(1 + 4l)

there exists cK′ > 0 so that

cK′
√
η(θ) e−

√
K′η(θ) ≤ D+η(θ) ≤ 2e

√
1
l

√
2lη(θ) e−

√
2η(θ)/K , ∀θ ≥ 0 , (4.11)

where we used also that η(θ) ≥ 1
2l . The solution of this differential inequality can be estimated

by the supersolution and subsolution method: in particular consider the differential equations

ξ′(θ) = cK′
√
ξ(θ) e−

√
K′ξ(θ) , ζ ′(θ) = 2e

√
1
l

√
2lζ(θ) e−

√
2ζ(θ)/K

and initial condition ξ(0) = ζ(0) = η(0). Then one has ξ(θ) ≤ η(θ) ≤ ζ(θ) for all θ ≥ 0. A simple
computation shows that

1

K ′

[
log

(
e
√
K′η(0) +

cK′
√
K ′

2
θ

)]2
≤ η(θ) ≤ K

2

[
log
(
e
√

2η(0)/K + 2
√
l/Ke

√
1/l θ

)]2
, ∀θ ≥ 0 .

Evaluating this expression at θ = n, one has

a[log(2 + n)]2 ≤ En ≤ b[log(2 + n)]2 , ∀n ≥ 0 (4.12)

for some positive constants a, b. Now we need to relate n with tn. To do so, denote by T (E) the
period of oscillation of the solutions of ÿ + y2l−1 = 0 with energy E > 0. It is given by

T (E) = clE
− l−1

2l (4.13)

for some constant cl > 0 (in particular, T (E) is a strictly decreasing function of E). Moreover
in our case

T (En+1)

2
≤ T (En)

2
≤ t2n+2 − t2n ≤ T (En) , ∀n ≥ 0. (4.14)

To see that
T (En)

2
≤ t2n+2− t2n, observe that the time interval [t2n, t2n+2] contains (more than)

a half oscillation at energy En. The last inequality t2n+2−t2n ≤ T (En) is deduced by comparison
with the conservative system at energy En and by observing that in the forced ODE the particle
travels at energy En when t ∈ [t2n, t2n+1] and undergoes a further forward acceleration for
t ∈ [t2n+1, t2n+2]. Using (4.12) and the explicit expression (4.13), one has

a [log(2 + n)]−
l−1
l ≤ t2n+2 − t2n ≤ b [log(2 + n)]−

l−1
l , ∀n ≥ 0 . (4.15)

for some new constants a, b different from those in (4.12). Now write t2n =
∑n−1
m=0 t2m+2 − t2m,

thus (4.15) and the estimates

c1
n

[log(2 + n)]α
≤

n−1∑
m=0

1

[log(2 +m)]α
≤ c2

n

[log(2 + n)]α
, ∀α ∈ [0, 1], ∀n ≥ 1
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show that
ãn

[log(2 + n)](l−1)/l
≤ t2n ≤

b̃n

[log(2 + n)](l−1)/l
, ∀n ≥ 1. (4.16)

By (4.16) and (4.12), we get that

C1 ≤
En

[log(2 + t2n)]2
≤ C2 , ∀n ≥ 0 , (4.17)

which implies (4.4).

Proof of Proposition 4.1. Let y(t) be the solution of (4.2) with initial datum (y(0), ẏ(0)) = (1, 1).
Define β(t) as

β(t) := −f (y(t), ẏ(t)) . (4.18)

Then q(t) := (y(t), 0, . . . , 0), q̇(t) := (ẏ(t), 0, . . . , 0) is the solution of (1.9) with initial datum
q(0) = (1, 0, . . . , 0) and q̇(0) = (1, 0, . . . , 0). By Proposition 4.2, the energy along q(t) increases,
and (4.1) holds (remark that p(t) = q̇(t)).

To prove (1.5), first observe that β(t) = −g1(y)g2(ẏ)e−ẏ is a bounded function of t. Next, we
estimate β̇(t): we have

β̇(t) = −e−ẏ{ẏg′1(y)g2(ẏ) + ÿg1(y)g′2(ẏ)− ÿg1(y)g2(ẏ)}
= −e−ẏ{ẏg′1(y)g2(ẏ)− [y2l−1 + β(t)][g1(y)g′2(ẏ)− g1(y)g2(ẏ)]},

where we have used the ODE (4.2) to obtain the last equality. Now, notice that g1(y) ≡ 0 for
|y| ≥ 1/2, that g2(ẏ) = g′2(ẏ) ≡ 0 for ẏ ≤ 0 and that ẏe−ẏ is bounded for ẏ ≥ 0. The estimate
for higher order derivatives is obtained similarly via Faà di Bruno’s formula.

Remark 4.3. Combining (4.4) and (4.18), one sees easily that β(t) → 0 as t → ∞. If instead
t 7→ β(t) is periodic, it is known that all the solutions of q̈1 + q2l−11 = −β(t) are bounded in
time [33, 14, 25, 26, 38]. Remark that, for autonomous system, the phenomenon of having
all solutions bounded is very interesting and often associated to some sort of integrability, for
example as it happens in the defocusing cubic NLS on T or the Toda lattice (see e.g. [29, 5]).

Finally we need to estimate the norm of Ft, which in this case is defined as the flow of the
linearized Hamiltonian (1.8) along the solution (q(t), p(t)) of Proposition (4.1). By (3.8), Ft
solves the equation

Ḟt =

(
0d 1d
−Υ(t) 0d

)
Ft , F0 = 12d (4.19)

where 1d is the d × d identity matrix, 0d the d × d zero matrix, and Υ(t) the d × d diagonal
matrix defined by

Υ(t) := diag
(

(2l − 2)(q1(t))2l−2, 0, . . . , 0
)

where q1(t) ≡ y(t) is first component of the unbounded solution constructed in Proposition 4.1.

Lemma 4.4. Consider equation (4.19). There exists c > 0 such that, for all T > 0, one has

sup
0≤t≤T

|Ft| ≤ exp
(
cT [log(2 + T )]

ς
)
, ς := 2

(
1− 1

l

)
. (4.20)
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Proof. Using the results of Proposition 4.1, one gets

|Υ(t)| ≤ C2 (2l − 2) [log(2 + t)]
ς
, ∀t ≥ 1,

therefore

|Ft| ≤ exp

(∫ t

0

(1 + |Υ(s)|)ds
)
≤ exp (ct [log(2 + t)]

ς
) ,

which gives the thesis.

4.2 Growth of Sobolev norms

In this section we apply the semiclassical approximation to the quantum Hamiltonian (1.1). The
idea is that the coherent state stays localized in the phase space around the solution (q(t), p(t))
of (1.8), and therefore oscillates more and more, increasing its Sobolev norms.

Lemma 4.5. Let zt := (q(t), p(t)) be the unbounded solution of Proposition 4.1, and denote by
z0 := (q(0), p(0)) its initial datum. Fix an arbitrary r ∈ N and 0 < ε < 1. Then there exist
κ, ~0, C1, C2 > 0 such that ∀~ ∈ (0, ~0], one has

‖U~
2 (t, 0)ϕz0‖r ≥ C1 [log(2 + t)]

r
(4.21)

for all times

2 ≤ t ≤ C2

[
log

(
κ√
~

)]1−ε
. (4.22)

Proof. The result is an application of Proposition 3.3, which requires the condition
√
~|F |T ≤ κ

to be fulfilled. Having fixed κ, ~0 > 0 sufficiently small (to be specified later), and estimating
|F |T by Lemma 4.4, we obtain that T is constrained by the condition

0 ≤ T ≤ C2

[
log

(
κ√
~0

)]1−ε
, (4.23)

where ε > 0 is an arbitrarily small number and C2 ≡ C2(ε) > 0. Define

Er(x, ξ) := (E(x, ξ))r ≡
( |ξ|2

2
+Wl(x)

)r
.

The function Er is a symbol in Σ2lr/(l+1) fulfilling (3.22); moreover estimate (2.7) implies that

‖Er(x, ~Dx)1/2ψ‖0 ≤ C ′‖ψ‖r, ∀ψ ∈ Hr. (4.24)

By Proposition 3.3 we have, for every t ∈ [0, T ], the equality〈
Er(x, ~Dx)U~

2 (t, 0)ϕz0 , U~
2 (t, 0)ϕz0

〉
= Er(q(t), p(t)) + b(~, t), (4.25)

where b(~, t) fulfills, by (3.25) and (4.1)

|b(~, t)| ≤ Γ1~
1
2 |Ft| (1 + E(zt))

r− 1
2l ≤ Γ1C

r− 1
2l

2 κ
[

log(2 + t)
]2r− 1

l

, ∀(~, t) ∈ (0, ~0]× [0, T ].

(4.26)
The function Er(q(t), p(t)) grows in time at a logarithmic speed; indeed by Proposition 4.1

Er(q(t), p(t)) ≥ C1

[
log(2 + t)

]2r
. (4.27)
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Therefore collecting estimates (4.24)–(4.26) we obtain

‖U~
2 (t, 0)ϕz0‖2r ≥

1

C ′2

(
C1

[
log(2 + t)

]2r
− Γ1C

r− 1
2l

2 κ
[

log(2 + t)
]2r− 1

l

)
≥ C1

2C ′2

[
log(2 + t)

]2r
,

for all time t provided

e(κ) ≤ t ≤ T, e(κ) := exp

(2Γ1C
r− 1

2l
2 κ

C1

)l .
Now fix κ > 0 so small that e(κ) ≤ 2, and ~0 small enough so that 2 is smaller than the r.h.s. of
(4.23).

We can finally prove Theorem 1.1.

Proof of Theorem 1.1. The result is an application of Theorem 3.2 to system 1.1. Assumption
(Hcl) is trivially verified; to show that (Hqu) holds note that by (2.7)

sup
~∈(0,1]
t∈R

1

~
‖[β(t)x1, Hl]ψ‖r ≤ C‖H

1
2

l ψ‖r, ∀ψ ∈ Hr+1.

Therefore condition (A.3) holds with τ = 1
2 and Theorem A.1 implies that

sup
~∈(0,1]

‖U~(t, s)‖L(Hr) ≤ C ′r 〈t− s〉
r

;

in particular condition (3.3) holds with µ = 1.
Thus, by Theorem 3.2, Lemma 4.5 (with ε = 1/2) and using also (4.1),(4.20), one finds

constants K1,K2,K3 > 0 such that

‖U~(t, 0)ϕz0‖r ≥ ‖U~
2 (t, 0)ϕz0‖r − ‖U~(t, 0)ϕz0 − U~

2 (t, 0)ϕz0‖r ≥ K1[log(2 + t)]r

for all times

2 ≤ t ≤ K2

[
log

(
K3

~

)] 1
2

.

A A semiclassical abstract theorem on growth of Sobolev
norms

We prove here a semiclassical version of Thereom 1.5 of [31]. Thus consider an Hilbert space H 0

and a positive, invertible, selfadjoint operator K~ (possibly ~-dependent) acting on it. Define the
scale of spaces H r := D

(
(K~)r

)
, endowed with the norm ‖ψ‖r ≡ ‖(K~)rψ‖H 0 . Note that the

norms might depend on ~ as well. On H r, consider the time dependent Schrödinger equation

i~∂tψ(t) = L~(t)ψ(t) , ψ|t=s = ψs ∈H r (A.1)

where L~(t) is a selfadjoint operator in C0
(

[0, T ],L(H r+m,H r)
)

, m ∈ R.
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Theorem A.1. Assume that there exists τ ∈ Q, τ < 1 such that the following holds true: ∀r ≥ 0,
there exists Cr > 0 such that

sup
~∈(0,1]

1

~
‖
[
L~(t),K~] (K~)−τ‖L(H r) ≤ Cr, ∀t ∈ [0, T ]. (A.2)

Then equation (A.1) has a unique propagator U~(t, s), ∀t, s ∈ [0, T ], unitary in H 0 which re-
stricts to a bounded operator from H r to itself fulfilling

sup
~∈(0,1]

‖U~(t, s)‖L(H r) ≤ C ′r 〈t− s〉
r

1−τ . (A.3)

This result is proved in [31] for ~ = 1; here we prove its extension to the semiclassical case.

Remark A.2. In our application, we will set K~ = Hl, and therefore H r = H2r.

Proof. The existence of the propagator, its unitarity in H 0 and the group property follow from
Theorem 1.5 of [31]. To prove (A.3) we revisit the proof of that theorem. First by induction one
verifies that ∀k ∈ N

sup
~∈(0,1]

1

~
‖
[
L~(t), (K~)k

]
(K~)−(k−1+τ)‖L(H 0) ≤ C ′k. (A.4)

(see e.g. [31, Lemma 2.1]). Now remark that U~(t, s) is an isometry in H 0, so ‖U~(t, s)ψs‖k =
‖[U~(t, s)]∗ (K~)k U~(t, s)ψs‖0. But we have

[U~(t, s)]∗ (K~)k U~(t, s)ψs = (K~)kψs +
1

i~

∫ t

s

[U~(t1, s)]
∗ [L~(t1), (K~)k]U~(t1, s)ψs dt1

Hence using (A.4) we get the first estimate

‖U~(t, s)ψs‖k ≤ ‖ψs‖k + C ′k

∫ t

s

‖U~(t1, s)ψs‖k−θdt1, θ = 1− τ. (A.5)

After m iterations of (A.5), with other constants Ck,m, we get that ‖U~(t, s)ψs‖k is bounded by

Ck,m

m−1∑
j=0

‖ψs‖k−jθ 〈t− s〉j + Ck,m

∫ t

s

∫ t1

s

· · ·
∫ tm−1

s

‖U~(tm, s)ψs‖k−mθ dtmdtm−1 · · · dt1.

Since τ is rational, one can take k sufficiently large so that k/θ is integer, so choosing m = k/θ one
has ‖U~(tm, s)ψs‖k−mθ = ‖U~(tm, s)ψs‖0 = ‖ψs‖0, exploiting the fact that U~(t, s) is unitary
in H 0. Thus, one deduces (A.3) with r = k. The result for arbitrary r ≥ 0 follows from
linear interpolation, since U~(t, s) preserves the norm in H 0 and k can be chosen as large as
needed.
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