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Abstract. We prove internal controllability in arbitrary time, for small data, for quasi-linear Hamilto-
nian NLS equations on the circle. We use a procedure of reduction to constant coefficients up to order zero
and HUM method to prove the controllability of the linearized problem. Then we apply a Nash-Moser-
Hormander implicit function theorem as a black box. MSC2010: 35Q55, 35Q93.
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1 Introduction
We consider a class of nonlinear Schrédinger equations (NLS) on T := R/27Z of the form
Opu + 1045w + N (2, u, Opu, Opeu) =0, z €T, (1.1)

for the complex-valued unknown w = u(t,z). We assume that N is a Hamiltonian, quasi-linear
nonlinearity

./\/'(a:,u,uw,um) = _i<&zoF(x,u7uw) - 81{821F(x,u,ug;)}) 5 (1'2)

where ug, Uz, denote the partial derivatives d,u, Oypu, F : T x C?> — R is a real-valued function,

F(x Y1+ iy y3 +iys
’ \/i ) \/i
and the differential operators 0z,, Jz, in (|1.2) are defined as

) = G, y1,52.55,01) for some G € C"(Tx RLR), (1)
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(Oy, +10y,), 0Oz = NG (Oys +10y,). (1.4)

We assume that G satisfies
Gz, )| < Clyl* Yy = (y1,y2,y3,9a) € RY, [y < 1. (1.5)
Equation is Hamiltonian in the sense that it can be written as
Oru = iVaH(u)

where Vj := % (Vu, +iV.,), V is the L?(T) gradient, u = % (u1 +1iugz), and the real Hamiltonian
H(u) is given by

() = [ (ol + Pl ) do (16)
T
We underline that (1.1)) is, in fact, the real Hamiltonian system
(751 Vu H(U17u2)>
0 =J ! 1.7
tQJ G%meﬂ .7)



for the real-valued unknowns wq, ug, where J := <(1) —O 1) and

H(up,ug) := H(w> !

NG = 7/ ((0pu1)? + (Opu2)?) d:c+/G(m7u1,uQ,8zu1,8zu2) dr. (1.8)
T T

2
As a consequence, the assumption of finite regularity of G, i.e. G € C" (only finitely many times
differentiable) in is compatible with the Hamiltonian structure — in particular, no analyticity
assumption is needed on the Hamiltonian.
For example, if G(z,y1,y2,y3,y1) = ga(x)(y3 + y3)?, then 9;, F(z,u,u,) = a(x)|ug|*u,, and
Nty Uy ) = 10 { () g Pug } = dag (@) g |2ty +ia(2) (W2 Tpp +2]us [Pz, ); i G = 2 (42 +43)2,
then 0z, F (z,u, uy) = |u|?u, and N = —i|u|?u.

For real s > 0, let H: := H?*(T,C) be the usual Sobolev space of complex-valued periodic

functions u(z), and let |ul[s := [[ul[zs be its norm. The main result of the paper is the following
theorem about the exact, internal controllability of equation (|1.1)).

Theorem 1.1 (Controllability). Let T > 0, and let w C T be a nonempty open set. There exist
positive universal constants r1,s1, with 11 > s1 > 10, such that, if G in (1.3)) is of class C™
and satisfies (1.5)), then there exists a positive constant §, depending on T,w,G with the following

property.
Let wip, Ueng € H®* (T, C) with

||uianl + ||uend||sl S 5* (19)
Then there exists a function f(t,x) satisfying
ft,x) =0 forallxz ¢ w, for allt € [0,T],

belonging to C([0,T], H:') N C*([0,T), H:*~2) N C%([0,T], Hs*~*) such that the Cauchy problem

up + gy + N (2, uyug, uge) = f V(t,2) €[0,T] x T

(1.10)
w(0,2) = ()

has a unique solution u(t,z) belonging to C([0,T), H:) N C1([0,T], H:*=2) N C?([0,T), H:1—*),
which satisfies
u(T, ) = tena(), (1.11)

and

||u7 f”C([O,T],Hjl) + ||(9tu, atf||c([07T],H;1*2) + ”attU,attf||c([o7T],H;1*4)
< C(lJuinlls, + [[tendlls,) (1.12)

for some C > 0 depending on T, w, G.

Moreover the universal constant Ty := r1 — s1 > 0 has the following property. For allr > ry, all
s € [s1,r — 1], if, in addition to the previous assumptions, G is of class C" and win, Ueng € HE,
then u, f belong to C([0,T), H:)NCL([0,T), H:=2)NC?([0,T), H:=*) and holds with another
constant Cy instead of C, where Cs > 0 depends on s,T,w,G.

Remark 1.2. Theorem can be seen as split into two parts: first we fix the “low” regularity
thresholds sy, 71, which are sufficient to prove the existence of a solution to the control problem.
Then, in the last paragraph of the theorem, we give a statement about the higher regularity of
such a solution.

Note that the smallness assumption in Theorem is only in the “low” norm: we only
assume ||t || s; +||%endlls; < 0, where the constant d, > 0 does not depend on the “high” regularity
index s € [s1,7 — 71]. O

Using the same techniques used for proving Theorem [1.1] we also prove the following theorem.



Theorem 1.3 (Local existence and uniqueness). There exist positive universal constants 1o, So
with 1o > so > 10, such that, if G in (1.3) is of class C™ and satisfies (1.5]), then the following
property holds. For all T > 0 there exists 0, > 0 such that for all u;, € H%(T,C) satisfying
[ttinllse < Ok, the Cauchy problem

{ut + iuge + N (2, u, Uy, Ugy) = 0, (t,z) € [0,T] x T (113)

(0, z) = uipn(x)
has one and only one solution u € C([0,T], H:)NC([0,T], H:>=2)NC?([0,T], H°~*). Moreover

leqo.my,m20) + 106l oy 02 + 10kl o,y pazo—) < Clltinll (1.14)

for some C > 0 depending on T, G.

The universal constant 19 := 19 — s9 > 0 has the following property. For all v > rq, all
s € [sg,7 — 7o, if, in addition to the previous assumptions, G is of class C" and w;, € H*(T,C),
then u belongs to C([0,T], H:)NCY([0,T], H:~?)NC?([0,T], H:~*) and holds with another
constant Cy instead of C, where Cs > 0 depends on s,T,G.

1.1 Some related literature

There is a vast amount of literature concerning controllability for linear or semilinear Schrédinger
equations. Without even trying to be exhaustive, we only cite some relevant contributions to this
subject, starting with the early papers by Jaffard [31], Lasiecka and Triggiani [32] and Lebeau [35],
which deal with linear Schrodinger equations on bounded domains. Regarding the one-dimensional
case, we mention the result of Beauchard and Coron [I8] for the controllability of the linear
equation by a moving potential well, and the papers by Beauchard, Laurent, Rosier and Zhang
[16, 19, B3], 41] about controllability of semilinear Schrodinger equations. For the semilinear case
on compact surfaces, we cite the work by Dehman, Gérard and Lebeau [24]. We also mention the
recent results by Bourgain, Burq and Zworski [22] and by Anantharaman and Macia [9] concerning
linear Schrodinger operators with rough potentials on higher-dimensional tori. More references in
control theory for Schrédinger equations can be found in the detailed surveys by Laurent [34] and
Zuazua [43].

Concerning controllability theory for quasi-linear PDEs, most known results deal with first
order quasi-linear hyperbolic systems of the form u; + A(u)u, = 0 (see, for example, Coron [23]
chapter 6.2 and the many references therein). Recent results for different kinds of quasi-linear
PDEs are contained in Alazard, Baldi and Han-Kwan [6] on the internal controllability of gravity-
capillary water waves equations, in Alazard [2,[3, 4] on the boundary observability and stabilization
of gravity and gravity-capillary water waves, and in Baldi, Floridia and Haus [I4} [T5] on the internal
controllability of quasi-linear perturbations of the Korteweg-de Vries equation.

1.2 Strategy of the proof

Because of the presence of two derivatives in the nonlinearity, the controllability of the quasi-
linear control problem — cannot be directly deduced by a perturbative argument from
the controllability of the corresponding linear problem by applying some fixed point argument or
the usual implicit function theorem. A similar difficulty for a quasi-linear control problem was
overcome in [6] by using a suitable nonlinear iteration scheme adapted to quasi-linear problems.
Such a nonlinear scheme requires solving a linear control problem with variable coefficients at
each step of the iteration, with no loss of regularity with respect to the coefficients (i.e., the
solution must have the same regularity as the coefficients). In [0] this is achieved by means of
paradifferential calculus, together with linear transformations, Ingham-type inequalities and the
Hilbert uniqueness method. As an alternative method, in [I4] it is used a Nash-Moser approach,
which also demands the solving of a linear control problem with variable coefficients, but it requires
weaker estimates, allowing some loss of regularity. The proof of such weaker estimates is easier to
obtain, and it does not require the use of powerful techniques like paradifferential calculus (for a



discussion about pseudo- and paradifferential calculus in connection with the Nash-Moser theorem,
see, for example, [29], [8]). The result in [I4] is slightly weaker than the one in [6] regarding the
regularity of the solution of the nonlinear control problem with respect to the regularity of the data
(in [14] for data in H*(T) both the control and the solution are in C([0,T], H* (T)) for all s’ < s,
while the result in [6] reaches the corresponding optimal regularity s’ = s). The version of the
Nash-Moser implicit function theorem used in [I4] is due to Hérmander [28], and it is the sharpest
version in literature regarding the loss of regularity in terms of the coefficients of the linearized
problem in several function spaces. As it is observed in [I5], the theorem in [28] is the sharpest
possible in Holder class, but it is not optimal in Sobolev spaces (this is the reason for which the
optimal regularity s’ = s is not obtained in [I4]). In [I5] the sharpest Hormander’s version of the
Nash-Moser theorem has been extended to Sobolev spaces (so that s’ = s can be obtained both
with the Nash-Moser approach and with the quasi-linear scheme with paradifferential analysis like
in [6]). For this reason, in the present paper we use the Nash-Moser theorem in [15].

We mention that Nash-Moser schemes in control problems for PDEs have been used by Beauchard,
Coron, Alabau-Boussouira and Olive in [I6, 17,18, [I]. A discussion about Nash-Moser as a method
to overcome the problem of the loss of derivatives in the context of controllability for PDEs can
be found in [23], Section 4.2.2. Beauchard and Laurent [I9] were able to avoid the use of the
Nash-Moser theorem in semilinear control problems thanks to a regularizing effect.

We prove Theorem by applying the Nash-Moser-Hérmander implicit function theorem of
[15] as a black box. To this end, one has to solve the associated linearized control problem (see
equation ), which is a 2 x 2 real system with variable coefficients at every order, and to prove
tame estimates for the solution. Like in [6l [14], we solve the linearized control problem in L?(T)
by applying the Hilbert uniqueness method (HUM), see Lemma . Then, in Lemma , we
recover the additional regularity of the solution by adapting a method of Dehman-Lebeau [25],
also used by Laurent [33] and in [6 14]. To apply the HUM method, we prove in Section [3| the
observability of the linearized operator in by a procedure of symmetrization and reduction
to constant coefficients up to a bounded remainder (like in [6,[14]) developed in Section [2} then the
result follows by applying Ingham inequality (with a further simple argument to deal with double
eigenvalues, like in [6]). The procedure of symmetrization and reduction of the linearized operator
is an adaptation of the one used by Feola and Procesi [27] 26] in the context of KAM theory for
quasi-linear NLS equations. We remark that a similar reduction procedure has been also developed
in [30], [10], [I1], [12], [13], [5], [6], [20], [38] for water waves, quasi-linear KdV, Benjamin-Ono and
Kirchhoff equations.

1.3 Functional setting and the linearized problem

Given any open subset w C T, we introduce a function x, € C*°(T,R) whose support is contained
in w, such that 0 < x,(z) <1 for all z € T, and x, = 1 on some open interval contained inw. We
write the NLS control problem as a real system, namely, writing u = —=(u1 +iuz), ( f1+ifa),

with wy,us, f1, fo all real-valued functions, the control problem ({1.10] - becomes the one of

finding (f1, f2) such that the solution (uj,us) of the Cauchy problem
Opur + Vi, H(u1,u2) = xo fa

Optg — VUIH(’LM, U2) Xw f2 satisfies Ul(Ta ) = (ul)end (1.15)
ul( ) ( )171 U2 Ta ) = (u2)end
u2(0, ) = (u2)in
where the real Hamiltonian H is defined in . We define
[ Owu1 + Vi, H(ug, uz) Xw f1
P(ula u2) e <atu2 _ VulH(ula UQ) ) Xw(flv f2) waQ ) (1]‘6)
and
P(u1,u2) = xw(f1, f2) 0
(I)(ulvu27flaf2) = (’U,17’U,2)(0,') ) Zdata +— ((ul)in7(u2)in) ) (117)
(Ul, Ug)(T, ) ((ul)enda (u2)end)



so that problem (|1.15) reads
(I)(ulvu2aflaf2) = Zdata- (118)

By (|1.16) and (1.8), the nonlinear operator P is given by

8tu1 - 8xxu2 + (8y2G)(9c, Uy, w2, (ul):m (u2)m) - am{(ay4G)((Ea Uy, u2, (ul)xa (UZ)x)}>

Oz + gzt — (Oy, G)(,ur, Uz, (U1) 2, (U2)2) + 0u{(y, G) (x, ur, ug, (U1)e, (u2)2)}/

(1.19)

The crucial assumption to verify in order to apply the Nash-Moser theorem is the existence of

a right inverse of the linearized operator. The linearized operator ®'(uy,us, f1, f2)[h1, ha, p1, 2]
at the point (u1,usg, f1, f2) in the direction (hy, ha, @1, @2) is given by

Pluny) =

P'(ur, uz)[hy, he] — Xxuw(e1, ¢2)
' (uy, ug, f1, f2)[h1, ha, 01, 2] = (h1,h2)(0,-) . (1.20)
(hla hQ)(Ta )
Thus we have to prove that, given any (u1,us, f1, f2) and any z = (vy,vs, a1, 9,01, 52) in a
suitable function space, there exists (hy, ho, 1, p2) such that
q)l(u17u27f17f2)[h17h27@1a802] =z (121)

(i.e., we have to solve the linearized control problem). The linearized operator P’(uy, us)[h1, he] is
P/(ul,UQ)[hl,hg] (122)

(81— Busha 4 PSPV 0sahy + PSP Ouuha + p{ Ok + P 0ho + 8By + PSP R
Oho + 0z hq +p(2 )amhl +p(22)8 zho +p121)8 hy +p(122)8 ho —i—p( )hl +p822)h2 ,

namely
(11  (12) (11 (12) 11 (12)
Py Py PP Py Py hy
O + JOuy + Oz + 0y + } ( ) (1.23)
{ <p;21) p222)> (pgm) (22)) <p(()21) pém)) By
where the coefficients of the terms of order 2 are
péll) = _(8y3y4G)’ pélz) = _(8y4y4G>7 (1'24)
2 22
pé = (8y3y3G)7 pg ) = (ay3y4G)a
those of order 1 are
P = (045 G) = (00, G) = 0:{(04 BN}, PV = =0u{ (0 O}, (1.25)
pSQ = 0:{(0 Y3Ys3 G}, p§22) = _(8y1y4G) + (8?/2?4% )+ 0:{(0 Y3Ya G},
those of order 0 are
20 = 0y,G) = 0:{(0, )1 D8 = (0200 C) — 00{(90, G}, (1.26)

p(()m) = 7(8?/1?/1 )Jra {( Y193 )} PE)22) = (a@nyz )Jra {( Y23 )}’

and (9y,y,G) = (Oy,y, G) (v, u1, u2, Opu1, Opuz) for all 4,5 € {1,2,3,4}.
Consider the transformation

) -c(l). wom e (4 ) B0 )

and blrnllaﬂy (%0174102) = C(@v@)v (UhUQ) = C(Uaﬂ)7 (0&1,0[2) = C(Oé,@), (ﬁ1762) = C(ﬁ76) With
this “vector complex” notation, the linearized control problem (|1.21)) becomes

‘C[hlm - Xw(90a _) = (’U,T))
(h, ?)(07 )= (avai) (1.28)
(h, h)(T,-) = (B, )



where £ := L(uy,uz) := C P’ (uy,u2)C. More explicitly, we calculate

L= 0I5 +i(S + A2)y + 1410, + iAo, (1.29)

where
I := (é ?) , Ni= (é _01> L A= (_“gk f&) , k=012, (1.30)
a4 = %(_ ipgl) —p,(€12) _’_pl(czl) _ ip,(fQ)), by = %( _ ipgl) +p§€12) —l—p,(fl) n ip§€22)>, (1.31)

and @y, by are the complex conjugates of the coefficients ay, by,. By (1.31)) and (T.24)), (T.25)), (1.26),
one has

as = as, a1 = 20,a9 — ay, ag=agp-+ Opala — 815@1, b1 = Oyba. (132)

Remark 1.4. The linear system (1.28)) is made by three pairs of equations in which the second
equation is the complex conjugate of the first one. Hence (|1.28)) is equivalent to

E(sca)h — Xwp =0

h(0,-) = (1.33)
h(Tv ) = ﬂ
where
L6 = 9, +i(1 4 ag + b2€)dyy +i(a1 + b1€)0, +i(ag + bo€),  €[h] := h. (1.34)

The complex conjugate operator € : h — h is R-linear, and there is no problem in using it to
shorten the notation of the real system .

However, instead of the scalar complex notation (1.33)), in the analysis of the linearized problem
we will use the vector complex notation (1.28)), which is somewhat “more natural” and very common
in the literature on the Schrodinger equation. In any case, for linear systems the two notations
are, of course, completely equivalent. O

For real s > 0, we consider the classical Sobolev space

H*(T) := H*(T,C) := {u € L(T,C) : [Jull? := 3 (k)>*[a[* < oo} ,
kEZ

where (k) := (1+|k|?) and u(z) = 3, oy Uk €% € L*(T) := L*(T, C). We adopt the convention of
indicating explicitly H*(T,R) the subspace of real-valued functions of H*(T,C), and to denote, in
short, by H*(T) the whole space H*(T,C). The same convention applies to L?(T,R) and L*(T) :=
L3(T,C). We also consider spaces H*(T,K?), where K = R, C, and for (u1,u2) € H*(T,K?) we
set

[, o) lls = [lualls + [uzlls -

We define the real subspace H*(T) of H*(T,C?) as
H*(T) := {u = (v,u) :u € H*(T,C)} (1.35)

where @ is the complex conjugate of u. When there is no ambiguity, we also write, in short, H; to
denote H*(T,C) or H*(T,R?), and the same for L2, HS and L2.
We denote by ()72 the standard L? scalar product in L?(T, C), namely

(u,v) 2 1= /u(x)@(x) dr Vu,v € L*(T,C). (1.36)
T
We define the scalar product in L?(T, R?) as

<(u1’u2)’(Ul7v2)>L2('ﬂ‘,R2) ::/

Tul(:v)vl(at) dx + / uz(x)ve () da, (1.37)

T



and the scalar product in L2(T) as

(u,v)p2 ::/Tu(ac)ﬁ(x) d:c—i—/jrv(x)ﬂ(x) dx . (1.38)

Note that (1.38)) is a real scalar product on L?(T), and therefore (L2(T), (-,-)p2) is a real Hilbert
subspace of L?(T, C?).
The transformation C defined in ((1.27) satisfies

(u,v)r2 = (Cu,CV)2(rrey Vu,v € L*(T), (1.39)

and so C is a unitary isomorphism between the real Hilbert space L?(T, R?) equipped with the real
scalar product ([1.37) and the real Hilbert space L?(T) equipped with the scalar product (1.38)).
Given a linear operator R : L?(T,C) — L*(T,C), we define the adjoint operator R* as

(Ru,v)p> = (u, R*v)p> Yu,v € L*(T,C); (1.40)

the transpose operator RT as

/(Ru)v doe = /u(RTv) dx Vu,v € L*(T,C); (1.41)
T T

and the conjugate operator R as
Ru= (Ra) Yu e L*(T,C). (1.42)
For an operator
R = (g ﬁ) :L2(T) — L*(T),
we define its adjoint R* by

(Ru, V)12 = (0, R*V)r> Vu,v € L*(T), (1.43)

o DG GD o

For any real s > 0 and u = (u,u) € H*(T), we set

namely

l[alls == lfulls - (1.45)

Given a Banach space (X, | - ||x), and T > 0, we consider the space C([0,7], X) of the continuous
functions w : [0,7] — X equipped with the sup-norm

lulleo,ry,x) = lluller(x) == sup lu(?)|x . (1.46)
t€[0,T]
For X = H*(T,R) or H*(T,R?) or H*(T,C) or H*(T,C?) or H¥(T), and u € C([0,T],X), we
denote, in short,
lull7,s == sup [lu(®)]ls - (1.47)

)

We also define the following notations. Given a Sobolev index s > 0, we write A <; B if there exists
a constant C(s) > 0 depending on s such that A < C(s)B. If the constant C(s) is independent of
s, we simply write A < B.

According to —, Theorem follows from the following theorem.



Theorem 1.5. Let T > 0, and let w C T be a nonempty open set. Let x., be a C* function
supported in w, with 0 < x, <1 on T and x, = 1 on some open interval contained in w. There
exist positive universal constants r1,s1 such that, if G in is of class C™ and satisfies ,
then there exists a positive constant 6, depending on T,w,G with the following property. Let
(ul)i’ru (ul)end7 (u2)ina (u2)end € H*n (T, R) with

[(ui)inlls, + [1(wi)endlls, <6x, i=1,2.
Then there exist functions
fi, f2 € C([0,T), H*(T,R)) N C*([0, 7], H**~*(T,R)) n C*([0, T, H**~*(T, R))
such that the Cauchy problem

Opur + Vi, H(uy, u2) = xwfi
Ogug — Vi, H(uy,u2) = Xu fo
u1(0,-) = (u1)in
)i

(1.48)
u2(0,-) = (u2)in
has a unique solution (uy,us) with
u1,ug € C([0,T], H**(T,R)) N C*([0, T], H**~*(T,R)) N C2([0, T], H**~*(T,R)),
which satisfies
ur (T, z) = (w1)ena(), uz (T, ) = (u2)enda(z) (1.49)

and fori=1,2

lwi, fillr,s, + 10swis Or fill T,y —2 + |0sets, Ot fill 7,51 4
< C(H(ul)im (u2)in||51 + ”(ul)end7 (u2)end”81> (1~50)

for some C > 0 depending on T, w,G.

Moreover the universal constant 7 = r1 — s1 > 0 has the following property. For all v > 71,
all s € [s1,r — 7], if, in addition to the previous assumptions, G is of class C" and (u1)in, (U2)in,
(u1)end; (u2)ena € H*(T,R), then u, f belong to C([0,T], H*(T,R)) N C1([0,T], H*~2(T,R)) N
C?([0,T), H=4(T,R)) and (1.50) holds with another constant Cs instead of C, where Cs > 0
depends on s, T,w,G.

Similarly, Theorem follows from the following theorem.

Theorem 1.6. Let T > 0. There exist positive universal constants ro, so such that, if G in (1.3)) is
of class C™ in its arguments and satisfies (1.5]), then there exists a positive constant 8, depending
on T, G with the following property. Let (u1)in, (u2)in € H*(T,R) with

[(u1)inllso + I (u2)inllsy < 0.
Then the Cauchy problem
Oruy + Vi, H(ug,ug) =
Orug — Vo, H(ug,u2) =
u1(0,-) = ( 1)in
)i

u2 ) = (u2 in

(1.51)

has a unique solution (ui,us) with
uy,ug € C([0,T], H*(T,R)) N CH([0,T], H*°~2(T,R)) N C*([0, T], H**~*(T,R))
and

—1 S C(l[(u)inllso + l(u2)inllse), i=1,2 (1.52)

[willr,so + 0cuillT,so—2 + || Oerus



for some C > 0 depending on T, G.

Moreover the universal constant 7o := rg — sg > 0 has the following property. For all v > r¢, all
s € [s0,7 — 70, if, in addition to the previous assumptions, G is of class C" and (u1)in, (u2)in €
H*(T,R), then u belongs to C([0,T], H*(T,R)) N C1([0,T], H*~2(T,R)) N C%([0, T], H*~*(T,R))
and holds with another constant Cy instead of C, where Cs > 0 depends on s,T,G.

2 Reduction of the linearized operator

In view of the application of the Nash-Moser scheme, we will consider linear operators of the same
form as £ = L(u1,us) given in . The aim of this section is to conjugate such operators to
constant coefficients up to a bounded remainder, adapting the procedure described in [26] 27]. We
first fix some notation.

Let uy,up € CO([0, T], H¥*(T,R)) N C*([0, T], H***(T,R)) N C?([0,T], H*(T,R)). We define

My (s; w1, up) i= max ts[%pT] (ke (t, Msta + 100t stz + 1Ot )ls) - (2.1)

We recall the notation defined in given a function v € C([0,7], H*(T,R)), we denote
[vll7,s := supiero, 1y 10t )| #s. Also, 1fv = (v,v) € C([0,T], H*(T)), we set

IVliz,s == [[vllr,s -
In the next Lemma we provide some estimates on the coefficients a;, b;, i = 0,1, 2.

Lemma 2.1. Let r > 6 be the regularity of G in (L.3)). There exists 6 > 0, depending on G, such
that, if Mp(2;u1,us2) defined in (2.1)) satisfies

M7 (25 u1,u2) <6, (2.2)
then for every s € [0,7 — 6] one has
o 10illTs 5 110:bilz,s,

Proof. The estimates follow from the explicit expressions given in (1.31]), (1.24)-(1.26) and by the
composition Lemma 0

<. MT(3+2;u1,uQ).

[0caillz,s,

We consider operators of the form

L= 0I5 +i(5 + A2)0us + 1410, + iAo, (2.3)

(1 0 _{ ag b .
Y= (0 _1) , Ap = <—bk —ak> , k=0,1,2. (2.4)

We assume that the time dependent vector field L(t) := 1420,, + 1410, + 14p is Hamiltonian,
therefore equations (1.32]) hold by Lemma We assume that for S € N large enough

where

G,Q,8ta2,atta,27bQ,atbQ,al,atdl,b17atb1,ao,b0 S C([OvT]vHS(T)) ) (25)
and, for s € [0, 5], we set
Nr(s) i= sup max{oals |Oucal o [Oueaal s s e [0 e ol -
tel0
+ sup (Weallse, [9uball s 1bs = [9cba e 1ol ) (2.6)
t€[0,T

In Sections we will consider constants o, S, with 0 < o < S, and n € (0,1), and assume that
Nr(o) <. (2.7)

The constant S will have the role of a large and fixed regularity index, ¢ will indicate the “loss of
regularity” in terms of the coefficients of the linearized operator, and n will be small enough.



2.1 Symmetrization of £ up to order zero

In this subsection we remove the off-diagonal terms from the order 2, namely we conjugate the
linear operator £ in (2.3) to an operator Ly (see (2.13))-(2.14])) where the coefficient in front of 9.,
is a diagonal 2 x 2 matrix. As a consequence of the Hamiltonian structure, the transformation
that achieves this cancellation also removes the off-diagonal terms from the order 1 (see equation
(2.17). First we consider the 2 x 2 matrix valued function
1+ ag(t x) bo
Y4 As(t,x) = =
+ Aslt2) ( B —l-a(ta)

(recall that ag = @3 by Lemmal6.2)). The eigenvalues of the above matrix are given by £A(¢,2) € R,
where

At,x) := /(L +az)? — |ba]?. (2.8)

Note that, by Sobolev embedding, (2.7) and because o > 1, one has

lazllz + b2l S llazllz,y + 1b2llz0 S 7,

so that (1+ag)? — |be|? is close to 1 for n € (0,1) small enough. Then we consider the 2 x 2 matrix

1+a2+)\ _ b2
14+ a9+ N2 —|by)? 14+ a9+ N2 —|by?
s=stha=| ViTe 52> 1 Ve 1+2a2+))\ i (2.9)

VI +a+ 2?2 =0 /(1+az2+2)? - [baf

The columns of the matrix S are the eigenvectors corresponding to the eigenvalues £\ and
det(S(t,x)) = 1. Then the map

S(): h(z)— S(t,z)h(x)

is symplectic. The above matrix is invertible and its inverse is given by

1 + ag + )\ b2
1 _ g1 _ | VO Faz £ N2 =[0I+ az+A)2 — [bef?
S 1=8"1(tz) = 5 L4t (2.10)
\/(1+a2+)\)2—|b2|2 \/(1+a2+)\)2—|b2|2
and a direct calculation shows that
S=8". (2.11)
We compute the conjugation S~™'LS. Note that
simians— (N 0o (t+a” 0 o —A—1€eR (2.12)
25 =0 - 0 _1_g0) @ '
and we get the linear operator
Lo:=8"LS =0T, +i( + A0y, +14V0, +ia | (2.13)
where
(0) 0
AY = 2 : 2.14
2 ( 0 _ago) ( )
0 o p(®
AP = Mo T ) 2257104 4)(0:8) + ST S, (215)
—by -

(0) (0)

b

A = ( “g(o) 2(0)> = ST + A2)(0528) + S A1(0:8) + SHES) + ST A4S . (2.16)
—Y0 — %0
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Since the linear transformation S(¢) : h(z) — S(t, z)h(x) is symplectic, the time dependent linear
vector field Lo(t) = i(X + Aéo))am + iA(lo)&,; + iA(()O) is still Hamiltonian. Then, by Lemma
one has

b = 0,6 =0, (2.17)

hence
0 -a'
Note that (2.17)) can also be proved by a direct calculation.

(0) a(o) 0 1 1
A7 =0 0 | = 257H(E + A2)(0:5) + ST A 8. (2.18)

Lemma 2.2. There exists n € (0,1) small enough, o > 0 such that if Nyp(o) < n, then for any
0<s<S—oc (where S is defined in (2.5))

IS+ —1d||7,s o Nr(s + ). (2.19)
AS a consequence
1(8*! = 1d)h|z,s S, nlhllr,s + Nr(s +o)|hfro- (2.20)
Furthermore,
105”1 7.4, 10008” | 7.0. 10000S” |76 S Nr(s+ ) , (2.21)
1as” 17,5 100l 10§ 7,05 165 176 So N(s+ ). (2.22)
Proof. Use definitions , , and apply Lemmas O

2.2 Change of the space variable

The aim of this subsection is to remove the z-dependence from the highest order term of the
operator L defined in (namely, to conjugate Lo to an operator where the coefficient of 9,
does not depend on the space variable x). For this purpose, we consider t-dependent families of
diffeomorphisms of the torus T of the form

z—z+oat,z), a:[0,T)]xT—-R, | (t, )| < 1/2.
The above diffeomorphism is invertible and its inverse is given by
y—y+aty).
Then we define the linear operator A as
A=V1+a, Ay, Agh(t,x) == h(t,x + a(t,x)) . (2.23)

Using the fact that
1

1+ ag(t,y +a(ty))
one gets that the inverse of the operator A has the form

A = = TH 4, Aa, Ash(ty) = A7 h(ty) = h(t.y +a(ty)). (2.25)

A direct calculation shows that Al is a symplectic map. The conjugation of the differential
operators Oy, 0., 0, and of multiplication operators a = a(t,z) : h +— ah are given by

=1+a,(y) (2.24)

A9A = 8, + (Aza)d, + (Aaﬁ> . Alad = (4za) (2.26)
A0, A = [1+ (Aza,))d, + (Aaﬁ) (2.27)

~ 2amxz(]— + O[z) - a92£:13>

AT 000 A = {AG[(1 4+ 00) 2}y + 2(A5002)y + (As TR (2.28)

11



Conjugating the operator Ly in (2.13) by means of the symplectic map Aly we get the operator
Ly = A Lo Al = 9,1, +1AV 0, + 14V, +iall (2.29)

where, taking into account (2.17)),

1 1
A . (a0 A0 (a0 a0 @) b
2 0 —alV )’ 1 o —ab) Y gV
and
S = A1+ a) (1 + as)?], 2.30)
M. 4 © © .
ay Az2(1 + ay oy +ay ' (1 + o) — ioy], (2.31)
0 0 .
NONS ~{ (14 a8 2000e (1 + ) — 02,] 0\ au, —iay, a(o)} (2.32)
0 « 4(1 4 )2 2(1 + a,) o J ’
bV = Azl (2.33)
Our purpose is to find « : [0,7] x T — R and a function ms : [0,7] — R so that
a(t,y) =ma(t),  V(t.y) € [0,T] xT. (2.34)
Thus, we have to solve
(14 a) (1 + ap)? = ms. (2.35)
Since aéo) is a real-valued function, the solutions are given by
1 dx -2 _ 1 0)y—1
my = (— [ — 2 )7, a::(?ml(m21+a( 5_1), 2.36
: (%/T(Hag%;) S+ 1) (2:30)

where 9! is the Fourier multiplier 9, 'e'/* = (1/ij)e'® for j € Z, j # 0, and 9,1 = 0. Note that
ms : [0, T] — R is a real-valued function. The operator £ in (2.29) has then the form

Ly = 0]y + imyXdy, + 1410, +iAl” (2.37)
where ¥ is defined in (2.4).

Lemma 2.3. There exists n € (0,1) small enough and o € N large enough, such that if Np(o) <n
(see (2.6) ), then, for any 0 < s < S —o,

lm2 = 1lcz S, (2.38)
lellz.s, 0callr s, [|Ouallr.s, [|allr.s [0i@lr.s, |0ualr.s S Nrls + o). (2.39)

The transformations A*' map C([0,T], H*(T)) — C([0,T], H*(T)) and they satisfy the estimate

A= Allzs s (1A

1.5+ No(s+0)|hllro,  VheC(0,T], H*(T)). (2.40)
The functions agl),aél),bél) satisfy
a7, 18:aS |50 1l |10 105V 175 S Ne(s + ) - (2.41)

Proof. The Lemma follows by the explicit expressions of the coefficients, applying Lemmas [7.1

.5, [.6 -
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2.3 Reparametrization of time

In this subsection we remove also the dependence on time from the highest order (namely we
conjugate the operator £; in (2.37) to an operator where the coefficient of 9., is a constant
matrix, independent of (¢, ), see (2.49))). We consider a diffeomorphism of the time interval [0, T,

5:[0,T] = [0,T), #0)=0, AT)=T (2.42)
with inverse 3~!. We define the operators B! induced by the diffeomorphisms %! as
Bh(t,z) := h(B(t),z), B h(r,x):=h(B (1), 2). (2.43)
The following conjugation rules hold:
B 'aB = (B'a), B~ '9,B=(B7'8)0,, B lor"B=09", meN. (2.44)
Conjugating the operator £; in , we get
B LBl = (B~ 30,15 + (B~ my) S0, + (B 1,41)0, +i(B11,4). (2.45)

Our aim is to choose 3 so that the coefficients of 9,15 and i¥0,, are proportional, namely we have
to look for a diffeomorphism 3 : [0,T] — [0,T] and a constant p € R such that

1
B(t) = ;mg(t) , Vit € [0, 7. (2.46)
Then, integrating in time from 0 to T, by (2.42)) we fix the value of p and define 5(¢) as
e I
W= —/ mo(t) dt, B(t) = 7/ ma(s)ds. (2.47)
T Jo K Jo
Defining
p(1) = (B3 (1) = p 1 (B my) (1), T€1[0,7T], (2.48)
we get
B 'LLyBly = pLy, Lo := 0.1y +iu%d,, +i1470, +14(Y (2.49)
(2) (2) (2)
0 2 Q, b
AP = [1 ;AP =% o, 2.50
1 0 —a® 0 3O _g® (2.50)
of? = p 1B Ya), o = p B MalY), o = p B Y). (2.51)

Note that the vector field La(t) := 1430y, +iAg2)8y—|—iA(()2) is still Hamiltonian, since reparametriza-
tions of time preserve the Hamiltonian structure. We also remark that, changing the time variable
in the integral, one has

T T
/ (Bu(t),v(t))pz dt = / (u(r), p H(7)B V(1) )2 dr Vu,v € L, (2.52)
0 0
namely the transpose of B with respect to the time-space scalar product fOT<-, , )Lz dt is

B.=p'B7L. (2.53)

Lemma 2.4. There exists n € (0,1) small enough, o € N large enough such that if Nr(c) < 7,
then for any 0 < s < .S — o, the following holds:

=10, 155 = 1lea S (2.54)
1B ks < Ihllzs  Yh € C([0,T], H*(T)) (2.55)
1p*t —1llex S (2.56)
1052 17,5 100057 | 7,5 0§ 7,5 167 76 S N5+ ). (2.57)
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Proof. Estimate for p and S*! follows from deﬁnitions and estimate for ms.
Estimate (2.55) for B! follows directly from definition (2.43)), computing the norm || - ||7,s. Esti-
mates (2.56), (2.57) for pT! follow by the explicit expressions , 7 applying Lemma-
and estimates (2.38 , 254), (2.55), (2.41), (2-55)), ([2.56).

2.4 Translation of the space variable

In this subsection we remove the space average from the order 1 coefficient a( ) (namely we conju-
gate the operator Lo in ) to an operator where the coefficient in front of 8 is a 2 x 2 diagonal
matrix whose entries are functions with zero space average, see , ) We consider the
change of the space variable z = y 4+ p(7), where p: [0,7] — R, and define the operators

Th(r,y) = h(r,y+p(7)), T 'h(r,z) = T*h(r,2) = h(r, 2 — p(T)). (2.58)
A direct calculation shows that 7 is symplectic. Moreover, one has
T7'9.7T =0, +90., T T = (T 'a), T*lang =07, meN. (2.59)
Then
Ls:=T 'LoTly = 0,1, +iuX0.. + iAo, +ia? (2.60)
with
3 3 3
AP = (aé) _3(3)) cAY = ( ;i(];) fi(})) , (2.61)
a(13) = —ip/ + (T~ a( ), aé‘g) = (T_la(()z))7 b(()g) = (T_lbgz)). (2.62)

Our aim is to choose the function p so that
/Taf’) (r,2)dz=0, Vrel[0,T]. (2.63)
Performing the change of variable y = z — p(7), the above equation becomes (multiplying by 1)
2mp/ (1) + i /T a\? (r,y)dy =0. (2.64)

By Lemmam we have that a(2) = 2(0ppt) — E?) = —652) (recall that u is a constant), implying
that a(2) [0,T] x T — iR, and then 1a§ ) [0,7] x T — R. Hence we can solve equation (2.64)) by
setting

1 T
T) = _%/o /iri“iZ)(éﬁy) dyd¢,  7€l0,T] (2.65)

and we get that p : [0,7] — R is a real-valued function. Renaming the variables 7 = t, z = = we
have

L3 =0y + S0y, +14170, +iA(Y | / Pt x)de =0, Vtelo,T]. (2.66)
T

Lemma 2.5. There exists n € (0,1) small enough and o € N large enough such that if Ny (o) <mn,
then for any 0 < s < S — o, the following estimates hold:

Ipllcz <n- (2.67)
(2.68)
The transformations T+ map C([0,T], H*(T)) — C([0,T], H*(T)) and they satisfy
I+ hlizs < [hllzs Vh € C(0,T), H(T)), Vs > 0. (2.69)
Furthermore
a5 17,5, 19403” l175, lag” 17,5, 1067 17,6 S Nes + o). (2.70)
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Proof. The lemma follows from definitions ([2.58), (2-62), (2-65), applying Lemmas [7.1} [7.5] -
and using estimates

2.5 Elimination of order one

In this last subsection, we remove completely the order 1 (namely we conjugate the operator L3 in
(2.66)) to an operator where the term 0, is not present). We consider the multiplication operator
by the matrix valued function

M= (3 2) v:[0,T]x T — C, (2.71)

where v is a function sufficiently close to 1, to be determined. The inverse M~! and the adjoint

M* are )
-1 v 0 x v 0
M7= ( 0 v_1> , M* = (O v) (2.72)

We compute

Ly = M LM = O]y + 450, +1AV0, +i40) (2.73)
with
(4) (4) (4)
0 4) Qg bo
A§4) = <a1 _(4 > ) A(() = ( —(4) ; (274)
0o —a “by —ay)
a(14) = a13) +2uv o, a64) = q B3) 4 - Yuwgs + a(l?’)vx — i), b(4) b(?’) (2.75)

To remove the first order term we need to solve the equation

a$® 42wty = 0. (2.76)
We look for solutions of the form v = exp(q) and we get ag )+ 2uq, = 0, which, recalling (2.63)),
has the solution ¢ = —(2;;)_18;1(1%3). Hence we set
871a§3)
V= exp( - ’”7) ) (2.77)
2p
which solves ([2.76) and gives
Ly=00y+ipS0p, +R,  R:=iA". (2.78)
We remark that, by the Hamiltonian structure, a§3) =gt ), therefore
o1 53) 6_1653) 8—1ag3) )
T = exp( — 7) = eXp( — ””7) = exp(I7> =0 .
2u 2 20
Recalling (2.72)) one gets
M= M*. (2.79)

Lemma 2.6. There exist n € (0,1) small enough, o € N large enough such that, if Nyp(o) < 7,
for any 0 < s < S — o, the function v defined in (2.77) satisfies the estimate

[0t = 1z, 005 75 Ss Nr(s +0). (2.80)

As a consequence, the transformations M*' satisfy

|M* s S0 ([Bllrs + No(s + o) [hlro), Yh=(hF) € C(0,TLH).  (281)
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The multiplication operator

:(4) :p(4)
ia ib rLoT
R=| 2 00l = (1 2) 2.82
(-ibé“) _iag4>> LT (2.82)
satisfies
Irillz,s: lIrallz,s Ss Nr(s+0). (2.83)

Proof. The lemma follows by recalling definitions (2.71)), (2.72), (2.77), (2.78)), applying Lemma
and estimates (2.54)), ([2.70). O

3 Observability

In this section we prove the observability for linear operators £ of the form (2.3). The proof is
split in several lemmas.

Lemma 3.1 (Ingham). Let T > 0. Then there exists a constant C1(T) > 0 such that for any
1> % and for any w = (w;)jen € *(N,C), one has

/ S g dt > 0 (1) Y
0 "jen JEN

Proof. This result is classical. For a proof, see for instance Theorem 4.3 in Section 4.1 of [37]. To
prove that the constant Cy(7T') does not depend on y € [%,400) it is enough to follow the proof in
[37] and use the lower bound |j2 — pk?| > 3 for all pairs of distinct nonnegative integers j # k. O

Lemma 3.2 (Observability for 0; + ipu0z,). Let T >0 and w C T be a non-empty open set. Then
there exists a constant Co := Co(T,w) > 0 such that for any p > %, the following holds: for any
ur € L?(T) the solution u of the backward Cauchy problem

satisfies the estimate
T
/ / fu(t, @) de dt > Collur ]2
0 w

Proof. The proof of this result is standard. For instance, it can be deduced by adapting the proof
of Proposition 6.5 in [6] to the present, simpler case. We give here the proof for completeness.

We fix an open interval wg = (a,b) C w. We choose b — a smaller than a suitable universal
constant, so that

sin(n(b — a)) ’

p = sin(b — a) Yn>1. (3.2)

Let up = Y, .5 wne™, so that lur||: =3,z lwnl?. We compute

u(t,z) = Z wyelnTeiin’® (¢=T) _ Z ()t

nez neN

where

T (1, o) form 1,
Zn(x) = w forn=20
0 =0.

By Lemma [3.1] we get

/OT/W u(t, )[? dz dt > Cy(T) Z/ o ()2 d.

neN v wo
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It remains to prove that

Z/ |20 (@)]? dz > Clwo) Y |wn? (3.3)

neN v wo nez

for some constant C(wp) depending only on wy. We have

|z0(2)|? dz = (b — a)|wo|?. (3.4)

wo

For n > 1, we compute

2 o 2 2 — 2inx — —2inz
n - n —n n ] n —n
/ |2 (2)|* dz / (Jwnl? + [w_n|* + W W—pe®™* + Wyw_pe )da
wo Wy

0
/ tenw dr
wo

sin(n(b — a)) ‘

> (b= @) {|twal? + [won]} — ][t ( ;

/ e—21nw dr
wo

)

= (b= a){lwnl® + [w-n[*} = 2Jwn[[w_n]

n
>db—a— Sin(n(b_a)) (‘w |2+|w |2)
> - n _nl?)-
Finally, we use (3.2) and we deduce
/ on (@) de > {b—a — sin(b — )} (lwa[? + w_n[?). (3.5)
wo

Note that b — a — sin(b — a) > 0 is a constant depending only on wg. Summing (3.5) over n € N
and adding (3.4), we get (3.3), which concludes the proof. O

Lemma 3.3 (Observability for £4 = 9,y +iuX0,, + R). Let T >0, w C T be a non-empty open
set and L4 the operator defined in , Then there exist n € (0,1) small enough and 0 € N
large enough such that if Ny (o) <n then the following holds: let ur € L?(T) and let u(t,x) be the
solution of the backward Cauchy problem

o+ ipXoy;u+Ru=0, u(T,")=ur. (3.6)

Then there exists a constant C3 := C3(T,w) > 0 (independent of ur) such that

/OT/ fu(t, 2)|? de dt > Csur2.
Proof. Let u; be the solution of
oy +ipXdzu; =0, u(7,) =ur.
If uy = (u1, ;) and ur = (ur,ur), then uy solves (3.1). Therefore
T
| [imoRara> courlp and il = furlo. (37)

Then the function us := u — u; solves the Cauchy problem

Oug + mZé)mug 4+ Ruy = —Ruy, UQ(Ta ) =0.
By Lemma[8.2] (2-83), (3.7), since Ny (o) <n,
[uzll70 S IRuil|r0 S Nr(o)|lurllo < nllurlfo - (3.8)

17



1.2 2
§a 7b,

T 1 T T
/ /|u(t,x)\2dxdt2§/ /|u1(t,x)|2dxdt—/ /|u2(t,x)\2dq:dt
0 w 0 w 0 w
(53| T
CLputi- [ [ 1wt P asa
0 T

Cs
> 7HU—T||(2) — T|uz|l7

Cy Cs
> Zlurl - Tollurlld 2 2 furl?

Therefore, using the elementary inequality (a + b)? >

by taking 7 € (0, 1) small enough, then the claimed inequality holds by taking C5 := C5/4. O

Lemma 3.4 (Observability for L3 = Olls + iuX0,, + iA§3)ax + iAéS)). Let T >0, w CT bea
non-empty open set and L3 be the operator defined in . Then there exist n € (0,1) small
enough and o € N large enough such that if Nz(o) < n then the following holds: let ur € L?(T)
and u(t,z) be the solution of the backward Cauchy problem

oru + X0z u + iA(13)(t, )0, u+ iA(()?’)(t, z)u=20, u(T,")=ur. (3.9)

Then there exists a constant Cy := Cy(T,w) > 0 (independent of ur) such that

T
/ /|u(t,x)\2dmdt204||uT||(2)~
0 w

Proof. Lemma guarantees that if ur € L2(T), then the Cauchy problem admits a unique
solution u € C([0,7],L3(T)). In Section we have proved that the operator L3 in is
conjugated to the operator L4 in by using the operator M defined in . Therefore u
solves the Cauchy problem

Lzu=0, uw(T,:) =ur

if and only if u(t, ) := M~1(t)u(t, ) solves the Cauchy problem
Liu=0, u(T,) = M T)ur.

By Lemma we get the inequality for u

T
/ /\ﬁ(t,x)|2dxdt > O[] 2. (3.10)
0 w

By estimate of Lemma using that C([0,T] x T) is embedded into C([0,T], H*(T)) one
has that, for some o € N large enough, the function v(t, ), defined in and determining the
operator M, satisfies

[0F! = 1|peepee S Nr(o) S

Hence, for any function h = (h,h) : [0,7] x T — C2, for n small enough, we get for any (t,z) €
[0, 7] x T

M (Oh(t )] < 1+ 07" = Uz ree) bt )] < (1+ Cn)h(t, 2)| < 2/h(t,2)], (3.11)

M (O)h(t,2)| > [t )| = v = 1|z e h(t 2)] > (1 - Cn)|h(t,2)| > %Ih(tw)l- (3.12)

Using that u(t,z) = M~1(t)u(t,z), the two inequalities above imply

T T
~ ~ 1
/ /\U(tax)lzdirdt§4/ /\U(tax)lzdﬂcdt» HUTHgZZIIuTlIg?
0 w 0 w

and then the claimed inequality follows by (3.10) and by setting Cy := C5/16. O
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Lemma 3.5 (Observability for Lo = 9lls + iu¥0,. + iAgQ)(?'m + iAE)Q)). Let T >0, let w C T be
a non-empty open set and Lo be the operator defined in . Then there exist n € (0,1) small
enough and o € N large enough such that if Nz(o) < n then the following holds: let ur € L?(T)
and u(t, x) be the solution of the backward Cauchy problem

Ou + ipS0p,u + AP (4 2)0pu + AP (L, z)u =0,  u(T,:) =ur. (3.13)

Then there exists a constant Cs := C5(T,w) > 0 (independent of ur) such that

T
/ /|u(t,x)\2dxdt205|IuT||%-
0 w

Proof. Lemma guarantees that if uz € L?(T) then there exists a unique solution u € C([0, T,
L?(T)) of the Cauchy problem (3.13). In Section we have proved that the transformation 7°
defined in (2.58)) conjugates the operator Py defined in (2.49) to the operator Ps given in (2.66]),

hence u solves the Cauchy problem
Lou=0, u(T,:) =ur
if and only if u(t,x) := 7 ~1(t)u(t, =) solves the Cauchy problem
L3u=0, u(T,-) =7 YT)ur.

Then by Lemma applied to a time interval wy := (a1,01) C w, the function u satisfies the
property

T
/ W, 2)|? da dt > Cy(T,w1)|ar|? . (3.14)
0 w1

Performing the change of variables y = & — p(T") (where p(t), defined in (2.65)), is the function
determining the operator 7), one has

||uT||0f/|uTo:f >\2dr/|uT )2 dy = [Jurl2. (3.15)

By the change of variables y = = — p(t),

T T p(t)
/ [u(t, z)|? de dt = / lu(t,z — p(t))|* de dt = / / u(t,y)*dydt. (3.16)
0 w1 0 w1 «a

1—p(t)

By estimate (2.67)), for all ¢t € [0,T], [e1 — p(¢),51 — p(t)] C [an — Cn, 51 + Cn] C w if i is small
enough. Therefore, by (3.16]),

/OT/M |ﬁ(t,x)|2dfcdt§/0T/wu(t,m)|2dxdt. (3.17)

The claimed inequality follows by (3.14)), (3.15)), (3.17), with C5 := Cy4(T,w1). O

Lemma 3.6 (Observability for £; = 0,15 + im%d,, + 1470, +14%). Let T >0, w C T be a
non-empty open set and L1 be the operator defined in , Then there exist n € (0,1) small
enough and o € N large enough such that if Nz(o) < n then the following holds: let ur € L?(T)
and u(t, x) be the solution of the backward Cauchy problem

Oy + imy (1) S0,pu + 1A (¢, 2)0u + 14 (L a)u =0, w(T,) = ur(). (3.18)

Then there exists a constant Cg := Cg(T,w) > 0 (independent of ur) such that

T
/ /|u(t,m)\2dxdt206||uT||(2)-
0 w
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Proof. Lemma [8.5 guarantees that if up € L?(T) then there exists a unique solution u € C([0, 7],
L2(T)) of the Cauchy problem (3.18)). In Section we have proved that the transformation

B defined in (2.43) conjugates the operator £; defined in (2.37) to the operator pLy where the
function p is defined by ([2.48) and the operator L is given in (2.49). Hence u solves the Cauchy

problem
Liu=0, u(T,) =ur

if and only if u(t,z) := B~lu(t, z) solves
Lou=0, u(T, ) =ur
(we use that B~'ur = ur since B acts only in time). Then, by Lemma the function u satisfies
T
/0 /w\ﬁ(t,x)|2dwdt2 Cs a2 (3.19)

Performing the change of the time variable 7 = 371(¢) (recall (2.42)), we get for n small enough

/OT/wﬁ(t,z)Fdxdt/OT/w|u(/6’1(t),x)|2d:L’dt/OT/w|u(T,x)|2ﬁ'(T)dxdT

T r
< (14 Cn)/ / lu(r,z)|? de dr < 2/ / lu(r,2)|>dedr. (3.20)
0 w 0 w
The claimed inequality follows by (3.19)), (3.20) and setting Cg := C5/2. O

Lemma 3.7 (Observability for £o = 8l +i(X + A0, +1A 0, +14"). Let T >0, letw C T
be a non-empty open set and Ly be the operator defined in . Then there exist n € (0,1) small
enough and o € N large enough such that if Np(o) < n then the following holds: let ur € L2(T)
and u(t,z) be the solution of the backward Cauchy problem

du+iE + AM)ou+140,u+iAu=0, u(T,)=ur. (3.21)

Then there exists a constant Cy := C7(T,w) > 0 (independent of ur) such that

T
/ /|“(t,$)\2d$dt207||uT||(2)-
0 w

Proof. Lemma guarantees that if up € L?(T) then there exists a unique solution u € C([0, T,
L2(T)) of the Cauchy problem (3.21)). In Section we have proved that the transformation A

defined in (2.23)) conjugates the operator Ly defined in (2.13)) to the operator £; defined in (2.37)).
Hence u solves the Cauchy problem

Lou=0, u(T,:) =ur

if and only if U(t,z) :== A~ tu(t, z) solves £1u = 0, u(T,-) = A~Y(T)ur. Applying Lemma [3.6| to
the time interval wy := (aq, $1) C w one gets

T
/ / [u(t,z)|* de dt > Cs(T,w1)|ur2. (3.22)
0 wi
Recalling (2.24)), (2.25) and performing the change of variable = y + &(T, y), one has
[Grl = [ (1 @, (Tl + ST ) P dy

:/T<1+&y(T,:z:+oz(T,x))) <1+ax(T,:1:))|uT(:1:)|2dx:/T|uT(:c)|2d:E:||uTH3. (3.23)
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By (2.39) (applied with so > 1), and using the standard Sobolev embedding, we get that for some
o € N large enough

|allzsere S Nr(o) S0

Hence, for some constant C' > 0,
{(t,y—i—(i(t,y)) :t€[0,T], y€ wl} C0,T) X[y —Cn, 1+ Cn] C[0,T] X w

for n € (0,1) small enough. Then, using the change of variables x = y + a(t,y) and (2.24),
T T
[ ] ialyde= [ [ (@l + a )P
0 w1 0 w1

S/OT/w|u(t,x)|2dxdt. (3.24)

The claimed inequality follows by (3.22)), (3.23), (3.24]) by choosing C7 := Cs(T,w1). O

Lemma 3.8 (Observability for £ = O¢lls + (X + A2)0ry + 1410 +140). Let T >0, let w C T be
a non-empty open set and let L be the operator defined in . Then there exist n € (0,1) small
enough and o € N large enough such that if Ny(o) < n then the following holds: let ur € L2(T)
and u(t,z) be the solution of the backward Cauchy problem

O+ (S + A2)dppu +id10,u +idou =0,  u(T,:) =ug(). (3.25)

Then there exists a constant Cg := Cs(T,w) > 0 (independent of ur) such that

T
/ / lu(t,z)|* dz dt > Cs|lupl|§.
0 w

Proof. Lemma guarantees that if uz € L?(T) then there exists a unique solution u € C([0, T,
L?(T)) of the Cauchy problem (3.25). In Section we have proved that the transformation S
defined in conjugates the operator £ defined in to the operator L, defined in .
Hence u solves the Cauchy problem

Lu=0, u(7,) =ur

if and only if u(t,z) := S~(t)u(t, z) solves Lou =0, u(7, ) = S }(T)ur. By Lemma

T
/ /\ﬁ(t,x)|2d:cdt > Cq|lur|?. (3.26)
0 w

Applying (2.19)) and the ansatz (2.7)), together with Sobolev embeddings, there exists o € N large
enough such that
IS*! = L= S Nr(o) < Cny  [8F 1= < 2 (3.27)

for n € (0,1) small enough. Therefore, recalling (2.25) and performing the change of variable
x =y + a(T,y), provided that n is small enough, one has

|2 = / 5N (T, )ug(2)? da
T

27 2,2 2 1 2
=" (=) [ Jur(a)do > Sl (3.25)
Moreover, using again (3.27)),
T T T
/ /|1~1(t,y)|2dydt:/ /|S*1(t,x)u(t,x)|2dydt§2/ /|u(t,x)|2dxdt. (3.29)
0 w 0 w 0 w

The claimed inequality follows by (3.26)), (3.28)), (3.29) and taking Cys := C; /4. O
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4 Controllability
In this Section we prove the controllability of linear operators £ of the form ([2.3)), namely
L=0Is+1(X+ A2)0ps +1410, + 140

where the vector field L(t) = fi((E + A2)0py + A10, + AO) is Hamiltonian and A, Ay, Ag satisfy
hypotheses (2.4)-(2.7). We define the operator L* as

L= =90y — (D + [A2]*) e — 1410, — 14y, (4.1)

where

Ay = 20,[Ao)" — [AL]",  Ap = 0pu[As]" + 0u[A1]". (4.2)

We point out that by Lemma the time-dependent vector field L} () := —i[A2]*0sx —iA,0,—iA,
is still a Hamiltonian operator. Note that

max{[|A1[|7,s0—1, [0¢A1]| 7,501, [| Ao

T,s0—2} S Nr(so),

so that the operator L* satisfies the same hyphotheses as £ and the reduction procedure of Section
(2] can be applied also to £*.

Lemma 4.1. Let T > 0, let w C T be an open set. Let L* be the operator defined by . There
exists n € (0,1) small enough and o € N large enough such that, if Np(o) < n, then for any
hin, heng € L3(T), q € C([0,T],L%(T)) there exists a unique function £ € C([0,T],L*(T)) that
solves L*f = 0 such that the only solution h € C([0,T],L?(T)) of the Cauchy problem

h(Ov ) = hin (4’3)

{Eh =xf+4q
satisfies W(T, ") = hepg. Furthermore

[£llr.0 < [inflo + [henallo + llallz.0 -

Proof. (Existence). For any fi,g; € L2(T), applying Lemma we consider the unique solutions
f,g € C([0,T],L3(T)) of the Cauchy problems

L =0 Lrg=0 (4.4)
£(1,) =11, g(T,)) =8

and we define the bilinear form

T
B(f1,g1) 1:/ (Xof, g)r2dt
0

and the linear form
T
A(gl) = <hend7 g(Ta ')>L2 - <hln7 g(ov ')>L2 - / <q(ta ')a g(t7 ')>L2 dt7
0

where the real scalar product (-, -)r2 is defined in (1.3§). By (£.4) and Lemma [8.7 we have
[B(f1,81) < lIfillollgllo, A1)l < ([hinllo + [henallo + llallz.o)lg1lo -

By Lemma the bilinear form B is coercive and therefore, by Riesz representation theorem (or
Lax-Milgram lemma), there exists a unique f; € L?(T) such that

B(fi,g1) = A(g1) Ve € L*(T), (4.5)
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satisfying [|fi[lo < [[Allzw2,c) S [hinllo +[[henallo +[|allz,0- Now let f; be the only solution of (4.5)
and let h be the solution of the Cauchy problem (4.3) (whose existence follows by Lemma [8.7]).
We have

0= B(f,g1) — Alg1)

- / (tofs gLt — (Bena, &(T, Y)ie + (in, 8(0, )1z + / (alt, ), g(t, ) e dt

T
4.3))
€3 / (Lh, g)r2 dt — (hepa, &(T, )12 + (hin, g(0, )12
0
T

/0 <u7 £*g>L2 dt + <h(T7 ')7 g(Tv ')>L2 - <h(07 ')7 g(07 ')>L2 - <hend7 g(Tv ')>L2 + <hm7 g(oa ')>L2

S
I

<h(T7 ) - hend7g1>L2 .

Then for any g; € L?(T) we have that (h(T,-) —hey,q,g1)12 = 0, implying that h(T,-) = h.,4 and
then the lemma follows. B ~

(Uniqueness). Assume that f € C([0,T], L?(T)) satisfies £L*f = 0, and that the solution h of
the Cauchy problem Lh = wa'—i— q, h(0,-) = hy, satisfies h(7,-) = henq. Setting f, = f(T, -) and
arguing as above, one sees that B(Fl,gl) = A(gy) for all g; € L?(T), and then, by uniqueness of
the solution f; of , we deduce ?1 = fi. O

Lemma 4.2 (Higher regularity). Assume the hypotheses of Lemma and Np(o +2) < 1. Let
s €10, —o—1], and assume that Nr(s+1+0) < oco. Ifhyy, heng € H¥(T), q € C([0,T], H*(T)),
then h,f € C([0,T],H*(T)) and

[Ell7.s: [bll7,s Ss [|@ll7s + Nr(s +0)ldllro, &= (qhin, hena) -

Furthermore, if hip, hena € HT4(T), q € C ([0, T], H*T4(T)) N C*([0, T], H*(T)), then

h,f € C([0, T],H**4(T)) n C*([0, T],H***(T)) N C*([0, T], H*(T)),

and

0, £l 7,514, |0ch, Of || 7 52, [|0sh, Opif |75 Ss 1@l 7,5+4 + 10eallT,s + Nr(s +0)l|@llra.  (4.6)

Proof. Assume that h,f € C([0,T],L?(T)) are the solutions of

Lh = Xof+4q
h(0,-) = hy, LF=0. (4.7)
h(T7 ) = hend 5

By the results of Section [2| one has that
L=0L,T, &:=8(AL)(Bl)p(TIyH)M, T:= M YT 'L)(B L) (A ',)S™!,  (4.8)

with L4 = Oy + iuX0,, + R, and R € C([0,T],H*(T)) is the multilplication operator given by
(2.82)). We define the adjoint operator

L) = —0; — X0y, + R™,

where R* is the adjoint of the multiplication operator R with respect to the scalar product (-, -)y.z,

namely, recalling ([2.82)),
R* = (“ 7"2) . (4.9)

T2 T
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Now we define

h:=Uh hip = Uli—ohyn  hepg i= Ul—p hepng (4.10)
q:=9o"q fi=ad,.f K=& 'y, ()", (4.11

where @, is the adjoint of ® with respect to the time-space scalar product (-, ). z) fT<-, 2 dt.
We call “time-space adjoint” the adjoint of an operator with respect to (-, >(t’m) By (2.11])), (2.25)),
[2.58)), (2.79)), the adjoint operators (with respect to the L? scalar product) of S, A, 7, M are

S*=8, A=A T =71 M =m"! (4.12)

at each fixed ¢ € [0,7], and therefore, integrating over [0,7], the equalities in also hold
for the time-space adjoint operators S,, A, 7., M,. The time-space adjoint of B satisfies B, =
p B (see )7 and therefore, from the definitions of ®, ¥ in , we calculate @, =
M=YT L) (B~ 1) (A7 12)S. We also calculate

K =M YT y)p " (B ') (A )S  xoS(ALL) (Bl (T12) M.

Since [S, xwI2] = 0 and [M, k] = 0 for all real-valued functions k(t, z), using the conjugation rules
(2.26), (2.44), (2.59), and recalling also (2.23)-(2.25]), one can easily see that K is the multiplication
operator

K =k(t,o)lo, k(t,x):= (T o)) (T 'B 1A'\, (t, x). (4.13)
By the estimates of Section [2] we get
[Khllrs Ss hllrs + Nr(s +o)|[hllro  Vhe C([0,T], H*(T)). (4.14)

Note that, by the estimates of Section [2] one has that if hy,, he,q € H*(T), q € C([0,T], H*(T)),
then h;,, he,q € H*(T), q € C([0,T],H*(T)). Moreover using that h,f € C([0,7],L?(T)), one has
that also h, f, Kf € C([0,T],L?(T)). By construction, h, f satisfy

Lsh=KFf+4
B0, ) = hun LiF=0. (4.15)
E(Tv ) = fiend 5

To prove that 52‘5 = 0 it is enough to write it in its weak form, namely

T
(£(T,-),v(T, )12 — {£(0,-),v(0, )12 = /0 &, Lav)12dt Vv e C([0,T] x T)

and to apply the changes of coordinates in the integrals.
Now we show that h,f € C([0,7], H*(T)). We adapt an argument used by Dehman-Lebeau
[25], also used in [33], [6 ], [T4]. We split the proof into two parts.

PROOF IN THE CASE h.,q = 0, q = 0. Define the map
S:L*T) — L*(T),  Sf; :=h(0,.), (4.16)

where f and h are the solutions of the Cauchy problems

EZ? =0 £4H = Kf
{f(Ta y="f, {H(T, )=0. (4.17)

By existence and uniqueness in Lemma [4.1} it follows that S is a linear 1somorphlsm Then for

every initial datum h;, € L2(T) there ex1sts a unique f, € L2(T) such that Sf; = h;,. Note that
[Af1]| 2 S ISA*fy |12, since S : L*(T) — L*(T) is an isomorphism, where A := Op((l —1—52)%).
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To study the commutator [A®, S], we have to compare (A®u, Asf) with (h, f) solving the Cauchy

problems
Lit =0 Lih = Kf (418)
£(T7 ) = AS}:l ; h(Ta ) =0. .

Since [£3, A*] = [R*, A®], the difference A°f — £ satisfies

{L* S(AF—f) [ ASJF

(AF —£)(T)

By Lemma and then using Lemma (4.9), (2.83), one gets the estimate
| 0 S IR A% ll70 S5 Nr(s + o) fllro + [Elsr (4.19)

for some constant o > 0, where we have used that Nr(o) < 1. The difference A® h — h satisfies the

Cauchy problem
£4(A5h h) = (Asf f) +[R, As]h + [A%, K]
(Ash —h)(T,-)=0.
Arguing as in (4.19) one gets
IR, A*Jhl7,0 Ss No(s + o)[[Bllz,0 + [ Bz

Since K is a multiplication operator (see (4.13)), the commutator [A®, K] is of order s — 1. By
(4.14)), using again Lemma we deduce that

1K (A*F = £)]r, F—fllro, A% Ko S IIf (s + o)|[Ellz,0 -
Therefore, by Lemma
IA*h = hllzo < IR, A*Th|lro + || K (A — £) A%, K70
< NT<s + )70+ [h]l7,e1 + [|A*F - (s + 0)|[£llz.0
Y [ Bllreees + [Flzs—1 + No(s + o) ([Bllo + [Fllno) (4.20)

Applying Lemma to the Cauchy problems (4.17)), and using also (4.14)), we have

[Ells S 1IEls + Nr(s + o) [Ei o

Iz S 1KEllzs + Nr(s + o)|KElr0 < [fills + Nr(s + o) [fillo - (4.21)
Hence estimates (4.19), (4.20) become
IAE = £]l7.0, [IA*h = bl 70 Se [falls—1 + No(s + o) fa]fo - (4.22)

By the definition of the map S in (4.16)), one has h(0,-) = SA*f;. Also recall that we have fixed
Sf; = h,, = h(O -). Using (4 and triangular inequality,

ISA*E:[lo < [[A*R(0,-)[lo + |A*h(0, -) — h(0,-)]lo
< Bl + AR = hl7o < R ls + [ ls—1 + Nr(s +0) [ fi o (4.23)

Since S : L(T) — L2(T) is a linear isomorphism, we have |[fi||s ~ ||[A*f|lo < [|SA*|jo and

therefore, by (4.23)),

1f1lls S [Minlls + [If1lls—1 + Nz (s 4+ o)[[falo -
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Using again that S : L2(T) — L2(T) is an isomorphism, we have ||[f;]lo < ||hin|lo, and the above
inequality becomes _ _ _ _
If1lls < hinlls + N (s + o) [inllo + [[f1]ls—1 - (4.24)

If 0 < s < 1, then |[f;||s—1 < ||fi]|o, and, as already observed, ||fi[lo < |[Bn]lo, whence

1 ]ls < binlls + Nr(s + o) [Bino - (4.25)
If s > 1, bound (4.25)) is proved by induction on s, applying (4.24) repeatedly. Hence, by (4.21]),
B]|75, £l Ss [Binlls + No(s + o) [[hnlo - (4.26)

Finally, recalling (4.8), (4.10)-(4.11)), (4.12)) and the estimates (2.19)), (2.40), (2.55)), (2.56)), (2.69),

(2.81)) of Section [2| we obtain the claimed estimate for h and f, namely
bz, [IEll7.s Ss [hinlls + Nr(s + o) [hinfo - (4.27)

PROOF OF THE GENERAL CASE. Now we remove the hypothesis that h.,4 and q are zero. Assume
that h, f solve (4.7) and let w be the solution of the backward Cauchy problem

Lw=q, w(T,")=hepg. (4.28)
Since he,q € H*(T) and q € C([0,7],H*(T)), by Lemma[8.7] one has w € C([0, 7], H*(T)) with
[wllz,s Ss lallz.s + [[henalls + Nz (s + o) [hendllo - (4.29)
Let v :=h — w. Hence
Lv =x.f, v(0,:) =h;, —w(0,-), v(T,:)=0 (4.30)

and therefore v, f solve (4.7) where (h;y,,henq,q) are replaced by (0,h;, — w(0,-),0). Hence we
can apply to v, f the estimate (4.27)) proved in the previous step, obtaining that

[Vllz,s, [Ell7,s s [hin — w(0,-)[|s + Nz (s + o)|[hin — w(0,)]lo
Ss [hinlls + [w(0,)ls + Nr(s + o) (|[hinllo + [IW(0, )llo)
Ss [hinlls + [Wllzs + Nr(s + o) ([hinllo + [[wllz0) - (4.31)
Therefore (4.29)), (4.31]) imply that
IVlizs, Ifll7s Ss 1hinlls + [henalls + lallr.s + Nr(s + o) ([hinllo + [henallo + llallz,0) - (4.32)

The estimate for h = v + w follows by triangular inequality and by (4.29) and (4.32). Estimate
(4.6)) is deduced from the fact that h, f solve the equations Lh = x,f + q and L*f = 0. O

For any s € R, we consider the space
C([0,T), H¥(T,R?)) = C([0,T], H*(T,R)) x C([0,T], H*(T,R))
and for u = (uy,u2) € C([0,T], H*(T,R?)) we set

lullr,s == [Juallr,s + [luallr,s -
We define
E, = X, x X, (4.33)
X, :=C([0,T), H™(T,R?)) n C*([0,T], H**2(T,R?)) N C*([0, T], H*(T,R?)), (4.34)

and (recall notations in (1.20])-(1.21)),
Fs = {Z = (v,a, B) = (v1, v, 1, a2, B1, B2) :

v € C([0,T), H*+*(T,R?)) 0 ([0, T], H*(T,R?)), o, € HS+4(’H‘,R2)} (4.35)
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equipped with the norms

1w, £)

B, = ullx, + 1 fllx.  lullx, = [ull7sra + 0T sr2 + [|Onullrs (4.36)

and

T,s + lalls+a + [|B]s+4 - (4.37)

With this notation, we have proved the following linear inversion result.

12l 7, = lvll7,s+a + [[Or0]

Theorem 4.3 (Right inverse of the linearized operator). Let T' > 0, and let w C T be an open
set. There exist constants T > 6, 0 > 3 (independent of T,w) and 6, > 0 (depending on T,w) with
the following property.

Let s € [0, — 7], where r is the regularity of the nonlinearity in . Let z = (v,, 8) € F.
If (u, f) € Esto, with ||ul|x, < 0., then there exists (h, ) := V(u, f)[z] € Es, such that

Pl(“’)[h] —Xop=v, h0,)=a, WT,)=4, (4.38)

and
17, ¢llz, < Cls)(I2llr + lullx.,. 12l ) (4.39)

where the constant C(s) > 0 depends on s,T,w.

Proof. Using the transformation C defined in , the linear control problem for the op-
erator P’(uy,us) is transformed into the linear control problem ([1.28)) for the operator L(uq,us) =
C~1P'(uy,us)C, where the operator £ = L(u1,uz) is given in (1.29). We apply Lemma to the
control problem ([1.28)), since by definition and Lemma[2.1]the smallness condition |lu||x, < 4.
implies that Np(o’) < ds, for some o’ < . Then the lemma follows by noticing that the map
C : H*(T) — H*(T,R?) is a unitary isomorphism. O

5 Proofs

In this section we prove Theorems and As explained in Section Theorems [T.1
and [1.3] follow by Theorems [T.5] [L.6}

5.1 Proof of Theorems

We check that all the assumptions of Theorem are verified. The spaces FEy, F defined in
(4.33)-(4.37), with s > 0, form scales of Banach spaces. We define the smoothing operators S;,
j=0,1,2,... as

Sju(z) = Z iy, e where u(z) = Zﬂk e e LX(T).
k| <2i kez

The definition of S; extends in the obvious way to functions u(t,z) = Y, o, Ur(t) €** depending
on time. Since S; and J; commute, the smoothing operators S; are defined on the spaces E, F
defined in — by setting S;(u, f) := (S;u, S; f) and similarly on z = (v, @, 8). One easily
verifies that S satisfies — and on E; and Fj.

By (L.17), observe that ®(u, f) := (P(u) — xwf, u(0), u(T)) belongs to Fy when (u, f) € Es 42,
s € (0,7 — 4], with |Ju|lrs < 1. Its second derivative in the directions (h, ) = (h1, ha, 1, p2) and
(w, 1)) = (w1, w2, v¥1,1P2) is

P (u)[h, w]
" (u, f)[(h, ), (w, )] = 8

For w in a fixed ball ||u||x, < o, with g small enough, one has

1P () [, ]|

F. Ss (12]]x, [Jw]

Xst2 + ”h‘

Xs+2||w||X1 + Hu' Xs+2||hHX1||w||X1) (51)
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for all s € [0,r — 4]. We fix V = {(u, f) € Ea: ||(w, /)|, <0}, 01 = s,
a=1, pu=2 a=0, a=p0>20 a>22a—a, (5.2)

where d,,0, T are given by Theorem and r > ry := ag + 7 is the regularity of G in Theorem
The right inverse ¥ in Theorem satisfies the assumptions of Theorem Let Ui, Ueng €
HA+4(T,R?), with Hum,uend||H5+4 small enough. Let g := (0, U, Uend), so that g € Fg and
lgllr; < 6. Since g does not depend on time, it satisfies (9.12]).

Thus by Theorem there exists a solution (u, f) € FE, of the equation ®(u, f) = g, with
lu, flle. < CllgllF, (and recall that 3 = «). We fix 51 := a + 4, and (1.50)) is proved.

We have found a solution (u, f) of the control problem (L.48)-(1.49). Now we prove that u is
the unique solution of the Cauchy problem , with that given f. Let u,v be two solutions of

(1.10) in E,, _4. We calculate
1
P(u) — P(v) = / P'(v+Mu—v))d\[u—].

0
Conjugating the operator P’'(v + A(u — v)) by means of the unitary isomorphism C : H*(T) —
H*(T,R?) defined in (1.27)), one gets

C P (v+Au—2))C=L(v+Au—0)),

where £ has the form (1.29)). Hence

1
Cil/ P'(v+AMu—v))dA\C=L,
0

where _ R R R
L:=0;+ i(Z + Ag(t, x))&m + 14, (t, m)&; + iAQ(t7 .’L‘),

1
Ai(t, ) ::/ Ai(v+ Mu—v))(t,z)d\, i=0,1,2,
0

and A;(u) is defined in (1.30)-(1.31)). Setting u := C~'u, v := C~'v one has that the difference
u — v satisfies £L(u — v) = 0, (u — v)(0) = 0. We apply Lemma to the operator £, and we
obtain u — v = 0. Then u — v = 0. This completes the proof of Theorem [I.5] and therefore of
Theorem [L11 O

5.2 Proof of Theorems
We define

E, = C([0,T), H*™4(T,R?)) n C1([0, T], H* (T, R?)) n C*([0, T], H*(T, R?)), (5.3)
Fy:={(v,@) : v € C([0,T], H***(T,R*) N C*([0, T], H*(T,R?)), € H***(T,R*)}  (5.4)

equipped with norms

lulle, = llullrsta + 10sullz 52 + [Onull,s (5:5)
1, )7, = l[olir,s4a + 10s0]l7,s + el s4as (5.6)

and ®(u) := (P(u),u(0)), where P is defined in (L.16). Given g := (0,u;,) € Fy,, the Cauchy
problem (1.51) writes ®(u) = g. We fix V := {u € E5 : ||u|lg, < do}, where g is the same as
in subsec we fix ag, i1, a1, @, 3, aq like in , where the constants o, 7 are now given in
Lemma r > 1o := as + 7 is the regularity of G in Theorem [I.6] and d; is small enough to
satisfy both assumption in Lemma 2.1 and Np(c) <7 in Lemma[8.7]

Assumption about the right inverse of the linearized operator is satisfied by Lemmas
and We fix sg := a+ 4. Then Theorem applies, giving the existence part of Theorem
The uniqueness of the solution is proved exactly as in Subsection [5.1] This completes the proof of
Theorem [L.6] and therefore of Theorem [I.3 O
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6 Appendix A. Quadratic Hamiltonians and linear Hamil-
tonian vector fields

Dealing with linear Hamiltonian equations, we develop Hamiltonian formalism only for quadratic
Hamiltonians. We consider real quadratic Hamiltonians H : H*(T) — R of the form

H(u, ) :/ERl[u]ﬂder%ARg[u}udz+%AE[ﬂ]ﬂdx, (6.1)

where Ry, Ry : H*(T) — H*=%(T) and
R, = R}, Ry = RY . (6.2)
the Hamiltonian equation associated to H is given by
Opu = 1JVyH(u), u = (u,u) € H*(T)
where

VoH = (VoH, VoK),  Ji= <_01 é)

Note that the Hamiltonian vector field associated to the Hamiltonian H has the form

RiJVuHi(Rl i

R, _R1> , Ri =R}, Ry=RTY. (6.3)

The symplectic form on the phase space L?(T) is defined as
W[ul, ug] = i/(ulﬂg — ﬂ]Ug) dxr, Yup,us € LQ(T) . (64)
T

Definition 6.1. Let ®; = ®;: H*(T) — H*(T), i = 1,2. We say that the map
(P P
*= <<1> q») ’

WI[®[uy], ®[us]] = W[uy,us], Vuy,up € L*(T),
or equivalently ®TJ® = J.

s symplectic if

It is well known that if R is an operator of the form (6.3), then the operators exp(£R) are
symplectic maps. In the next lemma we state some properties of some particular Hamiltonian
vector fields.

Lemma 6.2. Let a;,b; € H*(T), i =0,1,2 and

Ai::(ai b) i=0,1,2.
—b; —a

If the vector field R := i(A28m+A15'm+AO) : H*(T) — H*~2(T) is Hamiltonian then the following
holds:
ag =az, a1 =2(0a2) — a1, ag=ao+ (Oppaz)— (0za1), b1 = (0zb2)

Lemma 6.3. Assume that R is a Hamiltonian operator of the form (6.3). Then its adjoint R*
with respect to the complex scalar product (-, )12 is still a Hamiltonian operator.
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Proof. Let R be a Hamiltonian operator

(R R x
R:1<_é2 _1%), Ri=R}, R,=Rj.

A direct calculation shows that the adjoint R* with respect to the complex scalar product (-, )2
is given by

R* _i(_%2 —QQ21> ., Qi:=-Ri, Qy:=RT.

using that R; is selfadjoint and RlT = Rj, we get that @)1 = —R; and therefore )1 = Q7. Moreover
since Ry = RY, we get that Q2 = Ry and therefore Q2 = Q1. This implies that

« . (—R1 R
m=i(T )

is still Hamiltonian. O

7 Appendix B. Classical tame estimates

In this appendix we recall some classical interpolation estimates used in this paper. We introduce
the following notation: given k € R, we denote

Zsy:={n€Z:n>k}, Rsp:={seR:s>k}, Rop:={seR:s>k}

Lemma 7.1. (i) (Embedding). For any s € Zsq, the space H*TY(T) is compactly embedded in
C*(T) and
lulles Ss llulls4r Yu € HH(T). (7.1)

(#3) (Tame product). Let s € R>1 and uq,ug € H*(T). Then

luruz|ls Ss llutllallualls + [Jullsluzll1- (7.2)

In particular
[uruzlls Ss lluallslluzlls. (7.3)

(73i) (Interpolation). Let ag,bo,p,q € R>o. Then

[wrllag+plluzlloo+q < llurllag+p+allualloy + lurllaollwzllog+p+q - (7.4)

Lemma 7.2 (Composition). Let s € R>g, m € N, with m > s+ 1. Let F : C* — R be a function
of C™ class in the real sense. Let w € H*(T,C") N H*(T,C"), with ||ull; < 1. Then

[Ew)lls Ss 14 [ulls - (7.5)

Moreover, if F(0) =0, then
IF@)lls s Nlulls- (7.6)

Proof. For s € N see [39, p.272-275] and [40, Lemma 7, p.202-203]. For the more general case of
real s see [36, Theorem 5.2.6], [8, Proposition 2.2, p.87], and [7, Proposition 7.3 iii]. The result
in [7] is stated in the uniformly local Sobolev spaces HZ,(R?), which contain the periodic Sobolev
spaces H*(T%). The result in [36] is stated for F' € C*, but, in fact, the proof in [36] only uses
the assumption that F' has derivatives up to order m > s + 1 that are bounded on compact sets.
The proof in [36] is on R?, but it also holds on the torus T and, more generally, T?. The only
nontrivial point when adapting that proof to T is equation (5.2.10) of [36], which is also “Bernstein
inequality” (4.1.8), which follows from Lemma 4.1.6 of [36].

We explain how to adapt Lemma 4.1.6 of [36] to T¢. Let xy € C>®(R% R), with 0 < x < 1,
supported on {|¢| < 2} and such that x = 1 on |£] < 1. Let Op(xa) be the Fourier multiplier
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of symbol x(§) := x(&§/A), A > 1. Let ¢y = ﬂg}Xm where .7-" denotes the inverse Fourier
transform on R?, so that the Fourier transform of ¢y is @y = xx. Thus for functions u € L?(R?)
we have

Op(ua)u(x) = [

Rd

O dE = [ ule = y)on(n) dy = (1spe 2) (o).

where 4 if the Fourier transform of u and #gs denotes the convolution on R¢. Similarly, for periodic
functions u € L?(T?) one has

Op(xaJu(e) = 3 dxa (k)™ = / w(w — y)oa(y) dy = (u e $3)(@),

d
kezd T

where 4, are the Fourier coefficients of u, *r« denotes the convolution on T¢, and y(x) :=
> reza Xa(k)e®®. With elementary calculations (imitating Section 13.4 of [5]), one proves that
is the periodization of (), namely

da(z) = > eale+2mm), and (dy), = Gak) Vk ez,

meZd

where (7/)—;) . are Fourier coefficients, and @ (k) is the Fourier transform. As a consequence, one
proves that, for u € L>(T4%), u *ga px = u *pa Py (see equation (13.19) of [5]). We deduce that

FOPOX )l o ey = llu *Ra oAllLoe (ray < [l oo ey [l @all L2 ety

and the bounds for ¢, over R? proved in [36] can still be used. The periodization trick makes it
possible to safely bypass a change of the variable £ which does not seem to be applicable when
¢ ezl O

We recall also the standard commutator estimate between a multiplication operator and a
Fourier multiplier.

Lemma 7.3. Let s € Rug. Let ¢4(D) be a Fourier multiplier of order s and a € H*T(T)NH?(T).
Then
lla, os(D)]ullo <s llalls+1llullo + llall2llulls—1 Va € H*ZH(T) N L*(T).

We now state a lemma on changes of variables induced by diffeomorphisms of the torus.

Lemma 7.4 (Change of variables). (i) Let s € Z>1 and o € C*(T), with ||a|jcr < 1/2. Then the
operator Au(x) := u(x + a(x)) satisfies the estimate

Il Aullo < |Jullo Yu € L*(T), (7.7)
[Aulls s llulls + ledles lully - Vu € H*(T), s € Z>1. (7.8)

CS
Moreover, for any s € Rxq, if « € H*T2(T), with ||all2 < 1, then
[Aulls Ss lulls + ladllst2llullo Vu e H(T), s € Rxo. (7.9)

(i) Let s € Z>1 and o € C°(T), with ||a|lcr <1/2. The map T — T, x — x + a(x) is invertible
and the inverse diffeomorphism T — T, y — y + &(y) satisfies

]

o Ssllalles, s €Zxy. (7.10)

(#44) The inverse opemtor A~ defined as A7 u(y) := u(y + a(y)) satisfies the same estimates
. as A in (i). Moreover there exists § € (0,1) such that, for any s € R, if « € H*+4(T)
with ||a||4 <4, then

A ulls S llulls + lladlseallullo Yu € H*(T), s €Rxo. (7.11)
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Proof. PROOF OF (7). Estimates (7.7))-(7.8)) are classical; they are proved, e.g., in [10], Lemma
B.4. Let us prove (7.9). Applying (7.8]) for s = 1 and recalling ([7.7) one has

[Aullo < flullo,  lAully S flully - (7.12)

Now let u € H?(T) and assume that o € H?(T), with |||z < 1. Then, using (7.12), (7.3) and the
bound |lallz <1,

[Aullz >~ [[Auflo + [|0-(Au)lls S llullo 4 [1(1 + o) A(uz) 11
S lullo + @)1 (T + [[allz) 5 [lull2- (7.13)
By (7.7) and (7.13)), using a classical interpolation result, one has
|Aul|s < lulls Vu € H*(T), s€]0,2]. (7.14)

Now we argue by induction on s. Assume that the claimed estimate holds for s € R>; and let us
prove it for s + 1. Using the bound |||z < 1, we have

[Aulls 1 2= [|Aufo + 18z (Au)lls < Jlullo + [[(1 + az)A(Bzu)ls

Ss ullo + [[A(uz)[s + [lae | A(ug)]1 -

By the inductive hyphothesis, we deduce that
[Aulls1 Ss lullsra + llallsi2llulls + lallsflullz- (7.15)

By 7 applied with u; = a,us = u, ag =2,bp = 0,p = s,q = 1, one gets

ledlsallully < llellstsllullo + llall2llwf s - (7.16)
Using again , applied with w1 = a,us = u, ag =2,bp = 0,p = s — 1,q = 2, one gets

ledlsallullz < [lellsesllullo + llall2llwflstr - (7.17)
Then —, using that ||alls < 1, imply that

[Aulls+1 Ss lulls+1 + lledlssliullo,

which is estimate at the Sobolev index s + 1.

PROOF OF (i7). It is proved in [10], Lemma B.4.

PROOF OF (iit). The fact that A~! satisfies the estimate (7.7)-(7.8) is proved in [10], Lemma
B.4. Let us prove (7.11). For any real s > 0, we denote by [s] the integer part of s. One has

-1)
[allsv2 <llallg+s S lallcrre Ss llallews Ss ledllsa Ss ledlsta (7.18)

Hence, for s = 0, one has |a|2 < C|lalls < 1 by taking ||a||4 small enough. Therefore we can
apply (7.9) to A~! and the claimed estimate follows by (7.18]). O

We also study the action of the operators induced by diffeomorphisms of the torus on the spaces
C([0,T],H*(T)). For any function « : [0,7]xT — R and any h : T — C, we define the t-dependent
family A(t)h(x) := h(z + a(t,z)). Then, given h: [0,T] x T — R, we define

Ah(t,z) .= A(t)h(t,x) = h(t,z + a(t,z)) . (7.19)
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Lemma 7.5. Let s € Z>1, a € C([0,T],C*(T)) with ||ay|lre < 1/2. Let y — y + a(t,y) be the
inverse diffeomorphism of x — x + «a(t,z). Then & € C([0,T],C*(T)) and

lalleqom.comy) Ss lalleqory,esmy): s € Zz1. (7.20)
Moreover, for any s € Rxo, if « € C([0,T], H**%(T)), then a € C([0,T], H*(T)), with
lallrs Ss lleflrse2, s € Rxo. (7.21)

Proof. PROOF OF ([7.20). Let y — y + a(t,y) be the inverse diffeomorphism of z — = + (¢, x).
Since
a(t,y) +alt,y +a(t,y)) =0,

one can directly check that if o € C([0,T], C*(T)) then also & € C([0,T],C*(T)) and

oty +alt,y))
1 +ay(t7y) )

ay (tv y) =

Using the above formula and a bootstrap argument, one can show that for any integer s > 1,
if « € C([0,T],C%(T)), then & € C([0,T],C*(T)). By (7.10), one has ||a(t,-)|lcs Ss [lalt, )]
Then follows by taking the sup over ¢ € [0, T].

Proor or (7.21). Let a € C([0,T], H**(T)). Since [s] < s, one has C([0,T], H***(T))
C C([0,T], HEH2(T)). Using (7-1), C([0,T], HE+2(T)) C C([0,T], CIH1(T)). As a consequence,
a € C([0,T], CEIF1(T)), with

Cs.

C([0,T],Cls1+1(T)) s T,s+2 - .
[l Ss e (7.22)

By (7.20), @ € C([0,T], Cl*I*1(T)) and using that C([0,T], CFI*Y(T)) € C([0,T], H*(T)), we get
that o € C([0,T], H*(T)), with [|allrs Ss l@lleqo,r,cle+1(r))- The claimed inequality (7.21)
follows by recalling ([7.22)). O

Lemma 7.6 (Change of variables). There exists § € (0,1) with the following properties.
(i) Let s € Rsq and a € C([0,T], H**2(T)), with ||a|72 < 6. Then the operator Au(t,z) :=
u(t,x + a(t,z)) is a linear and continuous operator C([0,T), H*(T)) — C([0,T], H*(T)), with

[Aullz,s s l[ullrs + lallrsiellullro  Vu e C([0,T], H*(T)). (7.23)

(ii) Let s € R>g and o € C([0,T], H*T4(T)), with ||&||r,4 < 8. Then the inverse operator A=,
defined by A= u(t,y) := u(t,y + a(t,y)), maps C([0,T], H*(T)) into itself, with

AT s Ss llullrs + lladimssallulro - Vu € C(0,T], H*(T)).

Proof. First, we prove (i). Let s € R>g and u € C([0,T], H*(T)). We have to prove that Au €
C([0,T7, H*(T)), namely, for any ¢y € [0,T], we have to prove that ||(Au)(t) — (Au)(to)|ls — 0 as
t — to. By triangular inequality,

[[(Au)(#) = (Au)(to)lls < [IA@)[u(t) — ulto)]lls + [ (A() — Alto)) [u(to)]lls (7.24)
(where, in short, u(t) means u(t,)). The first term is estimated using (7.9), which gives
IA®) [u(t) = ulto)llls Ss ult) = ulto)lls + llallrstallult) —ulto)lo =0 (£ — to).

To prove that the last term in (7.24)) also vanishes as ¢ — ¢, is equivalent to prove that, for every
h € H*(T), the map [0,T] — H*(T), t — A(t)h is continuous. Let h € H*(T), and let h(k) be its
Fourier coefficients. Let

I,h(x) = Y h(k)e*, Trh(z) = (I -1L,)h(x) = > h(k)e*,

|k|<n |k|>n
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and

Folt) := A®uh,  f(t) := A(t)h.

The sequence (f,,) converges to f uniformly in ¢ € [0,7] in the space H*(T), because, using (7.9)
and the assumption h € H*(T),

sup |[[fu(t) = f(O)lls = 1fa = fllz.s = JAL; Allzs Ss [T Al + lalimss2|Thllo — 0 (0 — oo).

Since continuity is preserved by uniform limits, we have to prove that all f,, are continuous. For
any n, the function f,, is

falt;z) = AOh(z) = Y h(k)ei(t,), it a) = HOFe0m) = Ap)[eh].

|k[<n

Hence f,, is a finite linear combination of functions ;. It remains to prove that, for all k € Z, the
function 1), belongs to C([0,T], H*(T)). Fix k € Z, and consider the functions G(u) := e** and
F(u) := e'*» — 1. Split

U(E) — () = erehalton ot —ato.e)] _ 1}
and estimate each factor. First, [|e'**||, = (k)*. Second, using and the assumption ||a||71 < 1,
e[, = [|G(alto,))lls < Crs(1+ alto, )s) < Crys (1 + [[llz,s)-
Third, by ,
leiattDmato] 1) = ||F(alt,-) = alto, )s < Csllalt,) = alto, )]s

Hence
[9r(t, ) = Yr(to, s < Crs(L+ |laflrs)lalt, ) —alto,)|ls =0 (& — to)

because o € C([0, T, H*(T)). Hence, we have proved that A : C([0,T], H*(T)) — C([0,T], H*(T)).
Estimate (|7.23)) then follows by applying (7.9) at any fixed ¢t € [0,7] and taking the supremum.

Finally, (i¢) follows by (i) and (7.21)). O
8 Appendix C. Well-posedness of linear equations

Lemma 8.1. Let T > 0, to € [0,T], p € R. Let S > 1, hy, € HY(T), g € C([0,T],H*(T)) and
let R be the multiplication operator

R = (7"1 7”2) . rir € C(0,T), HSTY(T)). (8.1)
T2 T1
There exists 1 > 0 small enough depending on T such that if

IRllz1 = max{{[riflz,, [Iraflz,1} <7, (8.2)

then there exists a unique solution h € C([0,T],H%(T)) of the Cauchy problem

{ath+mzamh+7zh _ 53)

h(to, ") = hyy,
satisfying for any 0 < s < S, the estimate

||hHT,s Ss ||hm||s + ||gHT,s + ||R||T,s+1|‘hin||0'
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Proof. Since hg = (hg,ho), g = (9,9), h = (h,h) and R has the form (8.1)), it is enough to study
the Cauchy problem

{ath +1ip0zh + Q(h) = g O(h) = r1h + 1o . (8.4)

h(t07 ) = hO )

Note that for any 0 < s < S, by Lemma (zz), applying (7.4)), with v = (r1,72), w = h, ag = 1,
bp=0,p=s—1,¢g=1 and using the smallness condition (8.2)), one gets that

1Qh|1,s Ss nllbllr,s + IRl 7,s41llhll10, VR € C([0,T], H¥(T)). (8.5)
We split in (8.4), h = v + ¢, where
Opv + ip0pv = g Op +ip0zap + Qp) + Qv) =0 (8.6)
v(to, ") = Pin, ¢(to,") =0.

The first Cauchy problem in (8.5) can be solved explicitly and since h;, € H¥(T), g € C([0,T],
H5(T)) there exists a unique solution v € C([0,T], H®(T)) satisfying

HU”T,S < lhinllT,s + T”QHT’S ) V0<s<S. (8.7)

Then, we construct iteratively the solution of the second Cauchy problem in , by setting

@Yo = 07 Pn+1 = q>(80n) ) n Z Oa
where
t t
Bp)i= — [ TR dr — [ IR mlar. 68)
to to

We prove the following claim: for any 0 < s < S there exists a constant Kr(s) > 0 (depending on
T and s) such that for any n > 0, ¢, € C([0,T], H*(T)) and

leallrs < B(s),  R(s) = Kr(s) (nllollrs + [Rlzssllollro) (8.9)

We argue by induction on n. For n = 0 the statement is trivial. Then assume that the claim
holds for some n > 0 and let us prove it for n + 1. By the definition of the map ® in , using
the inductive hyphothesis, one has immediately that ¢,.1 = ®(¢,) € C([0,T], H*(T)), for any
0 < s < S. Moreover, using that for any ¢,7 € [0,7], [|e=*#%=(t=7)|| £ go(r)) < 1 and by estimate

(8.5), one gets

lentillzs < CT(lvlzs + IRIzs+1llvlizo) + C)T (lenllrs + IRz, s41llenllT0)

< CETvlrs + [Rlzsslvlro) + CTEr(s)n(nllvlrs + [Rlzssillvliro)

+ C(8)T| R 1,s+1 K7 (0) (n]|v]l 0 + RIm1llvllz0)

3

.2]

)
< (C(S)Tn + C(S)KT(S)TTIQ) lvllz,s

+ (C()T + C(s) K ()T + 2TC(5) K (0)n) [ R 7,1 0170

(

< K (s) (nllvllzs + [Rlizssvlro) (8.10)
provided that

C(s)T+C(s)Kp(s)Tn < Kr(s), C(s)T+ C(s)Kp(s)Tn+2TC(s)Kr(0)n < Kp(s) .
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The above conditions are fulfilled by taking Kr(s) > 0 large enough and n € (0,1) small enough,
therefore has been proved at the step n + 1.

CONVERGENCE OF ¢,,. We prove that for any 0 < s < S, there exists a constant Jr(s) > 0 such
that for any n >0

1
1+ 5 Rlzsslvlzo) - (8.11)

1
lont1 — pnllr,s < JT(S)(WHU‘

We argue by induction on n. For n = 0, since ¢ = 0, the estimate follows by applied for
n = 1 and by taking Jr(s) > Kr(s) and n < 1/2. Now let us assume that (8.11) holds for some
n > 0 and let us prove it for n 4+ 1. Recalling (8.8]) and the definition of Q in (8.4]), one has

t
Pn+2 — Pn+1 = (I)(QonJrl) - (I)((pn) = _/ e_mazm(t_T)[Q((anrl - QOTL)(T” dT .
to

Using estimates (8.5)), (8.2)), (8.11)), one gets
len+z = @ntilins < CET(Mlenss = eullrs + IRIzsr1lenrs = eullro)

1 1
< C)TnIr(s) (grrgllvlirs + 57 IRlrssallvleo )

1 1
+ COTIR1J7(0) (577 + 157 ) Wl
1 1
< J2(9) (s I0llrs + g IRllrssallvlizo)

by taking Jr(s) > 0 large enough and 7 € (0, 1) small enough. Thus (8.11]) at the step n + 1 has
been proved. Using a telescoping argument one has that there exists ¢ € C([0,T], H%(T)) such
that

on—¢, in C(0,T],H(T)), Y0<s<S.

Moreover, ®(p,) — ®(p) in C([0,T], H*(T)), for any 0 < s < S, implying that ®(p) = ¢. Since
lellr,s = limp—too |@nllT,s, By one deduces that ¢ satisfies

lellr,s Ss nllvlirs + IRl s+1llvlT,0- (8.12)

Recalling that h = ¢ + v and using estimates (8.7)), (8.12), one gets
”hHT,s Ss ||hm||s + HQHT,S + ||R||T,s+1HhinHOv

and the lemma is proved. O

Lemma 8.2 (Well posedness of the operator L4 in (2.73)). Let T > 0, to € [0,T] and let L4 =
Oills + 1022 + R be the operator defined in , There exists n € (0,1) small enough and
universal constants o,7 > 0 large enough such that if Nyp(o) < 1 (see the definition ), then
for any s € [0,7 — 7], hy, € H¥(T), g € C([0,T],H*(T)), there exists a unique solution h €
C([0,T],H*(T)) such that

£4h =g

h(t07 ) = h,

satisfying the estimate
Ihll7.s Ss [hinllzg + [Igllr.s + Nr(s + o) [[hin|[L2 - (8.13)

Proof. The lemma follows by applying Lemmas and Indeed, by (2.82)-(2.83)), using

that Ny (o) < n for some n € (0,1) small enough and ¢ € N large enough, the smallness condition

(8.2)) is fulfilled. .
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Lemma 8.3 (Well posedness of the operator L3 in (2.66)). Let T > 0, to € [0,7] and let L3 =
Olly + X0,y + iAgS)am + iAg?’) be the operator defined in . There exists n € (0,1) small
enough and universal constants o,7 > 0 large enough such that if Np(o) < n (see the definition
([2-6) ), then for any s € [0,7—7], hyy, € H¥(T), g € C([0,T), H*(T)), there exists a unique solution
h € C([0,T],H*(T)) such that

{E h=g (8.14)

h(th ) = hln
satisfying the estimate
Ihllz,s Ss [hinllag + [8ll7,s + Nr(s + o) |hinllLz -

Proof. Let M be the transformation defined in ([2.71)). By (2.73), defining h(t,-) := M~1(¢)h(t, -),
g := M~Y(t)g(t,-), the Cauchy problem (8.14) transforms into the Cauchy problem

Lih=¢
h(to,) = hyy,
Then the statement follows by Lemma and by estimate (2.81]) on the transformation M. [

Lemma 8.4 (Well posedness of the operator L5 in (2.49)). Let T > 0, to € [0,T] and let Ly =
Olly + X0y + iAPam + iAgQ) be the operator defined in . There exists n € (0,1) small
enough and universal constants o,7 > 0 large enough such that if Np(o) < n (see the definition
([26) ), then for any s € [0,7— 7], hyy, € H¥(T), g € C([0,T], H*(T)), there exists a unique solution
h € C([0,T],H*(T)) such that

{E 2h =g (8.15)

h(th ) = hln
satisfying the estimate
Ihllzs Ss [hinlls + lIgllz,s + Nr(s + o) hinllo -

Proof. Let T be the transformation defined in (2.58). By (2.60)), defining h(¢,-) := 7~ 1(¢)h(t, -),
g :=T 1(t)g(t,-), the Cauchy problem (8.15) transforms into the Cauchy problem

L3sh=¢g
h(th ) = hzn
Then the statement follows by Lemma and by estimate (2.69)) on the transformation 7. O

Lemma 8.5 (Well posedness of the operator £; in (2.37)). Let T > 0, to € [0,T] and let L1 =
Olly + imae X0y, + iAgl)ﬁy + iAél) be the operator defined in ([2.37). There exists n € (0,1) small
enough and universal constants o,7 > 0 large enough such that if Np(o) < n (see the definition
([2-6) ), then for any s € [0,7 — 7], hy,, € H¥(T), g € C([0,T], H*(T)), there exists a unique solution
h € C([0,T],H*(T)) such that

{Eﬂl_g (8.16)

h(to,-) = hy,
satisfying the estimate
bl Ss hinlls + lIgllz.s + No(s + o)|[hinlo -

Proof. Let B be the transformation defined in (2.43). By (2.49), defining h(t,-) := B~1(t)h(t, -),
g :=p '!B71(t)g(t,-), the Cauchy problem (8.16) transforms into the Cauchy problem

Loh=¢
i'Vl(t()’ ) =h;,
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(note that for a function h(x) depending only on the variable z, B~'h = h). Then the statement
follows by Lemma and by estimate (2.55)) on the transformation 5. O

Lemma 8.6 (Well posedness of the operator Lo in (2.13))). Let T > 0, to € [0,T] and let Ly =
8t112—&-i(Z—&—AéO))am—&—iAgO)az—HAE)O) be the operator defined in (2.13)). There exists n € (0,1) small
enough and universal constants o,7 > 0 large enough such that if Np(o) < n (see the definition
(2.6) ), then for any s € [0,r—7], h;, € H*(T), g € C([0,T],H*(T)), there exists a unique solution
h € C([0,T],H*(T)) such that

Loh =

on—8 (8.17)

h(t07 ) = h;,

satisfying the estimate

Ihfl7,s Ss [inlls + [lgllz,s + Nz (s + o) [[hinlo -

Proof. Let A be the transformation defined in (2.23). By (2.29)), defining h(t,-) := A~ (¢)h(t, -),
g := A" 1(t)g(t,-), the Cauchy problem (8.17) transforms into the Cauchy problem

Lih=g
i-'vl(tOv ) = i'Vlm .
Then the statement follows by Lemma and by estimate (2.40|) on the transformation .A. O

Lemma 8.7 (Well posedness of the operator £ in (2.3)). Let T > 0, to € [0,T] and let L =
Olly + (X + A2)0pr + 1410, + 1Ag be the operator defined in (2.3). There exists n € (0,1) small
enough and universal constants o,7 > 0 large enough such that if Np(o) < n (see the definition
(2.6) ), then for any s € [0,r —7], h;,, € H*(T), g € C([0,T], H*(T)), there exists a unique solution
h € C([0,T],H*(T)) such that

Lh =

& (8.18)

h(t()v ) = hwy

satisfying the estimate

hll7.s Ss [inlls + [lgllz,s + No(s + o) [[hinlo -

Proof. Let S be the transformation defined in (2.10). By (2.13), defining h(t,-) := S~1(t)h(t, -),
g := S (t)g(t,-), the Cauchy problem (8.18) transforms into the Cauchy problem

{Eoﬂ:'g“

h(to, ) = hyy, .

Then the statement follows by Lemma and by estimate (2.20]) on the transformation S. O

9 Appendix D. Nash-Moser-Hormander theorem

We state here the Nash-Moser-Hérmander theorem, proved in [15], which we use in Section [5| to
prove Theorems and
Let (Ey)qa>0 be a decreasing family of Banach spaces with continuous injections Ej, — E,,

lulla < flully for a <b. (9.1)

Set Eoo = Ng>0E, with the weakest topology making the injections E., — E, continuous. Assume
that S; : Ey — Eo for j = 0,1,... are linear operators such that, with constants C' bounded when
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a and b are bounded, and independent of j,

15;ulla < Cllulla for all a; (9.2)
1S;ully < C27C~9)||S5u, if a < b; (9.3)
lu—Sully < C27O D u— Sull,  ifa> b (9.4)
1(Sj41 = Sj)ulls < €27~ |[(Sj41 — Sj)ulla  for all a,b. (9.5)
Set
Rou := Syu, Rju = (Sj1 — Sj)u, j>1. (9.6)
Thus
|Rjullp < C27C=9)||Rull, for all a,b. (9.7)
Bound for j > 1is , while, for j = 0, it follows from and .
We also assume that -
lullz < C ) lIRsullz Va0, (9-8)

=0

with C bounded for a bounded (a sort of “orthogonality property” of the smoothing operators).

Now let us suppose that we have another family F, of decreasing Banach spaces with smoothing
operators having the same properties as above. We use the same notation also for the smoothing
operators.

Theorem 9.1. Let a1, a9, q, 3, ag, 1 be real numbers with

0<ag<p<a, a1—|—§<a<a1+6, 200 < ay + as. (9.9)

Let V' be a convex neighborhood of 0 in E,,. Let ® be a map from V to Fy such that ® : VNE,, —
F, is of class C? for all a € [0,as — p], with

12" (w)v, wllla < C(Ivllatullwlae + 10llaglwllatu + ullatplvllaglwllao) (9-10)

forallu € VN E,y,, v,w € Eqp,. Also assume that ®'(v), for v € Eoo NV belonging to some ball
lv]la, < 01, has a right inverse ¥(v) mapping Fy to E,,, and that

¥ (0)glla < Cllgllats—a + llgllollvllars) Va € [ar, as]. (9.11)

For all A > 0 there exist 6,C1 > 0 such that, for every g € Fj satisfying

o0
SRl < Allgl3, llglls <5, (9.12)
j=0

there exists u € Eq, with ||ullo < Ci|\glls, solving ®(u) = ®(0) + g.
Moreover, let ¢ > 0 and assume that (9.10) holds for all a € [0,a2 + ¢ — u], ¥(v) maps Fu to
Eayie, and (9.11)) holds for all a € [ay, az+c|. If g satisfies (9.12) and, in addition, g € Fa. with

Y IRglE e < AcllgllFae (9.13)
7=0

for some A., then the solution u belongs to Eqyc, with ||ul|ate < C1.cllg|lg+e-
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