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ABSTRACT. We give an overview of the classification of networks in the plane with at most two triple junctions
with the property that under the motion by curvature they are self–similarly shrinking. After the contributions
in [7, 9, 20], such a classification was completed in the recent work in [4] (see also [3]), proving that there are no
self–shrinking networks homeomorphic to the Greek “theta” letter (a double cell) embedded in the plane with
two triple junctions with angles of 120 degrees. We present the main geometric ideas behind the work [4]. We
also briefly introduce our work in progress in the higher–dimensional case of networks of surfaces in R3.

1. INTRODUCTION

Recently, the problem of the evolution by curvature of a network of curves in the plane got the interest
of several authors [5, 9, 13, 14, 17–21]. It is well known, after the work of Huisken [10] in the smooth case
of the hypersurfaces in the Euclidean space and of Ilmanen [11, 12] in the more general weak settings of
varifolds, that a suitable sequence of rescalings of the subsets of Rn which are evolving by mean curvature,
approaching a singular time of the flow, converges to a so called “blow–up limit” set. Such a limit set has
the property that, letting it flow again by mean curvature, it simply moves by homothety, more precisely it
shrinks down self–similarly toward the origin of the Euclidean space.

This procedure and the classification of these special sets (possibly under some hypotheses), called
shrinkers, is a key point in understanding the asymptotic behavior of the flow at a singular time.

Dealing with the evolution of a single curve in the plane, it is easy to see that any C2 curve γ : I → R2

that moves by curvature, self–similarly shrinking, must satisfy the following “structural” equation (which
is actually an ODE for γ)

(1.1) k + γ⊥ = 0,

where k is the vector curvature of the curve at the point γ and γ⊥ denotes the normal component of the
position vector γ. Introducing an arclength parameter s on the curve γ, we have a unit tangent vector field
τ = d

dsγ, a unit normal vector field ν which is the counterclockwise rotation of π/2 in R2 of the vector τ and
the curvature vector given by k = kν = d2

ds2 γ, where k is then simply the curvature of γ. With this notation,
the above equation can be rewritten as

(1.2) k + 〈γ | ν〉 = 0.

It is then known, by the work of Abresch–Langer [1] and independently of Epstein–Weinstein [8], that the
only complete, embedded, self–similarly shrinking curves in R2 without end–points, are the lines through
the origin and the unit circle (they actually classify all the closed, embedded or not, self–similarly shrinking
curves in the plane).
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FIGURE 1. The only complete, embedded, self–similarly shrinking curves in R2: lines
through the origin and the unit circle.

The same equation k + γ⊥ = 0 (that is, k + 〈γ | ν〉 = 0) must be satisfied by every curve of a network
in the plane which self–similarly shrinks to the origin moving by curvature (see [16, 17], for instance).
Moreover, for “energetic” reasons, it is natural to consider networks with only triple junctions and such
that the three concurring curves (which are C∞) form three angles of 120 degrees between each other –
“Herring” condition – such networks are called regular. In such a class, the embedded shrinking regular
networks (without self–intersections) play a crucial role, indeed, they “reasonably” arise as blow–up limits
of the motion of networks without self–intersections (this is still a conjecture for a general network, but
there holds for networks with at most two triple junctions – see the end of the section).

In [3, 4] we were able to complete the classification of the complete, embedded, self–similarly shrinking
regular networks in the plane with at most two triple junctions, after the contributions in [7, 9, 20]. We
describe such a classification here below.

If one consider networks with only one triple junction, the only complete, embedded, regular shrinkers
are given (up to rotations) by the “standard triod” and the “Brakke spoon” (first described in [6]), as in
Figure 2.

O O

FIGURE 2. A standard triod and a Brakke spoon.

About networks with two triple junctions, it is not difficult to show that the possible topological shapes
for a connected, complete, embedded, regular network without end–points, are the ones depicted in Fig-
ure 3.
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FIGURE 3. The possible topological shapes of a complete, connected, embedded network
with two triple junctions.

Then, looking for shrinkers with one of these topological shapes, by the cited work of Abresch and
Langer [1] it follows that any unbounded curve of such shrinkers must be a piece of a halfline from the
origin, going to infinity. Then, differentiating in arclength s the equation k = −〈γ | ν〉, we get the ODE for
the curvature ks = k〈γ | τ〉. Suppose that at some point k = 0, then it must also hold ks = 0 at the same
point, hence by the uniqueness theorem for ODEs we conclude that k is identically zero and we are dealing
with a piece of a straight line through the origin of R2, as 〈x | ν〉 = 0 for every x ∈ γ. Notice that, if a curve
γ contains the origin, at such a point its curvature is zero by the equation k + 〈γ | ν〉 = 0, hence it must be
straight.

Now, if a regular shrinker had the topological shape of the first drawing on the top of Figure 3, the four
unbounded curves should be halflines, which implies that the two triple junctions should coincide with the
origin, which is a contradiction (the curve γ5 has to be a non trivial segment between the triple junctions),
thus such a shape is excluded.
Then, thanks to an argument by Hättenschweiler [9, Lemma 3.20], if a regular shrinker contains a region
bounded by a single curve, the shrinker must be a Brakke spoon, that is, no other triple junctions can be
present. This excludes the possibility for a regular shrinker also to have a shape like the second one in the
first row of Figure 3 or like the two in the second row.

It remains to discuss the last two cases: one is the “lens/fish” shape and the other is the shape of the
Greek “theta” letter (or “double cell”). It is well known that there exist unique (up to a rotation) lens–
shaped and fish–shaped, complete, embedded, regular shrinkers, which are symmetric with respect to a
line through the origin of R2 (see [7, 20]).

O O

FIGURE 4. A lens–shaped and a fish–shaped shrinker.
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It was instead unknown whether regular Θ–shaped shrinkers (or simply Θ–shrinkers) exist, with nu-
merical evidence in favor of the conjecture of non–existence (see [9]). We have proved that this is actually
the case.

O

FIGURE 5. A hypothetical Θ–shrinker.

Theorem 1.1 ( [4], Theorem 1.1). There are no regular Θ–shrinkers.

As a consequence, one gets the following classification result.

Theorem 1.2 ( [3], Theorem 1.2). The shrinkers of Figure 4 (“lens” and “fish”) are the only (up to rotations)
complete, embedded, self–similarly shrinking regular networks in the plane with two triple junctions.

To prove Theorem 1.1 we first analyze the geometric properties that any hypothetical Θ–shrinker must
satisfy, reducing the proof of non–existence to show that a certain parametric integral is always smaller
than π/2, for every value of the parameter. The proof of such an estimate, mixing some approximation
techniques and numerical computations based on interval arithmetic, is contained in the paper [4].

We conclude this discussion mentioning that the main motivation for this problem is given by the fact
that for an evolving network with at most two triple junctions, the so called multiplicity–one conjecture holds
(see [16]), saying that any limit shrinker of a sequence of rescalings of the network at different times is again
a “genuine” embedded network without “double” or “multiple” curves (curves that in such a convergence
go to coincide in the limit). This is a key point in the singularity analysis (actually, in general, for mean
curvature flow), together with the classification of these limit shrinkers, which is complete after our result
Theorem 1.1, for such “low complexity” networks, thus leading to a detailed description of their motion
in [15].

For instance, from the non–existence of regular Θ–shrinkers one can deduce some information (which
would otherwise be unknown) on the evolution by curvature of a symmetric “double bubble”, one of the
simplest examples of networks one may think of.
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FIGURE 6. On the left, a symmetric double bubble: a Θ–shaped network with two sym-
metric arc circles and a horizontal segment, forming angles of 120 degrees. On the right,
the type of singularity reached by the evolution by curvature of a double bubble.

The symmetry of the picture and the non–existence of regular Θ–shrinkers lead to the conclusion that the
evolution of such a double bubble will reach a singularity by shrinking the line segment to a single point
and creating two symmetric “teardrops” joined by a quadruple point, forming two angles of 120 degrees
and two angles of 60 degrees.

It is of course interesting (yet, in general, much harder) to study the possible blow–up limits of the mean
curvature flow of networks also in higher dimension. For this reason, it is natural to try to classify – even
if, at the moment, in this higher dimensional setting much less is known – those networks of hypersurfaces
in Rn whose motion by mean curvature is homothetic. We have recently begun the study of a problem in
this context, namely we are working in order to prove or disprove the existence of self–shrinking networks
of surfaces in R3 with some given simple topologies (see Section 4).

Plan of the paper. In Section 2 we recall some basic properties of shrinkers, while in Section 3 we summarize
the geometric part of the proof of Theorem 1.1. Finally, in Section 4 we spend a few words about the ongoing
work on the classification of self–shrinking surfaces in R3.

Acknowledgments. We wish to thank Matteo Novaga and Alessandra Pluda for several discussions on the subject
of this paper. This research was financially supported by UniNA and Compagnia di San Paolo, in the frame of Pro-
gramme STAR, by the European Research Council under FP7 (ERC Project 306414) and by PRIN 2012 “Variational
and perturbative aspects of nonlinear differential problems”.

2. BASIC PROPERTIES OF SHRINKING CURVES

Consider a shrinking curve γ : I → R2 parametrized in arclength s, where I ⊂ R is an interval. We
denote with R : R2 → R2 the counterclockwise rotation of 90 degrees. Then, the relation

γss =
d2γ

ds2
= kν = −〈γ | ν〉ν = −

〈
γ
∣∣∣R(dγ

ds

)〉
ν

gives an ODE satisfied by γ. It follows that the curve is smooth and it is not difficult to see that for every
point x0 ∈ R2 and unit velocity vector τ0, there exists a unique shrinking curve (solution of such an ODE)
parametrized in arclength, passing at s = 0 through the point x0 with velocity τ0, defined for all s ∈ R.

Differentiating in arclength the equation k = −〈γ | ν〉, we get the ODE for the curvature ks = k〈γ | τ〉.
Suppose that at some point k = 0, then it must also hold ks = 0 at the same point, hence, by the uniqueness
theorem for ODEs, we conclude that k is identically zero and we are dealing with a piece of a straight line
which, as 〈x | ν〉 = 0 for every x ∈ γ, must contain the origin of R2.

So we suppose that k is always nonzero and, by looking at the structural equation k + 〈γ | ν〉 = 0, we
can see that the curve is then strictly convex with respect to the origin of R2. Another consequence (by
the uniqueness theorem for ODE) is that the curve must be symmetric with respect to any critical point
(maximum or minimum) of its curvature function. Notice that if the curve is not a piece of a circle, the
critical points are all nondegenerate and isolated (if the curve has bounded length, their number is finite).
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Computing the derivative of |γ|2,

d|γ|2

ds
= 2〈γ | τ〉 = 2ks/k = 2

d log k

ds

we get k = Ce|γ|
2/2 for some constant C ∈ R, that is, the quantity

(2.1) E = E(γ) := ke−|γ|
2/2,

that we call Energy, is constant along the curve. Equivalently, 〈γ | ν〉e−|γ|2/2 is constant. A solution γ has
positive energy if k > 0, so that γ runs counterclockwise around the origin, γ has negative energy if k < 0,
so that γ runs clockwise around the origin, γ has energy zero if k = 0, so that γ is a piece of a straight line
through the origin.

We consider now a new coordinate θ = arccos 〈e1 | ν〉; this can be done for the whole curve as we know
that it is convex (obviously, θ is only locally continuous, since it “jumps” after a complete round).

Differentiating with respect to the arclength parameter we have dθ
ds = k and

(2.2) kθ = ks/k = 〈γ | τ〉 , kθθ =
1

k

dkθ
ds

=
1 + k〈γ | ν〉

k
=

1

k
− k.

Multiplying both sides of the last equation by 2kθ we get d
dθ [k2θ + k2 − log k2] = 0, that is, the quantity

E := k2θ + k2 − log k2

is constant along all the curve. Notice that the quantity E cannot be less than 1 (if k 6= 0), moreover, if E = 1
we have that k2 must be constant and equal to one along the curve, which consequently must be a piece of
the unit circle centered at the origin of R2.

As E ≥ 1, it follows that k2 is uniformly bounded from above and away from zero, hence, recalling that
k = Ee|γ|2/2, the curve γ is contained in a ball of R2 (and it is outside some small ball around the origin).

Since we are interested in the curves of a nontrivial connected, compact (Θ–shaped), regular network,
there will be no unbounded lines or complete circles and all the curves of the network will be images of a
closed bounded interval, once parametrized in arclength.

Summarizing, either γ is a segment or k2 > 0, the equations (2.2) hold, the Energy E = ke−|γ|
2/2 and the

quantity E = k2θ + k2 − log k2 ≥ 1 are constant along the curve, where θ = arccos 〈e1 | ν〉. Moreover, the
curve is locally symmetric with respect to the critical points of the curvature, hence the curvature k(θ) is
oscillating between its maximum and its minimum.

Suppose now that kmin < kmax are these two consecutive critical values of k. It follows that they are two
distinct positive zeroes of the function k2θ = E + log k2 − k2, when E > 1, with 0 < kmin < 1 < kmax.
We have then that the change ∆θ in the angle θ along the piece of curve delimited by two consecutive points
where the curvature assumes the values kmin and kmax is given by the integral

(2.3) ∆θ = I(E) =

∫ kmax

kmin

dk√
E − k2 + log k2

.

Proposition 2.1 (Abresch and Langer [1]). The function I : (1,+∞)→ R satisfies
(1) limE→1+ I(E) = π/

√
2,

(2) limE→+∞ I(E) = π/2,
(3) I(E) is monotone decreasing.

As a consequence I(E) > π/2.

We write now the curve γ in polar coordinates, that is, γ(s) = (ρ(s) cosφ(s), ρ(s) sinφ(s)), then, the
arclength constraint and the shrinker equation (1.2) become

(2.4) ρ2s + ρ2φ2s = 1,

ρ2φs + ρρssφs − 2ρ2sφs − ρ2φ3s − ρρsφss = 0,

moreover,

(2.5) cos
(
angle between γ and γs

)
=

γ · γs
|γ||γs|

= ρs.
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Notice that shrinking curves with positive energy have φs > 0 everywhere, indeed, either φs is always
different by zero or the curve is a segment of a straight line through the origin of R2.

The curvature and the Energy E = ke−|γ|
2/2 are given by

(2.6) k = ρ2φs, E = ρ2φse
− 1

2ρ
2

and, when the energy is positive, it will be useful to consider also the quantity F := − log(E), that is,

(2.7) F = − log(E) =
1

2
ρ2 − log(ρ2φs).

Since 0 < ρφs ≤ 1, by equation (2.4), one has

F ≥ 1

2
ρ2 − log(ρ) ≥ 1

2
.

Let us assume that γ is a shrinking curve with k > 0 (the assumption on the sign of k is not restrictive,
up to a change of orientation of the curve). Then, by the definition of the Energy (2.1), it is immediate to see
that the points where k attains its maximum (resp. minimum) coincide with the points where ρ attains its
maximum (resp. minimum). Thus, at any extremal point of k there hold kθ = 0, ρs = 0 and also ρφs = 1, by
equation (2.4), hence, by equation (2.6), we have k = ρ. Then, computing E and F at such a point (clearly,
kθ = 0), we get

E = k2 − 2 log k and F = k2/2− log k,

that is, E = 2F = log
(

1
E2
)
.

Since the Energy and the quantity F are constant, this relation must hold along all the curve γ and
F = ρ2min/2− log ρmin = ρ2max/2− log ρmax.

Since the function µ(t) = t2/2 − log t is strictly convex with a minimum value 1/2 at t = 1, to each
value of F ≥ 1

2 , there correspond two values ρmin(F) and ρmax(F) which are the admissible (interior)
minimum and maximum of ρ on γ, with ρmin(F) < 1 < ρmax(F) if F > 1

2 . It follows easily that ρmax :
(1/2,+∞) → (1,+∞) is an increasing function and ρmin : (1/2,+∞) → (0, 1) is a decreasing function.
Viceversa, the quantity F can be seen as a decreasing function of ρmin ∈ (0, 1] and an increasing function of
ρmax ∈ [1,+∞).

Let smin, smax ∈ R with smin < smax be two consecutive (interior) extremal points of ρ (hence, also of k)
such that ρ(smin) = ρmin(F), ρ(smax) = ρmax(F). Since at the interior extremal points of ρ the vectors γ, γs
must be orthogonal, it follows that the quantity considered in formula (2.3) satisfies

(2.8) ∆θ =

∫ smax

smin

φs(s) ds := I(F),

that is, the integral I(F) is the variation of the angle φ on the shortest arc such that ρ passes from ρmin to
ρmax.
Then, by the above discussion, I(F) = I(E) = I(2F) and we can rephrase Proposition 2.1 in terms of the
integral I(F) as follows.

Proposition 2.2. The function I : (1/2,+∞)→ R satisfies

(1) limF→(1/2)+ I(F) = π√
2

,
(2) limF→+∞ I(F) = π

2 ,
(3) I(F) is monotone decreasing.

As a consequence I(F) > π
2 for all F > 1

2 .

3. THE PROOF OF THEOREM 1.1

The proof of Theorem 1.1 is based on the following lemma, whose proof – which is nontrivial and based
also on a computer–assisted estimate – can be found in [4].
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Lemma 3.1 ( [4], Lemma 3.1). Let γ be a shrinking curve, parametrized counterclockwise by arclength, with positive
curvature and let (s0, s1) be an interval where s 7→ ρ(s) is increasing. If ρs(s0) ≥ 1

2 , namely, if the angle formed by
the vectors γ(s0) and γs(s0) is ≤ π

3 , then ∫ s1

s0

φs(s) ds <
π

2
.

Similarly, if s 7→ ρ(s) is decreasing on (s0, s1) and ρs(s1) ≤ − 1
2 , namely the angle formed by the vectors γ(s1) and

γs(s1) is ≥ 2π
3 , then the same conclusion holds.

We assume now that a Θ–shrinker exists, described by three embedded shrinking curves γi : [si, si] →
R2, parametrized by arclength, expressed in polar coordinates by γi = (ρi cos(φi), ρi sin(φi)), for i ∈ {1, 2, 3}.
The two triple junctions will be denoted with A,B and the three curves intersect each other only at A and
B (which are their endpoints) forming angles of 120 degrees. Since the shrinker equation (1.1) is invariant
by rotation, we can assume that the segment AB is contained in the straight line {(x, q) : x ∈ R}with q ≥ 0
and we let A = (xA, q), B = (xB , q) with xA < xB .

To simplify the notation, in all this section we will denote the arclength derivative d
ds with ′. We start by

stating the following two preliminary lemmas, which are proved in [4].

Lemma 3.2 ( [4], Lemma 3.3). For all i ∈ {1, 2, 3}, the curve γi is either a straight line or such that∣∣∣∣∫ si

si

φ′i(s) ds

∣∣∣∣ < 2π.

Lemma 3.3 ( [4], Lemma 3.4). Let S = [s, s] and γ : S → R2 be a shrinking curve parametrized by arclength,
expressed in polar coordinates by γ = (ρ cos(φ), ρ sin(φ)). Assume that φ′(s) > 0 in S and

0 < ∆ ≤ π, where ∆ :=

∫ s

s

φ′(s) ds.

Let L be the straight line passing through the two points γ(s), γ(s) and H1 and H2 be the two closed half–planes in
which L divides the plane R2. Then the arc γ(S) is entirely contained in H1 or H2.

Moreover, if ∆ < π and γ(S) ⊂ H1, then the origin of R2 belongs to the interior of H2.

Coming back to our Θ–shrinker, because of its topological structure, one of the curves is contained in the
region delimited by the other two, moreover the curvature of both these two “external” curves is always
non zero, otherwise any such curve is a segment of a straight line passing through the origin, then the 120
degrees condition at its endpoints would imply that it must be contained in the region bounded by the
other two curves, hence it could not be “external”. Notice that, on the contrary, the “inner” curve could
actually be a segment for the origin.

We call γ2 the “inner” curve and, recalling that the origin of R2 is not over the straight line through the
two triple junctions A and B, parametrizing counterclockwise the three curves, that is φ′i > 0 (in the case
that the “inner” curve γ2 is not a segment), we call γ1 the “external” curve which starts atB. By Lemma 3.2,
γ1 reaches the point A after φ1 changes of an angle ∆ =

∫ s1
s1
φ′1(s) ds < 2π equal to the angle B̂OA, which

is smaller or equal than π. Hence, by Lemma 3.3, all of the curve γ1 stays over the straight line passing for
the two triple junctions A and B.

We call γ3 the other extremal curve, hence since φ1, φ3 > 0, we have

γ1(s1) = γ3(s3) = B, γ1(s1) = γ3(s3) = A.

Because of the shrinker equation (1.2), all the three curves are convex with respect to the origin. This
implies that the origin is contained in the interior of the bounded area A13 enclosed by γ1 and γ3 (if the
origin belongs to γ1 or γ3 such a curve is a segment and cannot be “external”, as we said before), which also
contains γ2 ⊂ A13. We let A12 be the region enclosed by the curves γ1 and γ2 and we split the analysis into
two cases.

Case 1. The origin does not belong to the interior of A12.
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Since the curve γ2 is convex with respect to the origin, by the same argument used above for γ1, it is
contained in the upper half–plane determined by the straight line for the points A and B.

By the 120 degrees condition it follows that the angle β at B formed by the vector (1, 0) and γ′1 is at most
π
3 . Similarly, also the angle α at A formed by the vector (1, 0) and γ′1 is at most π

3 . By the convexity of the
region delimited by γ2 and γ3 containing the origin and again the 120 degrees condition at B, it is then easy
to see that the angle at B formed by the vectors γ1 and γ′1 is less or equal than π

3 and analogously, the angle
at A formed by γ1 and γ′1 is greater or equal than 2π

3 .
Hence, by equality (2.5), it follows

ρ′1(s1) ≥ 1

2
> 0, ρ′1(s1) ≤ −1

2
< 0.

As a consequence, there is a point of maximum radius s∗1 ∈ (s1, s1) such that ρ1(s∗1) ≥ ρ1(s) for all s ∈
(s1, s1).

The vector γ1(s∗1) forms an angle σ ≥ π
2 with (1, 0) or (−1, 0). Assume that the angle between γ1(s∗1) and

(1, 0) is greater or equal than π
2 (the other case is analogous, switching A and B). We extend the curve γ1

(still parametrized by arclength) “before” the point B till it intersects the x–axis at some s̃1 ≤ s1 (this must
happen because φ1(s) > 0 everywhere also on the extended curve) and we consider the (non relabeled)
curve γ1 defined in the interval L1 = [s̃1, s

∗
1]. Calling β0 the angle formed by the vectors γ′1(s̃1) and (1, 0),

by convexity and the fact that the angle β at B formed by the vector (1, 0) and γ′1 is at most π3 , we have that
β0 ≤ β ≤ π

3 . Hence, by equality (2.5), we have ρ′1(s̃1) ≥ 1
2 > 0.

Considering now the function s 7→ ρ1(s) on the interval L1 = [s̃1, s
∗
1], since ρ′1(s̃1) > 0 and s∗1 is a

maximum point for ρ1, either ρ1 is increasing on L1, or ρ1 has another maximum and then a minimum in
the interior of L1 (notice that the map ρ1 cannot be constant on an interval, otherwise γ1 would be an arc of
a circle centered at the origin, which is impossible since ρ1 is not constant). But we know from formula (2.3)
and Proposition 2.1 that the angle φ1 must increase more than π

2 to go from a minimum to a maximum or
viceversa (we can apply such a proposition since γ1 is not an arc of a circle). Since∫ s∗1

s̃1

φ′1(s) ds ≤ π,

there cannot be a maximum, then a minimum, then a second maximum in L1. It follows that ρ1 is increasing
in such an interval.
This, combined with the fact that β0 ≤ π

3 and that the angle σ is at least π
2 , that is,

∫ s∗1
s̃1
φ′1(s) ds ≥ π

2 , is in
contradiction with Lemma 3.1. Therefore, this case cannot happen.

Case 2. The origin belongs to the interior of A12.
Being the region A12 convex (by the shrinker equation (1.2), since it contains the origin), the curve γ2

(which is oriented counterclockwise) goes from A to B. The fact that γ′2 and γ′3 form angles of 2π
3 at the

points A and B implies that:
(i) the angle inA formed by the vectors γ3(s3) and γ′3(s3) and the angle inB formed by the vectors γ2(s2)

and γ′2(s2) are both less or equal than π
3 ;

(ii) the angle in B formed by the vectors γ3(s3) and γ′3(s3) and the angle in A formed by the vectors
γ2(s2) and γ′2(s2) are both greater or equal than 2π

3 .
In particular, by equality (2.5), it follows

(3.1) ρ′2(s2) ≤ −1

2
< 0, ρ′2(s2) ≥ 1

2
> 0, ρ′3(s3) ≥ 1

2
> 0, ρ′3(s3) ≤ −1

2
< 0.

Hence, the function s 7→ ρ3(s) has a maximum at some point s∗3 ∈ (s3, s3), while the function s 7→ ρ2(s) has
a minimum at some point s◦2 ∈ (s2, s2).

If s∗3 is the only point of maximum of ρ3 in the interval [s3, s3], then the function ρ3 is strictly monotone
on each of the two subintervals [s3, s

∗
3] and [s∗3, s3], moreover,∫ s∗3

s3

φ′3(s) ds+

∫ s3

s∗3

φ′3(s) ds =

∫ s3

s3

φ′3(s) ds ≥ π,
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since the origin is “below” the segment AB. Thus, at least one of the two integrals on the left–hand side is
greater or equal than π

2 and, by Lemma 3.1, this is not possible. As a consequence, there must be another
point of maximum radius s∗∗3 ∈ (s3, s3) (notice that the maximum points cannot be an interval, otherwise
γ3 would be an arc of a circle centered at the origin, hence with ρ′3 = 0, against relations (3.1)). Hence,
between these two points of maximum radius there is a minimum point s◦3. Without loss of generality, we
assume that s3 < s∗3 < s◦3 < s∗∗3 < s3.

We observe that there cannot be a third maximum point for ρ3 (hence also another minimum point) in
the interval [s3, s3] because, by Proposition 2.2, each of the four angles at the origin formed by the segment
connecting the origin with two consecutive of the five extremal points for ρ3 on γ3 is greater than π

2 and,
by Lemma 3.2, there holds

∫ s3
s3
φ′3(s) ds < 2π. Moreover, also the case of two minimum points and two

maximum points for ρ3 in the interval [s3, s3] is not possible, because of the sign of the derivative ρ′3 at the
endpoints in relations (3.1). Hence, we conclude that s∗3, s◦3, s∗∗3 are the only extremal points for ρ3 in the
interval [s3, s3].

Now consider the quantities F2,F3 of the curves γ2, γ3, respectively, given by formula (2.7). By rela-
tions (3.1), the curves γ2 and γ3 are not the unit circle (they would have ρ′2 or ρ′3 equal to zero everywhere),
therefore F2,F3 >

1
2 . If we draw the line from the origin to γ3(s◦3), this must intersect γ2 in an intermediate

point, implying that the minimal radius of the curve γ2 is smaller than the minimal radius of the curve γ3.
By the discussion about the value of the quantity F in relation with the extremal values of ρ at the end of
Section 2, we have F2 > F3. Then, if a maximum of ρ2 is taken in the interior of γ2, it must be larger than
the maximal radius of γ3 (which is taken in the interior of γ3), which is not possible as γ2 is contained in
the region bounded by γ3 and the segment AB. From this argument we conclude that there are no points
of maximal radius in the interior of γ2, thus, the only extremal point for ρ2 in the interval [s2, s2] is the
minimum point s◦2.

Defining the angle

α :=

∫ s2

s2

φ′2(s) ds =

∫ s3

s3

φ′3(s) ds,

by formula (2.8) and the symmetry of the curve γ3 with respect to the straight line through the origin and
the point γ3(s◦3) of minimum distance, we have

I(F3) =

∫ s◦3

s∗3

φ′3(s) ds =

∫ s∗∗3

s◦3

φ′3(s) ds <
α

2

while, since γ2 does not contain any interior point of maximum radius,

I(F2) > max

{∫ s◦2

s2

φ′2(s) ds,

∫ s2

s◦2

φ′2(s) ds

}
≥ α

2
.

Thus, I(F2) > I(F3) and F2 > F3, which is in contradiction with the monotonicity of the function I given
by Proposition 2.2. Hence, also this case can be excluded.

Since we excluded both cases, our hypothetical Θ–shrinker cannot exist and we are done with the proof
of Theorem 1.1.

4. A STEP INTO HIGHER DIMENSION

We are currently working on the classification of self–shrinking clusters of surfaces (“bubbles”) in the
three–dimensional Euclidean space. The equation of a surface Σ ⊂ R3 self–shrinking toward the origin has
formally the same structure as the one for the planar case, i.e. such a surface must satisfy the structural
equation

(4.1) H + Σ⊥ = 0,

where H is the mean curvature vector and Σ⊥ is the normal component of the position vector Σ. A major
difficulty arises since equation (4.1) is no longer an ODE, as in the planar case, but it is a PDE that has to be
solved by the unknown surface Σ. There are some known embedded surfaces solving equation (4.1), some
of which can be easily found by direct inspection. In particular, known solutions are:
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• any plane through the origin;
• any cylinder of radius 1 about an axis through the origin;
• the sphere of radius

√
2 centered at the origin;

• given any axis of symmetry ` through the origin, an embedded surface Σ ⊂ R3 homeomorphic to
the torus T2 and cylindrically symmetric with respect to the axis ` (see [2]).

Contrary to the planar case, it is not known whether these are the only complete, embedded, self–
similarly shrinking surfaces in R3 or not.

Concerning self–shrinking clusters of surfaces, it is again natural to restrict our attention to clusters
satisfying a suitable “energetic” condition. Precisely, we call an embedded self–shrinking cluster regular if
intersections occur only between three surfaces, along regular curves, with the three concurring surfaces
forming angles of 120 degrees, or between four surfaces, at isolated points where four of the previous
intersection curves come together and the tangent vectors of the four curves at the intersection point have
a tetrahedral symmetry (that is, they form equal angles like the heights of a regular tetrahedon at their
intersection point).

Trivial examples of regular embedded self–shrinking clusters are:

• three planes having in common a line through the origin, forming angles of 120 degrees;
• four planes through the origin, with a tetrahedral symmetry.

Our aim is to investigate about the existence or non–existence of some non–trivial examples of regular
self–shrinking clusters of surfaces in R3. As a starting point, it seems very reasonable to look for shrinkers
enjoying several symmetries, both because this might simplify the analysis and because all the known
examples of self–shrinkers (either planar or non–planar) are very symmetric. In particular, we are going to
look for clusters that enjoy a rotational symmetry about the z–axis: in this way, the equation that has to be
satisfied by the profile of the surface (a curve γ in the xz–plane) is an ODE, even though it is slightly more
complicated than the one we had to deal with in the planar case.

Introducing the arclength parameter s on the curve γ that defines the profile of the shrinking surface in
the xz–plane, we get the equation

(4.2) k +
〈γs|e2〉
〈γ|e1〉

+ 〈γ|ν〉 = 0,

where e1 is the unit vector parallel to the x–axis, e2 is the unit vector parallel to the z–axis and, as before, k
is the scalar curvature of the curve γ and ν is the unit normal vector of the curve γ. Equation (4.2) looks like

equation (1.1) for a planar self–shrinking curve, except for the presence of the term
〈γs|e2〉
〈γ|e1〉

, which comes

from the curvature of the surface Σ in the direction orthogonal to the plane xz. The presence of such a term
is rather unpleasant, both because it introduces a singularity of the equation as the curve γ approaches the
z–axis (which is expected, since γ has to describe the profile of a smooth surface of rotation around the
z–axis), and because it destroys the conservation of the Energy (2.1), which was a crucial ingredient in the
analysis of planar shrinkers.

We are currently focusing our attention on the question of the existence of an embedded curve γ solving
equation (4.2) and such that:

(1) it satisfies the initial condition γ(0) = (α, 0) for some α > 0, γs(0) = (±1/2,
√

3/2);
(2) it satisfies the “boundary condition” γ(s)→ (0, β) for some β > 0 and γs(s)→ (−1, 0), as s tends to

some value s0 > 0;
(3) the curve γ((0, s0)) has no intersections with the x–axis or with the z–axis.

In the case γs(0) = (1/2,
√

3/2), the existence of such a curve would imply the existence of a symmetric
regular self–shrinking cluster of surfaces with a shape of a “three–dimensional double bubble”. In the case
γs(0) = (−1/2,

√
3/2), the existence of such a curve would imply the existence of a symmetric regular

unbounded self–shrinking cluster of surfaces with a shape of a “three–dimensional lens”.
At present, we have not completed a rigorous proof of existence or non–existence in either case. How-

ever, numerical evidence suggests that the “three–dimensional lens” shrinker exists, while the “three–
dimensional double bubble” shrinker does not exist.
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Concerning the “three–dimensional lens”, we have elaborated a reasonable strategy to prove its existence
(work in progress): the idea is to exploit on one hand the presence of the explicit solution where γ runs on
the circle of radius

√
2, which intersects the x–axis with an angle of 90 degrees, on the other hand, we

aim at proving that there exist solutions satisfying the “boundary condition” (2) and the “non–degeneracy
condition” (3) with very small β > 0, intersecting the x–axis with a very low angle: this fact is both heuris-
tically reasonable if one makes a linear approximation for very small values of β > 0 and confirmed by
numerical experiments. This, combined with the continuity of the angle of intersection between γ and the
x–axis with respect to the parameter β, would imply the existence of a curve gamma satisfying (2)-(3) and
γs(0) = (−1/2,

√
3/2), i.e. intersecting the x–axis with an angle of 60 degrees.

Concerning the “three–dimensional double bubble”, it would be natural to try to compare (4.2) with
(1.1). In fact, planar Θ-shrinkers do not exist because solutions to (1.1) “do not bend enough” and the

additional term
〈γs|e2〉
〈γ|e1〉

in (4.2) seems to force the curve to “bend even less”, which might be a reason for

which self–shrinking double–bubbles do not exist. However, we have not found yet a proper way to make
this comparison rigorous.
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NAPOLI, ITALY, I–80126

E-mail address, C. Mantegazza: c.mantegazza@sns.it

13


	1. Introduction
	2. Basic properties of shrinking curves
	3. The proof of Theorem 1.1
	4. A step into higher dimension
	References

