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Abstract

We study the quintic Non Linear Schrödinger equation on a two dimensional torus and
exhibit orbits whose Sobolev norms grow with time. The main point is to reduce to a
sufficiently simple toy model, similar in many ways to the one discussed in [15] for the
case of the cubic NLS. This requires an accurate combinatorial analysis.

1 Introduction

We consider the quintic defocusing NLS on the two-dimensional torus T2 = R2/(2πZ)2

− i∂tu+∆u = |u|4u , (1.1)

which is an infinite dimensional dynamical system with Hamiltonian

H =

∫

T2

|∇u|2 + 1

3

∫

T2

|u|6 (1.2)

having the mass (the L2 norm) and the momentum

L =

∫

T2

|u|2 , M =

∫

T2

ℑ(u · ∇u) (1.3)

as constants of motion. The well-posedness result of [8, 13] for data u0 ∈ Hs(T2), s ≥ 1
gives the existence of a global-in-time smooth solution to (1.1) from smooth initial data
and one would like to understand some qualitative properies of solutions.

A fruitful approach to this question is to apply the powerful tools of singular perturba-
tion theory, such as KAM theory, Birkhoff Normal Form, Arnold diffusion, first developed
in order to study finite-dimensional systems.
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We are interested in the phenomenon of the growth of Sobolev norms, i.e. we look
for solutions which initially oscillate only on scales comparable to the spatial period and
eventually oscillate on arbitrarily short spatial scales. This is a natural extension of the
results in [15] and [23] which prove similar results for the cubic NLS. In the strategy of
the proof, we follow [15] as closely as possible; therefore our main result is the precise
analogue of the one stated in [15] for the cubic NLS. Namely, we prove

Theorem 1.1. Let s > 1, K ≫ 1 and 0 < δ ≪ 1 be given parameters.Then there exists a
global smooth solution u(t, x) to (1.1) and a time T > 0 with

‖u(0)‖Hs(T2) ≤ δ and ‖u(T )‖Hs(T2) ≥ K .

Note that we are making no claim regarding the time T over which the growth of
Sobolev norms occurs, this is the main difference between the approaches of [15] and [23].

1.1 Some literature

The growth of Sobolev norms for solutions of the Non Linear Schrödinger equation has
been studied widely in the literature, but most of the results regard upper bounds on such
growth. In the one dimensional case with an analytic non-linearity ∂ūP (|u|2) Bourgain
[10] and Staffilani [40] proved at most polynomial growth of Sobolev norms. In the same
context Bourgain [12] proved a Nekhoroshev type theorem for a perturbation of the cubic
NLS. Namely, for s large and a typical initial datum u(0) ∈ Hs(T ) of small size ‖u(0)‖s ≤ ε
he proved

sup
t≤T
‖u(t)‖s ≤ Cε, |t| < T , T ≤ ε−A

with A = A(s) → 0 as s → ∞. Similar upper bounds on the growth have been obtained
also for the NLS equation on R and R2 as well as on compact manifolds.

We finally mention the paper [17] which discusses the existence of stability regions for
the NLS on tori.

Concerning instability results for the NLS on tori, we mention the papers by Kuksin
[30] (see related works [27, 28, 29, 31]) who studied the growth of Sobolev norms for the
equation

−i∂tu+ δ∆u = |u|2pu , p ∈ N

and constructed solutions whose Sobolev norms grow by an inverse power of δ. Note that
the solutions that he obtains (for p = 2) correspond to orbits of equation (1.1) with large
initial data. A big progress appeared in the paper [15] where the authors prove Theorem
1.1 for cubic NLS. Note that the initial data are small in Hs. Finally the paper [23] follows
the same general strategy of [15] and constructs orbits whose Sobolev norm grows (by an
arbitrary factor) in a time which is polynomial in the growth factor. This is done by a
careful analysis of the equation and using in a clever way various tools from diffusion in
finite dimensional systems.

Note that these results do not imply the existence of solutions with diverging Sobolev
norm, nor do they claim that the unstable behavior is typical. Recently, Hani [24] has
achieved a remarkable progress towards the existence of unbounded Sobolev orbits: for
a class of cubic NLS equations with non-polynomial nonlinearity, the combination of a
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result like Theorem 1.1 with some clever topological arguments leads to the existence of
solutions with diverging Sobolev norm. Moreover, in [25] the authors prove infinite growth
of Sobolev norms for the cubic NLS on R× T2.

Regarding growth of Sobolev norms for other equations we mention the following pa-
pers: [10] – for the wave equation with a cubic nonlinearity but with a spectrally defined
Laplacian, [19, 33] – for the Szegö equation, and [34] – for certain nonlinear wave equations.
We also mention the long time stability results obtained in [1, 2, 3, 4, 20, 21, 41, 43].

A dual point of view to instability is to construct quasi-periodic orbits. These are non-
generic solutions which are global in time and whose Sobolev norms are approximately
constant. Among the relevant literature we mention [44, 35, 32, 11, 6, 16, 18, 5, 42, 39, 7].
Of particular interest are the recent results obtained through KAM theory which gives
information on linear stability close to the quasi-periodic solutions. In particular the paper
[38] proves the existence of both stable and unstable tori (of arbitrary finite dimension)
for the cubic NLS.

In finite dimensional systems diffusive orbits are usually constructed by proving that the
stable and unstable manifolds of a chain of unstable tori intersect. Usually this is done with
tori of co-dimension one so that the manifolds should intersect for dimensional reasons.
Unfortunately in the infinite dimensional case one is not able to prove the existence of co-
dimension one tori. Actually the construction of almost-periodic orbits is an open problem
except for very special cases such as integrable equations or equations with infinitely many
external parameters (see for instance [36, 14, 9]).

In [15], [23] (and the present paper) this problem is avoided by taking advantage of the
specific form of the equation. First one reduces to an approximate equation, i.e. the first
order Birkhoff normal form, see (1.5). Then for this dynamical system one proves directly
the existence of chains of one dimensional unstable tori (periodic orbits) together with
their heteroclinic connections. Next one proves the existence of a slider solution which
shadows the heteroclinic chain in a finite time. Finally, one proves the persistence of the
slider solution for the full NLS. In the next section we describe the strategy more in detail.

1.2 Informal description of the results

In order to understand the dynamics of (1.1) it is convenient to pass to the interaction
representation picture:

u(t, x) =
∑

j∈Z2

aj(t)e
ij·x+i|j|2t ,

so that the equations of motion become

− iȧj =
∑

j1,j2,j3,j4,j5∈Z2

j1+j2+j3−j4−j5=j

aj1aj2aj3 āj4 āj5e
iω6t (1.4)

where ω6 = |j1|2 + |j2|2 + |j3|2 − |j4|2 − |j5|2 − |j|2.
We define the resonant truncation of (1.4) as

− iβ̇j =
∑

j1,j2,j3,j4,j5∈Z2

j1+j2+j3−j4−j5=j
|j1|2+|j2|2+|j3|2−|j4|2−|j5|2=|j|2

βj1βj2βj3 β̄j4β̄j5 . (1.5)

3



It is well known that the dynamics of (1.4) is well approximated by the one of (1.5) for
finite but long times1. Our aim is to first prove Theorem 1.1 for (1.5) and then extend
the result to (1.4) by an approximation Lemma. The idea of the approximation Lemma
roughly speaking is that, by integrating in time the l.h.s. of (1.4), one sees that the
non-resonant terms (i.e., with ω6 6= 0) give a contribution of order O(a9). By scaling
a(λ)(t) = λ−1a(λ−4t) with λ arbitrarily small, we see that the non-resonant terms are an
arbitrarily small perturbation w.r.t. the resonant terms appearing in (1.5) and hence they
can be ignored for arbitrarily long finite times.

We now outline the strategy used in order to prove Theorem 1.1 for the equations (1.5).
The equations (1.5) are Hamiltonian with respect to the Hamiltonian function

H =
1

3

∑

j1,j2,j3,j4,j5,j6∈Z2

j1+j2+j3=j4+j5+j6
|j1|2+|j2|2+|j3|2=|j4|2+|j5|2+|j6|2

βj1βj2βj3β̄j4 β̄j5 β̄j6 (1.6)

and the symplectic form Ω = idβ ∧ dβ̄.
This is still a very complicated (infinite-dimensional) Hamiltonian system, but it has

the advantage of having many invariant subspaces on which the dynamics simplifies sig-
nificantly. Let us set up some notation.

Definition 1.1 (Resonance). A sextuple (k1, k2, k3, k4, k5, k6) ∈ (Z2)6, is a resonance if

k1 + k2 + k3 − k4 − k5 − k6 = 0 , |k1|2 + |k2|2 + |k3|2 − |k4|2 − |k5|2 − |k6|2 = 0 . (1.7)

A resonance is trivial if it is of the form (k1, k2, k3, k1, k2, k3) up to permutations of the
last three elements.

Definition 1.2 (Completeness). We say that a set S ⊂ Z2 is complete if the following
holds:
for every quintuple (k1, k2, k3, k4, k5) ∈ S5, if there exists k6 ∈ Z2 s.t. (k1, k2, k3, k4, k5, k6)
is a resonance, then k6 ∈ S.

It is easily seen that, for any complete S ⊂ Z2, the subspace defined by requiring
βk = 0 for all k /∈ S is invariant.

Definition 1.3 (Action preserving). A complete set S ⊂ Z2 is said to be action preserving
if all the resonances in S are trivial.

Remark that, for any complete and action preserving S ⊂ Z2, the Hamiltonian re-
stricted to S is given by (see [37])

H|S =
1

3









∑

j∈S
|βj |6 + 9

∑

j,k∈S
j 6=k

|βj |4|βk|2 + 36
∑

j,k,m∈S
j≺k≺m

|βj |2|βk|2|βm|2









(1.8)

1Actually, passing to the resonant truncation is equivalent to performing the first step of a Birkhoff normal
form. However, since we follow closely the proof in [15], we chose to use similar notation.
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where � is any fixed total ordering of Z2.
If S is complete and action preserving, then H|S is function of the actions |βj |2

only, with non-vanishing twist (i.e., the amplitude-to-frequency map is locally one-to-
one): therefore, the corresponding motion is periodic, quasi-periodic or almost-periodic,
depending on the initial data. In particular, if βj(0) = βk(0) for all j, k ∈ S, then the
motion is periodic. Finally, since all the actions are constants of motion, then so are the
Hs-norms of the solution.

On the other hand, it is easy to give examples of sets S that are complete but not action
preserving. For instance, one can consider complete sets of the form S(1) = {k1, k2, k3, k4},
where the kj ’s are the vertices of a non-degenerate rectangle in Z2, or of the form S(2) =
{k1, k2, k3, k4, k5, k6}, where the kj ∈ Z2 are all distinct and satisfy equations (1.7). Other
examples are sets of the form S(3) = {k1, k2, k3, k4}, with

k1 + 2k2 − 2k3 − k4 = 0 , |k1|2 + 2|k2|2 − 2|k3|2 − |k4|2 = 0 (1.9)

studied in [22] or, more in general, the sets S(4) = ∪jS(3)
j studied in [26]2. In all these

cases, the variation of the Hs-norm of the solution is of order O(1). Note that, while sets
of the form S(2),S(3),S(4) exist in Zd for all d, the non-degenerate rectangles S(1) exist
only in dimension d ≥ 2. Let us briefly describe the dynamics on these sets. By writing the
Hamiltonian in symplectic polar coordinates βj =

√

Ije
iθj , one sees that all these systems

are integrable. However, their phase portraits are quite different. In S(1) one can exhibit
two periodic orbits T1,T2 that are linked by a heteroclinic connection. T1 is supported
on the modes k1, k2 and T2 on k3, k4. The Hs-norm of each periodic orbit is constant in
time. By choosing S(1) appropriately one can ensure that these two values are different
and this produces a growth of the Sobolev norms. Moreover, all the energy is transferred
from T1 to T2. In the other cases, i.e. S(2),S(3),S(4), there is no orbit transferring all
the energy from some modes to others (see Appendix C).

These heteroclinic connections are the key to the energy transfer. In fact, assume that

S1 := {v1, . . . , vn} , S2 := {w1, . . . , wn}

with n even, are two complete and action preserving sets. Assume moreover that, for all
1 ≤ j ≤ n/2, {v2j−1, v2j , w2j−1, w2j} are the vertices of a rectangle as in S(1). Finally,
assume that S1∪S2 is complete and contains no non-trivial resonances except those of the
form (k, v2j−1, v2j , k, w2j−1, w2j). As in the case of S(1) the periodic orbits:

T1 : βvj (t) = b1(t) 6= 0 , βwj (t) = 0 , ∀j = 1, . . . , n

and
T2 : βwj (t) = b2(t) 6= 0 , βvj (t) = 0 , ∀j = 1, . . . , n

are linked by a heteroclinic connection.
We iterate this procedure constructing a generation set S = ∪Ni=1Si where each Si is

complete and action preserving. The corresponding periodic orbit Ti is linked by hetero-
clinic connections to Ti−1 and Ti+1. There are two delicate points:

2The papers [22, 26] actually consider the one-dimensional case, but of course the construction of complete
sets can always be trivially extended to higher dimensions.
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(i) at each step, when adding a new generation Si, we need to ensure that the resulting
generation set is still complete and contains no non-trivial resonances except for those
prescribed and those implied by the prescribed ones. The prescribed resonances
are those of the form (k, v1, v2, k, v3, v4) where v1, v2 ∈ Si, v3, v4 ∈ Si+1 for some
1 ≤ i ≤ N − 1 and {v1, v2, v3, v4} are the vertices of a rectangle.

(ii) we need to ensure that the Sobolev norms grow by an arbitrarily large factor K/δ,
which requires taking n (the number of elements in each Sj) and N (the number of
generations) large.

The point (i) is a question of combinatorics. It requires some careful classification of
the possible resonances and it turns out to be significantly more complicated than the
cubic case. We discuss this in subsection 3.2.

The point (ii) is treated exactly in the same way as in [15], we discuss it for completeness
in subsection 3.1, Remark 3.1.

Given a generation set S as above we proceed in the following way: first we restrict to
the finite-dimensional invariant subspace where βk = 0 for all k /∈ S. To further simplify
the dynamics we restict to the invariant subspace:

βv(t) = bi(t) , ∀v ∈ Si , ∀i = 1, . . . , n

this is the so called toy model. Note that the periodic solutions Ti live in this subspace.
The toy model is a Hamiltonian system, with Hamiltonian given by (2.3) and with the
constant of motion J =

∑N
i=1 |bi|2. We work on the sphere J = 1, which contains all the

Ti with action |bi|2 = 1.
As discussed above, we construct a chain of heteroclinic connections going from T1

to TN . Then, we prove (see Proposition 2.1) the existence of a slider solution which
“shadows” this chain, starting at time 0 from a neighborhood of T3 and3 ending at time
T in a neighborhood of TN−2.

We proceed as follows: first, we perform a symplectic reduction that will allow us to
study the local dynamics close to the periodic orbit Tj, which puts the Hamiltonian in
form (2.6). The new variables ck are the ones obtained by synchronizing the bk (k 6= j)
with the phase of bj . Then, we diagonalize the linear part of the vector field associated to
(2.6). In particular, the eigenvalues are the Lyapunov exponents of the periodic orbit Tj.
As for the cubic case, one obtains that all the eigenvalues are purely imaginary, except four
of them which, due to the symmetries of the problem, are of the form λ, λ,−λ,−λ ∈ R.
Note that these hyperbolic directions are directly related to the heteroclinic connections
connecting Tj to Tj−1 and to Tj+1. It turns out that the heteroclinic connections are
straight lines in the variables ck. The equations of motion for the reduced system have
the form (2.10) (which is very similar to the cubic case): this is crucial in order to be able
to apply almost verbatim the proof given in [15]. Note that it is not obvious a priori that

3One could ask why we construct a slider solution diffusing from the third mode b3 to the third-to-last mode
bN−2, instead of diffusing from the first mode b1 to the last mode bN . The reason is that, since we rely on the
proof given in [15], our statement is identical to the ones in Proposition 2.2 and Theorem 3.1 in [15]. As in [15],
also in our case it would be possible to diffuse from the first to the last mode just by overcoming some very
small notational issues.
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equations (2.10) hold true: for instance, this turns out to be false for the NLS of degree
≥ 7.

The strategy of the proof, which is exactly the same as in [15], consists substantially
of two parts:

• studying the linear dynamics close to Tj, treating the non-linear terms as a small
perturbation: one needs to prove that the flow associated to equations (2.10) maps
points close to the incoming heteroclinic connection (from Tj−1) to points close to
the outgoing heteroclinic connection (towards Tj+1) (note that, in order to take
advantage of the linear dynamics close to Tj, we need that almost all the energy is
concentrated on Sj);

• following closely the heteroclinic connection in order to flow from a neighborhood of
Tj to a neighborhood of Tj+1.

The precise statement of these two facts requires the introduction of the notions of targets
and covering and is summarized in Proposition 2.3. The main analytical tool for the proof
are repeated applications of Gronwall’s lemma. Our proof of Proposition 2.3 follows almost
verbatim the proof of the analogue statement, given in Section 3 of [15]. However, the only
way to check that the proof works also in our case, is to go through the whole proof in [15],
which is rather long and technical, and make the needed adaptations. Therefore, for the
convenience of the reader, in Appendix A we give a summary of the proof of Proposition
2.3, highlighting the points where there are significant differences with [15].

1.3 Comparison with the cubic case and higher order NLS

equations

In the cubic NLS, the only resonant sets of frequencies are rectangles, which makes com-
pletely natural the choice of using rectangles as building blocks of the generation set S. In
the quintic and higher degree NLS many more resonant sets appear, which a priori gives
much more freedom in the construction of S. In particular, in the quintic case sets of
the form S(2) are the most generic resonant sets, and therefore it would look reasonable
to use them as building blocks. However (see Appendix C), such a choice does not allow
full energy transfer from a generation to the next one and is therefore incompatible with
our strategy. The same happens if one uses sets of the form S(3). This leads us to use
rectangles for the construction of S also in the quintic case.

It is worth remarking that, while non-degenerate rectangles do not exist in one space
dimension, sets of the form S(2), S(3) already exist in one dimension. The equations of
the toy model only depend on the combinatorics of the set S. Therefore, if one were able
to prove diffusion in a toy model built with resonant sets of the form S(2), S(3) (or other
resonant sets that exist already in one dimension), then one could hope to prove the same
type of result for some one-dimensional (non-cubic) NLS.

The use of rectangles as building blocks for the generation set of a quintic or higher
order NLS makes things more complicated, since the rectangles induce many different
resonant sets, see section 2. This leads to combinatorial problems which make it harder
to prove the non-degeneracy and completeness of S. The equations of the toy model also
have a more complicated form than in the cubic case. Since this type of difficulties grows
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with the degree, dealing with the general case will most probably require some careful
– and possibly complicated– combinatorics and one cannot expect to have a completely
explicit formula for the toy model Hamiltonian of any degree.

In the quintic case the formula is explicit and relatively simple and we can explicitly
perform the symmetry reduction. After some work, we still get equations of the form
(2.10), which resembles the cubic case with some relevant differences: here the Lyapunov
exponent λ depends on n and tends to infinity as n → ∞; moreover, the non-linear part
of the vector field associated to (2.6) is not homogeneous in the variables ck, as it contains
both terms of order 3 and 5 (in the cubic case, it is homogeneous of order 3).

For the NLS of higher degree, not only the reduced Hamiltonian gets essentially un-
manageable, but there also appears a further difficulty. Already for the NLS of degree 7, a
toy model built using rectangles (after symplectic reduction and diagonalization) does not
satisfy equations like (2.10), meaning that the heteroclinic connections are not straight
lines. Such a problem can be probably overcome, but this requires a significant adaptation
of the analytical techniques used in order to prove the existence of the slider solution (work
in progress with M. Guardia).

1.4 Plan of the paper

In Section 2 We assume to have a generation set S = ∪Ni=1Si which satisfies all the needed
non-degeneracy properties and deduce the form of the toy model Hamiltonian. Then we
study this Hamiltonian and prove the existence of slider solutions.

In Section 3 we prove the existence of non-degenerate generation sets such that the
corresponding slider solution undergoes the required growth of Sobolev norms.

In Section 4 we prove, via the approximation Lemma 4.1 and a scaling argument, the
persistence of solutions with growing Sobolev norm for the full NLS.

Since some of the proofs follow very closely the ones in [15], we move them to appendix.

2 The toy model

We now define a finite subset S = ∪Ni=1Si ⊂ Z2 which satisfies appropriate non-degeneracy
conditions (Definition 2.6) as explained in the introduction. In the following we assume
that such a set exists. This is not obvious and will be discussed in section 3.2.

For reasons that will be clear, and following [15], the Si’s will be called generations.
In order to describe the resonances which connect different generations we introduce some
notation.

Definition 2.1 (Family). A family (of age i ∈ {1, . . . , N − 1}) is a list (v1, v2; v3, v4) of
elements of S such that the points form the vertices of a non-degenerate rectangle

v1 + v2 = v3 + v4 , |v1|2 + |v2|2 = |v3|2 + |v4|2

and such that one has v1, v2 ∈ Si and v3, v4 ∈ Si+1. Whenever (v1, v2; v3, v4) form a
family, we say that v1, v2 are the parents of v3, v4 and that v3, v4 are the children of v1, v2.
Moreover, we say that v1 is the spouse of v2 (and vice versa) and that v3 is the sibling of
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v4 (and vice versa). We denote (for instance) v1 = vpar13 , v2 = vpar23 , v1 = vsp2 , v4 = vsib3 ,
v3 = vch1

1 , v4 = vch2
1 .

Remark 2.1. If (v1, v2; v3, v4) is a family of age i, then the same holds for its trivial
permutations (v2, v1; v3, v4), (v1, v2; v4, v3) and (v2, v1; v4, v3).

Definition 2.2. An integer vector λ ∈ Z|S| such that
∑

i

λi = 0 , |λ| :=
∑

i

|λi| ≤ 6

is resonant for S if
∑

i

λivi = 0 ,
∑

i

λi|vi|2 = 0

Note that to a family F = (v1, v2; v3, v4) we associate a special resonant vector λF

with |λ| = 4, through
∑

i λ
F
i vi = v1 + v2 − v3 − v4. Similarly, to the couple of parents in

the family F we associate the vector λFp through
∑

i λ
Fp

i vi = v1 + v2 and to the couple of
children we associate λFc through

∑

i λ
Fc

i vi = v3 + v4, so that λF = λFp − λFc .

Definition 2.3 (Generation set). The set S is said to be a generation set if it satisfies the
following:

1. For all i ∈ {1, . . . , N − 1}, every v ∈ Si is a member of one and only one (up to
trivial permutations) family of age i. We denote such a family by Fv. (Note that
Fv = Fw if v = wsp.)

2. For all i ∈ {2, . . . , N}, every v ∈ Si is a member of one and only one (up to trivial
permutations) family of age i − 1. We denote such a family by Fv. (Note that
Fv = Fw if v = wsib.)

3. For all v ∈ ∪N−1
i=2 Si, one has vsp 6= vsib.

Remark 2.2. The vectors λF corresponding to the families of a generation set are linearly
independent.

Note that, whenever two families F1 and F2 have a common member (which must be a
child in one family and a parent in the other one), then λF1 +λF2 is a non-trivial resonant
vector whose support has cardinality exactly 6. This motivates the following definition:

Definition 2.4 (Resonant vector of type CF). A resonant vector λ is said to be of type
CF (couple of families) if there exist two families F1 6= F2 such that λ = ±(λF1 + λF2).
(Note that, since |λ| ≤ 6, the two families F1,F2 must have a common member.)

Definition 2.5. Given an ordering of S we have a one-to-one correspondence ei ←→ vi
between the canonical basis of Z|S| and the elements of S.

We say that a generation set is non-degenerate if the following condition is fulfilled.

Definition 2.6 (Non-degeneracy). Suppose that there exists λ ∈ Z|S|, with
∑

i λi = 1 and
|λ| ≤ 5, such that

∑

i

λi|vi|2 − |
∑

i

λivi|2 = 0 .

Then only four possibilities are allowed:
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1. |λ| = 1.

2. |λ| = 3 and the support of λ consists exactly of three distinct elements of the same
family and the two λi’s appearing with a positive sign correspond either to the two
parents or to the two children of the family.

3. |λ| = 5 and there exist a family F and an element v ∈ S such that λ = ±λF + ei.
Here ei is the vector of the canonical basis in Z|S| associated to v by Definition 2.5.

4. |λ| = 5 and there exists v ∈ S (with ei ←→ v) such that λ− ei is a resonant vector
of type CF.

Note that, if S is a non-degenerate generation set and λ is a resonant vector, then
either λ = ±λF for some family F or λ is a resonant vector of type CF.

In what follows we will assume that S is a non-degenerate generation set. This im-
plies that S is complete and all the subsets Si are pairwise disjoint, complete and action
preserving. Finally the only resonances which appear are those induced by the family
relations. Then, the Hamiltonian restricted to S is

H|S =
1

3









∑

j∈S
|βj |6 + 9

∑

j,k∈S
j 6=k

|βj |4|βk|2 + 36
∑

j,k,m∈S
j≺k≺m

|βj |2|βk|2|βm|2









+ (2.1)

+3

N−1
∑

i=1

∑

j∈Si

(βjβjsp β̄jch1 β̄jch2 + β̄jβ̄jspβjch1βjch2 )









2
∑

k∈S
k/∈Fj

|βk|2 +
∑

m∈Fj

|βm|2









+

+12
N−1
∑

i=2

∑

j∈Si

(

βjpar1βjpar2βjsp β̄jsib β̄jch1 β̄jch2 + βjch1βjch2βjsib β̄jsp β̄jpar1 β̄jpar2
)

.

We restrict to the invariant subspace D ⊂ S where βk = bi for all k ∈ Si and ∀i =
1, . . . , N . Denote by n (which must be an even integer number) the cardinality of each
generation. Following the construction in [15], one has n = 2N−1. A straightforward
computation (involving some easy combinatorics) of the Hamiltonian yields

10



3

n
H|D =

N
∑

k=1

|bk|6 + 9









(n− 1)

N
∑

k=1

|bk|6 + n

N
∑

k,ℓ=1
k 6=ℓ

|bk|4|bℓ|2









+ (2.2)

+ 6









(n− 1)(n− 2)
N
∑

k=1

|bk|6 + 3n(n− 1)
N
∑

k,ℓ=1
k 6=ℓ

|bk|4|bℓ|2









+

+ 36n2
N
∑

k,ℓ,m=1
k<ℓ<m

|bk|2|bℓ|2|bm|2 +

+ 18

N−1
∑

k=1

(

−|bk|2 − |bk+1|2 + n

N
∑

ℓ=1

|bℓ|2
)

(b2k b̄
2
k+1 + b2k+1b̄

2
k) +

+ 36

N−1
∑

k=2

|bk|2(b2k−1b̄
2
k+1 + b2k+1b̄

2
k−1)

The equations of motion for the toy model can be deduced by considering the effective

Hamiltonian h(b, b̄) := H|D(b,b̄)
n , endowed with the symplectic form Ω = idb ∧ db̄.

Due to the conservation of the total mass L, the quantity

J :=
L

n
=

N
∑

k=1

|bk|2

is a constant of motion.
We use this conservation law in order to remove from the r.h.s. of (2.2) the terms

depending on n2. We compute the quantity 3h − 6n2J3: up to a global phase shift, the
subtraction of the constant term 6n2J3 can be ignored, so with an abuse of notation we
keep denoting it by 3h. We get

3h = 4

N
∑

k=1

|bk|6 − 9n

N
∑

h=1

|bh|2
[

N
∑

k=1

|bk|4 − 2

N−1
∑

k=1

(b2k b̄
2
k+1 + b2k+1b̄

2
k)

]

(2.3)

+ 18
N−1
∑

k=1

(−|bk|2 − |bk+1|2)(b2k b̄2k+1 + b2k+1b̄
2
k) +

+ 36

N−1
∑

k=2

|bk|2(b2k−1b̄
2
k+1 + b2k+1b̄

2
k−1) .

11



2.1 Invariant subspaces

Since J is a constant of motion the dynamics is confined to its level sets. For simplicity,
we will restrict to J = 1, i.e. to

Σ := {b ∈ CN :
N
∑

k=1

|bk|2 = 1}.

All the monomials in the toy model Hamiltonian have even degree in each of the modes
(bj , b̄j), which implies that

Supp(b) := {1 ≤ j ≤ N |bj 6= 0}

is invariant in time. This automatically produces many invariant subspaces some of
which will play a specially important role, namely: (i) the subspaces Mj correspond-
ing to Supp(b) = {j} for some 1 ≤ j ≤ N . In this case the dynamics is confined to the
circle |bj |2 = J , with

bj(t) =
√
Jexp

[

−i
(

3n − 4

3

)

J2t

]

. (2.4)

The intersection of Mj with Σ is a single periodic orbit, which we denote by Tj.
(ii) The subspaces generated by Mj and Mj+1 (corresponding to Supp(b) = {j, j+1})

for some 1 ≤ j ≤ N − 1. Here the Hamiltonian becomes

3h2g = 4
(

|bj|6 + |bj+1|6
)

− 9n
(

|bj|2 + |bj+1|2
) [

|bj |4 + |bj+1|4 − 2(b2j b̄
2
j+1 + b2j+1b̄

2
j)
]

− 18
(

|bj |2 + |bj+1|2
) (

b2j b̄
2
j+1 + b2j+1b̄

2
j

)

(2.5)

Passing to symplectic polar coordinates:

bj =
√

I1e
iθ1 , bj+1 =

√

I2e
iθ2 ,

we have

3h2g = (4− 9n)(I1 + I2)
3 + 6(I1 + I2)I1I2 (3n− 2 + 6(n − 1) cos(2(θ1 − θ2))) ,

since J = I1 + I2 is a conserved quantity the dynamics is integrable and easy to study.
We pass to the symplectic variables

J, I1, θ2, ϕ = θ2 − θ1

and obtain the Hamiltonian

3h2g = (4− 9n)J3 + 6JI1(J − I1) (3n− 2 + 6(n− 1) cos(2ϕ)) .

The phase portrait (ignoring the evolution of the cyclic variable θ2) restricted to Σ is
described in Figure 1.

12



I1
I1 = 1

−π −π + ϕ0 −ϕ0 πϕ0 π − ϕ0
ϕ

Figure 1: Phase portrait of the two generation Hamiltonian h2g on Σ.

Figure 2: A sketch of the phase portrait of the two generation Hamil-
tonian h2g on Σ in the correct topology.

Remark 2.3. The coordinates I1, ϕ and the domain given by the cylinder (ϕ, I1) ∈ S1 ×
[0, 1] are singular since the angle ϕ = θ2 − θ1 is ill-defined when I1 = 0 or I1 = 1. In
the correct picture for the reduced dynamics, each of the lines I1 = 0 and I1 = 1 should
be shrunk to a single point, thus obtaining (topologically) a two dimensional sphere (see
Figure 2).

This can also be seen in the following way. The level set J = 1 is a three dimensional
sphere S3, with the gauge symmetry group S1 acting freely on it. Due to the Hopf fibration,
the topology of the quotient space is S2.

Note that, as for the case of the cubic NLS (see [15, 23]), there exist heteroclinic
connections linking Tj to Tj+1. Again as in the cubic case the orbits have fixed angle

ϕ(t) = ϕ0 =
1

2
arccos(− 3n− 2

6(n − 1)
) , I1(t) =

e2λt

1 + e2λt

13



where λ = 2
√

(9n − 8)(3n − 4). Our aim will be to construct slider solutions that are very
concentrated on the mode b3 at the time t = 0 and very concentrated on the mode bN−2

at the time t = T . These solutions will start very close to the periodic orbit T3 and then
use the heteroclinic connections in order to slide from T3 to T4 and so on until TN−2.

2.2 Symplectic reduction

Now, since we are interested in studying the dynamics close to the j-th periodic orbit
Tj, we introduce a set of coordinates which are in phase with it and give a symplectic
reduction with respect to the constant of motion J . This procedure is the same that was
carried out, for the cubic NLS, in [23] and, substantially, already in [15].

Let ϑ(j) be the phase of the complex number bj . Then, for k 6= j, let c
(j)
k the variable

obtained by conjugating bk with the phase ϑ(j), i.e.

c
(j)
k = bke

−iϑ(j)
.

Then, the change of coordinates (well defined on {bj 6= 0}) given by

(b1, . . . , bN , b̄1, . . . , b̄N ) 7→

7→ (c
(j)
1 , . . . , c

(j)
j−1, J, c

(j)
j+1, . . . , c

(j)
N , c̄

(j)
1 , . . . , c̄

(j)
j−1, ϑ

(j), c̄
(j)
j+1, . . . , c̄

(j)
N )

is symplectic. Namely, in the new coordinates the symplectic form is given by

Ω = idc(j) ∧ dc̄(j) + dJ ∧ dϑ(j) .

Then, we rewrite the Hamiltonian h in terms of the new coordinates (from now on, in
order to simplify the notation, we will omit the superscript (j) in the c(j) variables and in
their complex conjugates c̄(j) and in the phase ϑ(j)). Thus, we get the expression

14



3h = 4
∑

k 6=j

|ck|6 − 4(
∑

k 6=j

|ck|2)3 + (18n − 12)J2
∑

k 6=j

|ck|2 − 9nJ
∑

k 6=j

|ck|4 +

− (9n− 12)J(
∑

k 6=j

|ck|2)2 + 18
N−1
∑

k=1
k 6=j−1,j

(

−|ck|2 − |ck+1|2 + nJ
)

(c2k c̄
2
k+1 + c2k+1c̄

2
k) +

+ 18









N
∑

k=1
k 6=j−1,j

|ck|2 + (n− 1)J

















J −
N
∑

ℓ=1
ℓ 6=j

|cℓ|2









(c2j−1 + c̄2j−1) +

+ 18









N
∑

k=1
k 6=j,j+1

|ck|2 + (n− 1)J

















J −
N
∑

ℓ=1
ℓ 6=j

|cℓ|2









(c2j+1 + c̄2j+1) + (2.6)

+ 36
N−1
∑

k=2
k 6=j−1,j,j+1

|ck|2(c2k−1c̄
2
k+1 + c2k+1c̄

2
k−1) + 36|cj−1|2









J −
N
∑

k=1
k 6=j

|ck|2









(c2j−2 + c̄2j−2) +

+ 36









J −
N
∑

k=1
k 6=j

|ck|2









(c2j−1c̄
2
j+1 + c2j+1c̄

2
j−1) + 36|cj+1|2









J −
N
∑

k=1
k 6=j

|ck|2









(c2j+2 + c̄2j+2) .

Observe that the Hamiltonian h does not depend on ϑ. Since J is a constant of motion,
the terms depending only on J can be erased from the Hamiltonian. Up to those constant
terms, one has

h = h2 + r4 , (2.7)

where h2 is the part of order 2 in (c, c̄) (which corresponds to the linear part of the vector
field) and r4 is of order at least 4 in (c, c̄). By an explicit computation, one obtains

h2 = 2J2









(3n − 2)

N
∑

k=1
k 6=j

|ck|2 + 3(n − 1)(c2j−1 + c̄2j−1 + c2j+1 + c̄2j+1)









. (2.8)

It is easily seen that the dynamics associated to the vector field generated by h2 is elliptic
in the modes ck with 1 ≤ k ≤ j − 2 or j + 2 ≤ k ≤ N , while it is hyperbolic in the
modes cj−1 and cj+1. In order to put in evidence the hyperbolic dynamics, we perform a
change of coordinates which diagonalizes the linear part of the vector field. Namely, for
k = j − 1, j + 1, we set

ck =
1

√

2ℑ(ω2)
(ω̄c−k + ωc+k )

c̄k =
1

√

2ℑ(ω2)
(ωc−k + ω̄c+k )
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where ω = eiϕ0 with

ϕ0 =
1

2
arccos

(

− 3n− 2

6(n− 1)

)

.

Note that this change of variables affects only the hyperbolic modes, which are ex-
pressed in terms of the new variables (c+j−1, c

−
j−1, c

+
j+1, c

−
j+1). This transformation is sym-

plectic, writing h2 as a function of the new variables we get

h2 = 2J2









(3n− 2)

N
∑

k=1
k 6=j−1,j,j+1

|ck|2 +
√

(9n − 8)(3n − 4)(c+j−1c
−
j−1 + c+j+1c

−
j+1)









. (2.9)

We have proved that the periodic orbit (2.4) is hyperbolic and we have explicitly written
the quadratic part of the Hamiltonian in the local variables. Similarly to the case of the
cubic NLS these local variables are are actually well adapted to describing also the global
dynamics connecting two periodic orbits, as discussed in the previous section.

To this purpose we study the integrable two generation Hamiltonian (2.5) after all
the changes of variables described in this section, i.e. in the variables c+j+1, c

−
j+1. Direct

substitution shows that the Hamiltonian is given by

h2g = 2J
√

(9n − 8)(3n − 4)c+j+1c
−
j+1

{

J − 1

2ℑ(ω2)
[(c+j+1)

2 + (c−j+1)
2 + 2ℜ(ω2)c+j+1c

−
j+1]

}

.

It is important to note that all the monomials in h2g contain both c+j+1 and c−j+1, so the

subspaces c+j+1 = 0 and c−j+1 = 0 (which correspond to the heteroclinic connections) are
invariant for the 2-generation dynamics. It is useful to denote by c∗ = {ch}h 6=j−1,j,j+1 so
that the dynamical variables of the Hamiltonian (2.6) become (c+j−1, c

−
j−1, c

+
j+1, c

−
j+1, c

∗, c̄∗).
Now, since

h2g = h|c+j−1=c−j−1=q1=0,c∗=0 ,

exploiting also the symmetry between (c+j−1, c
−
j−1) and (c+j+1, c

−
j+1), this implies that also

in h none of the monomials in (c+j−1, c
−
j−1, c

+
j+1, c

−
j+1, c

∗, c̄∗)depends only on one of the

variables c+j−1, c
−
j−1, c

+
j+1, c

−
j+1.

Finally, we recall that all the monomials in h(c+j−1, c
−
j−1, c

+
j+1, c

−
j+1, c

∗) have even degree

in each of the couples (c∗k, c̄
∗
k) and in both couples (c+k , c

−
k ).

From these observations, and from the bound O(c2) . J = O(1), we immediately
deduce the following relations about the Hamilton equations associated to h:

ċ−j−1 = −2J2
√

(9n − 8)(3n − 4)c−j−1 +O(c2c−j−1) +O(c26=j−1c
+
j−1) (2.10)

ċ+j−1 = 2J2
√

(9n− 8)(3n − 4)c+j−1 +O(c2c+j−1) +O(c26=j−1c
−
j−1)

ċ−j+1 = −2J2
√

(9n − 8)(3n − 4)c−j+1 +O(c2c−j+1) +O(c26=j+1c
+
j+1)

ċ+j+1 = 2J2
√

(9n− 8)(3n − 4)c+j+1 +O(c2c+j+1) +O(c26=j+1c
−
j+1)

ċ∗ = 2J2(3n+ 2)ic∗ +O(c2c∗) ,

where we denote c = (c+j−1, c
−
j−1, c

+
j+1, c

−
j+1, c

∗), c6=j−1 = (c+j+1, c
−
j+1, c

∗), c6=j+1 = (c+j−1, c
−
j−1, c

∗).
These relations are the precise analogue of Proposition 3.1 in [15], where the factor
2J2

√

(9n− 8)(3n − 4) here replaces the factor
√
3 in [15].
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From the equations of motion (2.10), we deduce that

−iċj+1 =
∂h2g
∂c̄j+1

+O(cj+1c
2
6=j+1) .

We have
h2g = 2J

√

(9n − 8)(3n − 4)c+j+1c
−
j+1(J − |cj+1|2)

where c+j+1, c
−
j+1 can be thought of as functions of (cj+1, c̄j+1). Then

ċj+1 = 2iJ
√

(9n − 8)(3n − 4)(J−|cj+1|2)
∂(c+j+1c

−
j+1)

∂c̄j+1
+O(cj+1c

+
j+1c

−
j+1)+O(cj+1c

2
6=j+1) .

We compute

2i
∂(c+j+1c

−
j+1)

∂c̄j+1
=

√

2

ℑ(ω2)
(ωc+j+1 − ω̄c−j+1)

from which we deduce

ċj+1 = J

√

2(9n − 8)(3n − 4)

ℑ(ω2)
(ωc+j+1−ω̄c−j+1)(J−|cj+1|2)+O(cj+1c

+
j+1c

−
j+1)+O(cj+1c

2
6=j+1)

(2.11)
which is the analogue for cj+1 of equation (3.19) in [15]. In the same way, one deduces

ċj−1 = J

√

2(9n − 8)(3n − 4)

ℑ(ω2)
(ωc+j−1−ω̄c−j−1)(J−|cj−1|2)+O(cj−1c

+
j−1c

−
j−1)+O(cj−1c

2
6=j−1)

(2.12)
which is the analogue of equation (3.19) in [15] for the evolution of cj−1.

2.3 Existence of a “slider solution”

In this section, we are going to prove the following proposition (which is the analogue of
Proposition 2.2 in [15]), that establishes the existence of a slider solution.

Proposition 2.1. For all ǫ > 0 and N ≥ 6, there exist a time T0 > 0 and an orbit of the
toy model such that

|b3(0)| ≥ 1− ǫ, |bj(0)| ≤ ǫ j 6= 3

|bN−2(T0)| ≥ 1− ǫ, |bj(T0)| ≤ ǫ j 6= N − 2 .

Furthermore, one has ‖b(t)‖ℓ∞ ∼ 1 for all t ∈ [0, T0].
More precisely there exists a point x3 within O(ǫ) of T3 (using the usual metric on Σ),

a point xN−2 within O(ǫ) of TN−2 and a time T0 ≥ 0 such that S(T0)x3 = xN−2, where
S(t)x is the dynamics at time t of the toy model Hamiltonian with initial datum x.
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In order to prove Proposition 2.1 of our paper, we completely rely on the proof of the
analogue Proposition 2.2 in [15]. In order to keep our notations as close as possible to
those of [15] we rescale the time t = 2

√

(9n− 8)(n − 4/3)τ in our toy model, this means
rescaling h→

√
3h/2

√

(9n − 8)(3n − 4), where h is defined in (2.3), so that the Lyapunov
exponents of the linear dynamics are

√
3. We hence prove Proposition 2.1 for the rescaled

toy model. By formulæ(2.10), (2.11), (2.12) we have the analogue of Proposition 3.1 and
of eq. (3.19) of [15].

Proposition 2.2. Let 3 ≤ j ≤ N − 2 and let b(τ) be a solution of the rescaled toy model
living on Σ and with bj(τ) 6= 0. We have the system of equations:

ċ−j−1 = −
√
3c−j−1 +O(c2c−j−1) +O(c26=j−1c

+
j−1) (2.13a)

ċ+j−1 =
√
3c+j−1 +O(c2c+j−1) +O(c26=j−1c

−
j−1) (2.13b)

ċ−j+1 = −
√
3c−j+1 +O(c2c−j+1) +O(c26=j+1c

+
j+1) (2.13c)

ċ+j+1 =
√
3c+j+1 +O(c2c+j+1) +O(c26=j+1c

−
j+1) (2.13d)

ċ∗ = iκc∗ +O(c2c∗) , κ =

√
3(3n− 2)

√

(9n− 8)(3n − 4)
(2.13e)

Moreover,

ċj+1 =

√

3

2ℑ(ω2)
(ωc+j+1 − ω̄c−j+1)(J − |cj+1|2) +O(cj+1c

+
j+1c

−
j+1) +O(cj+1c

2
6=j+1) (2.14)

and

ċj−1 =

√

3

2ℑ(ω2)
(ωc+j−1 − ω̄c−j−1)(J − |cj−1|2) +O(cj−1c

+
j−1c

−
j−1) +O(cj−1c

2
6=j−1) (2.15)

Finally, since the equations (2.13) come from the Hamitonian (2.6) which is an even
polynomial of degree six, one has that all the symbols O(c3) are actually4 O(c3) + O(c5).
For instance

O(c2c−j−1) = O(c2c−j−1) +O(c4c−j−1) , O(c26=j−1c
+
j−1) = O(c26=j−1c

+
j−1) +O(c2c26=j−1c

+
j−1)

(2.16)

Note that the only difference with [15] is that our remainder terms (of type O(c2c−j−1),

O(c26=j−1c
+
j−1), etc.) are not homogeneous of degree three but have also a term of degree

five (which is completely irrelevant in the analysis).
We now introduce some definitions and notations of [15].

Definition 2.7 (Targets). A target is a triple (M,d,R), where M is a subset of Σ, d
is a semi-metric on Σ and R > 0 is a radius. We say that a point x ∈ Σ is within a

4 as in [15], we use the schematic notation O(·). The symbol O(y) indicates a linear combination of terms
that resemble y up to the presence of multiplicative constants and complex conjugations. So for instance a term
like 2ic̄j+1|cj+2|2c2j+3 − 3cj+1|cj+2|4 is of the form O(c5) and more precisely O(cj+1c

4
6=j+1)
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target (M,d,R) if we have d(x, y) < R for some y ∈ M . Given two points x, y ∈ Σ,
we say that x hits y, and write x 7→ y, if we have y = S(t)x for some t ≥ 0. Given
an initial target (M1, d1, R1) and a final target (M2, d2, R2), we say that (M1, d1, R1) can
cover (M2, d2, R2), and write (M1, d1, R1) ։ (M2, d2, R2), if for every x2 ∈ M2 there
exists an x1 ∈M1, such that for any point y1 ∈ Σ with d(x1, y1) < R1 there exists a point
y2 ∈ Σ with d2(x2, y2) < R2 such that y1 hits y2.

We refer the reader to pages 64-66 of [15] for a presentation of the main properites of
targets.

We need a number of parameters. First, an increasing set of exponents

1≪ A0
3 ≪ A+

3 ≪ A−
4 ≪ · · · ≪ A−

N−2 ≪ A0
N−2.

For sake of concreteness, we will take these to be consecutive powers of 10. Next, we shall
need a small parameter 0 < σ ≪ 1 depending on N and the exponents A which basically
measures the distance to Tj at which the quadratic Hamiltonian dominates the quartic
terms. Then we need a set of scale parameters

1≪ r0N−2 ≪ r−N−2 ≪ r+N−2 ≪ r−N−3 ≪ · · · ≪ r+3 ≪ r03

where each parameter is assumed to be sufficiently large depending on the preceding
parameters and on σ and the A’ s. these parameters represent a certain shrinking of each
target from the previous one (in order to guarantee that each target can be covered by
the previous). Finally, we need a very large time parameter T ≫ 1 that we shall assume
to be as large as necessary depending on all the previous parameters.

Setting
{c1, . . . , ch} := c≤h , {ch, ch+1, . . . , cN} = c≥h

we call c≤j−1 the trailing modes, c≥j+1 the leading modes c≤j−2 the trailing peripheral
modes and finally c≥j+2 the leading peripheral modes. We construct a series of targets:

• An incoming target (M−
j , d−j , R

−
j ) (located near the stable manifold of Tj) defined

as follows:

M−
j is the subset of Σ where

c≤j−2, c
+
j−1 = 0 , c−j−1 = σ , |c≥j+1| ≤ r−j e

−2
√
3T ,

R−
j = TA−

j and the semi-metric is

d−j (x, x̃) := e2
√
3T |c≤j−2 − c̃≤j−2|+ e

√
3T |c−j−1 − c̃−j−1|+

e4
√
3T |c+j−1 + c̃+j−1|+ e3

√
3T |c≥j+1 − c̃≥j+1|

• A ricochet target (M0
j , d

0
j , R

0
j ) (located very near Tj itself), defined as follows:

M0
j is the subset of Σ where

c≤j−1, c
−
j+1 = 0 , |c+j+1| ≤ r0j e

−
√
3T , |c≥j+2| ≤ r0j e

−2
√
3T ,
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R−
j = TA0

j and the semi-metric is

d0j (x, x̃) := e2
√
3T
(

|c≤j−2 − c̃≤j−2|+ |c+j+1 + c̃+j+1|
)

+ e
√
3T |c−j−1 − c̃−j−1|+

e3
√
3T
(

|c+j−1 + c̃+j−1|+ |c−j+1 + c̃−j+1|+ |c≥j+2 − c̃≥j+2|
)

• An outgoing target (M+
j , d+j , R

+
j ) (located near the unstable manifold of Tj) defined

as follows:

M+
j is the subset of Σ where

c≤j−1, c
−
j+1 = 0 , c+j+1 = σ , |c≥j+2| ≤ r+j e

−2
√
3T ,

R−
j = TA+

j and the semi-metric is

d+j (x, x̃) := e2
√
3T |c≤j−1 − c̃≤j−1|+ e4

√
3T |c−j+1 − c̃−j+1|+

e
√
3T |c+j+1 + c̃+j+1|+ e3

√
3T |c≥j+2 − c̃≥j+2|

.

By Section 3.5 of [15] Proposition 2.1 follows from

Proposition 2.3. (M−
j , d−j , R

−
j ) ։ (M0

j , d
0
j , R

0
j ) for all 3 < j ≤ N − 2, (M0

j , d
0
j , R

0
j ) ։

(M+
j , d+j , R

+
j ) for all 3 ≤ j < N − 2, (M+

j , d+j , R
+
j ) ։ (M−

j+1, d
−
j+1, R

−
j+1) for all 3 ≤ j <

N − 2.

Proof. See Appendix A.

Proof of Proposition 2.1. By [15] Lemma 3.1 we deduce the covering relations

(M0
3 , d

0
3, R

0
3) ։ (M0

N−2, d
0
N−2, R

0
N−2), (2.17)

in turn this implies that there is at least one solution b(t) to (3.1) which starts within
the ricochet target (M0

3 , d
0
3, R

0
3) at some time t0 and ends up within the ricochet target

(M0
N−2, d

0
N−2, R

0
N−2) at some later time t1 > t0. But from the definition of these targets,

we thus see that b(t0) lies within a distance O(r03e
−
√
3T ) of T3, while b(t1) lies within a

distance O(r0N−2e
−
√
3T ) of TN−2. The claim follows.

3 Construction of the set S
3.1 The density argument and the norm explosion property

The perturbative argument for the construction of the frequency set S works exactly as in
[15], Section 4. However, for the convenience of the reader, we recall here the main points.

A convenient way to construct a generation set is to first fix a “genealogical tree”, i.e.
an abstract combinatorial model of the parenthood and brotherhood relations, and then
to choose a placement function, embedding this abstract combinatorial model in R2. Our
choice of the abstract combinatorial model is the one described in [15] pp. 99-100. Then,
once the combinatorial model is fixed, the choice of the embedding in R2 is equivalent to
the choice of the following free parameters:
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first generation

second generation

third generation

fourth generation

fifth generation

4

4

2 2

3

3

6

Figure 3: The prototype embedding with five generations. Note that
this is a highly degenerate realization of the abstract combinatorial model
of [15]. Since N = 5, each generation contains 16 points; we have ex-
plicitly written the multiplicity of each point when it is not one. In zero
there are: 0 points of the first generation, 8 points of the second, 12 of
the third, 14 of the fourth and 15 points of the fifth generation.

• the placement of the first generation S1 (which implies the choice of a parameter in

R2N );

• the choice of a procreation angle ϑF for each family of the generation set (which

globally implies the choice of a parameter in T(N−1)2N−2
, since (N − 1)2N−2 is the

number of families).

We denote the corresponding generation set by S(S1, ϑF ) and the space of parameters by

X := R2N × T(N−1)2N−2
.

The set of parameters producing degenerate generation sets is small, more precisely we
have the following.

Proposition 3.1. There exists a closed set of zero measure D ⊂ X such that the generation
set S(S1, ϑF ) is non-degenerate for all (S1, ϑF ) ∈ X \ D.

Proof. See Section 3.2.

We claim that the set of (S1, ϑF ) ∈ X such that S(S1, ϑF ) ⊂ Q2 \ {0} is dense in X .
This is a consequence of two facts:

• the density of Q2 \ {0} in R2 (for the placement of the first generation);
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• the density of (non-zero) rational points on circles having a diameter with rational
endpoints.

These two remarks imply that the set of (S1, ϑF ) ∈ X such that S(S1, ϑF ) is non-
degenerate and S(S1, ϑF ) ⊂ Q2 \ {0} is dense in X .

In order to prove the growth of Sobolev norms, we require a further property on the
generation set S, i.e. the norm explosion property

∑

k∈SN−2

|k|2s > 1

2
2(s−1)(N−5)

∑

k∈S3

|k|2s . (3.1)

Given N ≫ 1, our aim is to prove the existence of a non degenerate generation set
S ⊂ Q2 \ {0} satisfying (3.1). The fact that (3.1) is an open condition on the space
of parameters X , together with the above remarks, implies that it is enough to prove
the existence of a (possibly degenerate) generation set S ⊂ R2 satisfying (3.1), which is
achieved by the prototype embedding described in [15], pp. 101–102 (see Figure 3).

For the reader’s convenience, we recall the construction of the prototype embedding.
Let

S1 = {1, i} , S2 = {0, i + 1} ,
then the 2N−1 elements of the k-th generation are identified with

(z1, . . . , zk−1, zk, . . . , zN−1) ∈ Sk−1
2 × SN−k

1 := Σk (3.2)

The union of the Σk is denoted by Σ. For all 1 ≤ k ≤ N − 1, a combinatorial nuclear
family with parents in the k-th generation and children in the k + 1-th generation is a
quadruple

(z1, . . . , zk−2, w, zk, . . . , zN−1) w ∈ S1 ∪ S2 (3.3)

where all the zj with j 6= k − 1 are fixed with zj ∈ S2 if 1 ≤ j ≤ k − 2 and zj ∈ S1 if
k ≤ j ≤ N − 1. Then, the prototype embedding f : Σ→ C ≃ R2 is the one defined by

f(z1, . . . , zN−1) =
N−1
∏

j=1

zj . (3.4)

Remark 3.1. Note that, for any given positive integer ℓ, the function F : Sℓ−1 → R,
where

Sℓ−1 =

{

(x1, . . . , xℓ) ∈ Rℓ

∣

∣

∣

∣

∣

ℓ
∑

i=1

x2i = 1)

}

,

defined by

F (x1, . . . , xℓ) =

ℓ
∑

i=1

x2si

attains its minimum (since s > 1) at

(x1, . . . , xℓ) = (ℓ−1/2, . . . , ℓ−1/2)
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and its maximum at
(x1, x2, . . . , xℓ) = (1, 0, . . . , 0) .

From this one deduces that for each family F with parents v1, v2 and children v3, v4 one
must have

|v3|2s + |v4|2s
|v1|2s + |v2|2s

≤ 2s−1

and therefore, for all 1 ≤ i ≤ N − 1,
∑

k∈Si+1
|k|2s

∑

k∈Si
|k|2s ≤ 2s−1 .

which implies
∑

k∈Sj
|k|2s

∑

k∈Si
|k|2s ≤ 2(s−1)(j−i) .

for all 1 ≤ i ≤ j ≤ N . This means that we have to choose N large if we want the ratio
∑

k∈SN−2
|k|2s

∑

k∈S3
|k|2s

to be large.
Moreover, since

F (ℓ−1/2, . . . , ℓ−1/2) = ℓ−s+1 , F (1, 0, . . . , 0) = 1

we have for all 1 ≤ i, j ≤ N
∑

k∈Sj
|k|2s

∑

k∈Si
|k|2s ≤ ns−1 .

which implies that also n (the number of elements in each generation) has to be chosen
large enough.

In this sense the prototype embedding and the choice n = 2N−1 are optimal, because
they attain the maximum possible growth of the quantity

∑

k∈Si
|k|2s both at each step and

between the first and the last generation.

Trivially there exists a one-to-one map from Σ to S which preserves the age, then the
same map identifies Σ with the basis vectors of Z|S|. This defines the family relations of
our generation set. Then, once we are given a non-degenerate generation set contained
in Q2 \ {0} and satisfying (3.1), it is enough to multiply by any integer multiple of the
least common denominator of its elements in order to get a non-degenerate generation set
S ∈ Z2 \ {0} and satisfying (3.1) (note that (3.1) is invariant by dilations of the set S).
Note that we can dilate S as much as we wish, so we can make mink∈S |k| as large as
desired.

These considerations are summarized by the following proposition (the analogue of
Proposition 2.1 in [15]).
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Proposition 3.2. For all K, δ,R > 0, there exist N ≫ 1 and a non-degenerate generation
set S ⊂ Z2 such that

∑

k∈SN−2
|k|2s

∑

k∈S3
|k|2s &

K2

δ2
(3.5)

and such that
min
k∈S
|k| ≥ R . (3.6)

3.2 Proof of Proposition 3.1

The proof is composed of several steps. First, we need a lemma ensuring that any linear
relation among the elements of the generation set that is not a linear combination of the
family relations is generically not fulfilled.

Lemma 3.1. Let µ ∈ ZN2N−1
, i = 1, . . . ,M be an integer vector, linearly independent

from the subspace of RN2N−1
generated by all the vectors λF associated to the families.

Then, there for an open set of full measure S ⊂ X , one has that if (S1, ϑF ) ∈ S, then
S(S1, ϑF ) is such that

N2N−1
∑

j=1

µjvj 6= 0 . (3.7)

Proof. We denote the elements of S by v1, . . . , v|S|, with |S| = N2N−1. For simplicity
and without loss of generality, we order the vj’s so that couples of siblings always have
consecutive subindices.

For each family F , both the linear and the quadratic relations

∑

j

λF
j vj = 0 ,

∑

j

λF
j |vj|2 = 0

are satisfied. The coefficients of the linear relations can be collected in a matrix ΛF with
(N − 1)2N−2 rows (as many as the number of families) and N2N−1 columns (as many as
the elements of S), so that the linear relations become

ΛFv = 0 .

We choose to order the rows of ΛF so that the matrix is in lower row echelon form (see
figure).

w1 w2 w3 w4 w5 p5 w6 p6 w7 p7 w8 p8

1 1 0 0 −1 −1 0 0 0 0 0 0
0 0 1 1 0 0 −1 −1 0 0 0 0
0 0 0 0 1 0 1 0 −1 −1 0 0
0 0 0 0 0 1 0 1 0 0 −1 −1

Each row of a matrix in lower row echelon form has a pivot, i.e. the first nonzero
coefficient of the row starting from the right. Being in lower row echelon form means
that the pivot of a row is always strictly to the right of the pivot of the row above it.
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In the matrix ΛF , the pivots are all equal to −1 and they correspond to one and only
one of the child from each family. In order to use this fact, we accordingly rename the
elements of the generation set by writing v = (p,w) ∈ R2a × R2b, with a = (N − 1)2N−2,
b = N2N−1 − a = (N + 1)2N−2, where the pj ∈ R2 are the elements of the generation set
corresponding to the pivots and the wℓ ∈ R2 are all the others, i.e. all the elements of
the first generation and one and only one child (the non-pivot) from each family. Here,
the index ℓ ranges from 1 to b, while the index j ranges from 2N−1 + 1 to b (note that
a + 2N−1 = b), so that a couple (pj, wℓ) corresponds to a couple of siblings if and only
if j = ℓ. Then, the linear relations ΛFv = 0 can be used to write each pj as a linear
combination of the wℓ’s with ℓ ≤ j only:

pj =
∑

ℓ≤j

ηℓwℓ, ηℓ ∈ Q . (3.8)

Finally, the quadratic relations ΛF |v|2 = 0 constrain each wℓ with ℓ > 2N−1 (i.e. not in
the first generation) to a circle depending on the wj with j < ℓ; note that this circle has
positive radius provided that the parents of wℓ are distinct. Then, eq. (3.8) implies that
the l.h.s. of (3.7) can be rewritten in a unique way as a linear combination of the wℓ’s
only, so we have

b
∑

ℓ=1

νℓwℓ = 0 . (3.9)

Hence, the assumption that µ is linearly independent from the space generated by the
λF ’s is equivalent to the fact that ν ∈ R2b does not vanish.

Now, let
ℓ̄ := max {ℓ | νℓ 6= 0}

so that (3.9) is equivalent to

wℓ̄ = −
1

νℓ̄

∑

ℓ<ℓ̄

νℓwℓ (3.10)

If ℓ̄ ≤ 2N−1, then wℓ̄ is in the first generation. Since there are no restrictions (either linear
or quadratic) on the first generation, the statement is trivial. Hence assume ℓ̄ > 2N−1.
We can assume (by removing from X a closed subset of zero measure) that vh 6= vk for
all h 6= k. Then the quadratic constraint on wℓ̄ ∈ R2 gives a circle of positive radius.
By excluding at most one point this circle, we can ensure that the relation (3.10) is not
fulfilled, which proves the thesis of the lemma.

In view of Lemma 3.1, those vectors µ ∈ Z|S| that are linear combinations of the family
vectors assume a special importance, since that is the only case in which the relation
∑

µivi = 0 cannot be excluded when constructing the set S. In that case, we will refer to
µ ∼ 0 as a formal identity. In general, we will write µ ∼ λ whenever the vector µ− λ is a
linear combination of the family relations.

We introduce some more notation: given a vector λ ∈ Z|S|, we denote by πjλ the
projection of λ on the j-th generation, i.e. the projection of λ on Aj ⊂ Z|S| defined by

Aj := Span({ei | vi belongs to the j-th generation};Z) .
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Now, let Rα =
∑

i αiλ
Fi be a linear combination with integer coefficients of the family

vectors. We denote by nRα the number of families on which the linear combination is
supported, i.e. the cardinality of {i | αi 6= 0}. Moreover, we denote by nk

Rα
the number of

families of age k on which Rα is supported, i.e. the cardinality of

{i | αi 6= 0 and Fi is a family of age k} .

Finally, we denote respectively by mRα and MRα the minimal and the maximal age of
families on which Rα is supported. Then, we make the two following simple remarks.

Remark 3.2. If nk
Rα

= nk+1
Rα

= 1, then πk+1Rα is supported on at least two distinct
elements.

Remark 3.3. If nk
Rα
6= nk+1

Rα
, then πk+1Rα is supported on at least two distinct elements.

Before proving the main result of this section, we need some lemmas.

Lemma 3.2. If nRα ≥ 3, then Rα is supported on at least 8 distinct elements.

Proof. For simplicity of notation, here we put m := mRα and M := MRα . First, ob-
serve that πmRα is supported on 2nm

Rα
elements and that πM+1Rα is supported on 2nM

Rα

elements. So, if nm
Rα

+ nM
Rα
≥ 4, the thesis is trivial.

Up to symmetry between parents and children, we may choose nm
Rα
≤ nM

Rα
. So, the

only non-trivial cases to consider are (nm
Rα

, nM
Rα

) = (1, 1) and (nm
Rα

, nM
Rα

) = (1, 2).
Case (1,1). We must have M ≥ m+ 2, since there must be at least three families in

Rα. Now, let C := maxi n
i
Rα

. If C = 1, then by Remark 3.2 the support of Rα involves
at least 4 generations and at least 2 elements for each generation, so it includes at least
8 elements. If C > 1, then there exist m ≤ i, j < M with i 6= j such that ni

Rα
< ni+1

Rα

and nj+1
Rα

< nj
Rα

. Then, by Remark 3.3, πi+1Rα and πj+1Rα are supported on at least 2
elements each. Since πmRα and πM+1Rα are supported on exactly 2 elements and since
the four indices m, i+ 1, j + 1,M + 1 are all distinct, then we have the thesis.

Case (1,2). Here, πmRα is supported on 2 elements and πMRα is supported on 4
elements. Moreover, there exists m ≤ i < M such that ni+1

Rα
< ni

Rα
, which by Remark 3.3

gives us at least 2 elements in the support of πi+1Rα. Thus, we have the thesis.

From Lemma 3.2, the next corollary follows immediately.

Corollary 3.1. If Rα is supported on at most 7 elements, then Rα is an integer multiple
of either a family vector or a resonant vector of type CF.

Lemma 3.3. Let A,B,C ∈ R, R > 0 and p, q ∈ R2 ≃ C be fixed. Let

c1(ϑ) := p+Reiϑ c2(ϑ) := p−Reiϑ .

Then, the function F : S1 → R defined by

F (ϑ) := A|c1(ϑ)|2 +B|c2(ϑ)|2 + C − |Ac1(ϑ) +Bc2(ϑ) + q|2

is an analytic function of ϑ, and it is a constant function only if A = B or if (A + B −
1)p + q = 0.
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Proof. An explicit computation yields

F (ϑ) = 2R(B −A)〈(A+B − 1)p+ q, eiϑ〉+K

where K is a suitable constant that does not depend on ϑ.

Corollary 3.2. If A 6= B and (A+B − 1)p + q 6= 0, then the zeros of F are isolated.

Lemma 3.4. Let F = (p1, p2; c1, c2) ≡ (vi1 , vi2 ; vi3 , vi4) be a family of age i in S and
let λFp := ei1 + ei2 be the abstract vector corresponding to the sum of the parents of the
family F . Moreover, let µ ∈ Z|S| be another vector with |µ| ≤ 5, such that πjµ = 0
for all j > i + 1 and such that the support of µ and the support of the abstract vector
λFc := ei3 + ei4 corresponding to the sum of the children of F are disjoint. Finally, let
h, k ∈ Z \ {0}. Assume that the formal identity hµ + kλFp ∼ 0 holds. Then, only two
possibilities are allowed:

1. hµ+ kλFp = 0;

2. hµ+kλFp is an integer multiple of λF̃ , where F̃ is a family of age i−1, one of whose
children is a parent in F .

Proof. We first remark that hµ + kλFp is supported on at most 7 elements. Moreover,
since it is a linear combination of some family vectors (because of the formal identity
hµ+ kλFp ∼ 0), we are in a position to apply Corollary 3.1 and conclude that hµ+ kλFp

must be an integer multiple of either a family vector or a resonant vector of type CF.
Now, assume by contradiction that hµ+kλFp is a nonzero integer multiple of a resonant

vector of type CF. Then, the support of hµ + kλFp cannot include both parents of the
family F , since the support of a CF vector including a couple of parents of age i should
include also a couple of children of age i + 2, but we know by the assumptions of this
lemma that the support of hµ+ kλFp does not include elements of age greater than i+1.
Therefore, at least one of the elements in λ must cancel out with one of the elements in
λFp , but then the support of hµ + kλFp can include at most 5 elements, and therefore it
cannot be a vector of type CF.

Then, if hµ + kλFp is a nonzero integer multiple of a single family vector F̃ , observe
that its support must contain one and only one of the parents of F . In fact, if both
canceled out, then the support of hµ + kλFp could contain at most 3 elements, which is
absurd. If none of them canceled out, then we should have F̃ = F , which in turn is absurd
since, by the assumptions of this lemma, the support of hµ + kλFp cannot include any of
the children of the family F . This concludes the proof of the lemma.

We can now prove the main proposition.

Proof of Proposition 3.1. The proof is based on the following induction procedure. At
each step, we assume to have already fixed i generations and say h < 2N−2 families with
children in the i+ 1-th generation. Our induction hypothesis is that the non-degeneracy
condition is satisfied for the vectors µ whose support involves only the elements that we
have already fixed. Then, our aim is to show that the non-degeneracy condition holds
true also for the set for the vectors supported on the already fixed elements plus the two
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children of a new family (whose procreation angle has to be accordingly chosen) with
children in the i+ 1-th generation, up to removing from X a closed set of null measure.

First, we observe that, at the inductive step zero, i.e. when placing the first generation
S1, the set of parameters that satisfy both non-degeneracy and non-vanishing of any fixed
finite number of linear relations that are not formal identities is obviously open and of full
measure.

Then, we have to study what happens when choosing a procreation angle, i.e. when
generating the children of a family F = (p1, p2; c1, c2) ≡ (vi1 , vi2 ; vi3 , vi4) whose parents
(p1, p2) ≡ (vi1 , vi2) have already been fixed. We need to study the non-degeneracy condi-
tion associated to the vector λ(A,B, µ) ∈ Z|S| given by

λ(A,B, µ) := Aei3 +Bei4 + µ ,

where µ satisfies the same properties as in the assumptions of Lemma 3.4 and

|A|+ |B|+ |µ| ≤ 5

A+B +
∑

j

µj = 1 .

If A 6= B and if (A+B − 1)(p1 + p2) + 2
∑

j µjvj 6= 0, then we are done, because, thanks
to Corollary 3.2, the non-degeneracy condition is satisfied for any choice of the generation
angle except at most a finite number. Therefore, we have to study separately the case
A = B and, for A 6= B, we have to prove that (A + B − 1)λFp + 2µ ∼ 0 holds as a
formal identity only in the cases allowed by Definition 2.6. Whenever the formal identity
(A+B−1)λFp +2µ ∼ 0 does not hold, we can impose (A+B−1)(p1+p2)+2

∑

j µjvj 6= 0
by just removing from X a closed set of measure zero, thanks to Lemma 3.1.

Case A = B. If (A,B) = (0, 0) there is nothing to prove, thanks to the induction
hypothesis. Then we have to study (A,B) = ±(1, 1). In this case, thanks to the linear
relation defining the family F , we have the formal identity

λ(A,B, µ) ∼ ±λFp + µ =: ν±

with |µ| ≤ 3,
∑

j ν
+
j = −1 and

∑

j ν
−
j = 3. The good point is that ν± is entirely

supported on the elements of the generation set that have already been fixed, so we can
apply the induction hypothesis of non-degeneracy to ν± and distinguish the 4 cases given
by Definition 2.6: we have to verify that λ(A,B, µ) accordingly falls into one of the allowed
cases.

• ν± satisfies case 1 of Definition 2.6. Then one readily verifies that λ(A,B, µ) satisfies
either case 2 or case 3 of Definition 2.6.

• ν± satisfies case 2 of Definition 2.6. Observe that the family involved by the statement
of case 2 cannot be F , since ν± cannot be supported on either child of the family
F . Then µ must cancel out one of the two parents appearing in ±λFp . It cannot be
supported on both parents because that would not be consistent with |µ| ≤ 3 and
|ν±| = 3. Then one verifies that λ(A,B, µ) satisfies case 4 of Definition 2.6.

• ν± satisfies case 3 of Definition 2.6. Since |ν±| = 1, then nothing cancels out, so the
support of ν± includes both parents of F . But this is absurd, so this case cannot
happen.
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• ν± satisfies case 4 of Definition 2.6. This case is again absurd, since ν± should be
supported on 5 of the 6 elements of a CF vector, including the two parents of the
family F .

Case A 6= B. By symmetry, we may impose |A| > |B|. Assume that (A+B− 1)λFp +
2µ ∼ 0 holds as a formal identity: we must prove that this can be true only in the cases
allowed by Definition 2.6. First, we consider the case A + B − 1 = 0: then, we must
have the formal identity µ ∼ 0 with |µ| ≤ 5: so, by Corollary 3.1 either µ is (up to the
sign) a family vector (which may happen only if (A,B) = (1, 0) due to the constraint
|A| + |B| + |µ| ≤ 5) or µ = 0. Consider the case (A,B) = (1, 0): if µ is a family vector,
then λ(A,B, µ) falls into case 3 of Definition 2.6; if µ = 0, then λ(A,B, µ) falls into case
1 of Definition 2.6. If (A,B) = (2,−1) or (A,B) = (3,−2), then µ = 0. Then, in both
cases, from

∑

j

λj(A,B, µ)|vj |2 −
∣

∣

∣

∣

∑

j

λj(A,B, µ)vj

∣

∣

∣

∣

2

with some explicit computations one deduces |c1 − c2|2 = 0 which is absurd, since the
induction hypothesis implies p1 6= p2 and since the endpoints of a diameter of a circle with
positive radius are distinct.

Now, if A+B− 1 6= 0 we can apply Lemma 3.4 and deduce that (A+B− 1)λFp +2µ
is either zero or an integer multiple of the vector of a family where one of the parents of
F appears as a child. Suppose first (A + B − 1)λFp + 2µ = 0. Then A + B − 1 must be
even. If (A,B) = (−1, 0), then µ = λFp and λ(A,B, µ) falls into case 2 of Definition 2.6. If
(A,B) = (2, 1), then µ = −λFp and λ(A,B, µ) falls into case 3 of Definition 2.6. These are
the only possible cases if (A+B−1)λFp+2µ = 0. Finally, assume that (A+B−1)λFp+2µ
is an integer multiple of the vector of a family where one of the parents of F appears as a
child. Then µ must be such that the other parent of F is canceled out, so A+B− 1 again
has to be even. If (A,B) = (−1, 0), then µ−λFp is the vector of a family where one of the
parents of F appears as a child and λ(A,B, µ) falls into case 4 of Definition 2.6. This is
the only possible case, since the support of µ must include one parent of F and the other
three members of the family where the other parent of F appears as a child. This also
concludes the proof of the proposition.

4 Proof of Theorem 1.1

In the previous sections we have proved the existence of non-degenerate sets S on which
the Hamiltonian is (2.1) and the existence of a slider solution for its dynamics. We now
turn to the NLS equation 1.4 with the purpose of proving the persistence of this type of
solution.

As in [15], one can easily prove that (1.4) is locally well-posed in ℓ1(Z2): to this end,
one first introduces the multilinear operator

N (t) : ℓ1(Z2)× ℓ1(Z2)× ℓ1(Z2)× ℓ1(Z2)× ℓ1(Z2)→ ℓ1(Z2)

defined by
(

N (t)(a, b, c, d, f)
)

j
:=

∑

j1,j2,j3,j4,j5∈Z2

j1+j2+j3−j4−j5=j

aj1bj2cj3 d̄j4 f̄j5e
iω6t (4.1)
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so that (1.4) can be rewritten as

−iȧj =
(

N (t)(a, a, a, a, a)
)

j
.

Then, in order to obtain local well-posedness it is enough to observe that the following
multilinear estimate holds

‖N (t)(a, b, c, d, f)‖ℓ1 . ‖a‖ℓ1‖b‖ℓ1‖c‖ℓ1‖d‖ℓ1‖f‖ℓ1 . (4.2)

Lemma 4.1. Let 0 < σ < 1 be an absolute constant (all implicit constants in this lemma
may depend on σ). Let B ≫ 1, and let T ≪ B4 logB . Let g(t) := {gj(t)}j∈Z2 be a
solution of the equation

ġ(t) = i
(

N (t)(g(t), g(t), g(t), g(t), g(t)) + E(t)
)

(4.3)

for times 0 ≤ t ≤ T , where N (t) is defined in (4.1) and the initial data g(0) is
compactly supported. Assume also that the solution g(t) and the error term E(t) obey the
bounds of the form

‖g(t)‖ℓ1(Z2) . B−1 (4.4)
∥

∥

∥

∥

∫ t

0
E(τ)dτ

∥

∥

∥

∥

ℓ1(Z2)

. B−1 (4.5)

We conclude that if a(t) denotes the solution to the NLS (1.4) with initial data a(0) = g(0)
then we have

‖a(t)− g(t)‖ℓ1(Z2) . B−1−σ/2 (4.6)

for all 0 ≤ t ≤ T .

Proof. The proof is the transposition to the quintic case of the proof of Lemma 2.3 of [15]
and is postponed to Appendix B.

Given δ, K, construct S as in Proposition 3.2. Note that we are free to specify R =
R(δ,K) (which measures the inner radius of the frequencies involved in S) as large as we
wish. This construction fixes N = N(δ,K) (the number of generations). We introduce a
further parameter ǫ (which we are free to specify as a function of δ,K) and construct the
slider solution b(t) to the toy model concentrated at scale ǫ according to Proposition 2.1
above. This proposition also gives us a time T0 = T0(K, δ). Note that the toy model has
the following scaling

b(λ)(t) := λ−1b

(

t

λ4

)

.

We choose the initial data for NLS by setting

aj(0) = b
(λ)
i (0) , for all j ∈ Si (4.7)

and aj(t) = 0 when j /∈ S. We want to apply the Approximation Lemma 4.1 with a
parameter B chosen large enough so that

B4 logB ≫ λ4T0. (4.8)
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We set g(t) = {gj(t)}j∈Z2 defined by the slider solution as

gj(t) = b
(λ)
i (t) ∀ j ∈ Si

gj(t) = 0 otherwise. Then we set E(t) := {Ej(t)}j∈Z2 with

Ej(t) = −
∑

ki∈S:k1+k2+k3−k4−k5=j

ω6 6=0

gk1gk2gk3 ḡk4 ḡk5e
iω6t

where ω6 = |k1|2 + |k2|2 + |k3|2− |k4|2 − |k5|2− |j|2. We recall that the frequency support
of g(t) is in S for all times. We choose B = C(N)λ and then show that for large enough
λ the required conditions (4.4), (4.5) hold true. Observe that (4.8) holds true with this
choice for large enough λ. Note first that simply by considering its support, the fact that
|S| = C(N), and the fact that ‖b(t)‖ℓ∞ ∼ 1, we can be sure that ‖b(t)‖ℓ1(Z) ∼ C(N) and
therefore

‖b(λ)(t)‖ℓ1(Z), ‖g(t)‖ℓ1(Z2) ≤ λ−1C(N). (4.9)

Thus, (4.4) holds with the choice B = C(N)λ. For the second condition (4.5), we claim
∥

∥

∥

∥

∫ t

0
E(τ)dτ

∥

∥

∥

∥

ℓ1
. C(N)(λ−5 + λ−9T ). (4.10)

This implies (4.5) since B = λC(N) and T = λ4T0.
We now prove (4.10). Since ω6 does not vanish in the sum defining E , we can replace

eiω6τ by d
dτ

[

eiω6τ

iω6

]

and then integrate by parts. Three terms arise: the boundary terms at

τ = 0, T and the integral term involving

d

dτ
[gk1gk2gk3 ḡk4 ḡk5 ] .

For the boundary terms, we use (4.9) to obtain an upper bound of C(N)λ−5 . For the
integral term, the τ derivative falls on one of the g factors. We replace this differenti-
ated term using the equation to get an expression that is 9-linear in g and bounded by
C(N)λ−9T . Once λ has been chosen as above, we choose R sufficiently large so that the
initial data g(0) = a(0) has the right size:





∑

j∈S
|gj(0)|2|j|2s





1
2

∼ δ. (4.11)

This is possible since the quantity on the left scales like λ−1 and Rs respectively in the
parameters λ,R. The issue here is that our choice of frequencies S only gives us a large
factor (that is K

δ ) by which the Sobolev norm of the solution will grow. If our initial datum
is much smaller than δ in size, the Sobolev norm of the solution will not grow to be larger
than K. It remains to show that we can guarantee





∑

j∈Z2

|aj(λ4T0)|2|j|2s




1
2

≥ K, (4.12)
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where a(t) is the evolution of the initial datum g(0) under the NLS. We do this by first
establishing





∑

j∈S
|gj(λ4T0)|2|j|2s





1
2

& K, (4.13)

and then
∑

j∈S
|gj(λ4T0)− aj(λ

4T0)|2|j|2s . 1. (4.14)

In order to prove (4.13), consider the ratio:

Q :=

∑

j∈S |gj(λ4T0)|2|j|2s
∑

j∈S |gj(0)|2|j|2s
=

∑N
i=1 |b

(λ)
i (λ4T0)|2

∑

j∈Si
|j|2s

∑N
i=1 |b

(λ)
i (0)|2∑j∈Si

|j|2s
. (4.15)

Set Ji :=
∑

j∈Si
|j|2s, by construction Ji

Jj
∼ 2i−j and by the choice of N one has J3

JN−2
.

δ2K−2. Then one has

∑N
i=1 |b

(λ)
i (λ4T0)|2Ji

∑N
i=1 |b

(λ)
i (0)|2Ji

&
JN−2(1− ǫ)

ǫ
∑

i 6=3 Ji + (1 − ǫ)J3
=

=
(1− ǫ)

ǫ
∑

i 6=3
Ji

JN−2
+ (1− ǫ) J3

JN−2

=
1

J3
JN−2

+O(ǫ)
&

K2

δ2
.

provided that ǫ = ǫ(N,K, δ) is sufficiently small.
In order to prove (4.14), we use the Approximation Lemma 4.1 we obtain that

∑

j∈S
|gj(λ4T0)− aj(λ

4T0)|2|j|2s . λ−2−σ
∑

j∈S
|j|2s ≤ 1

2
. (4.16)

The last inequality is obtained by scaling λ by some (big) parameter C and R by C1/s so
that the bound (4.11) still holds while λ−2−σ

∑

n∈S |j|2s scales as C−σ.

A Proof of Proposition 2.3

This proof is in fact exactly the same as in [15], however in that paper all the results are
stated for the cubic case (even though they are clearly more general) and so we give a
schematic overview of the main steps.

Lemma A.1. Suppose that [0, τ ] is a time interval on which we have the smallness con-
dition

∫ τ

0
|c(s)|2ds . 1
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then we have the estimates:

|c−j±1(τ)| . e−
√
3τ |c−j±1(0)| +

∫ τ

0
e−

√
3(τ−s)|c+j±1(s)||c6=j±1|2 ,

|c+j±1(τ)| . e
√
3τ |c+j±1(0)|+

∫ τ

0
e
√
3(τ−s)|c−j±1(s)||c6=j±1|2 ,

|cj±1(τ)| . e
√
3τ |cj±1(0)| ,

|c∗(τ)| . |c∗(0)| .

Proof. As in [15] this Lemma follows from equations (2.13) by Gronwall’s inequality and
the definition of O(·).

We now prove that the incoming target covers the ricochet target. We start from some
basic upper bounds on the flow.

Proposition A.1. Let b(τ) be a solution to toy model such that b(0) is within (M−
j , d−j , R

−
j ).

Let c(τ) denote the coordinates of b(τ) as in (2.13) Then, for all 0 ≤ τ ≤ T we have the
bounds:

|c∗(τ)| = O(TA−
j e−2

√
3T )

|c−j−1(τ)| = O(σe−
√
3τ )

|c+j−1(τ)| = O(T 2A−
j +1e−4

√
3T+

√
3τ )

|c−j+1(τ)| = O(r−j (1 + τ)e−2
√
3T−

√
3τ )

|c+j+1(τ)| = O(r−j e
−2

√
3T+

√
3τ )

(A.1)

Proof. This is Proposition 3.2 of [15]. The proof is an application of the continuity method
and of Lemma A.1.

Now from these basic upper bounds and from the equations of motion (2.13), (2.16)
we deduce improved upper bounds on the dynamical variables. We first consider c−j−1, we
have

ċ−j−1 = −
√
3c−j−1 +O((c−j−1)

3) +O((c−j−1)
5) +O(TA−

j e−2
√
3T )

for some explicit expression O((c−j−1)
3) + O((c−j−1)

5). Now let g be the solution to the
corresponding equation

ġ = −
√
3g +O(g3) +O(g5) ,

with the same initial datum g(0) = σ. One has the bound

g(τ) = O(σe
√
3τ ) , (A.2)

which is formula (3.35) of [15]. Then by estimating the error term E−
j−1 := c−j−1 − g one

has

c−j−1(τ) = g(τ) +O(TA−
j +1e−2

√
3T ) (A.3a)

O(c2) = O(g2) +O(TA−
j +1e−2

√
3T ) (A.3b)

O(c26=j+1) = O(g2) +O(TA−
j +1e−2

√
3T−

√
3τ ) (A.3c)
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which are respectively formulæ(3.36)-(3.38) of [15]. Now we control the leading peripheral
modes. Inserting (A.3b) in (2.13e) we see that

ċ≥j+2 = iκc≥j+2 +O(c≥j+2g
2) +O(c≥j+2g

4) +O(TA−
j e−2

√
3T |c≥j+2|)

We approximate this by the corresponding linear equation

u̇ = iκu+O(ug2) +O(ug4)

where u(τ) ∈ CN−j−1. This equation has a fundamental solution G≥j+2(τ) : C
N−j−1 →

CN−j−1. From (A.2) and Gronwall’s inequality we have

∫ T

0
g2(τ)dτ = O(1) (A.4)

and
|G≥j+2|, |G−1

≥j+2| = O(1) . (A.5)

Setting c≥j+2(0) = e−2
√
3Ta≥j+2 +O(TA−

j e−3
√
3T ), we define

E≥j+2 := c≥j+2 − e−2
√
3TG≥j+2a≥j+2 .

Applying the bound on c≥j+2 from Proposition A.1 and Gronwall’s inequality, we conclude

|E≥j+2(τ)| = O(TA−
j e−3

√
3T )

for all 0 ≤ τ ≤ T and thus

c≥j+2(τ) = e−2
√
3TG≥j+2(τ)a≥j+2 +O(TA−

j e−3
√
3T ) . (A.6)

This is formula (3.41) of [15].
Now we consider the two leading secondary modes c+j+1, c

−
j+1 simultaneously. From

(2.13), (A.3) and Proposition A.1, we have the system

(

ċ−j+1

ċ+j+1

)

=
√
3

(−c−j+1

c+j+1

)

+M(τ)

(

c−j+1

c+j+1

)

+

(

O(TA−
j +1e−4

√
3T )

O(TA−
j +1e−4

√
3T+

√
3τ )

)

Here M(τ) is a two by two matrix with entries all O(g2)+O(g4). Passing to the variables

ãj+1(τ) :=

(

ã−j+1(τ)

ã+j+1(τ)

)

where
ã−j+1(τ) = e2

√
3T+

√
3τc−j+1(τ) , ã+j+1(τ) = e2

√
3T−

√
3τ c+j+1(τ) ,

we get the equation

{

∂τ ãj+1(τ) = A(τ)ãj+1(τ) +O(TA−
j +1e−2

√
3T+

√
3τ )

ãj+1(0) = aj+1 +O(TA−
j e−

√
3T )

(A.7)
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where A(τ) is some known matrix which (by (A.2)) has bounds

A(τ) = σ2

(

O(e−2
√
3τ ) O(1)

O(e−4
√
3τ ) O(e−2

√
3τ )

)

.

We have obtained formula (3.42) of [15]. Hence, following verbatim the proof given in [15],
we get

(

e2
√
3T+

√
3τc−j+1

e2
√
3T−

√
3τc+j+1

)

= Gj+1(τ)aj+1 +O(TA−
j +2e−

√
3T ) (A.8)

which is formula (3.45) of [15].
Then, following Section 3.7 of [15] verbatim, we deduce that the incoming target covers

the ricochet target.

Then, one has to prove that the ricochet target covers the outgoing target. In order to
do this, one should adapt sections 3.8-3.9 of [15] exactly as we have done in the previous
section. Since this is completely straightforward, we will not write it down.

The last step consists in proving that the outgoing target (M+
j , d+j , r

+
j ) covers the next

incoming target (M−
j+1, d

−
j+1, r

−
j+1). An initial datum in the outgoing target has the form

c≤j−1(0) = O(TA+
j e−2

√
3T )

c−j+1(0) = O(TA+
j e−4

√
3T )

c+j+1(0) = σ +O(TA+
j e−

√
3T )

c≥j+2(0) = e−2
√
3Ta≥j+2 +O(TA+

j e−3
√
3T )

for some a≥j+2 of magnitude at most r+j . From (2.13e), (2.14), (2.15) we deduce

ċ6=j+1 = O(|c6=j+1|) .

Thus, for all 0 ≤ τ ≤ 10 log 1
σ , Gronwall’s inequality gives

c6=j+1(τ) = O

(

1

σO(1)
TA+

j e−2
√
3T

)

. (A.9)

The stable leading mode c−j+1 can be controlled by (2.13c), which by (A.9) becomes

ċ−j+1 = O(|c−j+1|) +O

(

1

σO(1)
T 2A+

j e−4
√
3T

)

.

By Gronwall’s inequality we conclude

c−j+1(τ) = O

(

1

σO(1)
T 2A+

j e−4
√
3T

)

. (A.10)

Then, taking the c+j+1 component of (2.11) we obtain, by (A.9) and (A.10)

ċ+j+1 =
√
3(1− |c+j+1|2)c+j+1 +O

(

1

σO(1)
T 2A+

j e−4
√
3T

)

.
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As in [15], we define ĝ to be the solution to the ODE

∂τ ĝ =
√
3(1− |ĝ|2)ĝ (A.11)

with initial datum ĝ(0) = σ. Such solution can be easily computed and is given by

ĝ(τ) =
1

√

1 + e−2
√
3(τ−τ0)

where τ0 is defined by
1

√

1 + e2
√
3τ0

= σ .

We note that

ĝ(2τ0) =
1

√

1 + e−2
√
3τ0

=
√

1− σ2

and that 2τ0 ≤ 10 log 1
σ if σ is small enough. Then, estimating as in [15] (via Gronwall’s

inequality) the error
E+

j+1 := c+j+1 − ĝ ,

we get

c+j+1(τ) = ĝ(τ) +O

(

1

σO(1)
TA+

j e−
√
3T

)

. (A.12)

This (together with (A.9) and (A.10)) implies

O(c2) +O(c4) = O(ĝ2) +O(ĝ4) +O

(

1

σO(1)
TA+

j e−
√
3T

)

. (A.13)

Now, from (2.13c), (A.9) and (A.13), we have

ċ≥j+2 = iκc≥j+2 +O(ĝ2c≥j+2) +O(ĝ4c≥j+2) +O

(

1

σO(1)
T 2A+

j e−3
√
3T

)

.

We approximate this flow by the linear equation

u̇ = iκu+O(uĝ2) +O(uĝ4)

where u(τ) ∈ CN−j−1. This equation has a fundamental solution Ĝ≥j+2(τ) : C
N−j−1 →

CN−j−1 for all τ ≥ 0; from the boundedness of ĝ and Gronwall’s inequality we get

|Ĝ≥j+2(τ)|, |Ĝ−1
≥j+2(τ)| .

1

σO(1)
. (A.14)

As in [15], a Gronwall estimate of the error

E≥j+2(τ) := c≥j+2(τ)− e−2
√
3T Ĝ≥j+2(τ)a≥j+2

gives

c≥j+2(τ) = e−2
√
3T Ĝ≥j+2(τ)a≥j+2 +O

(

1

σO(1)
T 2A+

j e−3
√
3T

)

(A.15)
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which is equation (3.62) of [15]. Then, at the time τ = 2τ0 ≤ 10 log 1
σ , the estimates

become

c≤j−1(2τ0) = O

(

1

σO(1)
TA+

j e−2
√
3T

)

c−j+1(2τ0) = O

(

1

σO(1)
T 2A+

j e−4
√
3T

)

c+j+1(2τ0) =
√

1− σ2 +O

(

1

σO(1)
TA+

j e−
√
3T

)

c≥j+2(2τ0) = e−2
√
3T Ĝ≥j+2(2τ0)a≥j+2 +O

(

1

σO(1)
T 2A+

j e−3
√
3T

)

.

From this, we deduce

|bj | =



1−
∑

k 6=j

|ck|2




1
2

= σ +O

(

1

σO(1)
TA+

j e−
√
3T

)

.

Moving back to the coordinates b1, . . . , bN , this means that we have

b≤j−1(2τ0) = O

(

1

σO(1)
TA+

j e−2
√
3T

)

bj(2τ0) =

[

σ + ℜO
(

1

σO(1)
TA+

j e−
√
3T

)]

eiϑ
(j)(2τ0)

bj+1(2τ0) =

[

√

1− σ2 + ℜO
(

1

σO(1)
TA+

j e−
√
3T

)]

ω̄eiϑ
(j)(2τ0) +O

(

1

σO(1)
T 2A+

j e−4
√
3T

)

b≥j+2(2τ0) = eiϑ
(j)(2τ0)e−2

√
3T Ĝ≥j+2(2τ0)a≥j+2 +O

(

1

σO(1)
T 2A+

j e−3
√
3T

)

.

where the notation f = ℜO(·) means that both f = O(·) and f ∈ R. We now have to

recast this in terms of the variables c
(j+1)
1 , . . . , c

(j+1)
N in phase with Tj+1. Following [15],

we denote these variables by c̃1, . . . , c̃N . We first note that

ϑ(j+1)(2τ0) = ϑ(j)(2τ0) + ω̄ +O

(

1

σO(1)
T 2A+

j e−4
√
3T

)

.

Then, we deduce our final estimates

c̃≤j−1(2τ0) = O

(

1

σO(1)
TA+

j e−2
√
3T

)

c̃−j (2τ0) = σ +O

(

1

σO(1)
TA+

j e−
√
3T

)

c̃+j (2τ0) = O

(

1

σO(1)
T 2A+

j e−4
√
3T

)

c̃≥j+2(2τ0) = ωe−2
√
3T Ĝ≥j+2(2τ0)a≥j+2 +O

(

1

σO(1)
T 2A+

j e−3
√
3T

)

.

This, together with (A.14), shows that the outgoing target (M+
j , d+j , r

+
j ) covers the next

incoming target (M−
j+1, d

−
j+1, r

−
j+1) (it is enough to choose a≥j+2 appropriately).
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B Proof of Lemma 4.1

Proof. First note that since a(0) = g(0) is assumed to be compactly supported, the solution
a(t) to (1.4) exists globally in time, is smooth with respect to time, and is in ℓ1(Z2) in
space. Write

F (t) := −i
∫ t

0
E(τ)dτ, and d(t) := g(t) + F (t).

Observe that
−iḋ = N (d− F, d− F, d− F, d− F, d− F ),

Observe that g = Oℓ1(B
−1) and F = Oℓ1(B

−1−σ) by hypothesis. In particular we have
d = Oℓ1(B

−1). By multilinearity and (4.2) we thus have

− iḋ = N (d, d, d, d, d) +Oℓ1(B
−5−σ). (B.1)

Now write e := a− d, recall that a is the solution of the NLS. Then we have

− i(ḋ+ ė) = N (d+ e, d+ e, d+ e, d+ e, d+ e) . (B.2)

Subtracting (B.2) from (B.1) (and using (4.2)) we get

iė = Oℓ1(B
−5−σ) +Oℓ1(B

−4‖e‖1) +Oℓ1(‖e‖51),

so taking the ℓ1 norm and differentiating in time we have:

d

dt
‖e‖1 . B−5−σ +B−4‖e‖1 + ‖e‖51.

We make the bootstrap assumption that ‖e‖1 = O(B−1) for all t ∈ [0, T ], so that one can
absorb the third term on the right hand side in the second. Gronwall’s inequality then
gives:

‖e‖1 ≤ B−1−σexp(CB−4t)

for all t ∈ [0, T ]. Since T ≪ B4 logB we have ‖e‖1 ≪ B−1−σ/2 and the result follows by
the bootstrap argument.

The result of Lemma 4.1 is that g(t) is a good approximation of a solution to (1.4)
on a time interval of approximate length B4 logB, a factor logB larger than the interval
[0, B4] for which the solution is controlled by a straightforward local-in-time argument.
We choose the exponent σ/2 for concreteness, but it could be replaced by any exponent
between 0 and σ.

C Two-generation sets without full energy trans-

mission

We describe the dynamics associated to the sets S(2), S(3) given in the introduction.
In S(2) we have six complex variables βk, k ∈ S(2) and correspondingly six con-

stants of motion, so that the system is integrable. Passing to symplectic polar coordinates
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βk =
√
Jke

iθk we find that Jk1 − Jk2 , Jk1 − Jk3 , Jk4 − Jk5 , Jk4 − Jk6 are constant in
time. Then one can study the dynamics reduced to the invariant subspace where all these
constants are zero. We are left with four degrees of freedom denoted by I1, I2, θ1, θ2, and
the Hamiltonian:

H = 31(I1 + I2)
3 − 66I1I2(I1 + I2) + 24I

3/2
1 I

3/2
2 cos(3(θ1 − θ2))

Then we reduce to the subspace5 where I1 + I2 = 1 and get the phase portrait of Figure
4. It is evident from the picture that there is no orbit connecting I1 = 0 to I1 = 1. One

I1

−2
3
π 2

3
π

θ1 − θ2

Figure 4: The phase portrait of H on the subspace I1 + I2 = 1, the
dynamical variables are clearly I1, θ1 − θ2.

could argue that this is due to our choice of invariant subspace. However, if we set for
instance Jk1 6= Jk2 then we cannot transfer all the mass to k4, k5, k6 since this would imply
Jk1 = Jk2 = Jk3 = 0.

The case of S(3) is discussed in detail in [22]. Proceeding as above one gets the phase
portrait of Figure 5. One could generalize this approach by taking two complete and action
preserving sets S1,S2 and connecting them with resonances as S(2) or S(3) as we have
discussed in introduction for S(1). However the dynamics is in fact qualitatively the same
and one does not have full energy transfer.

We have experimented also with higher order NLS equations. We have not performed
a complete classification but it appears that the sets S(2), S(3) never give full energy
transfer while S(1) does.
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